人工智能工程师课程大纲

合集下载

人工智能培训课程大纲

人工智能培训课程大纲

培训课程大纲1. 介绍1.1 简介在这个章节中,我们将简要地介绍本次培训课程的目标和内容。

1.2 学习目标这一部份会列出学员在完成该培训后应具备的知识、技能和态度。

2. 基础概念与原理在此章节中,我们将深入探索以下基础概念:- 机器学习:包括监督式学习、无监督式学习以及强化学习等方法;- 深度神经网络:了解卷积神经网络(CNN)、循环神经网络(RNN)等常用模型;- 自然语言处理:熟悉文本分类、情感分析以及命名实体识别等任务;3. 数据预处理与特征选择此章节主要涉及数据清洗和准备阶段所需考虑的关键步骤: - 缺失值填充: 掌握不同缺失值填补策略,并根据场景进行合适选择;- 特征编码: 尝试使用独热编码或者嵌入向量来表示离散特征;- 特征选择: 学习如何使用相关性、方差等指标来筛选重要的特征;4. 机器学习算法在这一章节中,我们将介绍以下常见的机器学习算法: - 决策树:了解决策树原理和构建过程,并掌握剪枝技术;- 支持向量机(SVM):熟悉线性核函数和非线性核函数在分类问题上的应用;- 随机森林:深入了解随机森林模型以及其优缺点;5. 深度学习与神经网络此部份会涵盖以下内容:- 卷积神经网络 (CNN) : 探索卷积层、汇聚层等基本组件并实现图象识别任务;- 循环神经网络 (RNN): 理解LSTM, GRU单元结构以及序列任务;6. 自然语言处理(NLP)这个章节主要关注自然语言处理领域内最新发展趋势:-文本预处理: 包括文本清洗、分词和停用词去除等步骤;-序列到序列模型(Seq2Seq): 实现对话系统和机器翻译任务;-注意力机制: 学习如何使用注意力来提高模型性能;7. 实践项目在这个章节中,学员将有机会应用所学知识完成一个实际的项目。

8. 评估与总结这一部份主要包括对整个培训过程进行回顾,并给出相应建议以及改进措施。

9、参考资料本文档涉及附件:- 《数据集清洗示例代码》:该文件夹内包含了在数据预处理阶段常见问题的解决方案;- 《深度神经网络原理详解PPT》:此幻灯片为深入介绍卷积神经网络和循环神经网络等内容;法律名词及注释:1. 知识产权(IP): 法律保护创造者或者发明家对其作品(例如专利)或者想法(例如商标)享有的权益。

2024年度2024人工智能课程大纲

2024年度2024人工智能课程大纲

马尔可夫决策过程(MDP)
理解强化学习基本原理,掌握MDP模型及贝尔 曼方程。
Q-learning
基于值函数逼近的强化学习方法,通过Q表或神 经网络实现。
ABCD
2024/3/23
动态规划
学习值迭代、策略迭代等动态规划方法求解强化 学习问题。
深度强化学习
结合深度学习技术,应用深度Q网络(DQN) 、策略梯度等方法解决复杂强化学习问题。
前景展望
自动驾驶、智能家居、智慧医疗、智 慧金融等行业的深度融合与创新。
5
伦理、法律与社会影响
伦理问题
数据隐私、算法偏见、人工智能的自主性等 。
法律问题
知识产权、责任归属、监管政策等。
2024/3/23
社会影响
就业市场变革、信息传播方式改变、人类与 机器的互动方式等。
6
2024/3/23
02
CATALOGUE
Python编程
基础语法、数据结构、函数与类、异常处理、文 件操作等。
C编程
基础语法、指针与引用、面向对象编程、STL库 使用等。
3
算法实现
使用Python或C实现基本的数据结构与算法,如 链表、栈、队列、排序算法等。
2024/3/23
9
数据结构与算法基础
算法分析
时间复杂度与空间复杂度的概念及分析方法 。
基础知识与技能
7
数学基础:线性代数、概率论等
线性代数
矩阵运算、向量空间、特征值与特征向量、线性变换等。
概率论
概率分布、随机变量、条件概率、贝叶斯定理、大数定律与中心 极限定理等。
最优化理论
梯度下降、牛顿法、拟牛顿法等优化算法的原理与应用。
2024/3/23

2024年《人工智能》详细教学大纲

2024年《人工智能》详细教学大纲
语音情感分析
结合语音识别和自然语言处理技术,对语音中的情感进行 分析和识别,是实现智能语音交互的重要研究方向。
18
05 计算机视觉技术与应用
2024/2/29
19
图像处理和计算机视觉基础概念
1 2
图像处理基础
像素、分辨率、色彩空间、图像变换等基本概念 。
计算机视觉概述
视觉感知、视觉计算模型、视觉任务分类等。
能力目标
能够运用所学知识分析和 解决人工智能领域的实际 问题,具备一定的实践能 力和创新能力。
素质目标
培养学生的创新思维、团 队协作和终身学习能力, 提高学生的综合素质和职 业素养。
5
课程安排与时间表
课程安排
本课程共分为理论授课、实验操作和课程设计三个环节,其中理论授课主要讲解 人工智能的基本原理和方法,实验操作帮助学生掌握相关技术和工具的使用,课 程设计则要求学生综合运用所学知识完成一个实际项目。
分割(如FCN、U-Net)等。
2024/2/29
03
实例分割与语义分割
Mask R-CNN、PANet等实例分割方法;DeepLab、PSPNet等语义分
割方法。
21
三维重建、视频理解等前沿技术介绍
三维重建技术
基于多视图的三维重建、基于深度学习的三维重建(如体素网格 、点云处理)等。
视频理解技术
马尔科夫决策过程在强化学习中的应用
03
将强化学习问题建模为马尔科夫决策过程,利用求解方法求解
最优策略。
25
智能推荐系统、游戏AI等应用场景分析
智能推荐系统
利用强化学习技术,根据用户历史行为和环境反馈,学习推荐策略,实现个性化推荐。例 如,电商平台的商品推荐、音乐平台的歌曲推荐等。

2024人工智能教学大纲

2024人工智能教学大纲
包括排序、查找、动态规划等算法, 以及时间复杂度和空间复杂度的分析 等,是优化算法性能的关键。
包括树、图等,对于解决复杂问题有 很大帮助。
2024/1/26
10
03
机器学习
2024/1/26
11
监督学习
线性回归
掌握线性回归的原理和 实现方法,理解损失函 数和优化算法。
逻辑回归
了解逻辑回归的原理和 应用场景,掌握其实现 方法。

2024/1/26
离散数学
包括集合论、图论、逻辑等,对于 理解和设计人工智能算法有很大帮 助。
最优化理论
包括梯度下降、牛顿法等优化算法 ,是训练机器学习模型的关键。
8
编程基础
01
02
03
Python编程
Python是人工智能领域最 常用的编程语言之一,需 要掌握基本的语法、数据 结构、函数等。
2024/1/26
C编程
对于需要高性能计算的应 用,C是一个重要的选择 ,需要掌握基本的语法、 指针、内存管理等。
Java编程
Java在大数据处理和分布 式计算中有广泛应用,需 要掌握基本的语法、面向 对象编程、异常处理等。
9
数据结构与算法
基本数据结构
包括数组、链表、栈、队列等,是编 程的基础。
高级数据结构
算法设计与分析
卷积神经网络的训练与调优
掌握卷积神经网络的训练方法和调优技巧,如数据增强、迁移学习、 模型融合等。
17
循环神经网络
循环神经网络基础
理解循环神经网络(RNN)的 基本原理和实现细节,包括循 环层、时间步长等概念。
长短期记忆网络(LSTM )
掌握LSTM的原理和实现细节 ,了解其在处理序列数据中的 长期依赖问题方面的优势。

2024版《人工智能》课程教学大纲

2024版《人工智能》课程教学大纲

计算机体系结构
理解计算机硬件组成、操 作系统及基本工作原理。
数据结构与算法
掌握基本数据结构(如数 组、链表、栈、队列等) 和常用算法(如排序、查 找等)。
计算机网络
了解网络协议、网络架构 及网络安全等基础知识。
数学基础
线性代数
掌握向量、矩阵、线性方程组等基本概念和运算。
概率论与数理统计
理解概率分布、随机变量、数理统计等基本概念 和方法。
介绍神经网络优化的一些常用方 法,如梯度下降、动量法、
Adam等优化算法的原理和应用。
卷积神经网络(CNN)
卷积层
池化层
讲解卷积层的工作原理和实 现方法,包括卷积核、步长、 填充等概念。
介绍池化层的作用和实现方 法,包括最大池化、平均池 化等。
CNN模型
介绍一些经典的CNN模型, 如LeNet-5、AlexNet、 VGGNet、GoogLeNet、 ResNet等,并分析其网络结 构和特点。
无监督学习
K-均值聚类
层次聚类
将数据划分为K个簇,使得同一簇内的数据尽 可能相似,不同簇间的数据尽可能不同。
通过不断将数据点或已有簇合并成新的簇, 直到满足某种停止条件。
主成分分析(PCA)
自编码器
通过线性变换将原始数据变换为一组各维度 线性无关的表示,可用于高维数据的降维。
一种神经网络结构,通过编码器和解码器对 输入数据进行压缩和重构,实现特征提取和 降维。
句ห้องสมุดไป่ตู้分析技术
短语结构分析
识别句子中的短语结构,如名词短语、动词短语等。
依存关系分析
分析句子中单词之间的依存关系,如主谓关系、动宾关系等。
句法树构建
根据短语结构和依存关系构建句子的句法树,表示句子的结构信 息。

《人工智能》课程大纲

《人工智能》课程大纲

《人工智能》课程大纲人工智能课程大纲一、引言A. 课程背景与目的B. 课程结构概述二、人工智能基础知识A. 人工智能概述1. 人工智能定义与发展历史2. 人工智能的应用领域3. 人工智能的挑战和前景B. 机器学习1. 机器学习的定义和原理2. 监督学习、无监督学习与强化学习3. 机器学习算法与实践案例C. 自然语言处理1. 自然语言处理的概念和挑战2. 语音识别与文本处理技术3. 自然语言生成与机器翻译三、人工智能技术与应用A. 图像与视觉处理1. 图像处理基础2. 特征提取和图像分类算法3. 计算机视觉的应用案例B. 智能决策与规划1. 搜索算法与规划方法2. 强化学习与决策树算法3. 智能系统在自动驾驶等领域的应用C. 人机交互与智能系统设计1. 人机界面设计原则2. 聊天机器人与语音助手开发3. 智能系统的用户体验与评估四、人工智能的伦理与社会影响A. 人工智能的道德与伦理问题1. 个人隐私与数据安全2. 人工智能的道德准则与规范3. 机器人与人类社会的互动关系B. 人工智能对社会经济的影响1. 自动化对就业市场的改变2. 人工智能在医疗、金融等行业的应用3. 人工智能与可持续发展的关系五、课程实践与项目A. 人工智能编程与实践1. 基于Python的机器学习实践2. TensorFlow与深度学习编程B. 人工智能应用设计与实现1. 智能推荐系统开发2. 人工智能在游戏开发中的应用六、评估方式与学习资源A. 课程作业与考核方式B. 推荐教材与学习资源C. 学习支持与讨论平台七、总结与展望A. 课程回顾与学习成果B. 人工智能领域的未来发展方向本课程旨在帮助学生深入了解人工智能的基本概念、技术和应用,培养学生人工智能思维和创新能力。

通过课程的学习,学生将能够掌握人工智能基础知识,了解机器学习、自然语言处理、图像与视觉处理等核心技术。

同时,课程将注重伦理与社会影响的讨论,帮助学生思考人工智能的科技伦理问题和社会责任。

人工智能课程教学大纲

人工智能课程教学大纲

人工智能课程教学大纲课程名称:人工智能教学大纲课程目标:本课程旨在帮助学生了解人工智能的基本概念、原理和技术,并培养学生在人工智能领域的批判性思维和问题解决能力。

通过学习本课程,学生将能够理解人工智能的背景、应用和发展趋势,并能够独立设计和实现简单的人工智能系统。

课程内容:1. 人工智能概述- 人工智能的定义与应用领域- 人工智能的历史与发展- 人工智能与机器学习的关系2. 机器学习基础- 监督学习、无监督学习和强化学习的基本概念- 常用机器学习算法及其原理- 机器学习的评估方法和误差分析3. 深度学习- 神经网络的基本原理与结构- 卷积神经网络与循环神经网络的应用- 深度学习的训练与优化方法4. 自然语言处理- 语言的表示与处理方法- 文本分类、语义分析和机器翻译的基本原理- 自然语言生成与对话系统的应用5. 计算机视觉- 图像处理与特征提取- 目标检测、图像分类和图像生成的基本原理- 视觉感知与智能交互的应用6. 人工智能伦理与社会影响- 人工智能的道德与伦理问题- 人工智能在社会中的挑战与机遇- 人工智能的未来发展趋势课程教学方法:本课程采用讲授、案例分析和实践项目结合的教学方法。

通过理论讲解、实例分析和实践操作,帮助学生理解和应用人工智能的基本原理和技术。

学生将完成实践项目,设计和实现一个简单的人工智能系统,并对其性能进行评估和优化。

课程评估方式:- 平时作业和课堂表现:占总成绩的30%- 实践项目报告:占总成绩的40%- 期末考试:占总成绩的30%参考教材:- Ian Goodfellow, Yoshua Bengio, Aaron Courville. Deep Learning [M]. MIT Press, 2016.- Sebastian Raschka, Vahid Mirjalili. Python Machine Learning [M]. Packt Publishing, 2017.- Dan Jurafsky, James H. Martin. Speech and Language Processing [M]. Pearson, 2019.备注:该人工智能课程教学大纲仅作参考,实际课程内容和安排可能会根据教师和学校要求进行调整。

人工智能课程教学大纲

人工智能课程教学大纲

人工智能课程教学大纲大纲:人工智能课程教学1. 简介- 介绍人工智能课程的重要性和普及程度- 解释人工智能的定义和应用领域2. 目标- 培养学生对人工智能的基本了解和认识- 培养学生分析和解决实际问题的能力- 引导学生思考人工智能对社会的影响3. 课程设计- 课程时长和学时安排- 教学方法和教学资源- 课程内容和模块划分4. 课程内容- 人工智能的历史和发展- 人工智能的基本概念和原理- 机器学习和深度学习算法- 自然语言处理和计算机视觉- 人工智能在各行业的应用案例5. 教学方式- 理论教学:通过讲解基本概念和原理,使学生理解人工智能的基本知识。

- 实践项目:组织学生参与实际项目,加深对人工智能算法和技术的理解和应用能力。

- 讨论和案例分析:通过讨论和分析真实案例,引导学生思考人工智能对社会的影响和伦理问题。

6. 评估方式- 考试:通过笔试和编程作业考察学生对人工智能基本概念和算法的掌握程度。

- 项目评估:评估学生在实践项目中的表现和能力发展情况。

- 讨论参与度:评估学生在课堂讨论和案例分析中的积极参与程度。

7. 教学资源- 教材:建议使用经典的人工智能教材,如《人工智能:一种现代的方法》。

- 在线资源:推荐学生使用在线资源,如人工智能开放平台、论坛和课程网站。

8. 参考文献- 列举相关的研究论文、教材和在线资源,供学生进一步学习和深入研究。

9. 结语- 强调人工智能课程的重要性和发展前景- 鼓励学生积极参与课程学习和实践项目以上是《人工智能课程教学大纲》的内容,通过系统的课程设计和教学方法,旨在培养学生对人工智能的基本了解和应用能力。

教学大纲涵盖了人工智能的基本概念、算法和应用案例,并通过理论教学、实践项目和讨论分析等方式,引导学生思考人工智能对社会的影响和伦理问题。

希望学生能够通过这门课程,掌握人工智能的基本知识,培养解决实际问题的能力,并为未来的发展和创新做出贡献。

人工智能课程教学大纲-2024鲜版

人工智能课程教学大纲-2024鲜版
17
卷积神经网络在图像处理中的应用
2024/3/27
卷积层与池化层
解释卷积层如何通过卷积核提取图像特征,池化层如何降低数据 维度,减少计算量。
经典卷积神经网络结构
介绍LeNet-5、AlexNet、VGGNet等经典卷积神经网络的结构和 特点。
图像分类与目标检测
阐述卷积神经网络在图像分类和目标检测任务中的应用,包括数据 集、评估指标等。
目标检测
讲解目标检测的任务和方法,包括基于滑动窗口的目标检测、基于区域提议的目标检测等 ,以及常见的目标检测算法,如R-CNN、Fast R-CNN、Faster R-CNN等。
图像分割
介绍图像分割的概念和方法,包括基于阈值的分割、基于边缘的分割、基于区域的分割等 ,以及常见的图像分割算法,如K-means聚类、水平集方法等。
人工智能课程教学大纲
2024/3/27
1
目录
2024/3/27
• 课程介绍与目标 • 基础知识与技能 • 机器学习原理及方法 • 深度学习原理及应用 • 自然语言处理技术 • 计算机视觉技术 • 人工智能伦理、法律和社会影响
2
01
课程介绍与目标
Chapter
2024/3/27
3
人工智能定义及应用领域
图像描述生成
讲解图像描述生成的基本方法和模型,包括基于卷积神经 网络和循环神经网络的方法,介绍图像描述生成的评估指 标和优化方法。
23
06
计算机视觉技术
Chapter
2024/3/27
24
图像识别、目标检测等基础知识
2024/3/27
图像识别
介绍图像识别的基本原理,包括特征提取、分类器设计等,以及常见的图像识别算法,如 卷积神经网络(CNN)。

人工智能培训课程大纲

人工智能培训课程大纲
人工智能培训课程大纲
目录
• 人工智能概述 • 机器学习基础 • 深度学习原理与实践 • 自然语言处理技术 • 计算机视觉技术 • 人工智能伦理与法律问题探讨
01
人工智能概述
定义与发展历程
01
人工智能的定义
探讨人工智能的概念、特点和 分类。
02
发展历程
回顾人工智能的起源、发展和 重要里程碑。
03
三维重建与场景理解
三维重建技术
学习从二维图像中恢复三维结构 的方法,如立体视觉、结构光等

点云处理与分析
掌握点云数据的处理和分析方法 ,包括点云配准、分割、特征提
取等。
场景理解技术
了解场景理解的基本任务和方法 ,如语义分割、实例分割、场景
图生成等。
06
人工智能伦理与法律问题 探讨
数据隐私保护政策解读
均方误差、交叉熵等)的原理及选择方法。
卷积神经网络(CNN)
01
02
03
卷积层与池化层
学习卷积层和池化层的工 作原理,理解它们在图像 特征提取中的作用。
经典CNN模型
了解LeNet-5、AlexNet 、VGG等经典卷积神经网 络模型的结构和特点。
CNN应用案例
掌握CNN在图像分类、目 标检测、人脸识别等领域 的应用方法。
循环神经网络(RNN)
RNN基本原理
学习RNN的基本原理,理 解其处理序列数据的能力 。
LSTM与GRU
了解长短期记忆网络( LSTM)和门控循环单元( GRU)的原理及优势。
RNN应用案例
掌握RNN在自然语言处理 、语音识别、时间序列预 测等领域的应用方法。
04
自然语言处理技术
词法分析与句法分析

人工智能专业课程大纲

人工智能专业课程大纲

人工智能专业课程大纲一、课程简介本专业课程旨在为学生提供人工智能领域的基础知识和技能,涵盖人工智能的理论基础、应用实践和发展趋势等内容。

通过本课程的学习,学生将具备深入了解人工智能相关概念和原理的能力,为将来从事人工智能领域的研究和应用工作打下坚实的基础。

二、课程目标1. 熟悉人工智能的基本概念和发展历程;2. 掌握人工智能的相关技术和算法;3. 能够运用人工智能技术解决实际问题;4. 了解人工智能领域的最新进展和趋势。

三、课程内容1. 人工智能概论- 人工智能的概念和定义- 人工智能的发展历程- 人工智能的基本原理和技术2. 机器学习- 机器学习的基本概念- 监督学习、无监督学习和强化学习- 机器学习算法及其应用3. 深度学习- 深度学习的原理和发展- 神经网络基础- 深度学习在图像识别、自然语言处理等领域的应用4. 自然语言处理- 自然语言处理的基本原理- 词向量表示和语言模型- 文本分类、情感分析等技术5. 计算机视觉- 计算机视觉的基本概念- 图像处理和特征提取- 目标检测、图像分割等技术6. 智能系统- 专家系统、推荐系统等智能系统概述- 智能系统的设计和应用- 人工智能在各个领域的应用案例分析四、教学方法本课程将采用理论讲授、案例分析、实践操作等教学方法相结合,以培养学生的人工智能理论基础和实践能力。

学生将通过课堂学习、实验练习和课程项目等形式不断提升自己的综合能力。

五、教学大纲- 每周开设2-3节理论课,包括基础知识讲解和技术应用案例分析;- 定期进行实践操作,让学生动手实践所学知识;- 每学期结合课程主题开展小组项目,培养学生的团队合作和问题解决能力。

六、评估方式- 平时表现占总评成绩的30%,包括课堂参与、作业完成等;- 期中考试占总评成绩的30%,主要考核对基础知识的掌握;- 期末考试占总评成绩的40%,主要考核对课程内容的综合掌握和理解能力。

通过本专业课程的学习,学生将具备从事人工智能领域研究和应用工作的必备知识和技能,为未来的职业发展奠定坚实基础。

《人工智能》课程教学大纲

《人工智能》课程教学大纲

《人工智能》课程教学大纲《人工智能》课程教学大纲一、课程基本信息开课单位课程名称开课对象学时/学分先修课程课程简介:人工智能是计算机科学的重要分支,是研究如何利用计算机来模拟人脑所从事的感知、XXX人工智能课程类别课程编码开课学期个性拓展GT第4或6学期网络工程专业、计算机科学与技术专业36学时/2学分(理论课:28学时/1.5学分;实验课:8学时/0.5学分)离散数学、数据结构、程序设计推理、研究、思考、规划等人类智能活动,来解决需要用人类智能才能解决的问题,以延伸人们智能的科学。

该课程主要讲述人工智能的基本概念及原理、知识与知识表示、机器推理、搜索策略、神经网络、机器研究、遗传算法等方面内容。

二、课程教学目标《人工智能》是计算机科学与技术专业的一门专业拓展课,通过本课程的研究使本科生对人工智能的基本内容、基本原理和基本方法有一个比较初步的认识,掌握人工智能的基本概念、基本原理、知识的表示、推理机制和智能问题求解技术。

启发学生开发软件的思路,培养学生对相关的智能问题的分析能力,提高学生开发应用软件的能力和水平。

三、教学学时分配《人工智能》课程理论教学学时分派表章次第一章第二章第三章第四章第五章第六章首要内容人工智能概述智能程序设计言语图搜索技术基于谓词逻辑的机器推理呆板进修与专家系统智能计算与问题求解合计学时分配35464628教学方法或手段讲授法、多媒体讲授法、多媒体探究式、多媒体讲授法、多媒体概述法、多媒体开导式、多媒体《人工智能》课程实验内容设置与教学要求一览表实学尝试序项目号名称配1)了解PROLOG语言中常1) Prolog运转环境;量、变量的表示方法;实分支2)使用PROLOG举行事实验与循实库、规则库的编写;库、规则库的编写方法;环程3)分支程序设计;一序设4)循环程序设计;一计5)输入出程序设计。

5)掌握PROLOG输入输出程序设计;1)了解PROLOG中的谓词1)谓词asserta和递归实与表实处理验程序二设计4)掌握PROLOG表处理程4)综合应用程序设计。

人工智能专业课程大纲

人工智能专业课程大纲

人工智能专业课程大纲一、课程简介本课程旨在介绍人工智能的基本概念、原理和应用,并通过理论与实践相结合的教学方法,培养学生掌握人工智能相关技术和工具的能力。

二、课程目标1. 理解人工智能的基本概念和发展历程;2. 掌握人工智能的核心算法和方法;3. 熟悉人工智能的主要应用领域;4. 具备人工智能相关技术的实际应用能力。

三、教学内容和安排1. 人工智能导论- 人工智能概述- 人工智能的发展与应用- 人工智能伦理与社会影响2. 机器学习- 统计学习方法- 常见机器学习算法- 深度学习与神经网络3. 自然语言处理- 自然语言处理基础- 文本挖掘与信息抽取- 机器翻译与语音识别4. 计算机视觉- 图像处理与特征提取- 目标检测与目标识别- 图像生成与图像分析5. 专业实践- 人工智能开发工具与平台介绍- 实际项目实践与应用案例分析四、教学方法1. 理论授课:通过讲授基本概念、算法原理和案例分析,帮助学生理解人工智能的基本知识;2. 实践操作:通过实验、编程和实际项目实践等方式,培养学生的动手能力和解决问题的能力;3. 小组讨论:鼓励学生参与讨论,提高学生的思维能力和团队合作意识;4. 学术报告:邀请人工智能领域的专家学者进行学术报告,拓宽学生的学术视野。

五、考核方式1. 课堂作业:按时完成布置的作业;2. 实验报告:根据实践操作撰写实验报告;3. 期末考试:综合考察学生对课程的理解和掌握程度;4. 项目实践评估:评估学生在实际项目中的表现和能力。

六、参考教材1. 《人工智能导论》刘鹏2. 《机器学习》周志华3. 《自然语言处理综论》张华平4. 《计算机视觉:现代方法与应用》李英豪5. 《深度学习》陈明七、备注本课程所配套的实验设备和软件工具请参照实验室提供的相关资料,具体安排将在开课前进行公布。

以上为人工智能专业课程的大纲,内容涵盖了人工智能的基本概念、核心算法、主要应用领域以及实践能力的培养。

教学方法既包括理论授课,也强调实践操作和学术交流,旨在全面提升学生在人工智能领域的综合能力和素质。

2024年人工智能培训课程大纲(附加条款版)

2024年人工智能培训课程大纲(附加条款版)

人工智能培训课程大纲(附加条款版)一、引言二、课程目标三、课程内容2.数学基础2.1概率论与数理统计2.2线性代数2.3微积分2.4最优化方法3.机器学习3.1监督学习3.2无监督学习3.3强化学习3.4集成学习4.深度学习4.1神经网络基础4.2卷积神经网络(CNN)4.3循环神经网络(RNN)4.4对抗网络(GAN)5.自然语言处理5.15.2词向量表示5.3语法分析5.4机器翻译6.计算机视觉6.1图像处理基础6.2目标检测6.3图像识别6.4人脸识别7.1智能家居7.2智能交通7.3智能医疗7.4智能教育8.2数据安全与隐私保护四、课程安排1.课程周期:6个月2.课程形式:线上授课,每周2次,每次2小时3.实践环节:每节课后布置作业,课程结束后进行项目实践4.评估方式:平时作业占30%,项目实践占70%五、师资力量3.助教团队:协助讲师进行课程辅导、作业批改和技术支持六、课程证书七、报名与咨询2.报名方式:登录培训机构官方网站或公众号进行报名3.咨询方式:方式、、邮件等多种途径,详细咨询课程相关信息八、2.数学基础2.2线性代数:线性代数为处理和理解多维数据提供了工具,是深度学习等算法的理论基础。

2.3微积分:微积分在优化算法中有着重要的作用,对于理解机器学习中的梯度下降等概念至关重要。

3.机器学习3.1监督学习:监督学习是机器学习的一种主要形式,这部分将介绍监督学习的原理、算法和应用。

3.2无监督学习:无监督学习不依赖于标注数据,能够从数据中自动发现模式,这部分将介绍无监督学习的主要技术和应用。

3.3强化学习:强化学习是一种通过与环境交互来学习最优策略的方法,这部分将介绍强化学习的基本概念、算法和实际应用。

3.4集成学习:集成学习通过结合多个学习器来提高学习性能,这部分将介绍集成学习的方法和策略。

4.深度学习4.1神经网络基础:神经网络是深度学习的基石,这部分将介绍神经网络的基本结构和原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

熟悉神经网络领域的常用术语, 了解很精网络在 AI 环境中的位 置。
机器学习环境配置
1. 学习环境配置:常用软件、环境配置 Mnist 手写数字识别
及机器学习库
anaconda:Python、Python 科学计算 包含知识点——
包(NumPy,SciPy,Pandas)、Python Mnist 数据集探索
分类
广告点击率预测 (CTR)
预测用户浏览给定网页的广告点击率,提高广告投放精准度。
车辆检测及型号识别 用深度学习方法从图片中检测车辆并识别其型号。
看图说话机器人
用计算机视觉和深度学习方法分析图片内容,并对图片自动生成文字描述。
2. 优化算法:IRLS(梯度下降、牛顿法)、 用 Logistic 回归、神经网络和 探索,并学会在 scikit-learn 框架
BP 算法、SMO(序列最小最优化算法) SVM 等分类器实现商品分类
下采用各分类算法分类具体任务。
3. 正则化:L1/ L2
4. 复习模型评估
比较不同模型以及不同参数下
使用不同结构的神经网络结构验
卷积神经网络
Week3
卷积神经网络 分类任务
卷积神经网络
层和激活函数 2. 前向计算和损失
向量化计算和 one-hot 编码 sigmoid、softmax 及交叉熵 3. 反向传播及迭代优化 梯度下降及动量 4. 过拟合与欠拟合 5. 正则化、批正则化及 Selu 6. Dropout 1. 卷积 padding、stride、kernel 和 channel 局部相关性 感受野 感受野的计算 2. 池化 max_pooling、average_pooling global_average_pooling 3. 局部网络连接
CSDN 学院人工智能工程师课程大纲
第一阶段 机器学习原理及推荐系统实现
时间 Week1
Week2 Week3
主题
机器学习简介
Logistic 回归 分析、神经网 络、SVM 决策树模型
理论
实战案例
课程目标
1. 机器学习定义;
房价预测案例
熟悉机器学习领域的常用术语,了
2. 机器学习行业应用举例;
解机器学习在 AI 中的地位
5. 其他:最小间隔、核方法、支持向量回归 SVM(不同正则参数和核函数)
的性能,体会各模型的特点
1. 损失函数:信息增益、Gini 系数
电商商品分类案例
学习 Boosting 集成思想及基于树的
Week4 Week5
(CART)、基于 树的集成学习 算法(随机森 林、GBDT)
聚类、降维、矩 阵分解
人脸图像特征提取:PCA、ICA、
2. 独立成分分析(ICA)
NFM
3. 非负矩阵分解(NFM)
4. 隐因子模型(LFM)
电商用户聚类案例
5. KMeans 聚类和混合高斯模型 GM(M EM 算法)
6. 吸 引 子 传 播 聚 类 算 法 ( Affinity
Propagation 聚类算法)
1. 数据预处理:缺失值处理
商品推荐案例
2. 特征编码:标签编码、Dummy (One hot) 编
码、后验均值编码
复习数据探索、数据离群点检测
3. 文本特征提取 4. 特征组合 5. 特征选择 6. 协同过滤
和处理 数据预处理:缺失值处理 特征编码 组合各种特征工程技术和机器
7. 基于内容的过滤 8. FFM & LFM
学习算法实现推荐系统
数 据 可 视 化 工 具 包 ( Matplotlib, Tensorflow 基础概念
seaborn)
计算图
神经网络框架 Tensorflow
session
学会用 tensorflow 解一个实际 问题。
2. 简单神经网络实现手写数字识别
Week2 神经网络基础
1. 多层神经网络结构:输入、输出、隐 手写数字识别 Mnist
验证码识别
包含内容—— 使用简单神经网络实现手写数字识 别
LeNet 数据集 Mnist 用 LeNet 实现手写数字识别 局部相关性 权值共享
证网络结构对效果的影响
了解卷积神经网络的相关概念和 基础知识
1. 图像分类介绍与实现 2. imagenet 数据集与预训练模型 3. Inception 网络 4. ResNet 网络 5. 细粒度分类
9. 排序学习 10. 模型融合:Blending、Stacking
集成算法
学习用降维技术对高维特征பைடு நூலகம்行降 维
学会常用数据预处理方法及特征编 码方法 学习特征工程的一般处理原则 实现一个实际的推荐系统
第二阶段 深度学习原理及实战项目强化训练
时间 Week1
主题 神经网络入门
理论
实战案例
课程目标
1. 神经网络历史与现状 2. 神经网络的分类:全连接、卷积、循
4. 机器学习算法的组成部分:目标函数(损 Pandas、Matplotlib, seaborn) Pandas ) 、 数 据 可 视 化 工 具 包
失函数+正则)、优化方法;
(Matplotlib, seaborn)、机器学
5. 模型评估和模型选择:模型复杂度、过拟 实现模型评估和模型选择:交叉 习库(scikit-learn)
3. 机器学习任务:监督学习(分类、回归)、 数据集探索:单特征分布模拟及 学习环境配置:常用软件、环境配
非监督学习(聚类、降维)、半监督学习、 可视化、离群点检测、多特征相 置及机器学习库 anaconda:Python、
迁移学习、强化学习;
关 性 分 析 及 可 视 化 ( NumPy 、 科 学 计 算 包 ( NumPy, SciPy,
合、交叉验证、超参数空间、网格搜索… 验证、网格搜索(scikit-learn) 学会用机器学习工具包从头到尾用
线性回归解决一个实际问题
1. 分类算法的损失函数:logistic 损失、 电商商品分类案例
理解分类任算法(Logistic 回归、
Hingloss 损失、
神经网络、SVM)原理,复习数据集
特征工程、模型 融合& 推荐系 统实现
2. 划分:穷举搜索、近似搜索
3. 正则:L2/L1
XGBoost 在实际案例上的参数调
4. 预防过拟合:预剪枝及后剪枝

5. Bagging 原理
6. Boosting 原理
7. 流行的 GBDT 工具:XGBoost 和 LightGBM
1. 主成分分析(PCA)
Answering)
使用 Tensorflow 训练一个检测模 型
COCO 数据集 学习语义分割模型 写诗机器人
学习主流分割模型 学习循环神经网络的原理及应用
项目名称
第三阶段 四个工业级实战项目(可选)及成果展示
项目内容
自然语言处理:文本 根据企业的注册、投资及经营范围等相关信息,对企业进行分类,为企业的估值提供参考。
Flowers 数据集
学习图像分类任务目前主要模型
基于 imagenet 预训练模型的迁移 算法
1. 检测任务介绍与实现
PascalVOC 数据集
学习检测任务目前主要模型算法
检测任务
Week4
卷积神经网络 分割任务
Week5
循环神经网络
2. 特征提取 3. 区域建议 4. 区域合并 5. R-CNN 6. Fast/Faster R-CNN 7. SSD 8. YOLO 1. 分割任务简介 2. 反卷积(deconv/transpose-conv) 3. FCN 1. RNN 基本原理 2. 门限循环单元(GRU) 3. 长短期记忆单元(LSTM) 4. 词向量提取:Word2Vec 5. 编码器—解码器结构 6. 注意力机制模型:Attention Model 7. 图片标注(Image Captioning) 8. 图 片 问 答 ( Visual Question
环 3. 神经网络的应用:图像、语音、自然
语言处理 4. 神经网络的计算:权重、损失和梯度 5. 神经网络的优化:前向/反向传播和梯
度下降 6. 全局最优、局部最优和鞍点 7. 正则化、归一化
LeNet 与传统神经网络对比
包含知识点—— 损失函数、L1/L2 正则、梯度下降/ 随机梯度下降/动量随机梯度下降
相关文档
最新文档