立体几何垂直证明
立体几何第五讲 垂直的性质和证明学生
(2)平面与平面垂直的判定定理
文字语言
图形语言
符号语言
判定 如果一个平面经过另一个平面的一条 定理 垂线那么这两个平面互相垂直
l⊂β ⇒α⊥β
l⊥α
(3)平面与平面垂直的性质定理 文字语言
性质 定理
如果两个平面垂直,那么在 一个平面内垂直于它们交线 的直线垂直于另一个平面
图形语言
符号语言
α⊥β α∩β=a ⇒l⊥α l⊂β l⊥a
A.4 B.3 C.2 D.1 6.如图,正方体 ABCD-A1B1C1D1 的棱长为 1,过 A 点作平面 A1BD 的垂线,垂足为点 H, 有下列三个结论:
①点 H 是△A1BD 的中心; ②AH 垂直于平面 CB1D1; ③AC1 与 B1C 所成的角是 90°. 其中正确结论的序号是________. 7. 如图,AB 为⊙O 的直径,PA 垂直于⊙O 所在的平面,M 为圆周上任意一点,AN⊥PM, N 为垂足.
6
(1)求证:AN⊥平面 PBM. (2)若 AQ⊥PB,垂足为 Q, 求证 NQ⊥PB.
8. 如图,在直三棱柱 ABC—A1B1C1 中,E、F 分别是 A1B、A1C 的中点,点 D 在 B1C1 上, A1D⊥B1C1. 求证:(1)EF∥平面 ABC;
(2)平面 A1FD⊥平面 BB1C1C.
3 积.
2
[玩转跟踪] 1.(2018·江苏高考)在平行六面体 ABCDA1B1C1D1 中,AA1=AB,AB1⊥B1C1. 求证:(1)AB∥平面 A1B1C; (2)平面 ABB1A1⊥平面 A1BC.
2.(2020·安徽淮北一中模拟)如图,四棱锥 PABCD 的底面是矩形,PA⊥ 平面 ABCD,E,F 分别是 AB,PD 的中点,且 PA=AD. 求证:(1)AF∥平面 PEC; (2)平面 PEC⊥平面 PCD.
立体几何平行垂直的证明
一、平行问题的证明方法
平行问题证明的基本思路:平面平行 线面平行 线线平行.
1.线线平行的证明方法:
①利用平面几何中的定理:三角形(或梯形)的中位线与底边平行;
平行四边形的对边平行;
利用比例、……;
②三线平行公理:平行于同一条直线的两条直线互相平行;
③线面平行的性质定理:如果一条直线平行于一个平面,经过这条直线的平面和这个平面相交,则这条直线和
垂直问题证明的基本思路:面面垂直 线面垂直 线线垂直.
1.线线垂直的证明方法:
①利用平面几何中的定理:勾股定理、等腰三角形,三线合一、菱形对角线、直径所对的圆周角是直角、点在
线上的射影。
②线面垂直的定义:如果一条直线和一个平面垂直,那么这条直线就和这个平面内任意的直线都垂直;
③三垂线定理或三垂线逆定理:如果平面内的一条直线和斜线的射影垂直,则它和斜线垂直;反之亦成立。
交线行;
④面面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行;
⑤线面垂直的性质定理:垂直于同一个平面的两条直线平行。
2.线面平行的证明方法:
①线面平行的定义:直线与平面没有公共点;
②线面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行;
④如果两条平行线中的一条垂直于一条直线,则另一条也垂直于这条直线。
2.线面垂直的证明方法:
①线面垂直的定义:直线与平面内任意直线都垂直;
②线面垂直的判定定理:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面;
③线面垂直的性质定理:两条平行直线中的一条垂直于平面,则另一条也垂直于这个平面;
1.如图,四棱锥 中,四边形 为矩形, 为等腰三角形, ,平面 平面 ,且 . 分别为 和 的中点.
第8章立体几何专题4 垂直的证明-人教A版(2019)高中数学必修(第二册)常考题型专题练习
垂直的证明【方法总结】1、证明线面垂直的方法:①利用线面垂直定义:如果一条直线垂直于平面内任一条直线,则这条直线垂直于该平面;②用线面垂直判定定理:如果一条直线与平面内的两条相交直线都垂直,则这条直线与平面垂直;③用线面垂直性质:两条平行线中的一条垂直于一个平面,则另一条也必垂直于这个平面.2、证明线线(或线面)垂直有时需多次运用线面垂直的定义和线面垂直的判定定理,实现线线垂直与线面垂直的相互转化.3、证明面面垂直一般要先找到两个面的交线,然后再在两个面内找能与交线垂直的直线,最后通过证明线面垂直证明面面垂直。
【分类练习】考向一线面垂直例1、在四棱锥P ABCD -中,PA ⊥底面ABCD ,//AB CD ,AB BC ⊥,1AB BC ==,2DC =,点E 在PB 上求证:CA ⊥平面PAD ;【答案】(1)证明见解析;(2)2.【解析】(1)过A 作AF ⊥DC 于F ,则CF =DF =AF ,所以∠DAC =90°,即AC ⊥DA ,又PA ⊥底面ABCD ,AC ⊂面ABCD ,所以AC ⊥PA ,因为PA 、AD ⊂面PAD ,且PA ∩AD =A ,所以AC ⊥平面PAD .例2、如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;解析:(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .例3、如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点求证:AC ⊥平面BEF ;【解析】(1)在三棱柱111ABC A B C -中,∵1CC ⊥平面ABC ,∴四边形11A ACC 为矩形.又E ,F 分别为AC ,11A C 的中点,∴AC ⊥EF .∵AB BC =.∴AC ⊥BE ,∴AC ⊥平面BEF .例4、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==.(Ⅰ)求证:BD ⊥平面PAB ;【解析】因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥PA .所以222AD AB BD =+,所以BD AB ⊥.因为PA AB A = ,所以BD ⊥平面PAB .【巩固练习】1、如图,在三棱柱ABC-A 1B 1C 1中,AB=AC,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.证明:A 1D⊥平面A 1BC;【答案】见解析【解析】证明:设E 为BC 的中点,连接A 1E,AE.由题意得A 1E⊥平面ABC,所以A 1E⊥AE.因为AB=AC,所以AE⊥BC.故AE⊥平面A 1BC.连接DE,由D,E 分别为B 1C 1,BC 的中点,得DE∥B 1B 且DE=B 1B,从而DE∥A 1A 且DE =A 1A,所以AA 1DE 为平行四边形.于是A 1D∥AE.因为AE⊥平面A 1BC,所以A 1D⊥平面A 1BC.2.(2019·上海格致中学高三月考)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,作EF PB ⊥交PB 于点F .(1)证明:PA ∥平面EDB ;(2)证明:PB ⊥平面EFD .【答案】(1)详见解析;(2)详见解析.【解析】(1)设AC 与BD 相交于O ,连接OE ,由于O 是AC 中点,E 是PC 中点,所所以PA ∥平面EDB .(2)由于PD ⊥底面ABCD ,所以PD BC ⊥,由于,BC CD PD CD D ⊥⋂=,所以BC ⊥平面PCD ,所以BC DE ⊥.由于DP DC =且E 是PC 中点,所以DE PC ⊥,而PC BC C ⋂=,所以DE ⊥平面PBC ,所以DE PB ⊥.依题意EF PB ⊥,DE EF E = ,所以PB ⊥平面EFD .3.(2019·江苏高三月考)如图,在四棱锥P ABCD -中,四边形ABCD 是平行四边形,AC ,BD 相交于点O ,OP OC =,E 为PC 的中点,PA PD ⊥.(1)求证://PA 平面BDE ;(2)求证:PA ⊥平面PCD【答案】(1)详见解析(2)详见解析【解析】(1)连结OE .因为四边形ABCD 是平行四边形,AC ,BD 相交于点O ,所以O 为AC 的中点.因为E 为PC 的中点,所以//OE PA .因为OE ⊂平面BDE ,PA ⊄平面BDE ,所以//PA 平面BDE .(2)因为OP OC =,E 为PC 的中点,所以OE PC ⊥.由(1)知,//OE PA ,所以PA PC ⊥.因为PA PD ⊥,PC ,PD ⊂平面PCD ,PC PD P ⋂=,所以PA ⊥平面PCD .考向二面面垂直例1、如图,在四棱锥P ABCD -中,已知底面ABCD 为矩形,且AB =,1BC =,E ,F 分别是AB ,PC 的中点,PA DE ⊥.(1)求证://EF 平面PAD ;(2)求证:平面PAC ⊥平面PDE .【答案】(1)详见解析(2)详见解析【解析】证明:(1)取PD 中点G ,连AG ,FG ,F ,G 分别是PC ,PD 的中点又E 为AB 中点//AE FG ∴,AE FG=四边形AEFG 为平行四边形//EF AG ∴,又EF ⊄平面PAD ,AG ⊂平面PAD//EF ∴平面PAD(2)设AC DE H= 由AEH CDH ∆∆ 及E 为AB 中点又BAD ∠为公共角GAE BAC∴∆∆ 90AHE ABC ∴∠=∠=︒即DE AC ⊥又DE PA ⊥,PA AC A= DE ⊥平面PAC ,又DE ⊂平面PDE∴平面PAC ⊥平面PDE例2、如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD所在平面垂直,M 是 CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为 CD上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC CM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .例3、如图,在梯形ABCD 中,AB ∥CD ,AD=DC=CB=a ,∠ABC=3π,平面ACFE ⊥平面ABCD ,四边形ACFE 是矩形,AE=AD ,点M 在线段EF 上。
2017年__高二年级立体几何垂直证明题常见模型和方法
立体几何垂直证明题常见模型及方法垂直转化:线线垂直线面垂直面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)○1 等腰(等边)三角形中的中线○2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○4 1:1:2 的直角梯形中 ○5 利用相似或全等证明直角。
例:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO OE ⊥(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥变式 1 如图,在四棱锥ABCD P -中,底面A B C D 是矩形,已知60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于'A. 求证:'A D EF ⊥;类型二:线面垂直证明BE 'ADFG方法○1 利用线面垂直的判断定理例2:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO BDE ⊥平面变式1:在正方体1111ABCD A BC D -中,,求证:11AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 .求证:CD ⊥平面A 1ABB 1;变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,AB =,6BC =C○2 利用面面垂直的性质定理 例3:在三棱锥P-ABC 中,PA ABC ⊥底面,PAC PBC ⊥面面,BC PAC ⊥求证:面。
立体几何中的向量方法——证明平行及垂直
立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量确实定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数*,y ,使v =*v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打"√〞或"×〞)(1)直线的方向向量是唯一确定的.()(2)平面的单位法向量是唯一确定的.()(3)假设两平面的法向量平行,则两平面平行.()(4)假设两直线的方向向量不平行,则两直线不平行.()(5)假设a ∥b ,则a 所在直线与b 所在直线平行.()(6)假设空间向量a 平行于平面α,则a 所在直线与平面α平行.()1.以下各组向量中不平行的是()A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则以下点P 中,在平面α的是()A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.AB →=(1,5,-2),BC →=(3,1,z ),假设AB →⊥BC →,BP →=(*-1,y ,-3),且BP ⊥平面ABC ,则实数*,y ,z 分别为______________.4.假设A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(*,y ,z ),则*∶y ∶z =________.题型一 证明平行问题例1(2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?假设存在,求出λ的值;假设不存在,说明理由.题型二 证明垂直问题例2 如下图,正三棱柱(底面为正三角形的直三棱柱)ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .如下图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.(1)求证:CM ∥平面PAD ;(2)求证:平面PAB ⊥平面PAD .题型三 解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,假设存在,求出点P的位置,假设不存在,请说明理由.如下图,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)假设SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.假设存在,求SE∶EC的值;假设不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A组专项根底训练1.假设直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α相交2.假设AB→=λCD→+μCE→,则直线AB与平面CDE的位置关系是()A.相交B.平行C.在平面D.平行或在平面3.A(4,1,3),B(2,-5,1),C(3,7,-5),则平行四边形ABCD的顶点D的坐标是() A.(2,4,-1) B.(2,3,1)C.(-3,1,5) D.(5,13,-3)4.a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),假设a,b,c三向量共面,则实数λ等于()A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为()A .60°B .45°C .90°D .以上都不正确6.平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB=12PD .证明:平面PQC ⊥平面DCQ . 10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为()A .(1,1,1)B .(23,23,1) C .(22,22,1) D .(24,24,1)12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,假设α⊥β,则t 等于()A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN→的实数λ有________个.14.如下图,直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 求一点G ,使GF ⊥平面PCB ,并证明你的结论.。
立体几何垂直的证明
垂直的证明定理一:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.符号语言: ββ⊥⇒⊂=⋂⊥⊥a m l A m l m a l a ,;;;定理二:一条直线垂直一个平面,那么它就垂直这个平面内的所有直线符号语言: b a b a ⊥⇒⊂⊥ββ,9。
如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。
求证:(1)⊥AB 平面CDE;(2)⊥AB CD(3)平面CDE ⊥平面ABC 。
10。
如图,三棱锥A-BCS 中, AB=AC,SB=SC ,O 为BC 的中点,(1)求证:BC ⊥平面AOS; (2) BC ⊥ASAEDBC练习11。
如图,四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 是正方形,且PD AB ==2. (1)求PB 的长;(2)求证:AC ⊥平面PBD 。
(3)求 B 到平面PAC 的距离12。
在直三棱柱111ABCA B C 中,3AC,4BC ,5AB,14AA ,点D 是AB的中点.(Ⅰ)求证11B BCC AC 平面⊥; (Ⅱ)求证1AC ∥平面1CDB ;13。
在三棱锥P —ABC 中,侧棱PA ⊥底面ABC ,AB ⊥BC ,E,F 分别是BC,PC 的中点.(1)证明:EF ∥平面PAB ; (2)证明:PAB BC 平面⊥ (3)证明:EF ⊥BC .AB CDEF作业1.如图,在四面体ABCD 中,CB=CD ,BD AD ⊥,点E ,F 分别是AB ,CD 的中点.求证:(1)直线EF// 面ACD ;(2)证明:EFC BD 面⊥.2。
如图,在正方体1111ABCD A B C D -中,,E F 分别为,AD AB 的中点,正方体棱长为2。
(1)求证:11//EF CB D 平面 (2)求证:1111A ACC D B 平面⊥。
(3)求 1C 到平面11CD B 的距离3.如图,在正方体1111D C B A ABCD -中,E 是棱1CC 的中点,正方体棱长为2. (1)证明:1AC ∥平面BDE ; (2) 证明:11A ACC BD 平面⊥ (3)证明:1AC BD ⊥。
立体几何线线垂直的证明方法
立体几何线线垂直的证明方法在立体几何中,线线垂直是一种非常重要的关系,它在很多问题中都有着重要的应用。
本文将介绍几种线线垂直的证明方法,希望能够帮助读者更好地理解和运用这一关系。
一、垂线段的垂线段垂直首先介绍的是垂线段的垂线段垂直的证明方法。
具体来说,如果有两个垂直于同一个平面的线段AB和CD,且它们之间有一条垂线段EF,则EF和CD垂直。
证明如下:1、连接AE和CF,得到平面ACEF。
2、由于AB和CD垂直于平面ACEF,所以它们的交点O在平面ACEF 内。
3、由于EF垂直于平面ACEF,所以它与平面ACEF的任意一条交线都垂直,特别地,它与CF垂直。
4、因此,EF和CD垂直。
二、平面的法线和平面内的任意直线垂直接下来介绍的是平面的法线和平面内的任意直线垂直的证明方法。
具体来说,如果有一个平面P和一条直线L在平面P内,且L与P垂直,则L与P的法线垂直。
证明如下:1、连接L和P的交点O。
2、在平面P内任意取一点A,连接OA。
3、由于L与P垂直,所以OA与L垂直,即OA和L在点O处垂直。
4、由于P的法线垂直于P,所以它与P内任意一条直线都垂直,特别地,它与OA垂直。
5、因此,L与P的法线垂直。
三、垂线段和平面的法线垂直最后介绍的是垂线段和平面的法线垂直的证明方法。
具体来说,如果有一条垂直于平面P的直线L,且L与平面P上的一条线段AB相交于点O,则OA和OB的中垂线与P的法线垂直。
证明如下:1、连接OA和OB,得到线段AB的中垂线CD。
2、连接CO和DO,得到平面COD。
3、由于L垂直于平面P,所以L和P的法线在平面P内的交点O 处垂直。
4、由于OA和OB在点O处相交,所以它们的中垂线CD也经过点O。
5、因此,CD与P的法线垂直。
以上就是三种线线垂直的证明方法,它们都非常简单易懂,但是能够解决很多实际问题。
在实际应用中,我们可以根据具体情况选择不同的证明方法,以便更好地解决问题。
立体几何垂直的证明方法【线线垂直+线面垂直+面面垂直】【20210210】
空间点、线、面的位置关系:垂直【背一背基础知识】1.判定两直线垂直,可供选用的定理有:①若a ∥b ,b ⊥c ,则a ⊥c .②若a ⊥α,b ⊂α,则a ⊥b .2.线面垂直的定义:一直线与一平面垂直⇔这条直线与平面内任意直线都垂直;3.线面垂直的判定定理,可选用的定理有:①若a ⊥b ,a ⊥c ,b ,c ⊂α,且b 与c 相交,则a ⊥α.②若a ∥b ,b ⊥α,则a ⊥α.③若α⊥β,α∩β=b ,a ⊂α,a ⊥b ,则a ⊥β.4.判定两平面垂直,可供选用的定理有:若a ⊥α,a ⊂β,则α⊥β.线面垂直1.如图,在三棱台ABC-DEF 中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=F C=1,BC=2,AC=3.(I)求证:BF⊥平面ACFD;2.如图,在四棱锥P ABCD -中,底面ABCD 是︒=∠60DAB 且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD ⊥底面ABCD ,G 为AD 的中点.求证:BG ⊥平面PAD .线线垂直1、如图,在三棱锥P ABC -中,90PAC BAC ∠=∠=︒,PA PB =,点D ,F 分别为BC ,AB 的中点.(1)求证:PF ⊥AD .2、如图,在三棱柱111ABC A B C -中,面11ABB A 为矩形,11,2,AB BC AA D ===为1AA 的中点,BD与1AB 交于点1,O BC AB ⊥.(Ⅰ)证明:1CD AB ⊥3、下图为一简单组合体,其底面ABCD 为正方形,PD ⊥平面ABCD ,//EC PD ,且22PD AD EC ===,N 为线段PB 的中点.(Ⅰ)证明:NE PD ⊥;4、如图所示,在三棱柱111ABC A B C -中,11AA B B 为正方形,11BB C C 为菱形,1160BB C Ð=°,平面11AA B B ^平面11BB C C 。
空间立体几何中的平行、垂直证明
∴DE∥平面 PAB.
精选ppt
H
构造平行四边行法
23
(2)证明 在直角梯形中,CB⊥AB, 又∵平面 PAB⊥平面 ABCD, 且平面 PAB∩平面 ABCD=AB, ∴CB⊥平面 PAB. ∵CB⊂平面 PBC, ∴平面 PBC⊥平面 PAB.
精选ppt
看到中点找中点
D1 A1
DE A
C1
B1
F
C B
精选ppt
7
定理应用
空间中的平行
方法一):构造平行四边形
D1 A1
DE A
M
C1
B1
F
C
N
B
精选ppt
8
定理应用
空间中的平行
方法二):构造平行平面
D1 A1
DE A
C1
B1
F
HC B
精选ppt
9
定理应用
空间中的平行
例 2.如图所示, P在 AB四 C 中D 棱 ,锥 已知 A四 BC 是 边 D 形 平行四M 边 ,N分 形别 ,是PA点 ,, BC的中 证明:MND //面PPC
精选ppt
25
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
感 谢
感 谢
阅阅
读读
分析: (1)证明线面平行只需在平面内找一条和 该直线平行的直线即可,也可转化为经过这条直线 的平面和已知平面平行;(2)证明面面垂直,只需在 一个平面内找到另一个平面的垂线.
精选ppt
21
立体几何证垂直的方法
立体几何证垂直的方法
证明两条线段垂直的方法通常有以下几种:
1. 垂直线段的定义:根据垂直线段的定义,如果两条线段的斜率乘积为-1,则它们是垂直的。
可以通过计算两条线段的斜率并判断它们的乘积是否为-1。
2. 垂直平分线:如果一条线段上的点到另一条线段的距离都相等且垂直于另一条线段,则它们是垂直的。
可以通过计算两条线段上的某个点到另一条线段的距离,并判断这些距离是否相等。
3. 垂直平行线:如果两条平行线段与第三条互相垂直,则它们本身也是垂直的。
可以通过找到与两条平行线段都垂直的第三条线段,并判断它们之间的关系。
4. 正交投影:如果两条线段在平面上的正交投影相交,则它们是垂直的。
可以将两条线段的正交投影投影到平面上,并判断它们是否相交。
以上是一些常见的证明两条线段垂直的方法,具体证明方法还要根据具体的题目和条件来进行选择和应用。
立体几何中不易建系的用空间向量证明垂直问题。
立体几何中不易建系的用空间向量证明垂直问题。
1. 引言1.1 概述立体几何是数学中的一个重要分支,研究空间中的图形和特定关系。
建系问题是立体几何中一个常见的难题,它涉及到如何确定或构建一个合适的坐标系来描述和表示空间中的元素和关系。
在解决建系问题时,传统的方法存在一定局限性和困难,例如难以应对复杂的几何结构、缺乏普适性等。
1.2 文章结构本文将通过引入空间向量理论来探讨解决立体几何中不易建系的问题。
文章分为以下几个部分:- 引言:介绍本文的背景和论文结构。
- 立体几何中的建系问题:阐述建系定义与重要性、传统方法的局限性与困难,以及空间向量在解决建系问题中的优势。
- 空间向量证明垂直问题的基本原理与方法:讨论垂直关系的定义与特征、空间向量表示垂直关系的有效途径,以及应用空间向量证明垂直性质时需要考虑的因素。
- 实例分析:通过一个具体案例来说明使用空间向量证明垂直问题的步骤和推理过程,并对结果进行分析和讨论。
- 结论与展望:总结研究成果并得出结论,同时提出未来研究方向和进一步工作的展望。
1.3 目的本文的目的是介绍空间向量在解决立体几何中不易建系的问题中所起到的作用和优势,并通过实例分析来验证其有效性。
通过本文的研究,读者将能够理解空间向量在解决建系问题中的重要性,并了解使用空间向量证明垂直问题的基本原理与方法。
最终,本文希望为立体几何领域中建系问题的解决提供一种新思路和有价值的参考。
2. 立体几何中的建系问题:2.1 建系的定义与重要性:在立体几何中,建系是指通过选取适当的点或向量作为参照,构建坐标系或基底来描述和表示空间中的几何事物或运动。
建系是解决立体几何问题和进行进一步分析的基础,它可以帮助我们确定方向、测量距离和角度,从而推导出更多关于空间图形、运动和变换的性质。
2.2 建系方法的局限性与困难:传统的建系方法主要包括平行四边形法、角平分线法、垂直线法等。
然而,这些方法在实际应用中存在一定的局限性和困难。
专题11 立体几何 11.3平行与垂直证明 题型归纳讲义-2022届高三数学一轮复习(解析版)
所以 EF∥BC.
又因为 EF⊄平面 PBC,BC⊂平面 PBC,
△PAD 是正三角形,平面 PAD⊥平面 PBD.
(Ⅰ)求证:PA⊥BD;
(Ⅱ)设二面角 P﹣BD﹣A 的大小为α,直线 PA 与平面 PBC 所成角的大小为β,求 cos
(α+β)的值.
【解答】(Ⅰ)证明:∵∠BAD=45°,AD=1,�� = 2,
∴由余弦定理,得:
BD=
1 + 2 − 2 × 1 × 2 × ���45° =1,…(2 分)
性质定理
行,则过这条直线的任一
∵l∥α,
平面与此平面的交线与
l⊂β,α∩β
该直线平行(简记为“线面
=b,∴l∥b
平行⇒线线平行”)
2.平面与平面平行的判定定理和性质定理
文字语言
判定定理
图形语言
符号语言
一个平面内的两条相交
∵a∥β,b
直线与另一个平面平行,
∥β,a∩b
则这两个平面平行(简记
=P,a⊂α,
⊥AC,
所以 PA⊥面 ABC,
因为 BC⊂平面 ABC,
所以 PA⊥BC.
又因为 AB⊥BC,且 PA∩AB=A,
所以 BC⊥面 PAB.
….(9 分)
(Ⅲ)解:当点 F 是线段 AB 中点时,过点 D,E,F 的平面内的任一条直线都与平面 PBC
平行.
取 AB 中点 F,连 EF,连 DF.
由(Ⅰ)可知 DE∥平面 PBC.
��
理由.
【解答】(Ⅰ)证明:取 AB 中点 O,连接 EO,DO.
因为 EA=EB,所以 EO⊥AB. …(2 分)
立体几何中平行和垂直问题的证明
摇生"攵浬化知识篇科学备考新指向高考数学2021年2月立"#何%&行直问题的证明■江苏省华罗庚中学李普红平行与垂直关系的证明是高考考查立体几何的高频考点,大部分问题都可以用传统的几何方法解决,有一部分问题需要建立空间直角坐标系利用空间向量解决。
用传统法解题时,应注重线线平行、线线垂直、线面平行、线面垂直、面面平行、面面垂直等问题的性质定理和判定定理的灵活应用。
用向量法解题时,应建立恰当的空间直角坐标系,准确表示各点与相关向量的坐标。
考向一:证明线面平行!!如图1,已知空间几何体BACDE中,&BCD与&CDE均是边长为2的等边三角形,&ABC是腰长为3,底边为BC的等腰三角形,平面CDE丄平面BCD,平面ABC丄平面BCD"(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出证明;(2)求三棱锥E-ABC的体积。
解析:(1)如图2所示,取DC的中点为N,BD的中点为/,连接MN,则MN即为所求。
连接EM,EN,取BC的中点4,连接AH"因为&ABC是腰长为3的等腰三角形,H为BC的中点,所以AH丄BC。
又平面ABC丄平面BCD,平面ABC'平面BCD$BC,AH U平面ABC,所以AH 丄平面BCD"同理可证EN丄平面BCD"所以EN/AH"因为EN1平面ABC,AH U平面ABC,所以EN/平面ABC"又M,N分别为BD,DC的中点,所以MN/BC"因为MN1平面ABC,BC U平面ABC,所以MN/平面ABC"又MN'EN$N,MN U平面EMN,EN U平面EMN,所以平面EMN/平面ABC"又EF U平面EMN,所以EF/平面ABC,即直线MN上任意一点F与E的连线EF均与平面ABC平行°(2)连接DH,取CH的中点为G,连接NG,则NG/DH"由(1)可知EN/平面ABC,所以点E到平面ABC的距离与点N到平面ABC的距离相等°又&BCD是边长为2的等边三角形,所以DH丄BC。
立体几何线面垂直的证明
立体几何证明【知识梳理】1.直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行⇒线面平行”)相交,那么这条直线和交线平行.(“线面平行⇒线线平行”)2..直线与平面垂直判定定理一如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直⇒线面垂直”)判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质1.如果一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线。
(线面垂直⇒线线垂直)性质2:如果两条直线同垂直于一个平面,那么这两条直线平行.三。
平面与平面空间两个平面的位置关系:相交、平行.1.平面与平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行⇒面面平行”)2. 两个平面垂直判定定理:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直⇒面面垂直”)性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.(面面垂直⇒线面垂直)知识点一 【例题精讲】1.在棱长为2的正方体1111D C B A ABCD -中,E 、F 分别为1DD 、DB 的中点。
(1)求证:EF//平面11D ABC ;(2)求证: 平面B 11D C C B 1⊥ EF C B 1⊥; (3)求三棱锥EFC B -1的体积V.2.如图所示, 四棱锥P -ABCD 底面是直角梯形,,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的中点, PA =AD =AB =1. (1)证明: //EB PAD 平面; (2)证明: BE PDC ⊥平面; (3)求三棱锥B -PDC 的体积V .3、如图所示,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点,证明:(1)AE⊥CD(2)PD⊥平面ABE.4、.如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;练习1、如图,菱形ABCD与等边△PAD所在的平面相互垂直,AD=2,∠DAB=60°.(Ⅰ)证明:AD⊥PB;(Ⅱ)求三棱锥C﹣PAB的高.2.如图14所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.求证:EF⊥平面BCG;3.如图11所示,三棱柱ABCA1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B;4、如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求直线BD与平面ACFD所成角的余弦值.5、三棱锥P﹣ABC中,∠BAC=90°,PA=PB=PC=BC=2AB=2,(1)求证:面PBC⊥面ABC6.已知四棱锥P-ABCD中,底面四边形为正方形,侧面PDC为正三角形,且平面PDC⊥底面ABCD,E为PC的中点.(1)求证:PA∥平面EDB;(2)求证:平面EDB⊥平面PBC;7、如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAB⊥平面ABCD,PA⊥PB,BP=BC,E为PC的中点.(1)求证:AP∥平面BDE;2.求证BE 垂直平面PAC8、将如图一的矩形ABMD沿CD翻折后构成一四棱锥M﹣ABCD(如图二),若在四棱锥M﹣ABCD中有MA=.(1)求证:AC⊥MD;(2)求四棱锥M﹣ABCD的体积.作业1、如图1,菱形ABCD的边长为12,∠BAD=60°,AC交BD于点O.将菱形ABCD沿对角线AC折起,得到三棱锥B﹣ACD,点M,N分别是棱BC,AD 的中点,且DM=6.(Ⅰ)求证:OD⊥平面ABC;2、如图,在斜三棱柱ABC﹣A1B1C1中,O是AC的中点,A1O⊥平面ABC,∠BCA=90°,AA1=AC=BC.(Ⅰ)求证:A1B⊥AC1;3、如图所示,四棱锥P﹣ABCD的侧面PAD是边长为2的正三角形,底面ABCD 是∠ABC=60°的菱形,M为PC的中点,PC=.(Ⅰ)求证:PC⊥AD;AD,E,4、如图,四棱锥P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=12F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.5、如图,四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形.AB=BC=2,CD=1,SD=.(1)证明:CD⊥SD;6.如图,四棱锥S ﹣ABCD 中,△ABD 是正三角形,CB=CD ,SC ⊥BD .(Ⅰ)求证:SB=SD ;(Ⅱ)若∠BCD=120°,M 为棱SA 的中点,求证:DM ∥平面SBC .7、如图,在矩形ABCD 中,点E 为边AD 上的点,点F 为边CD 的中点,234A E D B A A ===,现将ABE ∆沿BE 边折至PBE ∆位置,且平面PBE ⊥平面BCDE .(1)求证:平面PBE ⊥平面PEF ;8、如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60︒,2PA PD ==,PB=2,E,F 分别是BC,PC 的中点.(1) 证明:AD ⊥平面DEF;AB CDEBCDEFP9、在如图所示的多面体ABCDEF 中,ABCD 为直角梯形,//AB CD ,90DAB ∠=︒,四边形ADEF 为等腰梯形,//EF AD ,已知AE EC ⊥,2AB AF EF ===,4AD CD ==.(Ⅰ)求证:平面ABCD ⊥平面ADEF10.如图,在底面为平行四边形的四棱锥P ABCD -中,AB AC ⊥,PA ⊥平面ABCD ,且PA AB =,点E 是PD 的中点. (Ⅱ)求证://PB 平面AEC ;11.棱长为2的正方体ABCD﹣A1B1C1D1中,M是棱AA1的中点,过C、M、D1作正方体的截面,则截面的面积是。
立体几何垂直证明
立体几何垂直证明方法技巧类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:掌握几种模型①等腰(等边)三角形中的中线 ②菱形(正方形)的对角线互相垂直 ③勾股定理中的三角形 ④ 直角梯形⑤利用相似或全等证明直角。
例:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心, E 为1CC 中点,求证: (1) 1A O OE ⊥ (2) 1A O BDE ⊥平面(2) 异面垂直(利用线面垂直来证明)例1 在正四面体ABCD 中, 求证:AC BD ⊥变式1 如图,在四棱锥ABCD P -中,底面ABCD 是矩形,已知ο60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD中,点E是AB的中点,点F是BC的中点,将△AED,△DCF分别沿,DE DF折起,使,A C两点重合于'A.求证:'A D EF⊥;变式3如图,在三棱锥P ABC-中,⊿PAB是等边三角形,∠P AC=∠PBC=90 º证明:AB⊥PC类型二:直线与平面垂直证明BE'ADFG方法○1利用线面垂直的判断定理例:在正方体1111ABCD A B C D -中,,求证:11AC BDC ⊥平面变式1:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 . 求证:CD ⊥平面A 1ABB 1;变式2:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的P中点,2,CA CB CD BD AB AD ====== 求证:AO ⊥平面BCD ;变式3 如图,在底面为直角梯形的四棱锥P ABCD -中,(1) 求证://AF 平面BCE ;(2) 求证:平面BCE ⊥平面CDE ;例2 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,60AB AD AC CD ABC ⊥⊥∠=,,°,PA AB BC ==,FADPEE是PC的中点.⊥;(2)证明PD⊥平面ABE;(1)证明CD AE变式1已知直四棱柱ABCD—A′B′C′D′的底面是菱形,∠60ABC,E、F分别是棱CC′与BB′上的点,=︒且EC=BC=2FB=2.(1)求证:平面AEF⊥平面AA′C′C;类型三:平面与平面垂直证明1.AB是圆O的直径,PA垂直于圆O所在的平面,M是圆周上任意一点,AN⊥PM,点N为垂足,求证:平面PAM⊥平面PBM2.如图,在空间四边形ABCD中,AB=BC,CD=DA,E,F,G分别为CD,DA和对角线AC的中点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何垂直证明方法技巧授课教师:***
类型一:线线垂直证明(共面垂直、异面垂直)
(1) 共面垂直:掌握几种模型
①等腰(等边)三角形中的中线 ②菱形(正方形)的对角线互相垂直 ③勾股定理中的三角形 ④ 直角梯形
⑤利用相似或全等证明直角。
例:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心, E 为1CC 中点,求证: (1) 1A O OE ⊥ (2) 1A O BDE ⊥平面
(2) 异面垂直(利用线面垂直来证明) 例1 在正四面体ABCD 中, 求证:AC BD ⊥
变式1 如图,在四棱锥ABCD P -中,底面ABCD 是矩形,
已知
60,22,2,2,3=∠====PAB PD PA AD AB .
证明:AD PB ⊥;
变式2 如图,在边长为2的正方形ABCD中,点E是AB的中点,点F是BC的中点,将△AED,△DCF分别沿,
DE DF折起,使,A C两点重合于'A.
求证:'A D EF
⊥;
变式3如图,在三棱锥P ABC
-中,⊿PAB是等边三角形,∠P AC=∠PBC=90 º证明:AB⊥PC
类型二:直线与平面垂直证明
B
E
'
A
D
F
G
方法○1利用线面垂直的判断定理
例:在正方体1111ABCD A B C D -中,,求证:1
1AC BDC ⊥平面
变式1:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1
的中点,D 点在AB 上且DE = 3 . 求证:CD ⊥平面A 1ABB 1;
变式2:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的
P
C
B
A
D
E
中点,2, 2.CA CB CD BD AB AD ====== 求证:AO ⊥平面BCD ;
变式3 如图,在底面为直角梯形的四棱锥P ABCD -中,
AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD . 3PA =,2AD =,23AB =,6BC =
()1求证:BD ⊥平面PAC
○
2利用面面垂直的性质定理
例3:在三棱锥P-ABC 中,PA ABC ⊥底面,PAC PBC ⊥面面,BC PAC ⊥求证:面。
变式1, 在四棱锥P ABCD -,底面ABCD 是正方形,侧面PAB 是等腰三角形,且PAB ABCD ⊥面底面,求证:BC PAB ⊥面
类型3:面面垂直的证明。
(本质上是证明线面垂直) 例:如图,已知AB ⊥平面ACD , DE ⊥平面ACD ,△ACD 为等边三角形,
(1) 求证://AF 平面BCE ;(2) 求证:平面BCE ⊥平面CDE ;
例2 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,
A B
C
D
E
F
A
B
C
D P
E
,,°,PA AB BC
60
⊥⊥∠=
AB AD AC CD ABC
==,
E是PC的中点.
⊥;(2)证明PD⊥平面ABE;
(1)证明CD AE
变式1已知直四棱柱ABCD—A′B′C′D′的底面是菱形,∠60
ABC,E、F分别是棱CC′与BB′上的点,
=
︒
且EC=BC=2FB=2.
(1)求证:平面AEF⊥平面AA′C′C;
类型三:平面与平面垂直证明
1.AB是圆O的直径,PA垂直于圆O所在的平面,M是圆周上任意一点,AN⊥PM,点N为垂足,
求证:平面PAM⊥平面PBM
2.如图,在空间四边形ABCD中,AB=BC,CD=DA,E,F,G分别为CD,DA和对角线AC的中点。
求证:平面BEF 平面BGD
.
3.在直平行六面体AC1中,四边形ABCD是菱形,∠DAB=60°,AC∩BD=O,AB=AA1.
(1)求证:C1O∥平面AB1D1;
(2)求证:平面AB1D1⊥平面ACC1A1.
4. 如下图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M为CE的中点.
(1)求证:BM∥平面ADEF;
(2)求证:平面BDE⊥平面BEC.。