数学建模实验六

合集下载

数学建模实验报告

数学建模实验报告

湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。

实验二 优化模型........................................................................ 错误!未定义书签。

实验三 微分方程模型................................................................ 错误!未定义书签。

实验四 稳定性模型.................................................................... 错误!未定义书签。

实验五 差分方程模型................................................................ 错误!未定义书签。

实验六 离散模型........................................................................ 错误!未定义书签。

实验七 数据处理........................................................................ 错误!未定义书签。

实验八 回归分析模型................................................................ 错误!未定义书签。

实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。

实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。

数学建模基础实验报告(3篇)

数学建模基础实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。

通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。

二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。

表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。

1. 数据准备:将数据整理成表格形式,并输入到计算机中。

2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。

4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。

5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。

三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。

将数据输入到计算机中,为后续分析做准备。

2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。

具体步骤如下:(1)选择合适的统计软件,如MATLAB。

(2)输入数据,进行数据预处理。

(3)编写线性回归分析程序,计算回归系数。

(4)输出回归系数、截距等参数。

4. 模型检验对模型进行检验,包括残差分析、DW检验等。

(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。

(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。

5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。

四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。

2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。

数学建模课后作业第六章

数学建模课后作业第六章

数学建模课后作业第六章-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第六章.数理统计实验6.2 基本实验1.区间估计解:(1)由点估计与参数估计未知参数和σ^2,可以求出均值与方差;由题目条件可以得出如下的R程序:> x<-c(1067,919,1196,785,1126,936,918,1156,920,948)> n<-length(x)> x.sd<-sd(x)> x.mean<-mean(x); x.mean[1] 997.1> x.var<-sum((x-x.mean)^2)/n; x.var[1] 15574.29即=997.1,σ^2=15574.29令大约95%的灯泡至少使用的时间为x小时,可以得出如下的等式:由标准正态分布表可以得出:Ф()=0.05,可以得出=-1.645可以得出x=791.809小时。

(2)当使用时间至少为1000小时:查阅标准正态分布表可以得出对应的概率为1-Ф()=1-Ф()=1-Ф(0.02324)=1-0.5106=0.4894即由题可以得出使用时间在1000小时以上的概率为48.94%。

2.假设检验I解:对于自然状态下的男子血小板的数目可以假设服从于正态分布,由点估计与参数估计未知参数和σ^2,可以求出均值、均值区间与方差;x<-c(113,126,145,158,160,162,164,175,183,188,188,190,220,224,230,231,2 38,245,247,256)> n<-length(x)> x.sd<-sd(x)> x.mean<-mean(x); x.mean[1] 192.15> x.var<-sum((x-x.mean)^2)/n; x.var[1] 1694.728> tmp<-x.sd/sqrt(n)*qt(1-0.05/2,n-1)> a<-x.mean-tmp;a [1] 172.3827 > b<-x.mean+tmp;b [1] 211.9173可以得出均值为= 192.15,方差σ^2=1694.728;均值区间为(172.3827,211.9173)由此可以得出对于油漆工人而言正常男子血小板数为225单位,油漆工人明显低于正常的数量,则可以得知结论油漆作业对人体血小板数量有严重影响。

华南理工大学数学实验实验六

华南理工大学数学实验实验六

2 问题描述
2.1 问题描述 利用各种增量人脸识别算法:基于回归模型的增量人脸识别算法,最远子空 间增量分类算法、 最近最远子空间增量分类算法或其他快速算法,选择其中的一 种或几种算法,对给定的人脸数据库进行识别测试,得出识别正确率和(或)运 行时间。并与第 5 节不采用增量学习的算法进行比较,分析实验结果。在实验过 程中, 可以察看原始的人脸图片,哪些人脸识别错误?该算法有哪些优缺点?改 进方向是什么?如果有新的样本加入训练集合中,如何处理? 当训练集的样本数较多时,如何处理? (1) 传统的处理方法是,将新增加的训练样本和原来的训练样本放在一起, 重新训练模型,将会造成时间和存储空间的巨大开销,严重影响计算的效率。 (2) 这会使得训练数据库的样本不断增多 给定的数据库为: Yale_32x32 , Yale_64x64 , ORL_32 x32, ORL_64 x64, YaleB_32x32。例如 Yale_32x32.mat,包含两个变量,一个是 fea:165*1024,表 示该数据集含有 165 个人脸,每个人脸是 1024 维(32*32 的人脸数据,已经被 拉成了 1014 维的向量),一个是 gnd:165*1,代表这 165 个人脸的类别,分别 用 1,2,…,15 表示。
1 实验目的....................................................................................................................3 2 问题描述....................................................................................................................3 2.1 问题描述............................................................................................................. 3 2.2 问题背景............................................................................................................. 4 3 文献调研....................................................................................................................4 3.1 国内外研究现状................................................................................................. 5 3.2 常用人脸识别算法............................................................................................. 6 3.2.1 基于回归模型的人脸识别方法................................................................... 6 3.2.2 基于神经网络的人脸识别方法................................................................... 6 3.2.3 基于特征脸的人脸识别方法....................................................................... 7 3.3 利用增量学习改进的人脸识别......................................................................... 9 4 算法与编程..............................................................................................................10 4.1 编程流程........................................................................................................... 10 4.2 文件结构........................................................................................................... 12 4.3 编程细节........................................................................................................... 14 4.4 实现代码........................................................................................................... 15 5 实验结果..................................................................................................................27 5.1 命令行输出....................................................................................................... 27 5.2 结果分析........................................................................................................... 30 6 实验总结和实验感悟..............................................................................................33 6.1 实验总结........................................................................................................... 33 6.2 实验感悟........................................................................................................... 33 7 参考文献..................................................................................................................34 2

多项式回归数学建模实验报告

多项式回归数学建模实验报告

多项式回归数学建模实验报告一、引言多项式回归是一种常用的数学建模方法,它可以通过拟合多项式函数来描述不同变量之间的关系。

多项式回归在实际问题中广泛应用,例如经济学、生物学、工程学等领域。

本实验旨在通过对一组实验数据进行多项式回归分析,探索多项式回归在模型建立和预测中的应用。

二、数据收集与预处理在实验中,我们收集了一个关于汽车油耗与发动机排量之间关系的数据集。

数据集中包含了不同车型的汽车的油耗和发动机排量的数据。

为了进行多项式回归分析,我们首先对数据进行了预处理,包括数据清洗、去除异常值和缺失值处理等。

三、多项式回归模型建立在多项式回归分析中,我们可以选择不同次数的多项式函数来拟合数据。

在本实验中,我们选择了3次多项式函数来建立模型。

通过最小二乘法将多项式函数拟合到数据上,得到了模型的系数。

四、模型评估与优化为了评估多项式回归模型的拟合效果,我们计算了模型的均方误差(MSE)和决定系数(R-squared)。

通过观察这些指标的数值,我们可以评估模型的拟合效果,并根据需要进行模型优化。

五、模型预测与应用在模型建立和优化之后,我们可以使用多项式回归模型来进行预测和应用。

通过输入不同的发动机排量,我们可以预测相应的汽车油耗。

这对于汽车制造商和消费者来说都具有重要的实际意义,可以帮助他们做出更好的决策。

六、实验结果与讨论通过对实验数据的多项式回归分析,我们得到了一个拟合效果较好的模型。

模型的MSE较小,R-squared较大,说明模型对数据的拟合效果较好。

通过模型预测,我们可以得到不同发动机排量下的汽车油耗预测值,可以帮助汽车制造商和消费者做出更准确的预测和决策。

七、结论与展望本实验通过对多项式回归模型的建立和应用,探索了多项式回归在数学建模中的实际应用。

实验结果表明多项式回归模型在描述汽车油耗和发动机排量之间关系方面具有较好的效果。

未来的研究可以继续优化模型,探索更高次数的多项式函数或其他回归方法,以提高模型的精确度和预测能力。

数学建模实验报告

数学建模实验报告

内江师范学院中学数学建模实验报告册编制数学建模组审定牟廉明专业:班级:级班学号:姓名:数学与信息科学学院2016年3月说明1.学生在做实验之前必须要准备实验,主要包括预习与本次实验相关的理论知识,熟练与本次实验相关的软件操作,收集整理相关的实验参考资料,要求学生在做实验时能带上充足的参考资料;若准备不充分,则学生不得参加本次实验,不得书写实验报告;2.要求学生要认真做实验,主要是指不得迟到、早退和旷课,在做实验过程中要严格遵守实验室规章制度,认真完成实验内容,极积主动地向实验教师提问等;若学生无故旷课,则本次实验成绩不合格;3.学生要认真工整地书写实验报告,实验报告的内容要紧扣实验的要求和目的,不得抄袭他人的实验报告;4.实验成绩评定分为优秀、合格、不合格,实验只是对学生的动手能力进行考核,跟据所做的的情况酌情给分。

根据实验准备、实验态度、实验报告的书写、实验报告的内容进行综合评定。

实验名称:数学规划模型(实验一)指导教师:实验时数: 4 实验设备:安装了VC++、mathematica、matlab的计算机实验日期:年月日实验地点:实验目的:掌握优化问题的建模思想和方法,熟悉优化问题的软件实现。

实验准备:1.在开始本实验之前,请回顾教科书的相关内容;2.需要一台准备安装Windows XP Professional操作系统和装有数学软件的计算机。

实验内容及要求原料钢管每根17米,客户需求4米50根,6米20根,8米15根,如何下料最节省?若客户增加需求:5米10根,由于采用不同切割模式太多,会增加生产和管理成本,规定切割模式不能超过3种,如何下料最节省?实验过程:摘要:生活中我们常常遇到对原材料进行加工、切割、裁剪的问题,将原材料加工成所需大小的过程,称为原料下料问题。

按工艺要求,确定下料方案,使用料最省,或利润最大是典型的优化问题。

以此次钢管下料问题我们采用数学中的线性规划模型.对模型进行了合理的理论证明和推导,然后借助于解决线性规划的专业软件Lingo 对题目所提供的数据进行计算从而得出最优解。

2013年下学期数学实验作业

2013年下学期数学实验作业

数学实验与数学建模实验报告学院:专业班级:姓名:学号:完成时间:2014 年1 月6日实验一 图形的画法1. 做出下列函数的图像:(1))2sin()(22--=x x x x y ,22≤≤-x (分别用plot 、fplot ) (2)22/9/251x y +=(用参数方程)(3) 在同一图形窗口中,画出四幅不同图形(用subplot 命令):1cos()y x =,2sin(/2)y x pi =-,23cos()y x x pi =-,sin()4x y e =(]2,0[π∈x )2 作出极坐标方程为)cos 1(2t r -=的曲线的图形.3 作出极坐标方程为10/t e r =的对数螺线的图形.4 绘制螺旋线⎪⎩⎪⎨⎧===t z t y t x ,sin 4,cos 4在区间[0,π4]上的图形.在上实验中,显示坐标轴名称。

5 作出函数22y x xye z ---=的图形.6 作出椭球面1194222=++z y x 的图形.(该曲面的参数方程为,cos ,sin sin 3,cos sin 2u z v u y v u x === (ππ20,0≤≤≤≤v u ).)7 作双叶双曲面13.14.15.1222222-=-+z y x 的图形.(曲面的参数方程是,csc 3.1,sin cot 4.1,cos cot 5.1u z v u y v u x ===其中参数πππ<<-≤<v u ,20时对应双叶双曲面的一叶, 参数πππ<<-<≤-v u ,02时对应双叶双曲面的另一叶.)8 作出圆环v z u v y u v x sin 7,sin )cos 38(,cos )cos 38(=+=+=,(πππ22/,2/30≤≤≤≤v u )的图形.9 作出球面22222=++z y x 和柱面1)1(22=+-y x 相交的图形.10 作出锥面222z y x =+和柱面1)1(22=+-y x 相交的图形.11用动画演示由曲线],0[,sin π∈=z z y 绕z 轴旋转产生旋转曲面的过程. (该曲线绕z 轴旋转所得旋转曲面的方程为,sin 222z y x =+ 其参数方程为])2,0[],,0[(,,sin sin ,cos sin ππ∈∈===u z z z u z y u z x ) 12. 画出变上限函数⎰xdt t t 02sin 及其导函数的图形.13.迪卡尔曲线)03(13,1333222=-++=+=axy y x tat y t at x 14.蔓叶线)(1,1322322x a x y tat y t at x -=+=+= 15.摆线)cos 1(),sin (t b y t t a x -=-=16.内摆线(星形线))(sin ,cos 32323233a y x t a y t a x =+==17.圆的渐伸线(渐开线))cos (sin ),sin (cos t t t a y t t t a x -=+=18.空间螺线ct z t b y t a x ===,sin ,cos 19.阿基米德线0,≥=r a r ϕ。

(完整word版)数学建模实训报告

(完整word版)数学建模实训报告

目录实训项目一线性规划问题及lingo软件求解 (1)实训项目二lingo中集合的应用…………………………………………。

7实训项目三lingo中派生集合的应用 (9)实训项目四微分方程的数值解法一 (13)实训项目五微分方程的数值解法二……………………………………。

.15实训项目六数据点的插值与拟合 (17)综合实训作品 (18)每次实训课必须带上此本子,以便教师检查预习情况和记录实验原始数据。

实验时必须遵守实验规则.用正确的理论指导实践袁必须人人亲自动手实验,但反对盲目乱动,更不能无故损坏仪器设备。

这是一份重要的不可多得的自我学习资料袁它将记录着你在大学生涯中的学习和学习成果.请你保留下来,若干年后再翻阅仍将感到十分新鲜,记忆犹新.它将推动你在人生奋斗的道路上永往直前!项目一:线性规划问题及lingo软件求解一、实训课程名称数学建模实训二、实训项目名称线性规划问题及lingo软件求解三、实验目的和要求了解线性规划的基本知识,熟悉应用LINGO解决线性规划问题的一般方法四:实验内容和原理内容一:某医院负责人每日至少需要下列数量的护士班次时间最少护士数1 6:00—10:00 602 10:00—14:00 703 14:00—18:00 604 18:00—22:00 505 22:00—02:00 206 02:00—06:00 30每班的护士在值班的开始时向病房报道,连续工作8个小时,医院领导为满足每班所需要的护士数,最少需要多少护士。

内容二:内容三五:主要仪器及耗材计算机与Windows2000/XP系统;LINGO软件六:操作办法与实训步骤内容一:考虑班次的时间安排,是从6时开始第一班,而第一班最少需要护士数为60,故x1>=60 ,又每班护士连续工作八个小时,以此类推,可以看出每个班次的护士可以为下一个班次工作四小时,据此可以建立如下线性规划模型:程序编程过程:min=x1+x2+x3+x4+x5+x6;x1〉=60;x1+x2〉=70;x2+x3>=60;x3+x4〉=50;x4+x5〉=20;x5+x6〉=30;编程结果:Global optimal solution found.Objective value:150.0000 Infeasibilities: 0。

数学建模案例分析--线性代数建模案例20例

数学建模案例分析--线性代数建模案例20例

线性代数建模案例汇编目录案例一. 交通网络流量分析问题1案例二. 配方问题4案例三. 投入产出问题6案例四. 平板的稳态温度分布问题7案例五. CT图像的代数重建问题11案例六. 平衡结构的梁受力计算13案例七. 化学方程式配平问题16案例八. 互付工资问题17案例九. 平衡价格问题19案例十. 电路设计问题20案例十一. 平面图形的几何变换22案例十二. 太空探测器轨道数据问题24案例十三. 应用矩阵编制Hill密码25案例十四. 显示器色彩制式转换问题27案例十五. 人员流动问题29案例十六. 金融公司支付基金的流动31案例十七. 选举问题33案例十八. 简单的种群增长问题34案例十九. 一阶常系数线性齐次微分方程组的求解36 案例二十. 最值问题38附录数学实验报告模板错误!未定义书签。

案例一. 交通网络流量分析问题城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。

根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。

【模型准备】 某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(单位: 辆).图3 某城市单行线车流量(1) 建立确定每条道路流量的线性方程组.(2) 为了唯一确定未知流量, 还需要增添哪几条道路的流量统计? (3) 当x 4 = 350时, 确定x 1, x 2, x 3的值.(4) 若x 4 = 200, 则单行线应该如何改动才合理?【模型假设】 (1) 每条道路都是单行线. (2) 每个交叉路口进入和离开的车辆数目相等.【模型建立】 根据图3和上述假设, 在①, ②, ③, ④四个路口进出车辆数目分别满足500 = x 1 + x 2① 400 + x 1 = x 4 + 300 ② x 2 + x 3 = 100 + 200 ③ x 4 = x 3 + 300 ④ 【模型求解】根据上述等式可得如下线性方程组12142334500100300300x x x x x x x x +=⎧⎪-=-⎪⎨+=⎪⎪-+=⎩其增广矩阵(A , b ) =1100500100110001103000011300⎛⎫ ⎪--⎪ ⎪ ⎪-⎝⎭−−−−→初等行变换10011000101600001130000000--⎛⎫ ⎪⎪-- ⎪⎪⎝⎭由此可得142434100600300x x x x x x -=-⎧⎪+=⎨⎪-=-⎩ 即142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩. 为了唯一确定未知流量, 只要增添x 4统计的值即可. 当x 4 = 350时, 确定x 1 = 250, x 2 = 250, x 3 = 50.若x 4 = 200, 则x 1 = 100, x 2 = 400, x 3 = -100 < 0. 这表明单行线“③←④”应该改为“③→④”才合理.【模型分析】(1) 由(A , b )的行最简形可见, 上述方程组中的最后一个方程是多余的. 这意味着最后一个方程中的数据“300”可以不用统计.(2) 由142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩可得213141500200100x x x x x x =-+⎧⎪=-⎨⎪=+⎩, 123242500300600x x x x x x =-+⎧⎪=-+⎨⎪=-+⎩, 132343200300300x x x x x x =+⎧⎪=-+⎨⎪=+⎩, 这就是说x 1, x 2, x 3, x 4这四个未知量中, 任意一个未知量的值统计出来之后都可以确定出其他三个未知量的值.Matlab 实验题某城市有下图所示的交通图, 每条道路都是单行线, 需要调查每条道路每小时的车流量. 图中的数字表示该条路段的车流数. 如果每个交叉路口进入和离开的车数相等, 整个图中进入和离开的车数相等.图4 某城市单行线车流量(1)建立确定每条道路流量的线性方程组.(2)分析哪些流量数据是多余的.(3)为了唯一确定未知流量, 需要增添哪几条道路的流量统计.案例二. 配方问题在化工、医药、日常膳食等方面都经常涉及到配方问题. 在不考虑各种成分之间可能发生某些化学反应时, 配方问题可以用向量和线性方程组来建模. 【模型准备】一种佐料由四种原料A 、B 、C 、D 混合而成. 这种佐料现有两种规格, 这两种规格的佐料中, 四种原料的比例分别为2:3:1:1和1:2:1:2. 现在需要四种原料的比例为4:7:3:5的第三种规格的佐料. 问: 第三种规格的佐料能否由前两种规格的佐料按一定比例配制而成?【模型假设】 (1) 假设四种原料混合在一起时不发生化学变化. (2) 假设四种原料的比例是按重量计算的. (3) 假设前两种规格的佐料分装成袋, 比如说第一种规格的佐料每袋净重7克(其中A 、B 、C 、D 四种原料分别为2克, 3克, 1克, 1克), 第二种规格的佐料每袋净重6克(其中A 、B 、C 、D 四种原料分别为1克, 2克, 1克, 2克). 【模型建立】 根据已知数据和上述假设, 可以进一步假设将x 袋第一种规格的佐料与y 袋第二种规格的佐料混合在一起, 得到的混合物中A 、B 、C 、D 四种原料分别为4克, 7克, 3克, 5克, 则有以下线性方程组24,327,3,2 5.x y x y x y x y +=⎧⎪+=⎨+=⎪+=⎩ 【模型求解】上述线性方程组的增广矩阵(A , b ) =214327113125⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭−−−−→初等行变换101012000000⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭,可见{1,2.x y == 又因为第一种规格的佐料每袋净重7克, 第二种规格的佐料每袋净重6克, 所以第三种规格的佐料能由前两种规格的佐料按7:12的比例配制而成. 【模型分析】(1) 若令α1 = (2, 3, 1, 1)T , α2 = (1, 2, 1, 1)T , β = (4, 7, 5, 3)T , 则原问题等价于“线性方程组Ax = b 是否有解”, 也等价于“β能否由α1, α2线性表示”.(2) 若四种原料的比例是按体积计算的, 则还要考虑混合前后体积的关系(未必是简单的叠加), 因而最好还是先根据具体情况将体积比转换为重量比, 然后再按上述方法处理.(3) 上面的模型假设中的第三个假设只是起到简化运算的作用. 如果直接设x 克第一种规格的佐料与y 克第二种规格的佐料混合得第三种规格的佐料, 则有下表因而有如下线性方程组214(),7619327(),7619113(),7619125().7619x y x y x y x y x y x y x y x y ⎧+=+⎪⎪⎪+=+⎪⎨⎪+=+⎪⎪⎪+=+⎪⎩(*) 【模型检验】把x = 7, y = 12代入上述方程组(*), 则各等式都成立. 可见模型假设中的第三个假设不影响解的正确性.Matlab 实验题蛋白质、碳水化合物和脂肪是人体每日必须的三种营养, 但过量的脂肪摄入不利于健康.人们可以通过适量的运动来消耗多余的脂肪. 设三种食物(脱脂牛奶、大豆面粉、乳清)每100克中蛋白质、碳水化合物和脂肪的含量以及慢跑5分钟消耗蛋白质、碳水化合物和脂肪的量如下表.问怎样安排饮食和运动才能实现每日的营养需求?案例三. 投入产出问题在研究多个经济部门之间的投入产出关系时, W. Leontief 提出了投入产出模型. 这为经济学研究提供了强有力的手段. W. Leontief 因此获得了1973年的Nobel 经济学奖.【模型准备】某地有一座煤矿, 一个发电厂和一条铁路. 经成本核算, 每生产价值1元钱的煤需消耗0.3元的电; 为了把这1元钱的煤运出去需花费0.2元的运费; 每生产1元的电需0.6元的煤作燃料; 为了运行电厂的辅助设备需消耗本身0.1元的电, 还需要花费0.1元的运费; 作为铁路局, 每提供1元运费的运输需消耗0.5元的煤, 辅助设备要消耗0.1元的电. 现煤矿接到外地6万元煤的订货, 电厂有10万元电的外地需求, 问: 煤矿和电厂各生产多少才能满足需求? 【模型假设】假设不考虑价格变动等其他因素.【模型建立】设煤矿, 电厂, 铁路分别产出x 元, y 元, z 元刚好满足需求. 则有下表根据需求, 应该有(0.60.5)60000(0.30.10.1)100000(0.20.1)0x y z y x y z z x y -+=⎧⎪-++=⎨⎪-+=⎩, 即0.60.5600000.30.90.11000000.20.10x y z x y z x y z --=⎧⎪-+-=⎨⎪--+=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.6,-0.5;-0.3,0.9,-0.1;-0.2,-0.1,1]; b = [60000;100000;0]; >> x = A\bMatlab 执行后得 x =1.0e+005 *1.99661.84150.5835可见煤矿要生产1.9966⨯105元的煤, 电厂要生产1.8415⨯105元的电恰好满足需求.【模型分析】令x =xyz⎛⎫⎪⎪⎝⎭, A =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭, b =60000100000⎛⎫⎪⎪⎝⎭, 其中x称为总产值列向量,A称为消耗系数矩阵, b称为最终产品向量, 则Ax =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭xyz⎛⎫⎪⎪⎝⎭=0.60.50.30.10.10.20.1y zx y zx y+⎛⎫⎪++⎪+⎝⎭根据需求, 应该有x-Ax = b, 即(E-A)x = b. 故x = (E-A)-1b.Matlab实验题某乡镇有甲、乙、丙三个企业. 甲企业每生产1元的产品要消耗0.25元乙企业的产品和0.25元丙企业的产品. 乙企业每生产1元的产品要消耗0.65元甲企业的产品, 0.05元自产的产品和0.05元丙企业的产品. 丙企业每生产1元的产品要消耗0.5元甲企业的产品和0.1元乙企业的产品. 在一个生产周期内, 甲、乙、丙三个企业生产的产品价值分别为100万元, 120万元, 60万元, 同时各自的固定资产折旧分别为20万元, 5万元和5万元.(1) 求一个生产周期内这三个企业扣除消耗和折旧后的新创价值.(2) 如果这三个企业接到外来订单分别为50万元, 60万元, 40万元, 那么他们各生产多少才能满足需求?案例四. 平板的稳态温度分布问题在热传导的研究中, 一个重要的问题是确定一块平板的稳态温度分布. 根据…定律, 只要测定一块矩形平板四周的温度就可以确定平板上各点的温度.图8 一块平板的温度分布图【模型准备】如图9所示的平板代表一条金属梁的截面. 已知四周8个节点处的温度(单位°C), 求中间4个点处的温度T 1, T 2, T 3, T 4.图9 一块平板的温度分布图【模型假设】假设忽略垂直于该截面方向上的热传导, 并且每个节点的温度等于与它相邻的四个节点温度的平均值.【模型建立】根据已知条件和上述假设, 有如下线性方程组1232143144231(90100)41(8060)41(8060)41(5050)4T T T T T T T T T T T T ⎧=+++⎪⎪⎪=+++⎪⎨⎪=+++⎪⎪=+++⎪⎩ 【模型求解】将上述线性方程组整理得1231241342344190414041404100T T T T T T T T T T T T --=⎧⎪-+-=⎪⎨-+-=⎪--+=⎪⎩. 在Matlab 命令窗口输入以下命令T 1T 2 T 3 T 4 10080908060506050>> A = [4,-1,-1,0;-1,4,0,-1;-1,0,4,-1;0,-1,-1,4]; b = [190;140;140;100];>> x = A\b; x’Matlab执行后得ans =82.9167 70.8333 70.8333 60.4167可见T1 = 82.9167, T2 = 70.8333, T3 = 70.8333, T4 = 60.4167.参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数,: 电子工业, 2007. 页码: 15-16.Matlab实验题假定下图中的平板代表一条金属梁的截面, 并忽略垂直于该截面方向上的热传导. 已知平板内部有30个节点, 每个节点的温度近似等于与它相邻的四个节点温度的平均值. 设4条边界上的温度分别等于每位同学学号的后四位的5倍, 例如学号为16308209的同学计算本题时, 选择T l = 40, T u = 10, T r = 0, T d = 45.图10 一块平板的温度分布图(1) 建立可以确定平板内节点温度的线性方程组.(2) 用Matlab软件求解该线性方程组.(3) 用Matlab中的函数mesh绘制三维平板温度分布图.案例五. CT图像的代数重建问题X射线透视可以得到3维对象在2维平面上的投影, CT则通过不同角度的X射线得到3维对象的多个2维投影, 并以此重建对象内部的3维图像. 代数重建方法就是从这些2维投影出发, 通过求解超定线性方程组, 获得对象内部3维图像的方法.图11双层螺旋CT 图12 CT图像这里我们考虑一个更简单的模型, 从2维图像的1维投影重建原先的2维图像. 一个长方形图像可以用一个横竖均匀划分的离散网格来覆盖, 每个网格对应一个像素, 它是该网格上各点像素的均值. 这样一个图像就可以用一个矩阵表示,其元素就是图像在一点的灰度值(黑白图像). 下面我们以3⨯3图像为例来说明.3⨯3图像各点的灰度值水平方向上的叠加值x1 = 1 x2 = 0 x3 = 0 x1 + x2 + x3 = 1x4 = 0 x5 = 0.5 x6 = 0.5 x4 + x5 + x6 = 1x7 = 0.5 x8 = 0 x9 = 1 x7 + x8 + x9 = 1.5 竖直方向上的叠加值x1 + x4 + x7= 1.5x2 + x5 + x8= 0.5x3 + x6 + x9= 1.5i色. 如果我们不知道网格中的数值, 只知道沿竖直方向和水平方向的叠加值, 为了确定网格中的灰度值, 可以建立线性方程组(含有6个方程, 9个未知数)123456369111x x xx x xx x x++=⎧⎪++=⎪⎨⎪++=⎪⎩显然该方程组的解是不唯一的, 为了重建图像, 必须增加叠加值. 如我们增加从右上方到左下方的叠加值, 则方程组将增加5个方程x1 = 1,x2 + x4 = 0,x3 + x5 + x7 = 1,x 6 + x 8 = 0.5, x 9 = 1,和上面的6个方程放在一起构成一个含有11个方程, 9个未知数的线性方程组. 【模型准备】设3⨯3图像中第一行3个点的灰度值依次为x 1, x 2, x 3, 第二行3个点的灰度值依次为x 4, x 5,x 6, 第三行3个点的灰度值依次为x 7, x 8, x 9. 沿竖直方向的叠加值依次为1.5, 0.5, 1.5, 沿水平方向的叠加值依次为1, 1, 1.5, 沿右上方到左下方的叠加值依次为1, 0, 1, 0.5, 1. 确定x 1, x 2, …, x 9的值.【模型建立】由已知条件可得(含有11个方程, 9个未知数的)线性方程组1234569111x x x x x x x ++=⎧⎪++=⎪⎨⎪=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,1,0,0,0,0,0,0;0,0,0,1,1,1,0,0,0;0,0,0,0,0,0,1,1,1;1,0,0,1,0,0,1,0,0;0,1,0,0,1,0,0,1,0;0,0,1,0,0,1,0,0,1; 1,0,0,0,0,0,0,0,0;0,1,0,1,0,0,0,0,0;0,0,1,0,1,0,1,0,0; 0,0,0,0,0,1,0,1,0;0,0,0,0,0,0,0,0,1];>> b = [1;1;1.5;1.5;0.5;1.5;1;0;1;0.5;1]; >> x = A\b; x ’Matlab 执行后得Warning: Rank deficient, rank = 8 tol =4.2305e-015. ans =1.0000 0.0000 0 -0.0000 0.5000 0.5000 0.5000 -0.0000 1.0000 可见上述方程组的解不唯一. 其中的一个特解为x 1 = 1, x 2 = 0, x 3 = 0, x 4 = 0, x 5 = 0.5, x 6 = 0.5, x 7 = 0.5, x 8 = 0, x 9 = 1.【模型分析】上述结果表明, 仅有三个方向上的叠加值还不够.可以再增加从左上方到右下方的叠加值. 在实际情况下, 由于测量误差, 上述线性方程组可能是超定的. 这时可以将超定方程组的近似解作为重建的图像数据.Matlab 实验题给定一个3⨯3图像的2个方向上的灰度叠加值: 沿左上方到右下方的灰度叠加值依次为0.8, 1.2, 1.7, 0.2, 0.3; 沿右上方到左下方的灰度叠加值依次为0.6, 0.2, 1.6, 1.2, 0.6.(1) 建立可以确定网格数据的线性方程组, 并用Matlab 求解. (2) 将网格数据乘以256, 再取整, 用Matlab 绘制该灰度图像.案例六. 平衡结构的梁受力计算在桥梁、房顶、铁塔等建筑结构中, 涉及到各种各样的梁. 对这些梁进行受力分析是设计师、工程师经常做的事情.图14 埃菲尔铁塔局部下面以双杆系统的受力分析为例, 说明如何研究梁上各铰接点处的受力情况. 【模型准备】在图15所示的双杆系统中, 已知杆1重G1 = 200牛顿, 长L1 = 2米, 与水平方向的夹角为θ1 = π/6, 杆2重G2 = 100牛顿, 长L2 = 2米, 与水平方向的夹角为θ2 = π/4. 三个铰接点A, B, C所在平面垂直于水平面. 求杆1, 杆2在铰接点处所受到的力.图15双杆系统【模型假设】假设两杆都是均匀的. 在铰接点处的受力情况如图16所示.【模型建立】对于杆1:水平方向受到的合力为零, 故N1 = N3,竖直方向受到的合力为零, 故N2 + N4 = G1,以点A为支点的合力矩为零, 故(L1sinθ1)N3 + (L1cosθ1)N4 = (12L1cosθ1)G1.图16 两杆受力情况对于杆2类似地有AC杆1杆2CN1N2N3N5N6G1G2A B杆1杆2π/6π/4N 5 = N 7, N 6 = N 8 + G 2, (L 2sin θ2)N 7 = (L 2cos θ2)N 8 + (12L 2cos θ2)G 2.此外还有N 3 = N 7, N 4 = N 8. 于是将上述8个等式联立起来得到关于N 1, N 2, …, N 8的线性方程组:132414800N N N N G N N -=⎧⎪+=⎪⎨⎪⎪-=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> G1=200; L1=2; theta1=pi/6; G2=100; L2=sqrt(2); theta2=pi/4; >> A = [1,0,-1,0,0,0,0,0;0,1,0,1,0,0,0,0;0,0,L1*sin(theta1),L1*cos(theta1),0,0,0,0;0,0,0,0,1,0,-1,0; 0,0,0,0,0,1,0,-1;0,0,0,0,0,0,L2*sin(theta2),-L2*cos(theta2); 0,0,1,0,0,0,-1,0;0,0,0,1,0,0,0,-1];>> b = [0;G1;0.5*L1*cos(theta1)*G1;0;G2;0.5*L2*cos(theta2)*G2;0;0]; >> x = A\b; x ’ Matlab 执行后得 ans =95.0962 154.9038 95.0962 45.0962 95.0962 145.0962 95.0962 45.0962【模型分析】最后的结果没有出现负值, 说明图16中假设的各个力的方向与事实一致. 如果结果中出现负值, 则说明该力的方向与假设的方向相反. 参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数,: 电子工业, 2007. 页码: 157- 158.Matlab 实验题有一个平面结构如下所示, 有13条梁(图中标号的线段)和8个铰接点(图中标号的圈)联结在一起. 其中1号铰接点完全固定, 8号铰接点竖直方向固定, 并在2号, 5号和6号铰接点上, 分别有图示的10吨, 15吨和20吨的负载. 在静平衡的条件下,任何一个铰接点上水平和竖直方向受力都是平衡的. 已知每条斜梁的角度都是45º.(1) 列出由各铰接点处受力平衡方程构成的线性方程组. (2) 用Matlab 软件求解该线性方程组, 确定每条梁受力情况.图17 一个平面结构的梁案例七. 化学方程式配平问题在用化学方法处理污水过程中, 有时会涉及到复杂的化学反应. 这些反应的化学方程式是分析计算和工艺设计的重要依据. 在定性地检测出反应物和生成物之后,可以通过求解线性方程组配平化学方程式.【模型准备】某厂废水中含K, 其浓度为650mg/L. 现用氯氧化法处理, 发生如下反应:K + 2KOH + Cl 2 = KO+ 2KCl + H 2O.投入过量液氯, 可将氰酸盐进一步氧化为氮气. 请配平下列化学方程式:KO +KOH +Cl 2 ===CO 2+N 2+KCl +H 2O.(注: 题目摘自XX 省XX 外国语学校2008-2009学年高三第三次月考化学试卷) 【模型建立】设x 1KO +x 2KOH +x 3Cl 2 === x 4CO 2 +x 5N 2 +x 6KCl +x 7H 2O,则1261247141527362222x x x x x x xx x x x x x x x +=⎧⎪+=+⎪⎪=⎪⎨=⎪⎪=⎪=⎪⎩, 即1261247141527360200202020x x x x x x x x x x x x x x x +-=⎧⎪+--=⎪⎪-=⎪⎨-=⎪⎪-=⎪-=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,0,0,0,-1,0;1,1,0,-2,0,0,-1;1,0,0,-1,0,0,0;1,0,0,0,-2,0,0;0,1,0,0,0,0,-2;0,0,2,0,0,-1,0];>> x = null(A,’r ’); format rat, x ’Matlab 执行后得 ans =1 2 3/2 1 1/2 3 1 可见上述齐次线性方程组的通解为x = k (1, 2, 3/2, 1, 1/2, 3, 1)T .取k = 2得x = (2, 4, 3, 2, 1, 6, 2)T . 可见配平后的化学方程式如下2KO + 4KOH + 3Cl 2 ===2CO 2+ N 2+ 6KCl + 2H 2O.【模型分析】利用线性方程组配平化学方程式是一种待定系数法. 关键是根据化学方程式两边所涉及到的各种元素的量相等的原则列出方程. 所得到的齐次线性方程组Ax = θ中所含方程的个数等于化学方程式中元素的种数s , 未知数的个数就是化学方程式中的项数n .当r(A ) = n -1时, Ax = θ的基础解系中含有1个(线性无关的)解向量. 这时在通解中取常数k 为各分量分母的最小公倍数即可. 例如本例中1, 2, 3/2, 1, 1/2, 3, 1分母的最小公倍数为2, 故取k = 2.当r(A ) ≤n -2时, Ax = θ的基础解系中含有2个以上的线性无关的解向量. 这时可以根据化学方程式中元素的化合价的上升与下降的情况, 在原线性方程组中添加新的方程. Matlab 实验题配平下列反应式(1) FeS + KMnO 4 + H 2SO 4—— K 2SO 4 + MnSO 4 + Fe 2(SO 4)3 + H 2O + S ↓ (2) Al 2(SO 4)3 + Na 2CO 3 + H 2O —— Al(OH)3↓+ CO 2↑+ Na 2SO 4案例八. 互付工资问题互付工资问题是多方合作相互提供劳动过程中产生的. 比如农忙季节, 多户农民组成互助组, 共同完成各户的耕、种、收等农活. 又如木工, 电工, 油漆工等组成互助组, 共同完成各家的装潢工作. 由于不同工种的劳动量有所不同, 为了均衡各方的利益, 就要计算互付工资的标准.【模型准备】现有一个木工, 电工, 油漆工. 相互装修他们的房子, 他们有如下协议:(1) 每人工作10天(包括在自己家的日子), (2) 每人的日工资一般的市价在60~80元之间, (3) 日工资数应使每人的总收入和总支出相等.求每人的日工资. 【模型假设】假设每人每天工作时间长度相同. 无论谁在谁家干活都按正常情况工作, 既不偷懒, 也不加班.【模型建立】设木工, 电工, 油漆工的日工资分别为x , y , z 元, 则由下表可得2610451044310x y z xx y z y x y z z++=⎧⎪++=⎨⎪++=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩【模型求解】在Matlab 命令窗口输入以下命令>> A = [-8,1,6;4,-5,1;4,4,-7];>> x = null(A,’r ’); format rat, x ’ Matlab 执行后得ans =31/36 8/9 1可见上述齐次线性方程组的通解为x = k (31/36, 8/9, 1)T . 因而根据“每人的日工资一般的市价在60~80元之间”可知60 ≤3631k <98k < k ≤ 80, 即 312160≤k ≤ 80.也就是说, 木工, 电工, 油漆工的日工资分别为3631k 元, 98k 元, k 元, 其中312160≤k ≤ 80. 为了简便起见, 可取k = 72, 于是木工, 电工, 油漆工的日工资分别为62元, 64元, 72元.【模型分析】事实上各人都不必付自己工资, 这时各家应付工资和各人应得收入如下6845447y z x x z y x y z +=⎧⎪+=⎨⎪+=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩ 可见这样得到的方程组与前面得到的方程组是一样的.Matlab 实验题甲, 乙, 丙三个农民组成互助组, 每人工作6天(包括为自己家干活的天数), 刚好完成他们三人家的农活, 其中甲在甲, 乙, 丙三家干活的天数依次为: 2, 2.5, 1.5; 乙在甲, 乙, 丙三家各干2天活, 丙在甲, 乙, 丙三家干活的天数依次为: 1.5, 2, 2.5. 根据三人干活的种类, 速度和时间, 他们确定三人不必相互支付工资刚好公平. 随后三人又合作到邻村帮忙干了2天(各人干活的种类和强度不变), 共获得工资500元.问他们应该怎样分配这500元工资才合理?案例九. 平衡价格问题为了协调多个相互依存的行业的平衡发展, 有关部门需要根据每个行业的产出在各个行业中的分配情况确定每个行业产品的指导价格, 使得每个行业的投入与产出都大致相等.【模型准备】假设一个经济系统由煤炭、电力、钢铁行业组成, 每个行业的产出在各个行业中的分配如下表所示:等的平衡价格.【模型假设】假设不考虑这个系统与外界的联系.【模型建立】把煤炭、电力、钢铁行业每年总产出的价格分别用x 1,x 2, x 3表示, 则123212331230.40.60.60.10.20.40.50.2x x x x x x x x x x x =+⎧⎪=++⎨⎪=++⎩, 即1231231230.40.600.60.90.200.40.50.80x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩. 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.4,-0.6;-0.6,0.9,-0.2;-0.4,-0.5,0.8]; >> x = null(A,’r ’); format short, x ’ Matlab 执行后得ans =0.9394 0.8485 1.0000 可见上述齐次线性方程组的通解为x = k(0.9394, 0.8485, 1)T.这就是说, 如果煤炭、电力、钢铁行业每年总产出的价格分别0.9394亿元, 0.8485亿元, 1亿元, 那么每个行业的投入与产出都相等.【模型分析】实际上, 一个比较完整的经济系统不可能只涉及三个行业, 因此需要统计更多的行业间的分配数据.Matlab实验题假设一个经济系统由煤炭、石油、电力、钢铁、机械制造、运输行业组成, 每个行业的产出在各个行业中的分配如下表所示:产出分配购买者煤炭石油电力钢铁制造运输0 0 0.2 0.1 0.2 0.2 煤炭0 0 0.1 0.1 0.2 0.1 石油0.5 0.1 0.1 0.2 0.1 0.1 电力0.4 0.1 0.2 0 0.1 0.4 钢铁0 0.1 0.3 0.6 0 0.2 制造0.1 0.7 0.1 0 0.4 0 运输等的平衡价格.案例十. 电路设计问题电路是电子元件的神经系统. 参数的计算是电路设计的重要环节. 其依据来自两个方面: 一是客观需要, 二是物理学定律.图22 USB扩展板【模型准备】假设图23中的方框代表某类具有输入和输出终端的电路. 用11vi⎛⎫⎪⎝⎭记录输入电压和输入电流(电压v以伏特为单位, 电流i以安培为单位), 用22vi⎛⎫⎪⎝⎭记录输出电压和输入电流. 若22vi⎛⎫⎪⎝⎭= A11vi⎛⎫⎪⎝⎭,则称矩阵A为转移矩阵.图23 具有输入和输出终端的电子电路图图24给出了一个梯形网络, 左边的电路称为串联电路, 电阻为R 1(单位: 欧姆). 右边的电路是并联电路, 电路R 2. 利用欧姆定理和楚列斯基定律, 我们可以得到串联电路和并联电路的转移矩阵分别是1101R -⎛⎫ ⎪⎝⎭和2101/1R ⎛⎫ ⎪-⎝⎭串联电路 并联电路图24 梯形网络设计一个梯形网络, 其转移矩阵是180.55-⎛⎫⎪-⎝⎭. 【模型假设】假设导线的电阻为零.【模型建立】设A 1和A 2分别是串联电路和并联电路的转移矩阵, 则输入向量x 先变换成A 1x , 再变换到A 2(A 1x ). 其中A 2A 1 =2101/1R ⎛⎫ ⎪-⎝⎭1101R -⎛⎫ ⎪⎝⎭=121211/1/R R R R -⎛⎫ ⎪-+⎝⎭就是图22中梯形网络的转移矩阵.于是, 原问题转化为求R 1, R 2的值使得121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭. 【模型求解】由121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭可得121281/0.51/5R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据其中的前两个方程可得R 1 = 8, R 2 = 2. 把R 1 = 8, R 2 = 2代入上面的第三个方程确实能使等式成立. 这就是说在图22中梯形网络中取R 1 = 8, R 2 = 2即为所求.【模型分析】若要求的转移矩阵改为180.54-⎛⎫⎪-⎝⎭, 则上面的梯形网络无法实现. 因为v 2这时对应的方程组是121281/0.51/4R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据前两个方程依然得到R 1 = 8, R 2 = 2, 但把R 1= 8, R 2 = 2代入上第三个方程却不能使等式成立.练习题根据基尔霍夫回路电路定律(各节点处流入和流出的电流强度的代数和为零, 各回路中各支路的电压降之和为零), 列出下图所示电路中电流i 1, i 2, i 3所满足的线性方程组, 并用矩阵形式表示:图25简单的回路案例十一. 平面图形的几何变换随着计算机科学技术的发展, 计算机图形学的应用领域越来越广, 如仿真设计、效果图制作、动画片制作、电子游戏开发等.图形的几何变换, 包括图形的平移、旋转、放缩等, 是计算机图形学中经常遇到的问题. 这里暂时只讨论平面图形的几何变换.【模型准备】平面图形的旋转和放缩都很容易用矩阵乘法实现, 但是图形的平移并不是线性运算, 不能直接用矩阵乘法表示. 现在要求用一种方法使平移、旋转、放缩能统一用矩阵乘法来实现. 【模型假设】设平移变换为(x , y ) → (x +a , y +b )旋转变换(绕原点逆时针旋转θ角度)为(x , y ) → (x cos θ-y sin θ, x sin θ + y cos θ)放缩变换(沿x 轴方向放大s 倍, 沿y 轴方向放大t 倍)为(x , y ) → (sx , ty )【模型求解】R 2中的每个点(x , y )可以对应于R 3中的(x , y , 1). 它在xOy 平面上方1单E 12位的平面上. 我们称(x , y , 1)是(x , y )的齐次坐标. 在齐次坐标下, 平移变换(x , y ) → (x +a , y +b )可以用齐次坐标写成(x , y , 1) → (x +a , y +b , 1).于是可以用矩阵乘积1001001a b ⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=1x a y b +⎛⎫⎪+ ⎪⎝⎭实现.旋转变换(x , y ) → (x cos θ-y sin θ, x sin θ + y cos θ)可以用齐次坐标写成(x , y , 1) → (x cos θ-y sin θ, x sin θ + y cos θ, 1). 于是可以用矩阵乘积cos sin 0sin cos 0001θθθθ-⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=cos sin sin cos 1x y x y θθθθ-⎛⎫⎪+ ⎪⎝⎭实现.放缩变换(x , y ) → (sx , ty )可以用齐次坐标写成(x , y , 1) → (sx , ty , 1).于是可以用矩阵乘积0000001s t ⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=1sx ty ⎛⎫⎪ ⎪⎝⎭实现.【模型分析】由上述求解可以看出, R 2中的任何线性变换都可以用分块矩阵1⎛⎫⎪⎝⎭A O O 乘以齐次坐标实现, 其中A 是2阶方阵. 这样, 只要把平面图形上点的齐次坐标写成列向量, 平面图形的每一次几何变换, 都可通过左乘一个3阶变换矩阵来实现.参考文献David C. Lay, 线性代数及其应用, 沈复兴, 傅莺莺等译,: 人民邮电, 2009. 页码: 139-141.Matlab 实验题在Matlab 命令窗口输入以下命令 >>clear all , clc,>>t=[1,3,5,11,13,15]*pi/8; >>x=sin(t); y=cos(t); >>fill(x,y,'r'); >>grid on ;>>axis([-2.4, 2.4, -2, 2])运行后得图25.图26Matlab绘制的图形(1) 写出该图形每个顶点的齐次坐标;; 最后进行横(2) 编写Matlab程序, 先将上面图形放大0.9倍; 再逆时针旋转3坐标加0.8, 纵坐标减1的图形平移. 分别绘制上述变换后的图形.案例十二. 太空探测器轨道数据问题太空航天探测器发射以后, 可能需要调整以使探测器处在精确计算的轨道里. 雷达监测到一组列向量x1, …, x k,它们给出了不同时刻探测器的实际位置与预定轨道之间的偏差的信息.图28 火星探测器【模型准备】令X k = [x1, …, x k]. 在雷达进行数据分析时需要计算出矩阵G k = X k X k T. 一旦接收到数据向量x k+1,必须计算出新矩阵G k+1. 因为数据向量到达的速度非常快, 随着k的增加, 直接计算的负担会越来越重. 现需要给出一个算法, 使得计算G k的负担不会因为k的增加而加重.【模型求解】因为G k = X k X k T=[x 1, …, x k ]T 1T k⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦x x =T 1k i i i =∑x x ,G k +1 = X k +1T1k +X =[X k , x k +1]T T 1k k +⎡⎤⎢⎥⎣⎦X x = X k X k T +x k +1T 1k +x =G k +x k +1T 1k +x ,所以一旦接收到数据向量x k +1, 只要计算x k +1T1k +x , 然后把它与上一步计算得到的G k相加即可. 这样计算G k 的负担不会因为k 的增加而加重.【模型分析】计算机计算加法的时间与计算乘法的时间相比可以忽略不计. 因此在考虑计算矩阵乘积的负担时, 只要考察乘法的次数就可以了. 设x k 的维数是n , 则X k = [x 1, …, x k ]是n ⨯k 的矩阵, G k = X k X k T 是n ⨯n 的矩阵. 直接计算G k = X k X k T 需要做n 2k 次乘法. 因而计算的负担会随着k 的增加而增加. 但是对于每一个k , 计算x k Tk x 始终只要做n 2次乘法.Matlab 实验题用Matlab 编写一个程序用于处理这个问题.案例十三. 应用矩阵编制Hill 密码密码学在经济和军事方面起着极其重要的作用. 现代密码学涉及很多高深的数学知识. 这里无法展开介绍.图29 XX 通信的基本模型密码学中将信息代码称为密码, 尚未转换成密码的文字信息称为明文, 由密码表示的信息称为密文. 从明文到密文的过程称为加密, 反之为解密. 1929年, 希尔(Hill)通过线性变换对待传输信息进行加密处理, 提出了在密码史上有重要地位的希尔加密算法. 下面我们略去一些实际应用中的细节, 只介绍最基本的思想.【模型准备】若要发出信息action, 现需要利用矩阵乘法给出加密方法和加密后得到的密文, 并给出相应的解密方法.。

数字应用建模实验报告(3篇)

数字应用建模实验报告(3篇)

第1篇一、实验背景随着信息技术的飞速发展,数字建模在各个领域中的应用越来越广泛。

数字应用建模是将现实世界的复杂问题转化为数学模型,通过计算机模拟和分析,为决策提供科学依据。

本实验旨在通过数字应用建模的方法,解决实际问题,提高学生对数学建模的理解和应用能力。

二、实验目的1. 理解数字应用建模的基本原理和方法;2. 掌握数学建模软件的使用;3. 提高解决实际问题的能力;4. 培养团队合作精神和沟通能力。

三、实验内容1. 实验题目:某城市交通流量优化研究2. 实验背景:随着城市人口的增加,交通拥堵问题日益严重。

为了缓解交通压力,提高城市交通效率,本研究旨在通过数字应用建模方法,优化该城市的交通流量。

3. 实验步骤:(1)数据收集:收集该城市主要道路的实时交通流量数据、道路长度、交叉口数量、道路等级等数据。

(2)建立数学模型:根据交通流量数据,建立交通流量的数学模型,如线性回归模型、多元回归模型等。

(3)模型求解:利用数学建模软件(如MATLAB、Python等)对建立的数学模型进行求解,得到最优交通流量分布。

(4)结果分析:对求解结果进行分析,评估优化后的交通流量分布对缓解交通拥堵的影响。

(5)模型改进:根据分析结果,对模型进行改进,以提高模型的准确性和实用性。

4. 实验结果:(1)通过建立数学模型,得到优化后的交通流量分布。

(2)优化后的交通流量分布较原始分布,道路拥堵程度明显降低,交通效率得到提高。

(3)通过模型改进,进一步优化交通流量分布,提高模型的准确性和实用性。

四、实验总结1. 本实验通过数字应用建模方法,成功解决了某城市交通流量优化问题,提高了交通效率,为城市交通管理提供了科学依据。

2. 在实验过程中,学生掌握了数学建模的基本原理和方法,熟悉了数学建模软件的使用,提高了解决实际问题的能力。

3. 实验过程中,学生学会了团队合作和沟通,提高了自己的综合素质。

五、实验心得1. 数字应用建模是一种解决实际问题的有效方法,通过建立数学模型,可以将复杂问题转化为可操作的解决方案。

数学建模实习报告

数学建模实习报告

数学建模实习报告一、引言数学建模是运用数学方法和技巧来解决实际问题的一门学科。

在大学数学课程中,培养学生的数学建模能力已经成为教学的重点之一。

本次实习报告旨在总结我在数学建模实习中的学习经验和收获,并将所学知识应用在实际问题中。

二、实习内容1. 实习项目介绍我所参与的数学建模实习项目是关于城市交通流量预测的研究。

通过对城市交通数据进行收集和分析,利用数学模型和算法来预测未来的交通流量,以便城市规划者和交通管理部门能够更好地优化交通流动。

2. 数据收集与预处理为了进行交通流量预测,我们首先需要收集一定时期内的交通数据,包括车辆数量、速度、道路状况等信息。

根据实际情况,我们选择了某城市的主干道作为研究对象,并在道路上安装了传感器来收集数据。

然后,我们对收集到的原始数据进行清洗和预处理,消除异常值和缺失值的影响,以保证数据的准确性和完整性。

3. 模型选择与建立在交通流量预测中,我们需要选择合适的数学模型来描述交通流动的规律。

经过研究和实践,我们选择了时间序列模型和神经网络模型作为预测模型的候选。

时间序列模型考虑了时间的连续性和相关性,适用于交通流量数据的预测;而神经网络模型则可以通过对历史数据的学习和训练来预测未来的交通流量。

4. 数据分析与模型评估在建立完预测模型后,我们对历史数据进行了分析和验证,评估了模型的准确性和可靠性。

通过比较模型预测结果和实际观测值,计算相关的误差指标和准确率,以评估模型的优劣,并进行进一步的改进和调整。

5. 结果与讨论经过一段时间的实验和分析,我们得到了相对准确的交通流量预测结果,并与城市交通管理部门进行了交流和反馈。

根据预测结果,他们可以提前做好交通管理和调度工作,以缓解拥堵和提高交通效率。

同时,我们也对模型的不足之处进行了讨论,并提出了一些改进和优化的建议。

三、实习收获通过参与数学建模实习,我获得了如下的收获和体会:1. 熟悉了数学建模的基本流程和方法,了解了数学建模在实际问题中的应用和意义。

数学建模 实验报告

数学建模 实验报告
-7.6785
0.5151
-27.0424
14.9336
-1.0552
rint =
-22.6123 32.7016
-29.0151 28.0174
-3.0151 44.6125
-25.5842 31.0708
-41.2961 11.7646
-17.4529 26.8291
-30.9763 25.7415
由于置信水平a=0.05,处理结果p=0.00,p<0.05
R²=0.9747,指因变量Y的97.47%可由模型确定,Y与X1存在二次关系。
,所以得到回归模型:
Y=0.5239+1.7886*X1+0.0302*X1^2;
结果表明年均收入和人寿保险额之间存在二次关系。
接下来处理两个自变量X1,X2对Y是否有交互效应。
序号
y
X1
X2
1
196
66.290
7
2
63
40.964
5
3
252
72.996
10
4
84
45.010
6
5
126
57.204
4
6
14
26.852
5
7
49
38.122
4
8
49
35.840
6
9
266
75.796
9
10
49
37.408
5
11
105
54.376
2
12
98
46.186
7
13
77
46.130
4
14
14
-21.2462 34.3845

数学建模实习报告

数学建模实习报告

数学建模实习报告一、引言本报告是对我在数学建模实习中的经历和成果的总结和分析。

通过这次实习,我深入了解了数学建模的基本理论和应用,并且在实际操作中获得了一定的实践经验。

本报告将主要包括以下几个方面的内容:实习项目的背景介绍、问题分析、模型建立和求解、实验结果和讨论以及总结。

二、实习项目的背景介绍本次实习项目是针对某企业的运输调度问题展开的。

该企业负责将一批货物从不同的发货点运送到不同的收货点,要求在最短的时间内完成任务,并且要尽量减少总运输成本。

由于存在各种各样的限制条件,如道路的限制、车辆的限制以及货物的限制等,因此该企业希望我们通过数学模型来解决这个运输调度问题。

三、问题分析在开始建立数学模型之前,我们首先对该问题进行了全面的分析。

我们详细了解了该企业的运输调度流程,并且查阅了相关的资料,了解了道路限制、车辆限制和货物限制等方面的信息。

经过分析,我们确定了以下几个关键的问题:如何确定最优的运输路线、如何合理安排车辆的使用、如何考虑货物的不同特性。

四、模型建立和求解基于上述问题的分析,我们建立了一套数学模型来解决该运输调度问题。

我们首先将该问题抽象成图论中的最短路径问题,并且引入了线性规划模型来解决车辆的安排问题。

在考虑货物特性的时候,我们使用了多目标规划模型,并对其进行了求解。

通过数学模型的建立和求解,我们得到了一组最优的调度方案,并且进行了实验验证。

五、实验结果和讨论在实验中,我们将得到的最优调度方案与该企业原有的调度方案进行了对比。

实验结果表明,我们提出的调度方案相比原有方案具有更高的效率和更低的成本。

通过与企业员工的讨论和交流,我们也收集到了他们的反馈意见,并根据反馈意见进行了相应的调整和改进。

六、总结通过这次数学建模实习,我深入了解了数学建模的基本理论和方法,并且在实际操作中提高了自己的实践能力。

我学会了如何分析问题、建立模型和求解模型,并且学会了如何将数学建模的成果应用于实际问题中。

数学建模实验报告

数学建模实验报告

在下面的题目中选做100分的题目,给出详略得当的答案。

一.通过举例简要说明数学建模的一般过程或步骤。

(15分)答:建立数学模型的方法大致有两种,一种是实验归纳的方法,即根据测试或计算数据,按照一定的数据,按照一定的数学方法,归纳出系统的数学模型;另一种是理论分析的方法,具体步骤有五步(以人口模型为例):1、明确问题,提出合理简化的假设:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息2、建立模型:据所做的假设以及事物之间的联系,构造各种量之间的关系。

(查资料得出数学式子或算法)。

3、模型求解:利用数学方法来求解上一步所得到的数学问题,此时往往还要做出进一步的简化或假设。

注意要尽量采用简单的数学公具。

例如:马尔萨斯模型,洛杰斯蒂克模型4、模型检验:根据预测与这些年来人口的调查得到的数目进行对比检验5、模型的修正和最后应用:所建立的模型必须在实际应用中才能产生效益,根据预测模型,制定方针政策,以实现资源的合理利用和环境的保护。

二.把一张四条腿等长的正方形桌子放在稍微有些起伏的地面上,通常只有三只脚着地,然而只需稍为转动一定角度,就可以使四只脚同时着地,即放稳了。

(1) 请用数学模型来描述和证明这个实际问题; (2)讨论当桌子是长方形时,又该如何描述和证明?(15分)答:模型假设:1.椅子四条腿一样长,椅脚与地面的接触部分相对椅子所占的地面面积可视为一个点。

2.地面凹突破面世连续变化的,沿任何方向都不会出现间断(没有向台阶那样的情况),即地面可看作数学上的连续曲面。

3.相对椅脚的间距和椅子腿的长度而言,地面是相对平坦的,即使椅子在任何位置至少有三条腿同时着地。

4.椅子四脚连线所构成的四边形是圆内接四边形,即椅子四脚共圆。

5.挪动仅只是旋转。

我们将椅子这两对腿的交点作为坐标原点,建立坐标系,开始时AC、BD这两对腿都在坐标轴上。

将AC和BD这两条腿逆时针旋转角度θ。

记AC到地面的距离之和为f(θ)。

数学建模实验报告数据的统计分析

数学建模实验报告数据的统计分析

数学建模实验报告数据的统计分析一、引言数学建模是一种多学科交叉领域,广泛应用于自然科学、工程技术、经济管理等领域。

在数学建模的过程中,对实验数据的统计分析是非常重要的一步。

本文将针对数学建模实验报告中的数据,进行统计分析,以探索数据特征和相关关系。

二、方法在本次实验中,我们采集了相关数据,包括自变量和因变量。

为了对数据进行统计分析,我们首先使用了统计软件进行数据清洗和预处理,包括去除异常值、缺失值处理等。

然后,我们利用统计学的方法对数据进行描述性统计和推断性统计,以获取数据的各种特征和潜在规律。

三、描述性统计分析描述性统计分析是对数据的基本特征进行描述和总结的方法。

我们首先计算了数据的平均值、中位数、方差和标准差,以揭示数据的集中趋势和离散程度。

接着,我们绘制了数据的频率分布图和直方图,以展现数据的分布情况和形态特征。

此外,我们还计算了数据的偏度和峰度,用以描述数据分布的非对称性和尖峭程度。

四、推断性统计分析推断性统计分析是利用样本数据对总体进行推断的方法。

在本次实验中,我们使用了参数估计和假设检验两种常见的推断性统计方法。

首先,我们使用最大似然估计法对数据的参数进行估计,包括均值、方差等。

然后,我们进行了假设检验,以验证研究假设是否成立。

在假设检验中,我们使用了t检验、F检验等常见的统计检验方法,对样本数据和假设进行比较,判断其差异的显著性。

五、结果与讨论通过描述性统计和推断性统计分析,我们得出了以下结论:1. 数据的平均值为X,标准差为X,表明数据整体上呈现X特征。

2. 数据的分布图显示,数据大致呈正态分布/偏态分布/离散分布等。

【实验】数学建模实验报告最优捕鱼策略

【实验】数学建模实验报告最优捕鱼策略

【关键字】实验最优捕鱼策略一.实验目的:1、了解与熟练掌握常系数线性差分方程的解法;2、通过最优捕鱼策略建模案例,使用MA TLAB软件认识与掌握差分方程模型在实际生活方面的重要作用。

二.实验内容:(最优捕鱼策略)生态学表明,对可再生资源的开发策略应在事先可持续收获的前提下追求最大经济效益。

考虑具有4个年龄鱼:1龄鱼,… ,4龄鱼的某种鱼。

该鱼类在每年后4个月季节性集中产卵繁殖。

而据规定,捕捞作业只允许在前8个月进行,每年投入的捕捞能力固定不变,单位时间捕捞量与个年龄鱼群条数的比率称为捕捞强度系数。

使用只能捕捞3、4龄鱼的网眼的拉网,其两个捕捞强度系数比为0.42:1.渔业上称这种方式为固定力量捕捞。

该鱼群本身有如下数据:1.各年龄组鱼的自然死亡率为0.8(1/年),其平均质量分别为5.07,11.55,17.86,22.99(单位:g);2.1龄鱼和2龄鱼不产卵,产卵期间,平均每条4龄鱼产卵量为1.109ⅹ105(个),3龄鱼为其一半;3.卵孵化的成活率为1.22ⅹ1011/(1.22ⅹ1011 + n)(n为产卵总量);有如下问题需要解决:1)分析如何实现可持续捕获(即每年开始捕捞时各年龄组鱼群不变),并在此前提下得到最高收获量;2)合同要求某渔业公司在5年合同期满后鱼群的生产能力不能受到太大的破坏,承包时各年龄组鱼群数量为122,29.7,10.1,3.29(ⅹ109条),在固定努力量的捕捞方式下,问该公司应采取怎样的捕捞策略,才能使总收获量最高。

三. 模型建立假设a、鱼群总量的增加虽然是离散的,但对大规模鱼群而言,我们可以假设鱼群总量的变化随时间是连续的;b、龄鱼到来年分别长一岁成为i + 1龄鱼,i = 1,2,3;c、4龄鱼在年末留存的数量占全部数量的比率相对很小,可假设全部死亡。

d、连续捕获使各年龄组的鱼群数量呈周期性变化,周期为1年,可以只考虑鱼群数量在1年内的变化情况。

(且可设xi(t):在t时刻i龄鱼的条数,i = 1,2,3,4;n:每年的产卵量;k:4龄鱼捕捞强度系数;2ai0:每年初i龄鱼的数量,i = 1,2,3,4;)进而可建立模型如下:max(total(k))=17.86t∈[0,1],x1(0)= n ×t∈[0,1],x2(0)= x1(1)t∈[0,2/3],x3(0)= x2(1)s.t. t∈[2/3,1],x3(-)= x3(+)t∈[0,2/3],x4(0)= x3(1)t∈[2/3,1],x4(-)= x4(+)四. 模型求解(含经调试后正确的源程序)1.先建立一个buyu.m的M文件:function y=buyu(x);global a40 total k;syms k a10;x1=dsolve('Dx1=-0.8*x1','x1(0)=a10');t=1;a20=subs(x1);x2=dsolve('Dx2=-0.8*x2','x2(0)=a20');t=1;a30=subs(x2);x31=dsolve('Dx31=-(0.8+0.4*k)*x31','x31(0)=a30');t=2/3;a31=subs(x31);x32=dsolve('Dx32=-0.8*x32','x32(2/3)=a31');t=1;a40=subs(x32);x41=dsolve('Dx41=-(0.8+k)*x41','x41(0)=a40');t=2/3;a41=subs(x41);x42=dsolve('Dx42=-0.8*x42','x42(2/3)=a41');t=2/3;a31=subs(x31);nn=1.109*10^5*(0.5*a31+a41);Equ=a10-nn*1.22*10^11/(1.22*10^11+nn);S=solve(Equ,a10);a10=S(2,1);syms t;k=x;t3=subs(subs(int(0.42*k*x31,t,0,2/3)));t4=subs(subs(int(k*x41,t,0,2/3)));total=17.86*t3+22.99*t4;y=subs((-1)*total)2.再建立一个buyu1.m的M文件:global a10 a20 a30 a40 total;[k,mtotal]=fminbnd('buyu',0,20);ezplot(total,0,25);xlabel('');ylabel('');title('');format long;ktotal=-mtotal;a10=eval(a10)a20=eval(a20)a30=eval(a30)a40=eval(a40)format shortclear五.结果分析1.鱼总量与时间图:2.可以看出捕捞强度对收获量的影响:实验输出数据:y =-3.6757e+011y =-3.9616e+011y =-4.0483e+011y =-4.0782e+011y =-4.0802e+011y =-4.0805e+011y =-4.0805e+011y =-4.0805e+011y =-4.0805e+011y =-4.0805e+011y =-4.0805e+011y =y =-4.0667e+011k =18.25976795085083total =4.080548655562244e+011 a10 =1.195809275167686e+011a20 =5.373117428928620e+010a30 =2.414297288420686e+010a40 =8.330238542343275e+007则k=18.25976795085083时,最高年收获量为total=4.080548655562244×1011(克),此时每年年初1,2,3,4年龄组鱼的数量分别为:1.195809275167686×10115.373117428928620×10102.414297288420686×10108.330238542343275×107六.实验总结本次实验的目的是了解差分方程(递推关系)的建立及求解,以及掌握用差分方程(递推关系)来求解现实问题的方法。

数学建模实验项目

数学建模实验项目

数学建模实验项⽬数学建模实验指导书数学建模实验项⽬⼀养⽼基⾦问题⼀、实验⽬的与意义:1、练习初等问题的建模过程;2、练习Matlab基本编程命令;⼆、实验要求:3、较能熟练应⽤Matlab基本命令和函数;4、注重问题分析与模型建⽴,了解建模⼩论⽂的写作过程;5、提⾼Matlab的编程应⽤技能。

三、实验学时数:2学时四、实验类别:综合性五、实验内容与步骤:(1.必做,2、3选⼀)1.某⼤学青年教师从31岁开始建⽴⾃⼰的养⽼基⾦,他把已有的积蓄10000元也⼀次性地存⼊,已知⽉利率为0.001(以复利计),每⽉存⼊700元,试问当他60岁退休时,他的退休基⾦有多少?⼜若,他退休后每⽉要从银⾏提取1000元,试问多少年后他的基⾦将⽤完?2.贷款助学问题。

3贷款购房问题。

⾃⼰调查设计具体情况数学建模实验项⽬⼆梯⼦问题⼀、实验⽬的与意义:1、进⼀步熟悉数学建模步骤;2、练习Matlab优化⼯具箱函数;3、进⼀步熟悉最优化模型的求解过程。

⼆、实验要求:1、较能熟练应⽤Matlab⼯具箱去求解常规的最优化模型;2、注重问题分析与模型建⽴,熟悉建模⼩论⽂的写作过程;3、提⾼Matlab的编程应⽤技能。

三、实验学时数:2学时四、实验类别:综合性五、实验内容与步骤:⼀幢楼房的后⾯是⼀个很⼤的花园。

在花园中紧靠着楼房建有⼀个温室,温室⾼10英尺,延伸进花园7英尺。

清洁⼯要打扫温室上⽅的楼房的窗户。

他只有借助于梯⼦,⼀头放在花园中,⼀头靠在楼房的墙上,攀援上去进⾏⼯作。

他只有⼀架20⽶长的梯⼦,你认为他能否成功?能满⾜要求的梯⼦的最⼩长度是多少?步骤:1.先进⾏问题分析,明确问题;2.建⽴模型,并运⽤Matlab函数求解;3.对结果进⾏分析说明;4.设计程序画出图形,对问题进⾏直观的分析和了解(主要⽤画线函数plot,line)5.写⼀篇建模⼩论⽂。

数学建模实验项⽬三确定肥猪的最佳销售时机⼀、实验⽬的与意义:1、认识微分法的建模过程;2、认识微分⽅程的数值解法。

乘法_数学建模实验报告(3篇)

乘法_数学建模实验报告(3篇)

第1篇一、实验背景数学建模是数学与其他学科交叉的一种研究方法,它通过建立数学模型来描述现实世界中的现象,从而为解决实际问题提供理论依据。

乘法作为基础的数学运算之一,广泛应用于各个领域。

本实验旨在通过数学建模的方法,探讨乘法运算在解决实际问题中的应用,提高学生对数学知识的理解和运用能力。

二、实验目的1. 了解数学建模的基本方法,掌握建立乘法模型的基本步骤。

2. 培养学生运用数学知识解决实际问题的能力。

3. 提高学生对乘法运算的理解和应用水平。

三、实验内容1. 问题提出假设某公司生产一种产品,每件产品成本为20元,售价为30元。

公司计划在一段时间内销售1000件产品,请建立数学模型预测公司在该时间段内的利润。

2. 模型建立(1)定义变量设公司销售产品的数量为x件,则公司获得的利润为y元。

(2)建立关系式根据题意,每件产品的利润为售价减去成本,即10元。

因此,公司销售x件产品的总利润为10x元。

(3)确定模型利润y与销售数量x之间的关系可以表示为:y = 10x。

3. 模型求解(1)确定模型参数根据题意,公司计划销售1000件产品,即x = 1000。

(2)代入参数求解将x = 1000代入模型y = 10x,得到y = 10 × 1000 = 10000。

(3)结果分析通过计算可知,公司在该时间段内的利润为10000元。

4. 模型验证为了验证模型的准确性,我们可以根据实际情况调整销售数量,重新计算利润,并与实际结果进行比较。

四、实验结果与分析通过本实验,我们成功建立了乘法模型,并预测了公司销售产品的利润。

实验结果表明,乘法模型能够有效地解决实际问题,为决策提供理论依据。

五、实验总结1. 数学建模是解决实际问题的重要方法,通过建立数学模型,我们可以将实际问题转化为数学问题,并运用数学知识进行求解。

2. 乘法模型在解决实际问题中具有广泛的应用,我们可以通过乘法模型预测、分析各种现象。

3. 在进行数学建模时,需要注意以下几点:(1)准确理解问题,明确模型的目标和变量。

数学建模实验报告古典密码与破译

数学建模实验报告古典密码与破译

古典密码与破译一、实验目的及意义本实验主要涉及代数,利用模运算意义下的矩阵乘法、求逆矩阵、线性无关、线性空间与线性变换等概念和运算,学习古典密码体制的加密、解密和破译过程.二、实验内容1.Hill2加密;2.Hill2解密。

三、实验步骤1. 开启软件平台——MA TLAB,开启MA TLAB编辑窗口;2. 根据加密解密算法步骤编写M文件1.保存文件并运行;2.观察运行结果(数值或图形);3.根据观察到的结果和体会写出实验报告。

四、实验要求与任务根据实验内容和步骤,完成以下实验,要求写出实验报告。

1. 实际问题(甲) 的修正:按照甲方与乙方的约定,他们之间的密文通信采用Hill2 密码,密钥为二阶矩阵1204A⎛⎫= ⎪⎝⎭且汉语拼音的26 个字母以及空格(字母A~Z 的表值为1~26,空格的表值为0)与0~26 之间的整数建立一一对应的关系,称之为字母的表值,试修正表1、表2 以及附录中的程序,以给出模27 意义下矩阵可逆的判别方法和具体求法.2. 若将你姓名的拼音作为明文,例如:赵本山(ZHAO BEN SHAN,含空格),密钥等参见练习1,求其在模27 意义下的Hill2密文.3. 若将你姓名的拼音作为Hill2密文,例如:赵本山(ZHAO BEN SHAN,含空格),密钥等参见练习1,求其在模27 意义下的明文.五. 程序代码及运行结果(经调试后正确的源程序)1.实际问题(甲) 的修正:按照甲方与乙方的约定,他们之间的密文通信采用Hill2 密码,密钥为二阶矩阵1204A⎛⎫= ⎪⎝⎭且汉语拼音的26 个字母以及空格(字wilyes11收集博客(与学习无关):/u/1810231802母A~Z 的表值为1~26,空格的表值为0)与0~26 之间的整数建立一一对应的关系,称之为字母的表值,试修正表1、表2 以及附录中的程序,以给出模27 意义下矩阵可逆的判别方法和具体求法.表1 明文字母的表值①求模27倒数表(prog1_MOD27.m)程序代码:m=27;for a=1:mfor i=1:mif mod(a*i,m)==1fprintf('%d 的模%d倒数是: %d\n',a,m,i);break;end;end;end运行结果:1 的模27倒数是: 12 的模27倒数是: 144 的模27倒数是: 75 的模27倒数是: 117 的模27倒数是: 48 的模27倒数是: 1710 的模27倒数是: 1911 的模27倒数是: 513 的模27倒数是: 2514 的模27倒数是: 216 的模27倒数是: 2217 的模27倒数是: 819 的模27倒数是: 1020 的模27倒数是: 2322 的模27倒数是: 1623 的模27倒数是: 2025 的模27倒数是: 1326 的模27倒数是: 26②判断二阶矩阵在模27意义下是否可逆,可逆则求其逆(prog1.m)程序代码:m=27;aa=input('输入一个2×2的矩阵,格式:[a11 a12;a21 a22]:')while size(aa)~=[2 2]aa=input('输入一个2×2的矩阵,格式:[a11 a12;a21 a22]:')enda=det(aa);bb=aa;if gcd(m,a)~=1disp(' 该矩阵不可逆')elsefor i=1:mif mod(a*i,m)==1antaa=i;break;endendastar=[aa(2,2) -aa(1,2);-aa(2,1) aa(1,1)];invaa=mod(antaa*astar,m);disp(['原矩阵是:',mat2str(aa),',它的逆矩阵(mod',num2str(m),')是:',mat2str(invaa)]) end运行结果:输入一个2×2的矩阵,格式:[a11 a12;a21 a22]:[1 2;0 4]aa =1 20 4原矩阵是:[1 2;0 4],它的逆矩阵(mod27)是:[1 13;0 7]2.若将你姓名的拼音作为明文,例如:赵本山(ZHAO BEN SHAN,含空格),密钥等参见练习1,求其在模27 意义下的Hill2密文.程序代码:(prog2.m)m=27;enmat=[1 2;0 4];demat=[1 13;0 7];ZERO=64;c=[];en=[];fprintf('本组成员的姓名为吴亚山李杰赵传来,拼音为:\n')fprintf('WU YA SHAN LI JIE ZHAO CHUAN LAI\n')fprintf('以[1 2;0 4]为密钥对此拼音串加密\n')astr=['WU YA SHAN LI JIE ZHAO CHUAN LAI'];an=double(astr);if mod(length(an),2)==1an=[an,an(length(an))];endan=an-ZERO;for i=1:length(an)if an(i)==-32an(i)=0;endendc=reshape(an,2,length(an)/2);dn=mod(enmat*c,m);en=reshape(dn,1,length(an));en=en+ZERO;for i=1:length(en)if en(i)==64en(i)=32;endenden=en(1: length(an));disp(['密文是:',char(en)])运行结果:本组成员的姓名为吴亚山李杰赵传来,拼音为:WU YA SHAN LI JIE ZHAO CHUAN LAI以[1 2;0 4]为密钥对此拼音串加密密文是:KCWSA HEBBXUI AIE OEDFFLWCBBXUSI3.若将你姓名的拼音作为Hill2密文,例如:赵本山(ZHAO BEN SHAN,含空格),密钥等参见练习1,求其在模27 意义下的明文.程序代码:(prog3.m)m=27;enmat=[1 2;0 4];demat=[1 13;0 7];ZERO=64;c=[];en=[];fprintf('本组成员的姓名为吴亚山李杰赵传来,拼音密文为:\n')fprintf('KCWSA HEBBXUI AIE OEDFFLWCBBXUSI\n')fprintf('以[1 13;0 7]为密钥对此拼音串密文解密\n')astr=['KCWSA HEBBXUI AIE OEDFFLWCBBXUSI'];an=double(astr);if mod(length(an),2)==1an=[an,an(length(an))];endan=an-ZERO;for i=1:length(an)if an(i)==-32an(i)=0;endendc=reshape(an,2,length(an)/2);dn=mod(demat*c,m);en=reshape(dn,1,length(an));en=en+ZERO;for i=1:length(en)if en(i)==64en(i)=32;endenden=en(1: length(an));disp(['明文是:',char(en)])运行结果:本组成员的姓名为吴亚山李杰赵传来,拼音密文为:KCWSA HEBBXUI AIE OEDFFLWCBBXUSI以[1 13;0 7]为密钥对此拼音串密文解密明文是:WU YA SHAN LI JIE ZHAO CHUAN LAI六.实验总结本实验主要涉及代数,利用模运算意义下的矩阵乘法、求逆矩阵、线性无关、线性空间与线性变换等概念和运算,学习古典密码体制的加密、解密和破译过程.实验中解决了如下问题:求模27倒数表;判断二阶矩阵在模27意义下是否可逆,可逆则求其逆;求明文字符串在模27意义下的Hill2密文;求密文字符串在模27意义下的Hill2密文。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模实验六一、上机用Lindo 软件解决货机装运问题。

某架货机有三个货仓:前仓、中仓、后仓。

三个货舱所能装载的货物的最大重量和体积都有限,如表所示,并且,为了保持飞机的平衡,货舱中实际装载货物的重量必须与其最大容许重量成正比例三个货舱装载货物的最大容许重量和体积四类装运货物的信息应如何安排装运,使该货机本次飞行获利最大? 解答过程: 模型建立:决策变量:用x ij 表示第i 种货物装入第j 个货舱的重量(吨),货舱j=1、2、3分别表示前仓、中仓、后仓。

决策目标是最大化总利润,即Max Z=3100(x11+x12+x13)+3800(x21+x22+x23)+3500(x31+x32+x33)+2850(x41+x42+x43) 约束条件为:1) 共装载的四种货物的总重量约束,即 x11+x12+x13<=18 x21+x22+x23<=15 x31+x32+x33<=23 x41+x42+x43<=122)三个货舱的重量限制,即 x11+x21+x31+x41<=10 x12+x22+x32+x42<=16 x13+x23+x33+x43<=83)三个货舱的空间限制,即480x11+650x21+580x31+390x41<=6800 480x12+650x22+580x32+390x42<=8700 480x13+650x23+580x33+390x43<=53004)三个货舱装入重量的平衡约束,即84333231316423222121041312111x x x x x x x x x x x x +++=+++=+++模型求解将以上模型输入LINDO求解程序如下:max3100x11+3100x12+3100x13+3800x21+3800x22+3800x23+3500x31+3500x32+3500x33+2850x4 1+2850x42+2850x43stx11+x12+x13<=18x21+x22+x23<=15x31+x32+x33<=23x41+x42+x43<=12x11+x21+x31+x41<=10x12+x22+x32+x42<=16x13+x23+x33+x43<=8480x11+650x21+580x31+390x41<=6800480x12+650x22+580x32+390x42<=8700480x13+650x23+580x33+390x43<=53008x11+8x21+8x31+8x41-5x12-5x22-5x32-5x42=0x12+x22+x32+x42-2x13-2x23-2x33-2x43=0end得到结果如下:LP OPTIMUM FOUND AT STEP 7OBJECTIVE FUNCTION V ALUE1) 121515.8VARIABLE V ALUE REDUCED COSTX11 0.000000 400.000000X12 0.000000 57.894737X13 0.000000 400.000000X21 10.000000 0.000000X22 0.000000 239.473679X23 5.000000 0.000000X31 0.000000 0.000000X32 12.947369 0.000000X33 3.000000 0.000000X41 0.000000 650.000000X42 3.052632 0.000000X43 0.000000 650.000000ROW SLACK OR SURPLUS DUAL PRICES2) 18.000000 0.0000003) 0.000000 300.0000004) 7.052631 0.0000005) 8.947369 0.0000006) 0.000000 0.0000007) 0.000000 5453.2895518) 0.000000 0.0000009) 300.000000 0.00000010) 0.000000 3.42105311) 310.000000 0.00000012) 0.000000 437.50000013) 0.000000 -1750.000000NO. ITERATIONS= 7RANGES IN WHICH THE BASIS IS UNCHANGED:OBJ COEFFICIENT RANGESV ARIABLE CURRENT ALLOWABLE ALLOWABLECOEF INCREASE DECREASE X11 3100.000000 400.000000 INFINITYX12 3100.000000 57.894844 INFINITYX13 3100.000000 400.000000 INFINITYX21 3800.000000 INFINITY 0.000000X22 3800.000000 239.473801 INFINITYX23 3800.000000 0.000000 239.473801X31 3500.000000 0.000000 INFINITYX32 3500.000000 2656.730713 122.222427X33 3500.000000 239.473801 0.000000X41 2850.000000 650.000000 INFINITYX42 2850.000000 650.000000 110.000221X43 2850.000000 650.000000 INFINITYRIGHTHAND SIDE RANGESROW CURRENT ALLOWABLE ALLOWABLERHS INCREASE DECREASE2 18.000000 INFINITY 18.0000003 15.000000 3.000000 5.0000004 23.000000 INFINITY 7.0526315 12.000000 INFINITY 8.9473696 10.000000 INFINITY 0.0000007 16.000000 0.000000 1.0000008 8.000000 INFINITY 0.0000009 6800.000000 INFINITY 300.00000010 8700.000000 580.000000 1700.00000011 5300.000000 INFINITY 310.00000012 0.000000 0.000000 24.00000013 0.000000 6.000000 0.000000结果分析:结果显示最优解为:货物2装入前仓10吨,装入后仓5吨;货物3装入中仓12.947369吨,装入后仓3吨;货物4装入中仓3吨。

最大利润约为121515.8元。

二、某储蓄所每天的营业时间是上午9:00到下午5:00.根据经验,每天不同的时间段所需要的服务员数量如下:储蓄所可以雇佣全时和半时两类服务员。

全时服务员每天的报酬为100元,从上午9点到下午5点工做,但中午12点到下午2点之间必须安排1小时的午餐时间。

储蓄所每天可以雇佣不超过3名的半时服务员,每个半时服务员必须连续工作4小时,报酬40元。

问该储蓄所应如何雇佣全时和半时两类服务员?如果不能雇佣半时服务员,每天至少增加多少费用?如果雇佣半时服务员的数量没有限制每天可以减少多少费用。

解答过程:模型建立决策变量:全时工作者中以12:00~1:00为休息时间的人数为x1,以1:00~2:00为休息时间的人数为x2;半时工作者中从9点,10点,11点,12点,1点开始工作的人数分别为y1,y2,y3,y4,y5决策目标是:使储蓄所付出的工资最小化Min Z=100(x1+x2)+40(y1+y2+y3+y4+y5)约束条件:x1+x2+y1>=4x1+x2+y1+y2>=3x1+x2+y1+y2+y3>=4x2+y1+y2+y3+y4>=6x1+y2+y3+y4+y5>=5x1+x2+y3+y4+y5>=6x1+x2+y4+y5>=8x1+x2+y5>=8y1+y2+y3+y4+y5<=3x1、x2、y1、y2、y3、y4、y5>=0,且均为整数模型求解用LINDO软件来作,其程序如下Min 100x1+100x2+40y1+40y2+40y3+40y4+40y5s.t.x1+x2+y1>=4x1+x2+y1+y2>=3x1+x2+y1+y2+y3>=4x2+y1+y2+y3+y4>=6x1+y2+y3+y4+y5>=5x1+x2+y3+y4+y5>=6x1+x2+y4+y5>=8x1+x2+y5>=8y1+y2+y3+y4+y5<=3end其结果如下所示:LP OPTIMUM FOUND AT STEP 8OBJECTIVE FUNCTION V ALUE1) 770.0000VARIABLE V ALUE REDUCED COSTX1 2.000000 0.000000X2 4.500000 0.000000Y1 0.000000 50.000000Y2 0.000000 0.000000Y3 0.000000 0.000000Y4 1.500000 0.000000Y5 1.500000 0.000000得出结果是:x1=2,x2=5,y1=0,y2=0,y3=0,y4=2,y5=1最小费用为:820元如果不能雇佣半时服务员,则最优解为x1=5,x2=6;费用z=1100元,增加了280元如果雇佣半时服务员没有限制,则最优解为x1=0,x2=0,y1=6,y2=0,y3=0,y4=0,y5=8;费用z=280元,减少了540元。

相关文档
最新文档