概率论试题(含解析)

合集下载

概率论试题(含解析)

概率论试题(含解析)

1、事件A B 、独立,且()0.8,()0.4P A B P A ⋃==,则P(AB)2、设()f x 是连续型随机变量X 的概率密度函数 ()f x 非负。

3、随机变量),(~2σμN X ,则概率{1}P X μ≤+随着σ的变大而(A )变小; (B )变大; (C )不变; (D )无法确定其变化趋势。

答:( A )6、某人投篮,每次命中的概率为23,现独立投篮3次,则至少命中3次的概率为.7、已知连续型随机变量X 的概率密度函数为(1)2,1()0,x Ae x f x --⎧⎪≥=⎨⎪⎩其它,则常数A = . 8、二维随机变量(,)X Y 的分布函数为(12)(13),0,0(,)0,x y x y F x y --⎧-->>=⎨⎩其它,则概率P(Y>2)= .9、已知随机变量X Y 、的方差分别为2,1DX DY ==,且协方差(,)0.6Cov X Y =,则D(X+Y)=设,A B 为随机事件,且()0,(|)1P B P A B >=,说明什么?某人向同一目标独立重复射击,每次射击命中目标的概率为(01)p p <<,则此人第5次射击恰好第2次命中目标的概率为( )C 14P 2(1-p )3 三、解答题(本大题共6小题,每小题10分,共60分)。

一、已知男人中有8%是肝病患者,女人中有0.35%是肝病患者。

今从男女人数相等的人群中随机地挑选一人,恰好是肝病患者,问此人是男性的概率是多少? 四、11、玻璃杯成箱出售,每箱20只,设每箱含0,1,2只残品的概率分别为0.8, 0.1, 0.1.顾客购买时,售货员随意取一箱,而顾客随意查看四只,若无残品,则买下,否则,退回。

现售货员随意取一箱玻璃杯,求顾客买下的概率。

(结果保留3个有效数字) 解:设B 表示售货员随意取一箱玻璃杯,顾客买下;i A 表示取到的一箱中含有i 个残品,0,1,2i =,则所求概率为2()(|)()...............................................................................(5')19181716181716150.810.10.1...........................(9')20191817201918170.9i i i P B P B A P A ==⨯⨯⨯⨯⨯⨯=⨯+⨯+⨯⨯⨯⨯⨯⨯⨯≈∑43...................................................................................................(10'),03()2,3420,1;2()7312X kx x x f x x k X F x P X ≤<⎧⎪⎪=-≤≤⎨⎪⎪⎩⎛⎫<≤ ⎪⎝⎭设随机变量具有概率密度其它()确定常数()求的分布函数;()求E (2x )是否独立《概率论与数理统计》期末试题(2)与解答一、填空题(每小题3分,共15分)1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________.2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间)4,0(内的概率密度为=)(y f Y _________.4. 设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________,}1),{min(≤Y X P =_________. 解:1.3.0)(=+B A B A P即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P9.0)(1)()(=-==AB P AB P B A P Y . 2.λλλλλ---==+==+==≤e X P e eX P X P X P 2)2(,)1()0()1(2由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22 即 0122=--λλ 解得 1=λ,故161)3(-==e X P . 3.设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=- 因为~(0,2)X U,所以(0X F =,即()Y X F y F = 故04,()()0,.Y Y X y f y F y f <<'===⎩其它另解 在(0,2)上函数2y x =严格单调,反函数为()h y =所以04,()0,.Y X y f y f <<==⎩其它4.2(1)1(1)P X P X e e λ-->=-≤==,故 2λ={min(,)1}1{min(,)1}P X Y P X Y ≤=->1(1)(1)P X P Y =->>41e -=-.二、单项选择题(每小题3分,共15分)1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是 (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则A C U 与B 也独立. (C )若()0P C =,则A C U 与B 也独立.(D )若C B ⊂,则A 与C 也独立. ( )2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为 (A )2[1(2)]-Φ. (B )2(2)1Φ-.(C )2(2)-Φ. (D )12(2)-Φ. ( ) 3.设随机变量X 和Y 不相关,则下列结论中正确的是(A )X 与Y 独立. (B )()D X Y DX DY -=+.(C )()D X Y DX DY -=-. (D )()D XY DXDY =. ( ) 4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为(A )21,99αβ==. (A)12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==. ( )解:1.因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图 可见A 与C 不独立.2.~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ). 3.由不相关的等价条件知应选(B ). 4.若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+ ∴29α=, 19β=故应选(A ).5.1,所以1是的无偏估计,应选(A ).三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.解:设A =‘任取一产品,经检验认为是合格品’ B =‘任取一产品确是合格品’则(1) ()()(|)()(|)P A P B P A B P B P A B =+ 0.90.950.10.020.857.=⨯+⨯= (2) ()0.90.95(|)0.9977()0.857P AB P B A P A ⨯===.四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设X 为途中遇到红灯的次数,求X 的分布列、分布函数、数学期望和方差.解:X 的概率分布为 3323()()()0,1,2,3.55kkkP X k C k -=== 即01232754368125125125125XPX 的分布函数为0,0,27,01,12581(),12,125117,23,1251,3.x x F x x x x <⎧⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪≥⎪⎩ 263,55EX =⨯= 231835525DX =⨯⨯=.五、(10分)设二维随机变量(,)X Y 在区域{(,)|0,0,1}D x y x y x y =≥≥+≤ 上服从均匀分布. 求(1)(,)X Y 关于X 的边缘概率密度;(2)Z X Y =+的分布函数与概率密度. (1)(,)X Y 的概率密度为2,(,)(,)0,.x y Df x y ∈⎧=⎨⎩其它22,01()(,)0,Xx xf x f x y dy+∞-∞-≤≤⎧==⎨⎩⎰其它(2)利用公式()(,)Zf z f x z x dx+∞-∞=-⎰其中2,01,01(,)0,x z x xf x z x≤≤≤-≤-⎧-=⎨⎩其它2,01, 1.0,x x z≤≤≤≤⎧=⎨⎩其它.当0z<或1z>时()0Zf z=01z≤≤时()222z zZf z dx x z===⎰故Z的概率密度为2,01,()0,Zz zf z⎧≤≤⎪=⎨⎪⎩其它.Z的分布函数为20,00,0,()()2,01,01,1, 1.1,1z zZ Zz zf z f y dy ydy z z zzz-∞<⎧<⎧⎪⎪⎪==≤≤=≤≤⎨⎨⎪⎪>⎩>⎪⎩⎰⎰或利用分布函数法10,0,()()()2,01,1, 1.ZDzF z P Z z P X Y z dxdy zz⎧<⎪⎪=≤=+≤=≤≤⎨⎪⎪>⎩⎰⎰20,0,,01,1, 1.zz zz<⎧⎪=≤≤⎨⎪>⎩2,01,()()0,Z Zz zf z F z≤≤⎧'==⎨⎩其它.六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X和纵坐标Y相互独立,且均服从2(0,2)N分布. 求(1)命中环形区域22{(,)|12}D x y x y=≤+≤的概率;(2)命中点到目标中心距离Z=的数学期望.1){,)}(,)DP X Y D f x y dxdy∈=⎰⎰22222880111248x y rDe dxdy e rdrdπθππ+--==⋅⎰⎰⎰⎰2221122888211()8r r red ee e ----=--=-=-⎰;(2)22818x y EZ E edxdy π+-+∞-∞-∞==⎰⎰22228801184r r rerdrd e r dr πθπ--+∞+∞==⎰⎰⎰2228882r r r reedr dr +∞---+∞+∞-∞=-+==⎰⎰。

概率论试题(含解析)

概率论试题(含解析)

---------------------一、单项选择题(本大题共5小题,每小题3分,共15分)。

1、事件A B 、独立,且()0.8,()0.4P A B P A ⋃==,则__(|)P B A 等于 (A )0; (B )1/3; (C )2/3; (D )2/5.答:( B )2、设()f x 是连续型随机变量X 的概率密度函数,则下列选项正确的是 (A )()f x 连续; (B )()(),P X a f a a R ==∀∈; (C )()f x 的值域为[0,1]; (D )()f x 非负。

答:( D )3、随机变量),(~2σμN X ,则概率{1}P X μ≤+随着σ的变大而(A )变小; (B )变大; (C )不变; (D )无法确定其变化趋势。

答:( A )4、已知连续型随机变量X Y 、相互独立,且具有相同的概率密度函数()f x ,设随机变量mi n{,}Z X Y =,则Z 的概率密度函数为 (A )2)]([z f ; (B )2()()z f u du f z -∞⎰; (C )2)](1[1z f --; (D )2(1())()zf u du f z -∞-⎰.答:( D )5、设12+1,,,,,,m m n X X X X X 是来自正态总体(0,1)N 的容量为n 的简单样本,则统计量2121()mi i nii m n m X m X==+-∑∑服从的分布是(A )(,)F n m m - (B )(1,1)F n m m --- (C )(,)F m n m - (D )(1,1)F m n m ---答:( C )二、填空题(本大题共5小题,每小题3分,共15分)。

6、某人投篮,每次命中的概率为23,现独立投篮3次,则至少命中1次的概率为2627.7、已知连续型随机变量X 的概率密度函数为(1)2,1()0,x Ae x f x --⎧⎪≥=⎨⎪⎩其它,则常数A =12. 8、二维随机变量(,)X Y 的分布函数为(12)(13),0,0(,)0,x y x y F x y --⎧-->>=⎨⎩其它,则概率(1)P Y ≤=2.9、已知随机变量X Y 、的方差分别为2,1DX DY ==,且协方差(,)0.6Cov X Y =,则)(Y X D -=1.8. 10、某车间生产滚珠,从长期实践中知道,滚珠直径X (单位:cm )服从正态分布2(,0.3)N μ,从某天生产的产品中随机抽取9个产品,测其直径,得样本均值_x =1.12,则μ的置信度为0.95的置信区间为(0.924,1.316).(已知0.025 1.96z =,0.05 1.65z =,0.025(8) 2.3060t =,0.05(8) 1.8595t =)三、解答题(本大题共6小题,每小题10分,共60分)。

概率论考试题以及解析汇总

概率论考试题以及解析汇总

.试题一一、选择题(每题有且仅有一个正确答案,每题2分,共20分) 1、已知P(A)=0.7, P(B)=0.8,则下列判断正确的是( )。

A. A,B 互不相容B. A,B 相互独立C.A ⊂BD. A,B 相容 2、将一颗塞子抛掷两次,用X 表示两次点数之和,则X =3的概率为( )A. 1/2B. 1/12C. 1/18D. 1/93、某人进行射击,设射击的命中率为0.2,独立射击100次,则至少击中9次的概率为( )A.919910098.02.0CB.i i i i C-=∑100100910098.02.0C.ii i i C-=∑1001001010098.02.0 D.i i i i C-=∑-100910098.02.014、设)3,2,1(39)(=-=i i X E i ,则)()31253(321=++X X X EA. 0B. 25.5C. 26.5D. 95、设样本521,,,X X X 来自N (0,1),常数c 为以下何值时,统计量25242321XX X X X c +++⋅服从t 分布。

( )A. 0B. 1C. 26D. -16、设X ~)3,14(N ,则其概率密度为( )A.6)14(261--x e πB.32)14(261--x eπC.6)14(2321--x eπD.23)14(261--x eπ7、321,,X X X 为总体),(2σμN 的样本, 下列哪一项是μ的无偏估计()A.3212110351X X X ++ B. 321416131X X X ++ C. 3211252131X X X ++ D. 321613131X X X ++ 8 、设离散型随机变量X 的分布列为X123.PC 1/4 1/8则常数C 为( )(A )0 (B )3/8 (C )5/8 (D )-3/89 、设随机变量X ~N(4,25), X1、X2、X3…Xn 是来自总体X 的一个样本,则样本均值X近似的服从( )(A ) N (4,25) (B )N (4,25/n ) (C ) N (0,1) (D )N (0,25/n ) 10、对正态总体的数学期望进行假设检验,如果在显著水平a=0.05下,拒绝假设00μμ=:H ,则在显著水平a=0.01下,( )A. 必接受0HB. 可能接受,也可能拒绝0HC. 必拒绝0HD. 不接受,也不拒绝0H 二、填空题(每空1.5分,共15分)1、A, B, C 为任意三个事件,则A ,B ,C 至少有一个事件发生表示为:_________;2、甲乙两人各自去破译密码,设它们各自能破译的概率为0.8,0.6,则密码能被破译的概率为_________;3、已知分布函数F(x)= A + Barctgx )(+∞<<-∞x ,则A =___,B =____;4、随机变量X 的分布律为k C k XP )31()(==,k =1,2,3, 则C=_______;5、设X ~b (n,p )。

概率论基础试题及答案

概率论基础试题及答案

概率论基础试题及答案一、单项选择题(每题2分,共10分)1. 随机变量X服从标准正态分布,P(X≤0)的值为:A. 0.5B. 0.3C. 0.7D. 0.9答案:A2. 已知随机变量X服从二项分布B(n, p),若n=10,p=0.3,则P(X=3)的值为:A. 0.0573B. 0.05734C. 0.05735D. 0.0574答案:A3. 若随机变量X与Y相互独立,则P(X>Y)的值为:A. P(X)P(Y)B. P(X) - P(X≤Y)C. 1 - P(X≤Y)D. 1 - P(X)P(Y)答案:C4. 随机变量X服从泊松分布,其期望值为λ,若λ=5,则P(X=3)的值为:A. 0.175467B. 0.175468C. 0.175469D. 0.17547答案:A5. 随机变量X服从均匀分布U(a, b),其概率密度函数为:A. f(x) = 1/(b-a), a≤x≤bB. f(x) = 1/(a-b), a≤x≤bC. f(x) = 1/(a+b), a≤x≤bD. f(x) = 1/(a-b), b≤x≤a答案:A二、填空题(每题3分,共15分)1. 若随机变量X服从正态分布N(μ, σ^2),则其概率密度函数为f(x) = __________,其中μ为均值,σ^2为方差。

答案:1/(σ√(2π)) * e^(-(x-μ)^2/(2σ^2))2. 已知随机变量X服从指数分布,其概率密度函数为f(x) = λe^(-λx),其中x≥0,则其期望值为E(X) = __________。

答案:1/λ3. 若随机变量X与Y相互独立,且P(X) = 0.6,P(Y) = 0.4,则P(X∩Y) = __________。

答案:0.244. 随机变量X服从二项分布B(n, p),若n=5,p=0.2,则P(X≥3) = __________。

答案:0.031255. 随机变量X服从几何分布,其概率质量函数为P(X=k) = (1-p)^(k-1)p,其中k=1,2,3,...,则其方差Var(X) = __________。

大学概率论试题及答案

大学概率论试题及答案

大学概率论试题及答案一、选择题(每题3分,共30分)1. 设随机变量X服从标准正态分布,即X~N(0,1),则P(X>1)为:A. 0.8413B. 0.1587C. 0.3446D. 0.5000答案:B2. 抛一枚均匀的硬币两次,观察正面朝上的次数,该随机试验的样本空间Ω为:A. {(0,0), (1,0), (0,1), (1,1)}B. {0, 1}C. {(0,0), (1,0), (0,1), (1,1), (2,0), (0,2)}D. {正面, 反面}答案:A3. 以下哪个事件是不可能事件?A. 连续抛掷一枚均匀硬币5次,至少出现一次正面B. 连续抛掷一枚均匀硬币5次,全部出现正面C. 连续抛掷一枚均匀硬币5次,全部出现反面D. 连续抛掷一枚均匀硬币5次,每次都是正面答案:D4. 设随机变量X服从泊松分布,参数为λ=2,则P(X=1)为:A. 0.2707B. 0.1353C. 0.5000D. 0.0707答案:B5. 以下哪个是二项分布的概率公式?A. P(X=k) = C(n,k) * p^k * (1-p)^(n-k)B. P(X=k) = C(n,k) * p^n * (1-p)^kC. P(X=k) = C(n,k) * p^k * (1-p)^nD. P(X=k) = C(n,k) * p^(n-k) * (1-p)^k答案:A6. 随机变量X和Y相互独立,且都服从标准正态分布,那么Z=X+Y的分布为:A. 标准正态分布B. 平均值为0,方差为2的正态分布C. 平均值为0,方差为1的正态分布D. 平均值为2,方差为1的正态分布答案:B7. 设随机变量X服从指数分布,参数为λ=1,则P(X>2)为:A. 0.1353B. 0.2707C. 0.5000D. 0.7500答案:A8. 以下哪个是随机变量的期望值的定义?A. E(X) = ∑x * P(X=x)B. E(X) = ∑x * P(X≠x)C. E(X) = ∑x * P(X=x),对于离散型随机变量D. E(X) = ∫x * f(x) dx,对于连续型随机变量9. 假设随机变量X服从二项分布,n=10,p=0.5,那么P(X≥6)为:A. 0.246B. 0.754C. 0.500D. 0.246答案:B10. 设随机变量X和Y相互独立,且X~N(0,1),Y~N(0,1),则Z=X+Y 的分布为:A. N(0,2)B. N(0,1)C. N(1,0)D. N(2,0)答案:A二、填空题(每题4分,共20分)1. 如果随机变量X服从二项分布,参数为n=5,p=0.3,则P(X=3)为______。

概率论试题及答案

概率论试题及答案

概率论试题及答案一、选择题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是:- A. 1/2- B. 3/8- C. 5/8- D. 1/82. 如果事件A和事件B是互斥的,且P(A) = 0.4,P(B) = 0.3,那么P(A∪B)等于:- A. 0.7- B. 0.6- C. 0.4- D. 0.33. 抛掷一枚硬币两次,出现正面向上的概率是:- A. 1/4- B. 1/2- C. 3/4- D. 1二、填空题1. 概率论中,事件的全概率公式是 P(A) = ________,其中∑表示对所有互斥事件B_i的和。

2. 如果事件A和事件B是独立事件,那么P(A∩B) = ________。

三、计算题1. 一个工厂有3台机器,每台机器在一小时内发生故障的概率是0.01。

求在一小时内至少有一台机器发生故障的概率。

2. 一个班级有50名学生,其中30名男生和20名女生。

如果随机选择一名学生,这名学生是男生的概率是0.6。

求这个班级中男生和女生的人数。

四、解答题1. 解释什么是条件概率,并给出计算条件概率的公式。

2. 一个袋子里有10个球,其中7个是红球,3个是蓝球。

如果从袋子中随机取出一个球,观察其颜色后放回,再取出一个球。

求第二次取出的球是蓝球的概率。

答案一、选择题1. C. 5/82. B. 0.63. B. 1/2二、填空题1. P(A) = ∑P(A∩B_i)2. P(A)P(B)三、计算题1. 首先计算没有机器发生故障的概率,即每台机器都不发生故障的概率,为(1-0.01)^3。

至少有一台机器发生故障的概率为1减去没有机器发生故障的概率,即1 - (1-0.01)^3。

2. 设男生人数为x,女生人数为y。

根据题意,x/(x+y) = 0.6,且x+y=50。

解得x=30,y=20。

四、解答题1. 条件概率是指在已知某个事件已经发生的情况下,另一个事件发生的概率。

计算条件概率的公式是P(A|B) = P(A∩B)/P(B),其中P(A|B)表示在事件B发生的条件下事件A发生的概率。

概率论试题(附含答案)详细

概率论试题(附含答案)详细

事件表达式A B 的意思是事件A 与事件B 至少有一件发生假设事件A 与事件B 互为对立,则事件A B 是不可能事件. 这是因为对立事件的积事件是不可能事件。

已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从自由度为2的χ2分布. 因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的χ2分布。

已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则X +Y ~N (0,5). 因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )=2-2=0, D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。

样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有1233X X X ++是μ的无偏估计. 因为样本均值是总体期望的无偏估计.随机变量X 服从在区间(2,5)上的均匀分布,则X 的数学期望E (X )的值为3.5. 选C ,因为在(a ,b )区间上的均匀分布的数学期望为(a +b )/2。

已知P (A )=0.6, P (B |A )=0.3, 则P (A B )= 0.18. 由乘法公式P (A B )=P (A )P (B |A )=0.6⨯0.3=0.18。

三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为0.784. 是因为三人都不中的概率为0.63=0.216, 则至少一人中的概率就是1-0.216=0.784。

一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为0.25. 由古典概型计算得所求概率为31053210.254C ⨯⨯==。

已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=0.875,因P {X ≤1.5} 1.5()d 0.875f x x ==⎰假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (X +Y )= 填 4.5,因E (X )=5⨯0.5=2.5, E (Y )=2, E (X +Y )=E (X )+E (Y )=2.5+2=4.5一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=0.4,因为总体X 的方差为4,10个样本的样本均值的方差是总体方差的1/10。

高等数学(概率论)习题及解答

高等数学(概率论)习题及解答

高等数学(概率论)习题及解答高等数学(概率论)题及解答
1. 题一
1.1. 题目
已知事件A和B的概率分别为P(A) = 0.2,P(B) = 0.3,且P(A∪B) = 0.4,求P(A∩B)。

1.2. 解答
根据概率的加法定理,有:
P(A∪B) = P(A) + P(B) - P(A∩B)
代入已知数据得:
0.4 = 0.2 + 0.3 - P(A∩B)
P(A∩B) = 0.1
所以,P(A∩B)的概率为0.1。

2. 题二
2.1. 题目
已知某城市一天中的天气分为晴天、阴天和雨天三种情况,其中晴天的概率为0.4,阴天的概率为0.3。

现已知,当下为晴天时,随后一天也是晴天的概率为0.7;当下为阴天时,随后一天为晴天的概率为0.5。

求当下为晴天时,随后一天为阴天的概率。

2.2. 解答
设事件A为当下为晴天,事件B为随后一天为阴天。

根据条件概率的定义,有:
P(B|A) = P(A∩B) / P(A)
已知 P(A) = 0.4,P(B|A) = 0.5,代入并整理得:
0.5 = P(A∩B) / 0.4
P(A∩B) = 0.5 * 0.4
P(A∩B) = 0.2
所以,当下为晴天时,随后一天为阴天的概率为0.2。

以上是高等数学(概率论)习题及解答的部分内容,如有更多问题或需要补充,请随时告知。

概率论习题及答案详解

概率论习题及答案详解

一、填空题1. 掷21n +次硬币,则出现正面次数多于反面次数的概率是0.52. 把10本书任意的放到书架上,求其中指定的三本书放在一起的概率1153. 6.一批产品分一、二、三级,其中一级品是二级品的两倍,三级品是二级品的一半,从这批产品中随机的抽取一件,试求取到二级品的概率274. 已知()0.7,()0.3,P A P A B =-= 则()0.6.P AB =5. 已知()0.3,()0.4,()0.5,P A P B P A B === 则(|)0.8.P B A B ⋃=6. 掷两枚硬币,至少出现一个正面的概率为34.7. 设()0.4,()0.7,P A P A B =⋃= 若,A B 独立,则()0.5.P B =8. 设,A B 为两事件,11()(),(|),36P A P B P A B === 则7(|).12P A B =9. 设123,,A A A 相互独立,且2(),1,2,3,3i P A i == 则123,,A A A 最多出现一个的概率是7.2710.某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为0.104二、选择题1. 下面四个结论成立的是(B ).()().,.().()A A B C A B C B AB C A BC C A B B A D A B B A--=-⋃=∅⊂=∅⋃-=-⋃=若且则2. 设()0,P AB =则下列说法正确的是( D ) ...()0()0.()()A AB B ABC P A P BD P A B P A ==-=和不相容 是不可能事件或3. 掷21n +次硬币,正面次数多于反面次数的概率为( C )1..21211.0.5.21nn A B n n n C D n -++++ 4. 设,A B 为随机事件,()0,(|)1,P B P A B >= 则必有( A ).()()..()().()()A P AB P A B B AC P A P BD P AB P A ⋃=⊂==5. 设A 、B 相互独立,且P (A )>0,P (B )>0,则下列等式成立的是( B ).A .P (AB )=0 .B P (A -B )=P (A )P (B ).C P (A )+P (B )=1 .D .P (A |B )=06.设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有( A ).A P (AB )=l .B P (A )=1-P (B ) .C P (AB )=P (A )P (B ).D P (A ∪B )=17. 已知()0.5P A =,()0.4P B =,()0.6P A B +=,则(|)P A B =( D ).A 0.2 .B 0.45 .C 0.6 .D 0.758.同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( C ).A 0.125 .B 0.25 .C 0.375 .D 0.509.设事件,A B 互不相容,已知()0.4P A =,()0.5P B =,则()P AB =( B ).A 0.1 .B 0.4 .C 0.9 .D 110.已知事件A ,B 相互独立,且()0P A >,()0P B >,则下列等式成立的是( B ).A ()()()P A B P A P B ⋃=+ .B ()1()()P A B P A P B ⋃=- .C ()()()P A B P A P B ⋃=.D ()1P A B ⋃=三、 计算题1. 一宿舍内住有6位同学,求他们之中至少有2个人的生日在同一个月份概率。

概率论练习题与解析.

概率论练习题与解析.

十、概率论与数理统计一、填空题1、设在一次试验中,事件A 发生的概率为p 。

现进行n 次独立试验,则A 至少发生一次的概率为np )1(1--;而事件A 至多发生一次的概率为1)1()1(--+-n n p np p 。

2、 三个箱子,第一个箱子中有4个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子有3个黑球5个白球。

现随机地取一个箱子,再从这个箱子中取出1个球,这个球为白球的概率等于 。

已知取出的球是白球,此球属于第二个箱子的概率为 。

解:用iA 代表“取第i 只箱子”,i =1,2,3,用B 代表“取出的球是白球”。

由全概率公式⋅=⋅+⋅+⋅=++=12053853163315131)|()()|()()|()()(332211A B P A P A B P A P A B P A P B P由贝叶斯公式⋅=⋅==5320120536331)()|()()|(222B P A B P A P B A P3、 设三次独立试验中,事件A 出现的概率相等。

若已知A 至少出现一次的概率等于19/27,则事件A 在一次试验中出现的概率为 。

解:设事件A 在一次试验中出现的概率为)10(<<p p ,则有2719)1(13=--p ,从而解得31=p4、已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P 及条件概率8.0)|(=A B P ,则和事件B A 的概率)(B A P = 。

7.08.05.06.05.0)|()()()()()()()(=⨯-+=-+=-+=A B P A P B P A P AB P B P A P B A P5、 甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5。

现已知目标被命中,则它是甲射中的概率为 。

用A 代表事件“甲命中目标”,B 代表事件“乙命中目标”,则B A 代表事件“目标被命中”,且8.06.05.06.05.0)()()()()()()()(=⨯-+=-+=-+=B P A P B P A P AB P B P A P B A P所求概率为 75.08.06.0)()()|(===B A P A P B A A P 6、 设随机事件A ,B 及其和事件B A 的概率分别是0.4,0.3和0.6。

《概率论》考试试题(含答案)

《概率论》考试试题(含答案)

《概率论》考试试题(含答案) ................................................................................................... 1 解答与评分标准 . (3)《概率论》考试试题(含答案)一.单项选择题(每小题3分,共15分) 1.设事件A 和B 的概率为12(),()23P A P B == 则()P AB 可能为( ) (A) 0; (B) 1; (C) 0.6; (D) 1/62. 从1、2、3、4、5 这五个数字中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为( )(A)12; (B) 225; (C) 425; (D)以上都不对 3.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( )(A)518; (B) 13; (C) 12; (D)以上都不对 4.某一随机变量的分布函数为()3xxa be F x e +=+,则F (0)的值为( )(A) 0.1; (B) 0.5; (C) 0.25; (D)以上都不对5.一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为( )(A) 2.5; (B) 3.5; (C) 3.8; (D)以上都不对二.填空题(每小题3分,共15分)1.设A 、B 是相互独立的随机事件,P (A )=0.5, P (B )=0.7, 则()P A B =_____.2.设随机变量~(,), ()3, () 1.2B n p E D ξξξ==,则n =______.3.随机变量ξ的期望为()5E ξ=,标准差为()2σξ=,则2()E ξ=_______.4.甲、乙两射手射击一个目标,他们射中目标的概率分别是0.7和0.8.先由甲射击,若甲未射中再由乙射击。

设两人的射击是相互独立的,则目标被射中的概率为_________. 5.设连续型随机变量ξ的概率分布密度为2()22af x x x =++,a 为常数,则P (ξ≥0)=_______.三.(本题10分)将4个球随机地放在5个盒子里,求下列事件的概率 (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球.四.(本题10分) 设随机变量ξ的分布密度为, 03()10, x<0x>3Ax f x x⎧⎪=+⎨⎪⎩当≤≤当或 (1) 求常数A ; (2) 求P (ξ<1); (3) 求ξ的数学期望.五.(本题10分) 设二维随机变量(ξ,η)的联合分布是η=1 η=2 η=4 η=5ξ=0 0.05 0.12 0.15 0.07 ξ=1 0.03 0.10 0.08 0.11 ξ=2 0.070.010.110.10(1) ξ与η是否相互独立? (2) 求ξη⋅的分布及()E ξη⋅;六.(本题10分)有10盒种子,其中1盒发芽率为90%,其他9盒为20%.随机选取其中1盒,从中取出1粒种子,该种子能发芽的概率为多少?若该种子能发芽,则它来自发芽率高的1盒的概率是多少?七.(本题12分) 某射手参加一种游戏,他有4次机会射击一个目标.每射击一次须付费10元. 若他射中目标,则得奖金100元,且游戏停止. 若4次都未射中目标,则游戏停止且他要付罚款100元. 若他每次击中目标的概率为0.3,求他在此游戏中的收益的期望.八.(本题12分)某工厂生产的零件废品率为5%,某人要采购一批零件,他希望以95%的概率保证其中有2000个合格品.问他至少应购买多少零件? (注:(1.28)0.90Φ=,(1.65)0.95Φ=)九.(本题6分)设事件A 、B 、C 相互独立,试证明AB 与C 相互独立.某班有50名学生,其中17岁5人,18岁15人,19岁22人,20岁8人,则该班学生年龄的样本均值为________.十.测量某冶炼炉内的温度,重复测量5次,数据如下(单位:℃):1820,1834,1831,1816,1824 假定重复测量所得温度2~(,)N ξμσ.估计10σ=,求总体温度真值μ的0.95的置信区间. (注:(1.96)0.975Φ=,(1.65)0.95Φ=)解:1(18201834183118161824)18255ξ=++++=-------------------2分 已知10.95, 0.05αα-==,0.02521.96u u α==---------------------------5分10σ=,n=5,0.025210 1.96108.7755u u nασ⨯===-------------------8分所求真值μ的0.95的置信区间为[1816.23, 1833.77](单位:℃)-------10分解答与评分标准一.1.(D )、2.(D )、3.(A )、4.(C )、5.(C ) 二.1.0.85、2. n =5、3. 2()E ξ=29、4. 0.94、5. 3/4三.把4个球随机放入5个盒子中共有54=625种等可能结果--------------3分 (1)A={4个球全在一个盒子里}共有5种等可能结果,故P (A )=5/625=1/125------------------------------------------------------5分(2) 5个盒子中选一个放两个球,再选两个各放一球有302415=C C 种方法----------------------------------------------------7分4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法因此,B={恰有一个盒子有2个球}共有4×3=360种等可能结果.故12572625360)(==B P --------------------------------------------------10分四.解:(1)⎰⎰∞∞-==+=34ln 1,4ln 1)(A A dx x A dx x f ---------------------3分 (2)⎰==+=<1212ln 1)1(A dx x A P ξ-------------------------------6分 (3)3300()()[ln(1)]1AxE xf x dx dx A x x x ξ∞-∞===-++⎰⎰13(3ln 4)1ln 4ln 4=-=-------------------------------------10分 五.解:(1)ξ的边缘分布为⎪⎪⎭⎫ ⎝⎛29.032.039.02 10--------------------------------2分 η的边缘分布为⎪⎪⎭⎫ ⎝⎛28.034.023.015.05 4 2 1---------------------------4分 因)1()0(05.0)1,0(==≠===ηξηξP P P ,故ξ与η不相互独立-------5分 (2)ξη⋅的分布列为ξη⋅0 1 2 4 5 8 10。

概率论期末试题及解析答案

概率论期末试题及解析答案

概率论期末试题及解析答案1. 简答题(每题10分)1.1 什么是概率?概率是描述随机事件发生可能性的数值。

它可以用来衡量某一事件在多次重复试验中出现的频率。

1.2 什么是样本空间?样本空间是指一个随机试验中所有可能结果的集合。

1.3 什么是事件?事件是样本空间中包含的一组可能结果的子集。

1.4 什么是互斥事件?互斥事件是指两个事件不能同时发生。

1.5 什么是独立事件?独立事件是指两个事件的发生与不发生互不影响。

2. 计算题(每题20分)2.1 设一枚硬币抛掷3次,计算至少出现两次正面的概率。

解析:样本空间:{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}至少出现两次正面的事件:{HHH, HHT, HTH, THH}概率 = 事件发生的次数 / 样本空间的次数 = 4 / 8 = 1/22.2 设A、B两个事件相互独立,且P(A) = 0.4,P(B) = 0.6,计算P(A∪B)。

解析:由于A、B事件相互独立,所以P(A∩B) = P(A) * P(B) = 0.4 * 0.6 = 0.24P(A∪B) = P(A) + P(B) - P(A∩B) = 0.4 + 0.6 - 0.24 = 0.763. 应用题(每题30分)3.1 甲乙两个备胎分别拥有10个和15个备用轮胎,轮胎坏掉时甲用2个备用轮胎的概率为0.2,乙用3个备用轮胎的概率为0.15。

现在从甲、乙两个备胎中随机挑选一个备用轮胎,请计算此备用轮胎坏掉的概率。

解析:设事件A为甲备胎的备用轮胎坏掉,事件B为乙备胎的备用轮胎坏掉。

P(A) = 0.2 * 10 / (0.2 * 10 + 0.15 * 15) = 0.2 * 10 / (2 + 2.25) ≈ 0.6667 P(B) = 0.15 * 15 / (0.2 * 10 + 0.15 * 15) = 0.15 * 15 / (2 + 2.25) ≈0.3333由于只能选择甲或乙中的一个备用轮胎,所以备用轮胎坏掉的概率为P(A) + P(B) ≈ 13.2 水果篮子中有5个橙子、3个苹果和2个香蕉,现从篮子中随机挑选两个水果,请计算挑选出的两个水果中至少有一个是橙子的概率。

概率论考试题和答案解析

概率论考试题和答案解析

概率论考试题和答案解析一、单项选择题(每题3分,共30分)1. 随机变量X服从标准正态分布,下列说法正确的是:A. P(X > 0) = 0.5B. P(X > 1) = 0.5C. P(X > 2) = 0.5D. P(X > 3) = 0.5答案:A解析:标准正态分布的均值μ=0,标准差σ=1。

由于正态分布曲线关于均值对称,所以P(X > 0) = 0.5。

2. 设随机变量X服从二项分布B(n, p),下列说法正确的是:A. E(X) = npB. D(X) = np(1-p)C. P(X = k) = C(n, k)p^k(1-p)^(n-k)D. 以上说法都正确答案:D解析:二项分布的期望E(X) = np,方差D(X) = np(1-p),概率质量函数P(X = k) = C(n, k)p^k(1-p)^(n-k)。

3. 设随机变量X服从泊松分布,下列说法正确的是:A. E(X) = λB. D(X) = λC. P(X = k) = λ^k / k!D. 以上说法都正确答案:D解析:泊松分布的期望E(X) = λ,方差D(X) = λ,概率质量函数P(X = k) = λ^k / k!。

4. 设随机变量X服从均匀分布U(a, b),下列说法正确的是:A. E(X) = (a + b) / 2B. D(X) = (b - a)^2 / 12C. P(a ≤ X ≤ b) = 1D. 以上说法都正确答案:D解析:均匀分布的期望E(X) = (a + b) / 2,方差D(X) = (b - a)^2 / 12,概率P(a ≤ X ≤ b) = 1。

5. 设随机变量X服从指数分布,下列说法正确的是:A. E(X) = 1/λB. D(X) = 1/λ^2C. P(X > x) = e^(-λx)D. 以上说法都正确答案:D解析:指数分布的期望E(X) = 1/λ,方差D(X) = 1/λ^2,累积分布函数F(x) = 1 - e^(-λx),所以P(X > x) = 1 - F(x) = e^(-λx)。

概率论考试题及答案

概率论考试题及答案

概率论考试题及答案一、选择题(每题2分,共10分)1. 某校有100名学生,其中60名男生和40名女生。

随机抽取1名学生,该学生是女生的概率是多少?A. 0.4B. 0.6C. 0.8D. 1.0答案:A2. 抛一枚均匀的硬币,正面朝上和反面朝上的概率相等,那么连续抛掷3次硬币,得到至少两次正面朝上的概率是多少?A. 0.5B. 0.75C. 0.875D. 0.625答案:D3. 一个袋子里有5个红球和3个蓝球,随机抽取2个球,那么两个球都是红球的概率是多少?A. 1/6B. 1/3C. 1/2D. 2/5答案:D4. 如果事件A的概率是0.3,事件B的概率是0.4,且A和B互斥,那么A和B至少有一个发生的概率是多少?A. 0.7B. 0.5C. 0.6D. 0.4答案:A5. 一个骰子被抛掷,那么得到的点数是偶数的概率是多少?A. 0.5B. 0.33C. 0.25D. 0.16答案:A二、填空题(每题3分,共15分)6. 概率论中的_______定义了事件发生的可能性大小。

答案:概率7. 如果事件A和事件B是独立的,那么P(A∩B) = _______。

答案:P(A) * P(B)8. 随机变量X服从参数为λ的泊松分布,那么X的概率质量函数为:P(X=k) = _______。

答案:(λ^k / k!) * e^(-λ)9. 在连续概率分布中,随机变量X的取值范围是无限的,其概率密度函数f(x)满足________。

答案:∫f(x)dx = 110. 两个事件A和B互斥的充分必要条件是P(A∩B) = _______。

答案:0三、解答题(共25分)11. 一个工厂有3台机器生产同一种零件,每台机器在一小时内正常运转的概率分别为1/2、2/3和3/4。

假设这些机器相互独立,求至少有两台机器在一小时内正常运转的概率。

答案:首先,我们可以计算出每台机器不正常运转的概率,然后找出至少两台机器正常运转的组合情况。

(完整版)概率论高等数学习题解答

(完整版)概率论高等数学习题解答

1(A )三、解答题1•一颗骰子抛两次,以 X表示两次中所得的最小点数(1) 试求X 的分布律; (2)写出X 的分布函数.解:(1)分析:这里的概率均为古典概型下的概率,所有可能性结果共 36种,如果X=1,则表明两次中至少有一点数为1,其余一个1至6点均可,共有C 2 6-1 (这里C 2指任选某次点 数为1, 6为另一次有6种结果均可取,减1即减去两次均为1的情形,因为C ; 6多1 1算了一次)或C 2 5 1种,故P X 1 C 26-1C25 1耳,其他结果类似36 3636可得•0, X1P{X 1} ,1X 2P{X 1} P{X 2} ,2X3F(x)P{X 1} P{X 2} P{X 3}, 3 x 4P{X 1} P{X 2} P{X3}P{X 4}, 4 x 5 P{X1} P{X2} P{X 3} P{X4} P{X5}, 5 x 61 ,x 622 •某种抽奖活动规则是这样的:袋中放红色球及白色球各 5只,抽奖者交纳一元钱后得到一次抽奖的机会,然后从袋中一次取出 5只球,若5只球同色,则获奖100元,否则无奖,以X 表示某抽奖者在一次抽取中净赢钱数,求X 的分布律.解:注意,这里 X 指的是赢钱数,X 取0-1或100-1,显然P X 99k3.设随机变量 X 的分布律为P{X k} a ,k 0,1,2, k!k解:因为 a ae 1,所以a e k 0 k!4.设随机变量X 的分布律为X -1 2 3 p1/41/21/4(1)求X 的分布函数;1 3 512627,3 翌,4 3635,5 36x 2 x 3x 4 x 5x 6 62 1 C ;0 1260为常数,试求常数 a .3⑵求P{X 丄},P{- X 5},P{2 x 3}.2 2 2解:40, x -1布,而与时间间隔的起点无关(时间以小时计)(1) 求某一天中午12时至下午3时没有收到紧急呼救的概率. (2) 求某一天中午12时至下午5时至少收到一次紧急呼救的概率. 解:(1) X ~ P 0.5t P 1.5 P X 0 e 1.5. (2) 0.5t2.50, x -1P{X 1}, 1 x2(1) F (x)P{X 1} P{X 2}1, x 3⑵P 1XX1 124P 2 X 3 P X 2X 3 5.设随机变量X 的分布律为 P{X k}(1) P{X =偶数}(2) P{ X 5}(3) P{ X=3的倍数}2 x 33 , ,2x341, x 33 51 P — X P X2 —222P X2 3 P X 3.4扌,k 1,2, 求:解:(1) P X 偶数丄1丄 22 221 lim i1(2) P X 51 P X 4115 1 16 16⑶P X 3的倍数23236.某公安局在长度为i123ilim123t 的时间间隔内收到的紧急呼救的次数X 服从参数为0.5t 的泊松分2.5丄,1x2 45 7.某人进行射击,每次射击的命中率为0.02,独立射击400次,试求至少击中2次的概6解:设射击的次数为 X ,由题意知X ~ B 400,0.2i k k 400 kP X 2 1 P X 11 C 4000.02 0.98k 0查表泊松分布函数表得:P{X 2} 1 0.28 0.99728.设事件A 在每一次试验中发生的概率为 0.3,当A 发生不少于3次时,指示灯发出信(1)系数a ;(2) X 落在区间(0,[)内的概率.号•现进行5次独立试验,试求指示灯发出信号的概率.解:设X 为事件A 在5次独立重复实验中出现的次数,则指示灯发出信号的概率 X ~ B 5,0.3 p P X 3 1 P X 3 1 (C 00.3°0.75 C 50.310.74 C ;0.320.73) 1 0.8369 0.1631. 9.设顾客在某银行窗口等待服务的时间 X (以分钟计) 在窗口等待服务,若超过 务而离开窗口的次数.写出 服从参数为 5 10分钟,他就离开.他一个月要到银行 5次,以 Y 的分布律,并求P{Y 1}.指数分布•某顾客 Y 表示他未等到服 x 解:因为X 服从参数为5的指数分布,则F(x) 1 e T , P X 10 Y~ B5, e 2 , 1 F(10) e 2 ,则 P{Y k} C5 (e 2)k (1 e 2)5k,k 0,1, 5 P{Y 1} 1- P{Y 0} 1 (1 e 2)5 0.5167 a cosx. 10.设随机变量 X 的概率密度为 f(x)0,|x|~2,试求:|x |2解:(1)由归一性知:1 f (x)dx2a cosxdx 2a ,所以 a2由于上面二项分布的概率计算比较麻烦, 所以而且X 近似服P{X 2}18k ek 0k!7⑵-11.2.P{0 X —} ; cosxdx sin x |(424 .0,x011 . 设连续随机变量X的分布函数为F(x)Ax,0x 11,x1⑶X的概率密度.试求:(1) 解系数(1)A;由⑵X落在区间(0.3, 0.7)内的概率;的连续性可得lim F(x)F(x )在x=1 lim F(x) F(1),即A=1.x 1(2) 0.3 X 0.7 F(0.7) F(0.3) 0.4.(3) X的概率密度 f (x) F (x)2x,00,12.设随机变量X服从(0, 5)上的均匀分布,求的概率.x的方程4x2 4Xx X 0有实根解:因为X服从(0, 5)上的均匀分布,所以1f(x) 50x5其他2 2方程4x 4Xx X(x 2)( X2(4X) 16X1,所以有实根的概率为0有实根,则32 51dx2510dxX〜N(3, 4)13.设求P{2 X 5}, P{(1) X 10}, P{ X 2}, P{X解: 确定c使得P{X c}设d满足P{X d} 0.9,问d至多为多少?(1)因为X ~ N(3,4)所以P{X c};2 3P{2 X 5} P{〒穿}P{1}(1) (0.5) (1) (0.5) 1 0.8413 0.6915 0.5328P 4 X 108F(2)(2.5)经查表得1 (0),即2专)故斗214.设随机变量1.29,解:P XF(所以(k)15.设随机变量如何变化的?(3.5)2 0.999810 3 4 3(^)2 2(3.5) 2 (3.5)1 0.99962) 1(0.5)0.1,解:X ~ N(,(0.5)0.3023F(3),则P X2X2(2.5)0.6977(0)得c 3 ;由概率密度关于即(-d 3)20.42.X服从正态分布2 2 (k)0.95 , p XN(0,1 0.5 0.5.c 3 1F(c)(〒)-,x=3对称也容易看出。

(完整版)概率论大题附答案

(完整版)概率论大题附答案

第一章 随机事件及其概率1.6 假设一批100件商品中有4件不合格品.抽样验收时从中随机抽取4件,假如都为合格品,则接收这批产品,否则拒收,求这批产品被拒收的概率p . 解 以ν表示随意抽取的4件中不合格品的件数,则4964100C {1}1{0}110.84720.1528C p P P =≥=-==-≈-=νν.1.7 从0,1,2,,10…等11个数中随机取出三个,求下列事件的概率:1A ={三个数最大的是5};2A ={三个数大于、等于和小于5的各一个};3A ={三个数两个大于5,一个小于7}.解 从11个数中随机取出三个,总共有311C 165=种不同取法,即总共有311C 个基本事件,其中有利于1A 的取法有25C 10=种(三个数最大的是5,在小于5的5个数中随意取两个有25C 10=种不同取法);有利于2A 的取法有5×5=20种(在小于5的5个数中随意取一个,在大于5的5个数中随意取一个,有5×5=25种不同取法);有利于3A 的取法有5×25C 70=种(在小于5的5个数中随意取一个,在大于5的5个数中随意取两个).于是,最后得111102550()0.06()0.15()0.30165165165P A P A P A ======,,.1.8 考虑一元二次方程 02=++C Bx x , 其中B , C 分别是将一枚色子接连掷两次先后出现的点数. (1) 求方程无实根的概率α, (2) 求方程有两个不同实根的概率β.解 显然,系数B 和C 各有1,2,3,4,5,6等6个可能值;将一枚色子接连掷两次,总共有36个基本事件.考虑方程的判别式C B 42-=∆.事件{无实根}和{有两个不同实根},等价于事件{0}∆<和{0}∆>.下表给出了事件{∆由对称性知{0}∆<和{0}∆>等价,因此αβ=.易见,方程无实根的概率α和有两个不同实根的概率β为170.47αβ==≈.. ()1()1P AB P AB r =-=-, ()()1P A B P AB r +==-,()1()1[]P A B P A B p q r +=-+=-+-, ()()1[]P AB P A B p q r =+=-+-,([])()()P A A B P A AB P A p +=+==.1.18 假设箱中有一个球,只知道不是白球就是红球.现在将一个白球放进箱中,然后从箱中随机取出一个球,结果是白球.求箱中原来是白球的概率α.解 引进事件:=A {取出的是白球},1H ={箱中原来是白球},2H ={箱中原来是红球},则12,H H 构成完全事件组,并且12()()0.5P H P H ==.由条件知12(|)1(|)0.5P A H P A H ==,.由贝叶斯公式,有1111122()(|)2(|)()(|)()(|)3P H P A H P H A P H P A H P H P A H α===+.1.21 假设一厂家生产的每台仪器,以概率0.7可以直接出厂;以概率0.30需进一步进行调试, 经调试以概率0.90可以出厂,以概率0.10定为不合格品不能出厂.现在该厂在生产条件稳定的情况下,新生产了20台仪器.求最后20台仪器 (1) 都能出厂的概率α; (2) 至少两台不能出厂的概率β.解 这里认为仪器的质量状况是相互独立的.设1H ={仪器需要调试},2H ={仪器不需要调试},A ={仪器可以出厂}.由条件知1212()0.30 ()0.70 (|)0.80(|)1P H P H P A H P A H ====, ,,.(1) 10台仪器都能出厂的概率0112210100()()(|)()(|)0.300.800.700.940.940.5386P A P H P A H P H P A H ααα==+=⨯+===≈ ;.(2) 记ν——10台中不能出厂的台数,即10次伯努利试验“成功(不能出厂)”的次数.由(1)知成功的概率为p =0.06.易见,10台中至少两台不能出厂的概率109{2}1{0}{1}10.94100.940.060.1175P P P βννν=≥=-=-==--⨯⨯≈.1.23 设B A ,是任意二事件,证明:(1) 若事件A 和B 独立且B A ⊂,则()0P A =或()1P B =;(2) 若事件A 和B 独立且不相容,则A 和B 中必有一个是0概率事件.证明 (1) 由于B A ⊂,可见()()()()()()()()P AB P A P B P AB P A P A P A P B ===,,. 因此,若()0P A ≠,则()1P B =;若()0P B ≠,()0P A =.(2) 对于事件A 和B ,由于它们相互独立而且不相容,可见()()()0P A P B P AB ==,因此,概率()P A 和()P B 至少有一个等于0.补充:第二节 事件的关系和运算1. 设A ,B ,C 是三个随机事件,用事件A ,B ,C 的运算关系表示下列事件:⑴ A ,B ,C 三个都发生;⑵ A 发生而B ,C 都不发生;⑶ A ,B 都发生, C 不发生; ⑷ A ,B ,C 恰有一个发生;⑸ A ,B ,C 恰有两个发生;⑹ A ,B ,C 至少有一个发生; ⑺ A ,B ,C 都不发生.解:(1)ABC (2)ABC (3)ABC (4)ABC ABC ABC ++ (5)ABC ABC ABC ++ (6) A B C ++ (7) ABC第三节 事件的概率解:由()()()()P A B P A P B P AB +=+-知,()()()()P AB P A P B P A B =+-+0.40.30.6=+-=0.1 ()1()10.10.9P AB P AB =-=-=()()1()10.60.4P AB P A B P A B =+=-+=-= ()()()0.40.10.3P AB P A P AB =-=-=解:由()()()P A B P A P AB -=-,得()()()P A B P A P AB -=-()()()0.70.30.4P AB P A P A B =--=-=, ()1()10.40.6P AB P AB =-=-=3. 已知()09.P A =,()08.P B =,试证()07.P AB ≥. 解:由()()()()P A B P A P B P AB +=+-知,()()()()P AB P A P B P A B =+-+0.90.81≥+-0.7=解:由条件()()0P AB P BC ==,知()0P ABC =,()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ++=++---+1111500044488=++---+= 5. 设A ,B 是两事件,且()06.P A =,()07.P B =,问⑴ 在什么条件下,()P AB 取到最大值,最大值是多少? ⑵ 在什么条件下,()P AB 取到最小值,最小值是多少?解:由()()()()P A B P A P B P AB +=+-知,()()()()P AB P A P B P A B =+-+ 又因为()()P A P A B ≤+,()()P B P A B ≤+,所以(){}max (),()P A P B P A B ≤+, 所以0.7()1P A B ≤+≤,所以0.3()0.6P AB ≤≤.第四节 条件概率及与其有关的三个基本公式1.设有对某种疾病的一种化验,患该病的人中有90%呈阳性反应,而未患该病的人中有5%呈阳性反应,设人群中有1%的人患这种疾病,若某病人做这种化验呈阳性反应,则他患有这种疾病的概率是多少? 解:设{}A =某疾病患者,{}A =非某疾病患者,{}B =检查结果为阳性.依条件得,B A A ⊂+=Ω,且()0.01,P A = ()0.99P A =,(|)0.9P B A =(|)0.05P B A =所以()()()()()()()()0010901500109099005B P A P P AB ..A A P .B P B ....B BP A P P A P A A⨯===≈⨯+⨯+第五节 事件的独立性和独立试验1.设有n 个元件分别依串联、并联两种情形组成系统I 和II ,已知每个元件正常工作的概率为p ,分别求系统I 、II 的可靠性(系统正常工作的概率)解:{}A I =系统正常工作,{}B II =系统正常工作,{}B II =系统不正常工作 {}1,2,,i C i n ==每个元件正常工作,,且()i P C p =,{}i C =每个元件都不正常工作,()1i P C p =- 由条件知,每个元件正常是相互独立的,故1212()()()()()n n n P A P C C C P C P C P C p ===,()1i P C p =-,1212()()()()()(1)n n n P B P C C C P C P C P C p ===-()1()1(1)n P B P B p =-=--2. 设有六个相同的元件,如下图所示那样安置在线路中,设每个元件通达的概率为 p ,求这个装置通达的概率.假定各个元件通达、不通达是相互独立的. 解: 设{}i A i =第条线路通达,1,2,3,i = {}A =代表这个装置通达,{}i A i =第条线路不通达,1,2,3,i = {}A =代表这个装置不通达, 由条件知,2()i P A p =,2()1i P A p =-,23123()1()1()1(1)P A P A P A A A p =-=-=--第二章 随机变量及其分布2.8 口袋中有7个白球,3个黑球,每次从中任取一球且不再放回. (1) 求4次抽球出现黑球次数X 的概率分布;(2) 抽球直到首次出现白球为止,求抽球次数Y 的概率分布.解 (1) 随机变量X 有4个可能值0,1,2,3,若以W 和B 分别表示白球和黑球,则试验“4次抽球”相当于“含7个W 和3个B ”的总体的4次不放回抽样,其基本事件总数为410C 210=,其中有利于{}X k = (0,1,2,3)k =的基本事件个数为:437C C k k-,因此 437410C C {}(0,1,2,3)C k k P X k k -===,或01230123~351056371131210210210210621030X ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. (2) 随机变量Y 显然有1,2,3,4等4个可能值;以W k 和B k 分别表示第(1,2,3,4)k k =次抽到白球和黑球,则“不放回抽球直到首次出现白球为止”相当于“自含7个白球3个黑球的总体的4次不放回抽样”,其基本事件总数410P 10987120=⨯⨯⨯=.易见 7843728{1}{2}10120109120P Y P Y ⨯======⨯,,327732171{3}{4}109812010987120P Y P Y ⨯⨯⨯⨯⨯======⨯⨯⨯⨯⨯, .1234~842871120120120120Y ⎛⎫ ⎪ ⎪ ⎪⎝⎭. 2.11 设X 服从泊松分布,且已知{1}{2}P X P X ===,求{4}P X =.解 以X 表示随意抽取的一页上印刷错误的个数,以)4,3,2,1(=k X k 表示随意抽取的第k 页上印刷错误的个数,由条件知X 和)4,3,2,1(=k X k 服从同一泊松分布,未知分布参数λ决定于条件:2{1}{2}ee 2!P X P X λλλλ--====,.于是λ=2.由于随机变量)4,3,2,1(=k X k 显然相互独立,因此42222{=4}=e =e 0.090243P X --≈ !2.14 设随机变量X 服从区间25[,]上的均匀分布,求对X 进行3次独立观测中,至少有2次的观测值大于3的概率α.解 设Y 3次独立试验事件{3}A X =>出现的次数,则Y 服从参数为(3,)p 的二项分布,其中23p =.因此234820(){2}{3}3(1)92727P B P Y P Y p p p ===+==-+=+=α.2.17 设随机变量X 服从正态分布(3,4)N ,且满足 {}{}P X C P X C <=≥和{}2{}P X C P X C <=≥ ,分别求常数C解 (1)由{}X C <与{}X C ≥为对立事件,又{}{}P X C P X C <=≥得 1{}2P X C <=所以C=3 (2) 由题意可知23{}=32C P X C Φ-<=()所以反查表可得 3.88C ≈2.22 设随机变量X 服从[1,2]-上的均匀分布,求随机变量Y 的分布律,其中10 00 10X Y X X -<==>⎧⎪⎨⎪⎩,若,,若,,若.解 由于X 服从[1,2]-上的均匀分布,知随机变量Y 的概率分布为1{1}{0}{10}{0}{0}032{1}{0}{02}31~1233P Y P X P X P Y P X P Y P X P X Y =-=<=-≤<=======>=<≤=⎛⎫ ⎪ ⎪ ⎪⎝⎭,,;-1.补充:第二节 离散随机变量解:由条件知,随机变量X 的分布列如下:设{}A =至多遇到一次红灯,则54()(0)(1)64P A P X P X ==+==2.设每分钟通过交叉路口的汽车流量X 服从泊松分布,且已知在一分钟内无车辆通过与恰好有一辆车通过的概率相同,求在一分钟内至少有两辆车通过的概率。

概率论试题及答案

概率论试题及答案

概率论试题及答案概率论作为一门应用广泛的数学学科,研究随机事件的发生概率和规律。

下面将介绍几个概率论试题及它们的答案,帮助读者更好地理解概率论的基本概念和应用。

题目一:骰子问题问题描述:假设有一枚六面骰子,每个面上的数字分别为1、2、3、4、5、6。

现在连续掷骰子20次,求掷出奇数点数的次数大于偶数点数的概率是多少?解答:首先,观察到每次掷骰子的结果只可能是1、2、3、4、5、6这6个数字中的一个。

而奇数有3个(1、3、5),偶数也有3个(2、4、6)。

因此,每次掷骰子奇数点数的概率和偶数点数的概率是相等的,都为1/2。

那么,连续掷骰子20次,奇数点数的次数大于偶数点数的概率可以通过计算二项分布来求解。

记成功事件为掷出奇数点数的次数大于偶数点数的次数,成功的次数可能为11、12、 (20)根据二项分布的公式,可以计算每个可能成功次数对应的概率,并将这些概率相加,即可得到最终的概率。

题目二:抽奖问题问题描述:在一个抽奖活动中,共有100人参与抽奖,每人只能中奖1次。

现在有10个一等奖和20个二等奖,计算一个人中奖的概率。

解答:中奖的概率可以通过计算每个人中奖的概率,并将这些概率相加来求解。

首先,计算一个人中一等奖的概率。

一等奖有10个,参与抽奖的人有100个,因此,一个人中一等奖的概率为10/100=1/10。

接下来,计算一个人中二等奖的概率。

二等奖有20个,中奖概率为20/100=1/5。

最后,将中一等奖和中二等奖的概率相加,并得到一个人中奖的总概率为1/10+1/5=3/10=0.3。

题目三:扑克牌问题问题描述:从一副扑克牌中任意抽取5张牌,计算抽出来的牌中至少有一张是红桃的概率。

解答:从一副扑克牌中任意抽取5张牌,抽出来的牌中至少有一张是红桃可以通过计算该事件的对立事件的概率来求解。

设事件A为抽出来的牌中至少有一张是红桃,事件B为抽出来的牌中没有红桃。

首先,计算事件B的概率。

红桃有13张,而一副扑克牌有52张,所以剩下的非红桃牌有39张,抽出5张非红桃牌的概率为C(39,5)/C(52,5)。

概率论考研题目及答案

概率论考研题目及答案

概率论考研题目及答案题目一:概率论基本概念问题:某工厂生产的零件,合格率为0.95。

求:1. 随机抽取一个零件,它是合格品的概率。

2. 随机抽取两个零件,至少有一个是合格品的概率。

答案:1. 由于合格率为0.95,随机抽取一个零件是合格品的概率即为合格率,即 P(合格) = 0.95。

2. 抽取两个零件至少有一个是合格品的概率可以通过计算两个零件都不合格的概率,然后用1减去这个概率来得到。

两个零件都不合格的概率是 (1 - 0.95) * (1 - 0.95) = 0.0025。

因此,至少有一个是合格品的概率为 1 - 0.0025 = 0.9975。

题目二:条件概率问题:某地区有两家医院,A医院的产妇数量占70%,B医院占30%。

在A医院出生的婴儿中,男孩的比例是60%,在B医院出生的婴儿中,男孩的比例是70%。

现在随机选择了一个男孩,求这个男孩是在A医院出生的概率。

答案:设事件A为在A医院出生,事件B为在B医院出生,事件M为是男孩。

根据题意,我们有:- P(A) = 0.7- P(B) = 0.3- P(M|A) = 0.6- P(M|B) = 0.7使用全概率公式,我们可以计算出P(M):\[ P(M) = P(A)P(M|A) + P(B)P(M|B) = 0.7 \times 0.6 + 0.3\times 0.7 = 0.63 \]现在我们要求的是P(A|M),即在已知是男孩的条件下,这个男孩是在A医院出生的概率。

使用贝叶斯公式:\[ P(A|M) = \frac{P(M|A)P(A)}{P(M)} = \frac{0.6 \times0.7}{0.63} \approx 0.6985 \]题目三:随机变量及其分布问题:一个随机变量X服从参数为λ的泊松分布。

求:1. X的期望值和方差。

2. X=k的概率,其中k是一个给定的正整数。

答案:1. 泊松分布的期望值(E[X])和方差(Var(X))都等于参数λ。

概率论考试题及答案

概率论考试题及答案

概率论考试题及答案一、单项选择题(每题2分,共20分)1. 随机事件A和B是互斥的,那么下列哪个说法是正确的?A. P(A∪B) = P(A) + P(B)B. P(A∩B) = 0C. P(A∪B) = P(A) - P(B)D. P(A∩B) = P(A) + P(B)答案:B2. 如果随机变量X服从正态分布N(μ, σ^2),那么以下哪个是正确的?A. μ是X的中位数B. μ是X的众数C. μ是X的期望值D. μ是X的方差答案:C3. 以下哪个是条件概率的定义?A. P(A|B) = P(A) / P(B)B. P(A|B) = P(A∩B) / P(B)C. P(A|B) = P(B) / P(A)D. P(A|B) = P(A∪B) / P(B)答案:B4. 如果随机变量X和Y是独立的,那么以下哪个是正确的?A. P(X∩Y) = P(X)P(Y)B. P(X∪Y) = P(X) + P(Y)C. P(X∩Y) = P(X) - P(Y)D. P(X∪Y) = P(X)P(Y)答案:A5. 以下哪个是大数定律的表述?A. 样本均值收敛于总体均值B. 样本方差收敛于总体方差C. 样本中值收敛于总体中值D. 样本众数收敛于总体众数答案:A6. 以下哪个是中心极限定理的表述?A. 样本均值的分布随着样本量的增加而趋近于正态分布B. 样本方差的分布随着样本量的增加而趋近于正态分布C. 样本中值的分布随着样本量的增加而趋近于正态分布D. 样本众数的分布随着样本量的增加而趋近于正态分布答案:A7. 以下哪个是二项分布的参数?A. n和pB. n和σC. μ和pD. μ和σ答案:A8. 如果随机变量X服从泊松分布,那么其期望值E(X)等于?A. λB. 2λC. λ^2D. 1/λ答案:A9. 以下哪个是随机变量X的方差的定义?A. Var(X) = E(X^2) - [E(X)]^2B. Var(X) = E(X) - [E(X)]^2C. Var(X) = E(X) - E(X^2)D. Var(X) = E(X^2) - E(X)答案:A10. 以下哪个是随机变量X的标准差的定义?A. SD(X) = √E(X^2) - [E(X)]^2B. SD(X) = √Var(X)C. SD(X) = E(X) - [E(X)]^2D. SD(X) = Var(X) - E(X^2)答案:B二、填空题(每题3分,共30分)11. 如果随机变量X服从均匀分布U(a, b),那么其期望值E(X)为________。

概率论考试题及答案

概率论考试题及答案

概率论考试题及答案一、选择题(每题2分,共20分)1. 事件A和事件B是互斥事件,如果P(A)=0.3,P(B)=0.4,那么P(A∪B)等于多少?A. 0.3B. 0.4C. 0.7D. 0.12. 如果随机变量X服从参数为λ的泊松分布,那么P(X=k)的表达式是什么?A. λ^k * e^(-λ) / k!B. λ^k / k!C. e^(-λ) * k!D. k * e^(-λ)3. 抛一枚均匀硬币两次,求出现至少一次正面的概率。

A. 0.5B. 0.75C. 0.25D. 14. 随机变量Y服从标准正态分布,那么P(Y < 0)等于多少?A. 0.5B. 0.3C. 0.7D. 0.25. 某工厂的次品率是0.05,求至少有一件次品的箱子的概率。

A. 0.95B. 0.05C. 1 - 0.95^nD. 0.05^n6. 已知P(A)=0.6,P(B|A)=0.8,根据贝叶斯公式,求P(A|B)。

A. 0.75B. 0.6C. 0.8D. 无法确定7. 若随机变量X和Y的协方差是-3,X的方差是25,Y的方差是16,求X和Y的相关系数。

A. -0.6B. -0.75C. -0.8D. -0.98. 一个骰子连续抛掷两次,求两次点数之和为7的概率。

A. 1/6B. 1/3C. 5/36D. 2/39. 某班有30个学生,其中10个是女生,20个是男生。

随机选取2个学生,求至少有1个是女生的概率。

A. 0.7B. 0.3C. 0.5D. 0.210. 已知随机变量X服从均匀分布U(0,θ),求E(X)。

A. θ/2B. θC. 0D. 1/θ二、简答题(每题10分,共30分)1. 简述什么是条件概率,并给出条件概率公式。

2. 解释什么是大数定律,并给出一个例子。

3. 描述什么是中心极限定理,并说明其重要性。

三、计算题(每题25分,共50分)1. 一个袋子里有5个红球和3个蓝球。

随机抽取2个球,求以下事件的概率:a) 第一个球是红球,第二个球也是红球。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、单项选择题(本大题共5小题,每小题3分,共15分)。

1、事件独立,且,则等于
(A )0; (B )1/3; (C)2/3; (D)2/5、
ﻩ ﻩ 答:( B ) 2、设就是连续型随机变量得概率密度函数,则下列选项正确得就是
(A )连续; (B );
(C)得值域为[0,1]; (D)。

答:( D )
3、随机变量,则概率随着得变大而
(A)变小; (B )变大; (C)不变; (D)无法确定其变化趋势.
ﻩ ﻩﻩ ﻩ 答:( A )
4、已知连续型随机变量相互独立,且具有相同得概率密度函数,设随机变量,则得概
率密度函数为
(A ); (B ); (C ); (D )、
答:( D )
5、设就是来自正态总体得容量为得简单样本,则统计量服从得分布就是
(A) (B ) (C) (D)
答:( C )
二、填空题(本大题共5小题,每小题3分,共15分)。

6、某人投篮,每次命中得概率为,现独立投篮3次,则至少命中1次得概率为、
7、已知连续型随机变量得概率密度函数为,则常数=、
8、二维随机变量得分布函数为,则概率=、
9、已知随机变量得方差分别为,且协方差,则=1、8、
10、某车间生产滚珠,从长期实践中知道,滚珠直径(单位:c m)服从正态分布,从某
天生产得产品中随机抽取9个产品,测其直径,得样本均值=1、12,则得置信度为0、95得置信区间为、
(已知,,,)
三、解答题(本大题共6小题,每小题10分,共60分)。

11、玻璃杯成箱出售,每箱20只,设每箱含0,1,2只残品得概率分别为0、8, 0、1,
0、1、顾客购买时,售货员随意取一箱,而顾客随意查瞧四只,若无残品,则买下,否则,退回。

现售货员随意取一箱玻璃杯,求顾客买下得概率.(结果保留3个有效数字)
解:设表示售货员随意取一箱玻璃杯,顾客买下;表示取到得一箱中含有个残品,,则所
求概率为
2
0()(|)()...............................................................................(5')
19181716181716150.810.10.1...........................(9')2019181720191817
0.9i i i P B P B A P A ==⨯⨯⨯⨯⨯⨯=⨯+⨯
+⨯⨯⨯⨯⨯⨯⨯≈∑43...................................................................................................(10')
12、已知连续型随机变量得概率密度函数为
,
(1)求概率;(2)求、
解:(1)由题意
120(012)2()....................................................(4')31....................................................................................................(5')6
x P X x dx <<=+=⎰ (2)由随机变量函数得数学期望得性质
10111()()2()............................................(9')3
5E f x dx x dx X x +∞-∞==+=⎰⎰ 13、已知连续型随机变量得分布函数为,
(1)求常数;(2)求;(3)求得概率密度函数、
解:(1)由分布函数得性质
(1)(1)arcsin1 1...........................................................(1')F F A -+=⇒=
因此可得 2...........................................................................(3')A = (2)由分布函数得性质
(1/22)2)(1/2).........................................(5')
2
2
2)arcsin(1/2)13............................................(7')P X F F ππ≤<=-=-=
(3)由密度函数得定义
14、已知二维连续型随机变量得联合概率密度函数为

(1)求概率;
(2)分别求出关于得边缘密度函数 ,并判断就是否独立.
解:(1)由题意
.....................................(4') (2)由边缘密度函数得定义
,0,0()..............................(7')0,0,y x x X e dy x e x f x +∞--⎧⎧>>⎪==⎨⎨⎩
⎪⎩⎰其它其它 0,0,0().............................(9')0,0,y y y Y e dx y ye y f y --⎧⎧>>⎪==⎨⎨⎩
⎪⎩⎰其它其它 因为当时,,故不独立.
15、已知二元离散型随机变量得联合分布律为
(1)分别求出关于得边缘分布律;(2)分别求出
解:(1)关于得边缘密度函数为
关于得边缘密度函数为
(2) 由(1)可得
又()(1)10.08110.480.40.......................................(8')E XY =-⨯⨯+⨯⨯=

0.................(10')XY ρ==== 16、已知总体服从参数为得几何分布,即得分布律为,,若为来自总体得一个容量为得简单样本,求参数得最大似然估计量。

解:似然函数为11()(1)............................................................(3')i n x i L p p p -==-∏ 1ln[()]ln ()ln(1)..............................(5')n i i L p n p x n p ==+--∑对数似然函数 1^1ln[()]00.....................................................(8')1...........................................................(10')n i i n i i n x d L p n dp p p p p n X ==-=⇒+=-=∑∑令 的最大似然估计量 四、应用题(本大题共1个小题,5分).
17、一系统由个独立起作用得部件组成,每个部件正常工作得概率为,且至少有得部
件正常工作,系统才能运行。

问至少为多大时,才能使系统可以运行得概率不低于?(已知)
解:设表示个部件中正常工作得部件数,则
由中心极限定理
由题意,要求满足得最小得,而
(0.8)0.950.950.95(1.65) 1.6524.5.......................(4')
P X n P n ≥≥⇒≥≥⇒Φ≥=Φ⇒≥⇒≥
即至少为25、 ...........................................................................................(5')
五、证明题(本大题共1个小题,5分)。

18、已知一母鸡所下蛋得个数服从参数为得泊松分布,即得分布律为,而每个鸡蛋能够孵化成小鸡得概率为、证明:这只母鸡后代(小鸡)得个数服从参数为得泊松分布,即

证明:由题意,对任
()(|)()............................................(2')
!
(1)(1)........(3')
!!!()!()((1)!()!k r
k r r k r
r k r k r k r k r r k r k r k r P Y r P Y r X k P X k k e e p k p p p r k r k k r e p e p r k r λλλλλλλλλλ+∞
=---+∞+∞--==---+∞-======⎛⎫=-=-
⎪-
⎝⎭=-=-∑∑∑∑(1)
())!
().....................................................................................(5')
!r p p r
p e r e p r λλλ--=。

相关文档
最新文档