1.紫外分光光度法测定未知样含量-方案+公式+图

合集下载

紫外可见分光光度计的曲线绘制

紫外可见分光光度计的曲线绘制

一、测定溶液中物质的含量可见或紫外分光光度法都可用于测定溶液中物质的含量。

测定标准溶液(浓度已知的溶液)和未知液(浓度待测定的溶液)的吸光度,进行比较,由于所用吸收池的厚度是一样的。

也可以先测出不同浓度的标准液的吸光度,绘制标准曲线,在选定的浓度范围内标准曲线应该是一条直线,然后测定出未知液的吸光度,即可从标准曲线上查到其相对应的浓度。

含量测定时所用波长通常要选择被测物质的最大吸收波长,这样做有两个好处:⑴灵敏度大,物质在含量上的稍许变化将引起较大的吸光度差异;⑵可以避免其它物质的干扰。

二、用紫外光谱鉴定化合物使用分光光度计可以绘制吸收光谱曲线。

方法是用各种波长不同的单色光分别通过某一浓度的溶液,测定此溶液对每一种单色光的吸光度,然后以波长为横座标,以吸光度为纵座标绘制吸光度──波长曲线,此曲线即吸收光谱曲线。

各种物质有它自己一定的吸收光谱曲线,因此用吸收光谱曲线图可以进行物质种类的鉴定。

当一种未知物质的吸收光谱曲线和某一已知物质的吸收光谱曲线开关一样时,则很可能它们是同一物质。

一定物质在不同浓度时,其吸收光谱曲线中,峰值的大小不同,但形状相似,即吸收高峰和低峰的波长是一定不变的。

紫外线吸收是由不饱和的结构造成的,含有双键的化合物表现出吸收峰。

紫外吸收光谱比较简单,同一种物质的紫外吸收光谱应完全一致,但具有相同吸收光谱的化合物其结构不一定相同。

除了特殊情况外,单独依靠紫外吸收光谱决定一个未知物结构,必须与其它方法配合。

紫外吸收光谱分析主要用于已知物质的定量分析和纯度分析。

选几个体积梯度,然后稀释成相同的体积,得到了不同浓度C的几个标准溶液样组,用紫外分光光度计分别测得相应的吸光度A1、A2、A3……,然后要以浓度为横坐标,吸光度A为纵坐标,绘制曲线。

当然有时候根据实际需要,也会有小小的变动。

配制标准溶液,用紫外可见分光光度计测量,得到浓度与吸光度的曲线,并且利用线性拟合得到回归方程,直接利用Origin的线性拟合功能得到的方程往往截距不等于零,即方程的形式为y=A+Bx。

紫外可见分光光度法基本原理PPT讲稿

紫外可见分光光度法基本原理PPT讲稿
光是由光子流组成,光子的能量:
E=h=hc/
(Planck常数:h=6.626 × 10 -34 J × S ) 光的波长越短(频率越高),其能量越大。 白光(太阳光):由各种单色光组成的复合光 单色光:单波长的光(由具有相同能量的光子组成) 可见光区:400-750 nm 紫外光区:近紫外区200 - 400 nm
生的吸收光谱在紫外—可见光区,称为紫外—可见光谱或分子的 电子光谱。
讨论:
(4)吸收光谱的波长分布是由产生谱带的跃迁能级间的 能量差所决定,反映了分子内部能级分布状况,是物质定性 的依据。 (5)吸收谱带强度与分子偶极矩变化、跃迁几率有关, 也提供分子结构的信息。通常将在最大吸收波长处测得的摩 尔吸光系数εmax也作为定性的依据。不同物质的λmax有时可能 相同,但εmax不一定相同; (6)吸收谱带强度与该物质分子吸收的光子数成正比, 这是定量分析的依据。
* σ σ* (150~210nm)
H
* n σ* (259nm)
HCI
H
(2)不饱和脂肪烃
• 这类化合物有孤立双键的烯烃(如乙烯)和共轭双键的烯
烃(如丁二烯),它们含有π键电子,吸收能量后产生
π→π*跃迁。乙烯(孤立双键)的
m
a
为171nm(
x

15530 L mol1 cm1 );而丁二烯H(2C CH CH CH2 )
列吸收带,称为精细结构吸收带,亦称为B吸收带[从德文 Benzenoid(苯的)得名],这是由于跃迁和苯环的振动的重叠引起的。B 吸收带的精细结构常用来辨认芳香族化合物。 苯环与生色团连结时,有B和K两种吸收带,有时还有R吸收带,其中 R吸收带的波长最长 。
生色团与助色团
生色团(Chromophore): 最有用的紫外—可见光谱是由π→π*和n→π*跃迁产生

紫外吸收光谱法鉴定未知样及测定苯酚的含量

紫外吸收光谱法鉴定未知样及测定苯酚的含量

紫外吸收光谱法鉴定未知样及测定苯酚的含量一、实验目的1、掌握紫外光谱法进行物质定性、定量分析的基本原理;2、学习UV-1700型紫外--可见分光光度计的使用方法。

二、实验原理含有苯环和共轭双键的有机化合物在紫外区有特征吸收。

物质结构不同对紫外及可见光的吸收具有选择性。

其中,最大吸收波长λ、摩尔吸收系数ε及吸收曲线的形状不同是进行物质定性分析的依据。

本实验通过比较最大吸收波长和最大吸收波长与其所对应的吸光度的比值的一致性来鉴定化合物,我们首先从文献上查得这3种物质的紫外紫外吸收光谱数据,现如下表所列。

在紫外分光光度计上分别作3种物质水溶液(试液)的吸收光谱曲线,再由曲线上找出λmax与其对应的吸光度的比值,与表上所列数据进行对照,再比较λmax及吸光度比值是否一致,即可判断是何种物质。

由于在λmax处吸光度A有最大值,在此波长下A随浓度的变化最为明显,方法的灵敏度最大,故在紫外分光光度计上作苯酚水溶液(试液)的吸收光谱曲线,再由曲线上找出λmax,据此对物质进行定量分析。

用紫外分光光度计进行定量分析时,若被分析物质浓度太低或太高,可使透光率的读数扩展10倍或缩小10倍,有利于低浓度或高浓度的分析,其方法原理是依据朗伯-比耳定律:A=εbc。

三、仪器与试剂(1)仪器:UV-1700型紫外-可见分光光度计;1cm石英吸收池2个;50mL 比色管5支;5mL、10mL移液管各1支;25mL容量瓶6个;100mL、250mL烧杯各1个;吸耳球2个。

(2)试剂:苯酚标准溶液:100mg/L;待测苯酚样品溶液(未知浓度)样品溶液:A液、B液、C液(浓度为3×10-3mol/L)四、实验内容与步骤1、定性分析(1)分析溶液的配制用移液管准确移取1mL未知液B液于25mL容量瓶中,用去离子水稀释至25mL刻度,摇匀。

取5个25mL的容量瓶,用移液管分别准确加入1.0mL、2.0mL、3.0mL、4.0mL、5.0mL浓度为100mg/L的苯酚标准溶液,用去离子水稀释至25mL刻度,摇匀。

常用紫外分光光度法测定蛋白质含量

常用紫外分光光度法测定蛋白质含量

6种方法测定蛋白质含量一、微量凯氏(kjeldahl)定氮法样品与浓硫酸共热。

含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。

经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。

若以甘氨酸为例,其反应式如下:nh2ch2cooh+3h2so4——2co2+3so2+4h2o+nh3 (1)2nh3+h2so4——(nh4)2so4 (2)(nh4)2so4+2naoh——2h2o+na2so4+2nh3 (3)反应(1)、(2)在凯氏瓶完成,反应(3)在凯氏蒸馏装置中进行。

为了加速消化,可以加入cuso4作催化剂,k2so4以提高溶液的沸点。

收集氨可用硼酸溶液,滴定则用强酸。

实验和计算方法这里从略。

计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白氮即得。

如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。

二、双缩脲法(biuret法)(一)实验原理双缩脲(nh3conhconh3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。

在强碱性溶液中,双缩脲与cuso4形成紫色络合物,称为双缩脲反应。

凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。

紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。

测定围为1-10mg蛋白质。

干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。

此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。

主要的缺点是灵敏度差。

因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。

(二)试剂与器材1. 试剂:(1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正其纯度。

紫外-可见分光光度法

紫外-可见分光光度法
30.01mg→100ml 5→50ml 浓度为30.01ug/ml
E=A / C C为100ml溶液中所含被测物质的重量 (按干燥品或无水物计算),g
(C = 0.003001g ×(1-水分)/ 100ml)
二.鉴别: 按各该品种项下的规定,测定供试品
溶液在有关波长处的最大及最小吸收,有 的并须测定其各最大吸收峰值或最大吸收 与最小吸收的比值,均应符合规定。
在高精度的分析测定中(紫外区尤其 重要),吸收池要挑选配对。因为吸收池 材料本身的吸光特征以及吸收池的光程长 度的精度等对分析结果都有影响。
玻璃吸收池因为能吸收紫外光,故只 能用于320nm以上的可见光区。
石英吸收池因不吸收紫外光而常用 于300nm以下的紫外光区,但也可用于 可见光区。
最常用的光路长度为: 1cm的吸收池。
表示方法:
(1)百分吸收系数(E):

E 1% 1cm
表示。
E=A/C(%)×L(cm)
中国药典规定的吸收系数即为
E 1% 1cm

在用吸收系数法计算含量时,E11c%m 通常要
大于100
(2)摩尔吸收系数(ε):
当溶液的浓度(C)为1mol/L,光路长 度(L)为1cm时,相应的吸光度为摩尔吸 收系数,以ε表示。
通常使用的紫外-可见分光光度计的工作波长 范围为190~900nm。
第二节 光吸收基本定律和吸收系数
1.光吸收基本定律: 比尔—郎伯(Beer—Lambert)定律
为光吸收基本定律,是分光光度分析的 理论基础。 Lambert于1730年提出了光 强度与吸收介质厚度的关系。1852年 Beer提出了光强度与吸收介质中吸光物 质浓度之间的关系。
光源为空心阴极灯。每种元素都 有各自的空心阴极灯,因此原子 吸收光谱是锐线光谱。

紫外分光光度法测定未知物

紫外分光光度法测定未知物

紫外分光光‎度法测定未‎知物1.仪器1.1紫外分光‎光度计(UV-1801型‎);配石英比色‎皿(1cm)2个1.2容量瓶(100mL‎):10个;容量瓶(250mL‎)1个1.3吸量管(10mL、5mL):各1支1.4移液管(20mL、25mL、50mL):各1支2.试剂2.1标准溶液‎(1mg/mL):维生素C、水杨酸、苯甲酸、山梨酸、邻二氮菲分‎别配成1m‎g/mL的标准‎溶液,作为储备液‎。

2.2未知液:浓度约为(40~60ug/mL)。

(其必为给出‎的五种物质‎之一)3.实验操作3.1比色皿配‎套性检查石英比色皿‎装蒸馏水,以一只比色‎皿为参比,在测定波长‎下调节透射‎比为100‎%,测定其余比‎色皿的透射‎比,其偏差应小‎于0.5%,可配成一套‎使用。

3.2未知物的‎定性分析将五种标准‎储备液均稀‎释成10u‎g/mL的试液‎(配制方法由‎选手自定)。

以蒸馏水为‎参比,于波长20‎0~350nm‎范围内扫描‎五种溶液,绘制吸收曲‎线,根据所得到‎的吸收曲线‎对照标准谱‎图,确定被测物‎质的名称,并依据吸收‎曲线确定测‎定波长。

五种标准物‎质溶液的吸‎收曲线参五‎种标准物质‎溶液的吸收‎曲线参五种‎标准物质溶‎液的吸收曲‎线参五种标‎准物质溶液‎的吸收曲线‎参考考考考‎附图附图附‎图附图。

3.3未知物定‎量分析根据未知液‎吸收曲线上‎测定波长处‎的吸光度,确定未知液‎的稀释倍数‎,并配制待测‎溶液3份,进行平行测‎定。

推荐方法3.3.1维生素C‎含量的测定‎:准确吸取1‎m g/mL的维生‎素C标准储‎备液50.00mL,在250m‎L容量瓶中‎定容(此溶液的浓‎度为200‎u g/mL)。

再分别准确‎移取1、2、4、6、8、10mL上‎述溶液,在100m‎L容量瓶中‎定容(浓度分别为‎2、4、8、12、16、20 ug/mL)。

准确移取2‎0.00mL维‎生素C未知‎液,在100m‎L容量瓶中‎定容,于最大吸收‎波长处分别‎测定以上溶‎液的吸光度‎。

第一章 紫外-可见分光光度法

第一章 紫外-可见分光光度法

➢ *跃迁:可以发生在任何具有不饱和键的 有机化合物分子中,其最大摩尔吸光系数max 很大。
➢ n*跃迁:发生在含有杂原子(O、N、S、P 、卤素等)的不饱和化合物中,其最大摩尔吸 光系数max 比较小。
二、常用术语
➢ *生色团:分子中可以吸收光子产生电子跃迁的基团 。含有键的不饱和基团
➢ *助色团:有些基团本身没有生色作用,但却能增强 生色团的生色能力,即它们与生色团相连时,会使其 吸收带最大吸收波长发生红移,并且增加其强度。通 常是带有非键电子对的杂原子的饱和基团,如-OH、 -NH2、-OR、-SH、-SR、-Cl、-Br、-I等。
不需参比液(消除了由于参比池的不同和制备空白溶液等产生 的误差)、克服了电源不稳而产生的误差,灵敏度高。
(4)光多道二极管阵列检测分光光度计
具有快速扫描的特点
可在0.1秒内获得190~ 820nm范围的全光光谱。 用于追踪化学反应的反应 动力学研究。 操作简单,只需将样品放 入无盖开放式样品室,并 点击“开始”即可。
音:
1 暗噪音:检测器与放大电路等各部件不确定性引起。
2 讯号噪音:亦称讯号散粒噪音 电子跃迁的不相等性
测量光强的不确定性
c 0.434K 1 1 c lgT T
➢ 当相对误差 c/c 最小时,求得T=0.368 或 A=0.4343。即当 A=0.4343 时,误差最小!
➢ 通常可通过调节溶液浓度或改变光程l 来控制 A 的读数在 0.2~0.7 范围内。
2. 杂散光 从单色器得到的单色光中与所需波长相 隔较远的光。
3. 散射光与反射光 使透光强度减弱 ,吸光度值偏高。
4. 非平行光 使l 增大影响测量值
(三)透光率测量误差T
由于光源不稳定性、读数不准等带来的误差。

紫外分光光度法测定复方磺胺嘧啶片的含量

紫外分光光度法测定复方磺胺嘧啶片的含量
CH3 CH2
C
N N NH2
NH2
C. TMP + SD. 溶剂:盐酸溶液
(9 → 1000)
H2N
磺胺嘧啶(SD)
甲氧苄啶(TMP)
A
SD 和TMP分子结构中均有共轭双键,显紫外 吸收特征。 在盐酸溶液(9→1000)中,SD的 λmax = 308 nm,而此波长处TMP无吸收,所以可直接 测定SD的含量。
吸光度; 另取 SD 对照品适量 (0.2g) ,精密称定,加 0.4 % 氢氧化钠溶液使 SD 溶解,并用 0.4% NaOH 稀释至 100 ml ;精密量取该溶液 2 ml , 置另一 100 ml 量瓶中,加盐酸溶液(9 → 1000)稀释至刻度,得 每 1 ml 中约含 40 g 的溶液,同法测定。
14
五、思考题
武汉大学药学实验教学中心
1.双波长分光光度法测定复方磺胺嘧啶片中TMP含量 的主要误差来源是什么?
2.简述差示分光光度法消除干扰吸收、测定组分含量 的基本原理。
15
计算分光光度法
比色法
吸光度后,按下式计算供试品溶
液中待测物的浓度:
C供试
A供试 A对照
C对照
5
二、实验原理 一、中心建设简况
武汉大学药学实验教学中心
(三)双波长分光光度法消除干扰吸收、测定含量的原理
ab ab a b a b A A A ( A A ) ( A A 2 1 1 2 2 ) 1
100 100 W 5 AR W
△AX 和△AR——供试液和对照液在测定波长(λ2)和参比波长(λ1)处测得吸光度之差值
CR ——对照品溶液(1)的稀释液的浓度,mg/ml
W ——称样量,g

紫外分光光度法测定未知样含量实施方案+公式+图

紫外分光光度法测定未知样含量实施方案+公式+图

紫外分光光度法测定未知样含量(含方案、公式、标准误吸收光谱图)1.仪器1.1紫外可见分光光度计(T6型);1.2石英吸收池(1cm):2只;1.3比色管(50mL)10支;1.4吸量管5mL:2支。

2.试剂2.1苯甲酸标准溶液(0.1mg/mL);2.2未知液:浓度约为40~60ug/mL。

3.实验操作3.1吸收曲线的绘制3.1.1标准苯甲酸吸收曲线绘制在一支50mL比色管中由2.1配制成浓度为0~10ug/mL范围内的溶液,以水定容,并摇匀。

于波长200~350nm范围内每间隔10nm测定一次吸光度,在最大吸收波长附近间隔5 nm测定一次测定吸光度,再次根据最大吸收波长,附近间隔1 nm测定一次吸光度,绘制吸收曲线,从曲线上确定苯甲酸的最大吸收波长(作为定量测定波长)。

附图:苯甲酸的吸收曲线。

3.1.2标准水杨酸吸收曲线绘制在一支50mL比色管中由2.1配制成浓度为0~10ug/mL范围内的溶液,以水定容,并摇匀。

于波长200~350nm范围内每间隔10nm测定一次吸光度,在最大吸收波长附近间隔5 nm测定一次吸光度,再次根据最大吸收波长附近,间隔1 nm测定一次吸光度,绘制吸收曲线,从曲线上确定水杨酸的最大吸收波长(作为定量测定波长)。

附图:水杨酸吸收曲线。

3.1.3未知液吸收曲线的绘制准确吸取含苯甲酸的未知液若干体积(5mL)于一支50mL比色管中,以水定容并摇匀。

以蒸馏水为参比,于波长200~350nm范围内每间隔10nm测定一次吸光度,在最大吸收波长附近间隔5 nm测定一次吸光度,再次根据最大吸收波长,附近间隔1 nm测定一次吸光度,绘制吸收曲线。

(观察3.1.1和3.1.2各自所得吸收曲线有什么相同之处?这说明了什么问题?对于一个未知样品如何利用分光光度法进行定性?)附图:未知液的吸收曲线。

3.2吸收池配套性检查石英吸收池装蒸馏水,于定量测定波长处,以一个吸收池为参比,测定并记录另一吸收池的吸光度(其偏差应小于0.5%,可配成一套使用,否则更换)作为校正值。

紫外分光光度法检验含量药典标准

紫外分光光度法检验含量药典标准

紫外分光光度法检验含量药典标准在制药领域中,药品的质量是至关重要的。

为了确保药品的安全性、有效性和合规性,各国都颁布了严格的药典标准。

其中,紫外分光光度法就是一种常用的药典标准检验方法之一。

紫外分光光度法是一种用于测定有机物质和某些无机物质的含量和浓度的分析方法。

它利用物质在紫外光下特定波长的吸收特性,通过测定物质对紫外光的吸收程度来间接确定其含量。

这种方法准确、快速,且操作简单,因此被广泛应用于药品、食品、环境监测等领域。

在药物质量控制中,紫外分光光度法常常被用来检验药品中某种成分的含量。

对于一些具有紫外吸收特性的化合物,如植物提取物、维生素和某些药物原料药,紫外分光光度法可以准确测定其含量,并根据药典标准来评估其质量。

当使用紫外分光光度法来检验含量药典标准时,需要严格按照药典规定的方法和条件进行操作。

需要准备好标准曲线和样品溶液,确保在检验中能够得到准确的测定结果。

需要选择合适的波长进行检测,通常是在目标化合物的最大吸收波长处进行测定。

根据药典规定的计算公式,计算出样品中目标成分的含量,并与标准要求进行对比。

在实际操作中,需要特别注意的是样品的预处理和处理过程。

在测定植物提取物中某种成分的含量时,可能需要进行提取和过滤等前处理步骤,以确保样品中的目标成分得以完全释放和准确测定。

紫外分光光度法检验含量药典标准时,还需要考虑到干扰物质的影响。

一些样品可能同时含有多种吸收紫外光的成分,这就需要通过适当的方法来处理干扰物质,以确保测定结果的准确性和可靠性。

在药物质量控制领域,紫外分光光度法作为一种常用的分析方法,对于检验含量药典标准起着至关重要的作用。

严格按照规定的方法和条件进行操作,并特别注意样品的预处理和干扰物质的影响,可以确保测定结果的准确性和可靠性,从而保证药品的质量和安全性。

对于我个人而言,深入了解紫外分光光度法对药物质量控制的意义和应用,不仅可以加深对药品质量的认识,还有助于我在相关领域的学习和研究。

紫外分光光度法

紫外分光光度法

20
五、测定法
1.吸收系数测定(性状项下):按各品种项下规 定的方法配制供试品溶液,在规定的波长下测 定其吸光度,计算吸收系数,应符合规定.如吲 哚美辛320nm,E为185-200.(干燥品计算) 2.鉴别:按各论规定进行,测定最大吸收及最 小吸收的峰位,可用扫描或在规定的波长附近, 每隔0.5nm多测定几点确定。注意仪器的“滞 后现象”,有时可能还规定2个或几个波长的 吸光度比值。由于紫外-可见光属于电子光谱, 仅规定一个最大吸收波长的专属性较差
25
五、测定法

E(供试品)=
供试品的吸光度 供试品的百分浓度 光路长度



测定时的光路长度通常为1;百分浓度即 100ml中所含的待测定物质的g数。 再与规定的吸收系数比较,求含量: 供试品含量%=(E(供试品) / E(标 准))×100%
26
五、测定法
例:已知某化合物的溶液浓度0.0030%,在 297nm处,用1cm的石英池,测得吸光度为 0.6139,求E1%cm值。
16
表3
试剂 碘化钠
杂散光检查
浓度/% (g/ml) 1.00 测定用波 长(nm) 220 透光率 ( %) <0.8
亚硝酸钠
5.00
340
<0.8
17
四、仪器的检定和校正


5、吸收池配对:取洗净的石英吸收池盛水,在 220nm处,以其中一只调透光率为100%,再分别 更换其它吸收池,测T%,凡误差在规定范围内的, 再分别装入0.006%重铬酸钾0.005mol/L硫酸溶液, 在350nm处,以其中一只调透光率为100%,再分 别更换其它吸收池,测T%,凡透光率误差均在规 定范围内的,即可配对。 玻璃:660nm(水)、400nm(重铬酸钾) 技术要求:≤0.5%

分析化学-紫外-可见分光光度法

分析化学-紫外-可见分光光度法
种类: ①溶剂参比 ②试剂参比 ③试样参比
试液 无色 无色 有色 有色
显色剂 无色 有色 无色 有色
参比溶液 溶剂参比(蒸馏水) 试剂参比 试样参比 控制适当条件,使显色剂不与 被测物质显色
§5 紫外-可见分光光度法的应用
一、定性分析 Qualitative analysis
根据吸收光谱的光谱特征进行定性分析
2. Double-Wave Spectrophotometers
光源
单色器1 λ1 吸收池 λ2
检测器
单色器2
功能:测量样品的ΔA = Aλ2 - A λ1 优点:消除背景吸收和干扰吸收。
显示器
酶标仪:
用于酶免疫测定
生化分析仪: 用于临床检验
尿液分析仪: 用于临床检验
血红蛋白测定仪: 用于临床检验
结构:在光电管的基础上,增加9 ~16 个 倍增光敏阴极。
特点:信号被放大, 放大倍数与外加电压有关。
5.信号显示装置 / 读数装置 Indicators / Readout Devices
数字显示式: 吸光度、透光率、浓度
二、Types of Spectrophotometer 分光光度计的类型
1) d - d 跃迁: 过渡金属离子吸收紫外-可见光后,d 轨道上的
电子产生能级跃迁。 摩尔吸光系数较小。
2)电荷跃迁: 金属配合物吸收紫外-可见光后,电子从配位体
轨道跃迁到中心离子轨道。 摩尔吸光系数较大。
四、光的吸收定律 Absorption law of light
(一) Lambert - Beer 定律
➢ 不同物质的吸收曲线形状不同,说明物质对光 的吸收具有选择性。
➢ 吸收曲线的特征(吸收峰的个数、吸收峰波长) 取决于吸光物质的结构。

实验一紫外分光光度法测定核酸的含量

实验一紫外分光光度法测定核酸的含量

实验一紫外分光光度法测定核酸的含量一、实验目的了解紫外分光光度计的基本原理和使用方法学习使用紫外分光光度法测定核酸含量的原理和操作方法二、实验原理核酸、核苷酸及其衍生物都具有共轭双键系统,能吸收紫外光。

RNA和DNA的紫外吸收高峰在260 nm波长处。

遵照有色溶液对光吸收的物理定律即Lambert-Beer定律,可以从紫外光吸收值的变化来测定核酸物质的含量。

一般在260 nm波长下,每毫升含1μg DNA 溶液的光吸收值为0.020,每毫升含1μg RNA溶液的光吸收值为0.022。

故测定未知溶液在260 nm的光吸收值即可计算出其中核酸的含量。

此法操作简便,迅速。

蛋白质和核苷酸等也有紫外吸收。

通常蛋白质的吸收高峰在280 nm波长处,在260 nm 处吸收值仅为核酸的1/10或更低,因此对于含有微量蛋白质的核酸样品,测定误差较小。

RNA的260 nm与280 nm吸收比值在2.0以上;DNA的260 nm和280 nm吸收比值在1.9左右,当样品中蛋白质含量较高时,比值下降。

若样品中混有大量的蛋白质和核苷酸等紫外吸收物质时,应设法除去。

三、实验器材S54紫外分光光度计操作指南:插上电源插头,打开仪器左侧面下方的电源开关,本仪器具备计算机自检与波长及100%线自正功能,开机后显示窗两侧8灯全亮,指示灯进入自检与自校状态,约需10多分钟。

当TRANS灯亮即说明自校结束进入待机状态,可随时应用。

设定波长(本实验波长为260 nm和280 nm),按再按确认,显示窗改变波长至设定值。

推开比色室的盖子。

将空白和样品溶液分别仔细倒入特殊的石英比色皿中(倒入之前先用少量溶液润洗比色皿一次),用擦镜纸擦去比色皿表面的余液,然后将比色皿插入比色室里的卡座中,拉动卡座拉杆,将空白液的比色皿置于光路中。

按MODE键,使TRANS.透射比键灯亮,在比色室盖子关闭的状态下按一下0%T键,使显示窗中的数字为0.000。

关闭比色室的盖子,按一下100%ABS,使显示窗中的数字为100.0。

紫外分光光度法测定未知物

紫外分光光度法测定未知物

紫外分光光度法测定未知物1.仪器1.1紫外分光光度计(UV-1801型);配石英比色皿(1cm)2个1.2容量瓶(100mL):10个;容量瓶(250mL)1个1.3吸量管(10mL、5mL):各1支1.4移液管(20mL、25mL、50mL):各1支2.试剂2.1标准溶液(1mg/mL):维生素C、水杨酸、苯甲酸、山梨酸、邻二氮菲分别配成1mg/mL的标准溶液,作为储备液。

2.2未知液:浓度约为(40~60ug/mL)。

(其必为给出的五种物质之一)3.实验操作3.1比色皿配套性检查石英比色皿装蒸馏水,以一只比色皿为参比,在测定波长下调节透射比为100%,测定其余比色皿的透射比,其偏差应小于0.5%,可配成一套使用。

3.2未知物的定性分析将五种标准储备液均稀释成10ug/mL的试液(配制方法由选手自定)。

以蒸馏水为参比,于波长200~350nm范围内扫描五种溶液,绘制吸收曲线,根据所得到的吸收曲线对照标准谱图,确定被测物质的名称,并依据吸收曲线确定测定波长。

五种标准物质溶液的吸收曲线参五种标准物质溶液的吸收曲线参五种标准物质溶液的吸收曲线参五种标准物质溶液的吸收曲线参考考考考附图附图附图附图。

3.3未知物定量分析根据未知液吸收曲线上测定波长处的吸光度,确定未知液的稀释倍数,并配制待测溶液3份,进行平行测定。

推荐方法3.3.1维生素C含量的测定:准确吸取1mg/mL的维生素C标准储备液50.00mL,在250mL容量瓶中定容(此溶液的浓度为200ug/mL)。

再分别准确移取1、2、4、6、8、10mL上述溶液,在100mL容量瓶中定容(浓度分别为2、4、8、12、16、20 ug/mL)。

准确移取20.00mL维生素C未知液,在100mL容量瓶中定容,于最大吸收波长处分别测定以上溶液的吸光度。

由标准曲线上查得未知液的浓度。

3.3.2苯甲酸含量的测定:准确吸取1mg/mL的苯甲酸标准储备液25.00mL,在250mL容量瓶中定容(此溶液的浓度为100 ug/mL)。

紫外分光光度法计算

紫外分光光度法计算

第20章 吸光光度法思 考 题1. 什么叫单色光?复色光?哪一种光适用于朗伯-比耳定律?答:仅具有单一波长的光叫单色光。

由不同波长的光所组成光称为复合光。

朗伯--比耳定律应适用于单色光。

2. 什么叫互补色?与物质的颜色有何关系?答:如果两种适当的单色光按一定的强度比例混合后形成白光,这两种光称为互补色光。

当混合光照射物质分子时,分子选择性地吸收一定波长的光,而其它波长的光则透过,物质呈现透过光的颜色,透过光与吸收光就是互补色光。

3. 何谓透光率和吸光度? 两者有何关系?答:透光率是指透射光强和入射光强之比,用T 表示 T =tI I 吸光度是吸光物质对入射光的吸收程度,用A 表示,A εbc =,其两者的关系 lg =-A T4. 朗伯-比耳定律的物理意义是什么? 什么叫吸收曲线? 什么叫标准曲线?答:朗伯--比耳定律是吸光光度法定量分析的理论依据,即吸光物质溶液对光的吸收程度与溶液浓度和液层厚度之间的定量关系。

数学表达式为 lg A T εbc =-=吸收曲线是描述某一吸光物质对不同波长光的吸收能力的曲线,即在不同波长处测得吸光度,波长为横坐标,吸光度为纵坐标作图即可得到吸收曲线。

标准曲线是描述在一定波长下,某一吸光物质不同浓度的溶液的吸光能力的曲线,吸光度为纵坐标,浓度为横坐标作图即可得到。

5. 何谓摩尔吸光系数?质量吸光系数?两者有何关系?答:吸光系数是吸光物质吸光能力的量度。

摩尔吸光系数是指浓度为1.0 mol·L ,液层度为1cm 时,吸光物质的溶液在某一波长下的吸光度。

用ε表示,其单位 11cm mol L --⋅⋅。

质量吸光系数是吸光物质的浓度为1g 1L -⋅时的吸光度,用a 表示。

其单位 11cm g L --⋅⋅ 两者的关系为 εM a =⨯ M 为被测物的摩尔质量。

6. 分光光度法的误差来源有哪些?答:误差来源主要有两方面,一是所用仪器提供的单色光不纯,因为单色光不纯时,朗伯—比耳定律中吸光度和浓度之间的关系偏离线性;二是吸光物质本身的化学反应,其结果同样引起朗伯—比耳定律的偏离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

紫外分光光度法测定未知样含量
(含方案、公式、标准误吸收光谱图)
1.仪器
1.1紫外可见分光光度计(T6型);
1.2石英吸收池(1cm):2只;
1.3比色管(50mL)10支;
1.4吸量管5mL:2支。

2.试剂
2.1苯甲酸标准溶液(0.1mg/mL);
2.2未知液:浓度约为40~60ug/mL。

3.实验操作
3.1吸收曲线的绘制
3.1.1标准苯甲酸吸收曲线绘制
在一支50mL比色管中由2.1配制成浓度为0~10ug/mL范围内的溶液,以水定容,并摇匀。

于波长200~350nm范围内每间隔10nm测定一次吸光度,在最大吸收波长附近间隔5 nm测定一次测定吸光度,再次根据最大吸收波长,附近间隔1 nm测定一次吸光度,绘制吸收曲线,从曲线上确定苯甲酸的最大吸收波长(作为定量测定波长)。

附图:苯甲酸的吸收曲线。

3.1.2标准水杨酸吸收曲线绘制
在一支50mL比色管中由2.1配制成浓度为0~10ug/mL范围内的溶液,以水定容,并摇匀。

于波长200~350nm范围内每间隔10nm测定一次吸光度,在最大吸收波长附近间隔5 nm测定一次吸光度,再次根据最大吸收波长附近,间隔1 nm测定一次吸光度,绘制吸收曲线,从曲线上确定水杨酸的最大吸收波长(作为定量测定波长)。

附图:水杨酸吸收曲线。

3.1.3未知液吸收曲线的绘制
准确吸取含苯甲酸的未知液若干体积(5mL)于一支50mL比色管中,以水定容并摇匀。

以蒸馏水为参比,于波长200~350nm范围内每间隔10nm测定一次吸光度,在最大吸收波长附近间隔5 nm测定一次吸光度,再次根据最大吸收波长,附近间隔1 nm测定一次吸光度,绘制吸收曲线。

(观察3.1.1和3.1.2各自所得吸收曲线有什么相同之处?这说明了什么问题?对于一个未知样品如何利用分光光度法进行定性?)附图:未知液的吸收曲线。

3.2吸收池配套性检查
石英吸收池装蒸馏水,于定量测定波长处,以一个吸收池为参比,测定并记录另一吸收池的吸光度(其偏差应小于0.5%,可配成一套使用,否则更换)作为校正值。

3.3校准曲线的绘制及未知样含量的测定
准确移取与未知样相同的物质的标准溶液若干体积于50mL比色管中,以水定容,制成一系列相同体积不同浓度的标准溶液(0~10ug/mL),在最大吸收波长处,以水为参比,测定各自吸光度。

由实验数据计算回归方程及相关系数,以浓度(ρ/ ug·mL-1)为横坐标,以相应的吸光度为纵坐标绘制校准曲线。

在相同条件下,测定样品稀释液(配制方法同3.1.2)的吸光度,代入回归方程计算出样品稀释液的浓度。

试样平行测定三份。

4.结果计算
根据未知液的稀释倍数,求出未知溶液中水杨酸的含量。

【相关计算及公式】
1.校准曲线
由试验点经最小二乘法对试验数据进行回归计算,得出一元一次线性回归方程,并计算出该方程的相关系数。

然后在坐标纸上画出该回归方程的直线。

回归方程为:
;
/)()(;
/))((;
/)()(其中:2
2
22
2
2
∑∑∑∑∑∑∑∑∑∑-=
-=
-=--=-=
-=-==
+=n y y
y y L n y x xy y y x x L n x x x x L x b y a L L b bx
a y i
yy i i xy i xx xx
xy
2.相关系数
yy
xx xy L L L =
γ
3.相对标准偏差:按照未知稀释液的A 校正计算相对标准偏差RSD
%1001)(%1002
⨯--=⨯=
∑x
n x x
x
S
RSD i
4.未知稀释液含量:稀释后未知溶液中待测组分的浓度应由回归方程计算而得。

=-=-=
=b a
A b a y x 1111ρ =-=-==b a
A b a y x 222
2ρ =-=-==b a
A b a y x 333
3ρ 则:=++=
=3
3
21x x x x ρ 5.未知溶液中待测组分的含量:根据未知液的稀释倍数,可求出未知溶液中待测组分的含量。

附图1 维生素C吸收曲线
3
附图2 苯甲酸吸收曲线
4
附图3 水杨酸吸收曲线
5。

相关文档
最新文档