(完整版)任意角习题
高一数学(必修一)《第五章-任意角和弧度制》练习题及答案解析-人教版
高一数学(必修一)《第五章 任意角和弧度制》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、多选题1.已知扇形的周长是12,面积是8,则扇形的圆心角的弧度数可能是( ) A .1 B .4C .2D .3二、单选题2.终边与直线y x =重合的角可表示为( ) A .45180,k k Z ︒︒+⋅∈ B .45360,k k Z ︒︒+⋅∈ C .135180,k k Z ︒︒+⋅∈ D .225360,k k Z ︒︒+⋅∈3.下列角中与116π-终边相同的角是( ) A .30-︒B .40-︒C .20︒D .390︒4.下列说法正确的是( )A .长度等于半径的弦所对的圆心角为1弧度B .若tan 0α≥,则()2k k k Z ππαπ≤≤+∈C .若角α的终边过点()()3,40P k k k ≠,则4sin 5α D .当()224k k k Z ππαπ<<+∈时,则sin cos αα<5.已知一个母线长为1的圆锥的侧面展开图的圆心角等于240︒,则该圆锥的侧面积为( )A B .881πCD .23π6.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中具有表现力的瞬间(如图).现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为4πm肩宽约为8πm ,“弓”所在圆的半径约为5m 41.414≈和1.732)( )A .1.012mB .1.768mC .2.043mD .2.945m三、填空题7.6730'︒化为弧度,结果是______.8.已知扇形的周长为20cm ,面积为92cm ,则扇形的半径为________.9.折扇最早出现于公元五世纪的中国南北朝时代,《南齐书》上说:“褚渊以腰扇障日.”,据《通鉴注》上的解释,“腰扇”即折扇.一般情况下,折扇可以看作从一个圆面中剪下的扇形制作而成,设扇形的弧长为l ,扇形所在的圆的半径为r ,当l 与r 的比值约为2.4时,则折扇看上去的形状比较美观.若一把折扇所在扇形的半径为30cm ,在保证美观的前提下,此折扇所在扇形的面积是_______2cm .10.设地球半径为R ,地球上北纬30°圈上有A ,B 两点,点A 在西经10°,点B 在东经110°,则点A 和B 两点东西方向的距离是___________.四、解答题11.将下列各角化成360,,0360k k βαα=+⋅︒∈︒≤<︒Z 的形式,并指出它们是第几象限的角:(1)1320︒;(2)315-︒;(3)1500︒;(4)1610-︒.12.根据角度制和弧度制的转化,已知条件:1690α=︒(1)把α表示成2k πβ+的形式[)()Z,02k βπ∈∈,;(2)求θ,使θ与α的终边相同,且()4,2θππ∈--.13.已知一扇形的圆心角是72°,半径为20,求扇形的面积. 14.已知一扇形的圆心角为α,半径为R ,弧长为l. (1)若α=60°,R =10 cm ,求扇形的弧长l ;(2)已知扇形的周长为10 cm ,面积是4 cm 2,求扇形的圆心角;(3)若扇形周长为20 cm ,当扇形的圆心角α为多少弧度时,则这个扇形的面积最大? 15.已知扇形的周长为c ,当扇形的圆心角为多少弧度时,则扇形的面积最大.16.某商场共有三层楼,在其圆柱形空间内安装两部等长的扶梯Ⅰ、Ⅱ供顾客乘用,如图,一顾客自一楼点A 处乘Ⅰ到达二楼的点B 处后,沿着二楼地面上的弧BM 逆时针步行至点C 处,且C 为弧BM 的中点,再乘Ⅱ到达三楼的点D 处,设圆柱形空间三个楼面圆的中心分别为半径为8m ,相邻楼层的间距为4m ,两部电梯与楼面所成角的正弦值均为13.(1)求此顾客在二楼地面上步行的路程; (2)求异面直线AB 和CD 所成角的余弦值.17.某地政府部门欲做一个“践行核心价值观”的宣传牌,该宣传牌形状是如图所示的扇形环面(由扇形OAD 挖去扇形OBC 后构成的).已知2OA =米,OB x =米()02x <<,线段BA 、线段CD 与弧BC 、弧AD 的长度之和为6米,圆心角为θ弧度.(1)求θ关于x 的函数解析式;(2)记该宣传牌的面积为y ,试问x 取何值时,则y 的值最大?并求出最大值.参考答案与解析1.AB【分析】利用扇形的弧长与面积公式建立方程组求解,再利用圆心角公式.【详解】设扇形的半径为r ,弧长为l ,面积为S ,圆心角为α,则212l r +=,182S lr ==解得2r =和8l =或4r =和4l ,则4lrα==或1.故C ,D 错误. 故选:AB . 2.A【分析】根据终边相同的角的概念,简单计算即可.【详解】终边与直线y x =重合的角可表示为45180,k k Z +⋅∈. 故选:A. 3.D【分析】由角度制与弧度制的互化公式得到113306π-=-︒,结合终边相同角的表示,即可求解. 【详解】由角度制与弧度制的互化公式,可得113306π-=-︒ 与角330-︒终边相同的角的集合为{|330360,}A k k Z αα==-︒+⋅︒∈ 令2k =,可得390α=︒所以与角330α=-︒终边相同的角是390α=︒. 故选:D. 4.D【分析】利用弧度制、三角函数值的正负、三角函数的定义和三角函数线的应用逐一判断选项即可. 【详解】对于A ,长度等于半径的弦所对的圆心角为3π弧度,A 错误; 对于B ,若tan 0α≥,则()2k k k ππαπ≤<+∈Z ,B 错误;对于C ,若角α的终边过点()()3,40P k k k ≠,则4sin 5α=±,C 错误;对于D ,当()224k k k ππαπ<<+∈Z 时,则sin cos αα<,D 正确.故选D.5.D【分析】根据扇形的圆心角、弧长和半径的关系以及扇形的面积求解. 【详解】解:将圆心角240︒化为弧度为:43π,设圆锥底面圆的半径为r 由圆心角、弧长和半径的公式得:4213r ππ=⨯,即23r =由扇形面积公式得:22133S ππ=⨯⨯=所以圆锥的侧面积为23π. 故选:D. 6.B【分析】由题意分析得到这段弓形所在的弧长,结合弧长公式求出其所对的圆心角,双手之间的距离,求得其弦长,即可求解.【详解】如图所示,由题意知“弓”所在的弧ACB 的长54488l ππππ=++=,其所对圆心角58524ππα==则两手之间的距离()522sin 1.768m 44AB AD π==⨯⨯≈.故选:B .7.38π【解析】根据角度制与弧度制的关系180π︒=,转化即可. 【详解】180π︒= 1180π︒∴=36730'67.567.51808ππ︒∴︒==⨯=故答案为:38π 【点睛】本题主要考查了弧度制与角度制的转化,属于容易题. 8.9cm【分析】由题意设扇形的半径为r cm ,弧长为l cm ,由扇形的周长、面积可得1(202)92r r -=,解出r 后,验证即可得解.【详解】设扇形的半径为r cm ,弧长为l cm ,圆心角为θ ∵220l r +=,∴202l r =-∴192lr =,即1(202)92r r -=,解得1r =或9r = 当1r =时,则18l =,则181821l r θπ===>,不合题意,舍去; 当9r =时,则2l =,则229l r θπ==<,符合题意. 故答案为:9cm.【点睛】本题考查了扇形弧长及面积公式的应用,考查了运算求解能力,属于基础题. 9.1080【分析】首先求出弧长,再根据扇形面积公式计算可得;【详解】解:依题意30r =cm , 2.4lr=所以 2.472l r ==cm ,所以117230108022S lr ==⨯⨯=2cm ;故答案为:108010 【分析】求出,O A O B ''的长度,确定AO B ∠'的大小,再由弧长公式求得A,B 两地的东西方向的距离. 【详解】如图示,设O '为北纬30°圈的圆心,地球球心为O则60AOO '∠= ,故AO '=,即北纬30°R由题意可知2π1203AO B '∠==故点A 和B 两点东西方向的距离即为北纬30°圈上的AB 的长故AB 的长为2π3R =11.(1)132********︒=︒⨯+︒,第三象限; (2)()315360145-︒=︒⨯-+︒,第一象限; (3)1500360460︒=︒⨯+︒,第一象限; (4)()16103605190-︒=︒⨯-+︒,第三象限.【分析】先将各个角化为指定形式,根据通过终边相同的角的概念判断出角所在象限.【详解】(1)132********︒=︒⨯+︒,因为240︒的角终边在第三象限,所以1320︒是第三象限角; (2)()315360145-︒=︒⨯-+︒,因为45︒的角终边在第一象限,所以315-︒是第一象限角; (3)1500360460︒=︒⨯+︒,因为60︒的角终边在第一象限,所以1500︒是第一象限角; (4)()16103605190-︒=︒⨯-+︒,因为190︒的终边在第三象限,所以1610-︒是第三象限角. 12.(1)254218α=⨯π+π; (2)4718θπ=-.【分析】(1)先把角度数化成弧度数,再表示成符合要求的形式. (2)由(1)可得252,(Z)18k k θππ=+∈,再按给定范围求出k 值作答. (1)依题意,169251690169081801818παπππ=︒=⨯==+ 所以254218α=⨯π+π. (2)由(1)知252,(Z)18k k θππ=+∈,而(4,2)θππ∈--,则25422,()18k k Z ππππ-<+<-∈,解得2k =- 所以254741818θ=-π+π=-π. 13.80π【分析】先求出弧长,再利用扇形的面积公式直接求解. 【详解】设扇形弧长为l ,因为圆心角272721805ππ︒⨯==rad 所以扇形弧长2·2085l r παπ⨯=== 于是,扇形的面积S =12l ·r =12×8π×20=80π. 14.(1)103π;(2)12;(3)=10,=2l α 【分析】(1)根据扇形的弧长公式进行计算即可.(2)根据扇形的周长公式以及面积公式建立方程关系进行求解 (3)根据扇形的扇形公式结合基本不等式的应用进行求解即可. 【详解】(1)α=60°=rad ,∴l =α·R =×10=(cm).(2)由题意得解得 (舍去),故扇形圆心角为. (3)由已知得,l +2R =20.所以S =lR = (20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5时,则S 取得最大值25 此时l =10,α=2.【点睛】本题主要考查扇形的弧长公式和面积公式的应用,根据相应的弧长公式和面积公式建立方程关系是解决本题的关键.15.当扇形的圆心角为2rad 时,则扇形的面积最大.【解析】设扇形的半径为r ,弧长为l ,利用周长公式,求得2l c r =-,代入扇形的面积公式,结合二次函数的性质,即可求解.【详解】设扇形的半径为r ,弧长为l 则2l r c +=,即2(0)2c l c r r =-<<由扇形的面积公式12S lr =,代入可得222111(2)()22416c S c r r r cr r c =-=-+=--+当4c r =时,则即22cl c r =-=时,则面积S 取得最小值此时2l rad r α==,面积的最小值为2c 16.【点睛】本题主要考查了扇形的周长,弧长公式,以及扇形的面积公式的应用,其中解答中熟记扇形的弧长公式和面积公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题. 16.(1)2πm【分析】(1)过点B 作一楼地面的垂线,垂足为B ',则B '落在圆柱底面圆上,结合题意计算出1BO M ∠的大小,再利用扇形的弧长公式即可得出结果.(2)建立空间直角坐标系,求出异面直线AB 和CD 的方向向量,再由异面直线所成角的向量公式代入即可得出答案. (1)如图,过点B 作一楼地面的垂线,垂足为B ',则B '落在圆柱底面圆上 连接B A ',则B A '即为BA 在圆柱下底面上的射影 故BAB '∠即为电梯Ⅰ与楼面所成的角,所以1sin 3BAB '∠=.因为4BB AM '==,所以AB '=在AOB '中8OA OB ='=,所以AOB '是等腰直角三角形 连接1O ,B ,1O M ,则1π2BO M AOB '∠=∠= 因为BC CM =,所以BC 的长为π82π4⨯= 故此顾客在二楼地面上步行的路程为2π m . (2)连接2OO ,由(1)可知所在直线两两互相垂直.以O 为原点OB ',OA 和2OO 的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图所示,则()8,0,4B ()0,8,0A 与()C 和()D -,所以()8,8,4AB =- ()4CD =-. 设异面直线AB 和CD 所成角为θ,则·42cos cos ,=9AB CD AB CD AB CDθ==故异面直线AB 和CD 17.(1)22(02)2x x x θ+=<<+; (2)当12x =时,则y 的值最大,最大值为94.【分析】(1)根据弧长公式和周长列方程得出θ关于x 的函数解析式;(2)根据面积公式求出y 关于x 的函数表达式,根据二次函数性质可得y 的最大值. (1)根据题意,弧BC 的长度为x θ米,弧AD 的长度2AD θ=米2(2)26x x θθ∴-++=∴22(02)2x x x θ+=<<+. (2)依据题意,可知2211222OAD OBC y S S x θθ=-=⨯-扇扇 化简得:22y x x =-++ 02x <<∴当12x =,则2max 1192224y ⎛⎫=-++= ⎪⎝⎭.∴当12x =时,则y 的值最大,且最大值为94.。
高一任意角与弧度制题型练习(全)
任意角知识梳理一、角的概念的推广1.角按其旋转方向可分为:正角,零角,负角.①正角:习惯上规定,按照逆时针方向旋转而成的角叫做正角;②负角:按照顺时针方向旋转而成的角叫做负角;③零角:当射线没有旋转时,我们也把它看成一个角,叫做零角.例如,画出下列各角:,,.2.在直角坐标系中讨论角:①角的顶点在原点,始边在轴的非负半轴上,角的终边在第几象限,就说这个角是第几象限角.②若角的终边在坐标轴上,就说这个角不属于任何象限,它叫轴线角.二、终边相同的角的集合设表示任意角,所有与终边相同的角,包括本身构成一个集合,这个集合可记为.集合的每一个元素都与的终边相同,当时,对应元素为.例如,如图,角、角和角都是以射线为终边的角,它们是终边相同的角.特别提醒:为任意角,“”这一条件不能漏;与中间用“”连接,可理解成;当角的始边相同时,相等的角的终边一定相同,而终边相同的角不一定相等.终边相同的角有无数个,它们相差的整数倍.终边不同则表示的角一定不同.三、区间角、区域角1.区间角、区域角的定义介于两个角之间的角的集合叫做区间角,如.终边介于某两角终边之间的角的几何叫做区域角,显然区域角包括无数个区间角.2.区域角的写法(1)若角的终边落在一个扇形区域内,写区域角时,先依逆时针方向由小到大写出一个区间角,然后在它的两端分别加上“”,右端末注明“”即可.(2)若角的终边落在两个对称的扇形区域内,写区域角时,可以先写出终边落在一个扇形区域内的一个区间角,在此区间角的两端分别加上“”,右端末注明“”即可.例如,求终边落在图中阴影内(包括边界)的角的集合,可先求落在第一象限内的区间角,故终边落在图中阴影内(包括边界)的角的集合为.3.各象限角的集合象限角象限角的集合表示第一象限角第二象限角第三象限角第四象限角四、倍角和分角问题已知角的终边所在的象限,求的终边所在象限.1.代数法由的范围求出的范围.通过分类讨论把写成的形式,然后判断的终边所在的象限.2.几何法画出区域:将坐标系每个象限等分,得个区域.标号:自轴正向起,沿逆时针方向把每个区域依次标上、、、,如图所示(此时).确定区域:找出与角的终边所在象限标号一致的区域,即为所求.题型训练题型一任意角的概念1.下列四个命题中,正确的是()A.第一象限的角必是锐角B.锐角必是第一象限的角C.终边相同的角必相等D.第二象限的角必大于第一象限的角2.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③锐角一定是第一象限的角;④小于的角一定是锐角;⑤终边相同的角一定相等.其中正确命题的个数是()A.1B.2C.3D.43.设集合,,则?题型二终边相同的角的集合1.下列各个角中与2020°终边相同的是()A.-150°B.680°C.220°D.320°2.写出终边在图中直线上的角的集合.3.写出终边落在图中阴影部分(包括边界)的角的集合.4.下列各组中,终边相同的角是()A.和()B.和C.和D.和5.若角与的终边关于轴对称,且,则所构成的集合为.6.与2021°终边相同的最小正角是.7.写出角的终边在阴影中的角的集合.题型三象限角的定义1.在,,,,这五个角中,属于第二象限角的个数是()A.2B.3C.4D.52.若是第四象限角,则一定是第几象限角?3.已知,则所在的象限是()A.第一象限B.第二象限C.第一或第二象限D.第三或第四象限题型四角所在象限的研究1.已知α为第二象限角,则所在的象限是()A.第一或第二象限B.第二或第三象限C.第一或第三象限D.第二或第四象限2.已知θ为第二象限角,那么是()A.第一或第二象限角B.第一或四象限角C.第二或四象限角D.第一、二或第四象限角3.若是第二象限角,则,是第几象限角?弧度制知识梳理一、弧度制和弧度制与角度制的换算1.角度制角可以用度为单位进行度量,度的角等于周角的,这种用度作为单位来度量角的单位制叫做角度制.2.弧度制①弧度的角:长度等于半径长的弧所对的圆心角.②弧度制定义:以弧度作为单位来度量角的单位制.记法:用符号表示,读作弧度.特别提醒:(1)用弧度为单位表示角的大小时,“弧度”或“”可以略去不写,只写这个角对应的弧度数即可,如角可写成.而用度为单位表示角的大小时,“度”或“°”不可以省略.(2)不管是以弧度还是以度为单位的角的大小都是一个与半径大小无关的定值.二、角度与弧度的换算1.弧度与角度的换算公式(1)关键:抓住互化公式rad=180°是关键;(2)方法:度数弧度数;弧度数度数2.一些特殊角的度数与弧度数的对应表:【注意】①在同一问题中,角度制与弧度制不能混用;②弧度制下角可以与实数可以建立一一对应的关系,所以弧度制表示的角的范围可以用区间表示,如,但角度制表示的角的范围一般不用区间表示,即不用表示,因为区间表示的是数集,但角度数不是实数.三、弧长公式、扇形面积公式如图,设扇形的半径为,弧长为,圆心角为.1.弧长公式:.注意:在应用弧长公式时,要注意的单位是“弧度”,而不是“度”,如果一直角是以“度”为单位的,则必须先把它化为以“弧度”为单位,再代入计算.2.扇形面积公式:.3.弧长公式及扇形面积公式的两种表示角度制弧度制弧长公式扇形面积公式注意事项是扇形的半径,是圆心角的角度数是扇形的半径,是圆心角的弧度数题型训练题型一弧度制与角度制互化1.与角终边相同的最小正角是?(用弧度制表示)2.若四边形的四个内角之比为,则四个内角的弧度数依次为.3.对应的弧度数为4.把化为弧度的结果是5.如图,用弧度制表示终边落在下列阴影部分的角.6.若θ=-3rad,则θ的终边落在()A.第一象限B.第二象限C.第三象限D.第四象限题型二扇形的弧长、面积、与圆心角问题1.半径为,中心角为的角所对的弧长为()A.B.C.D.2.已知扇形的面积为,扇形圆心角的弧度数是,则扇形的周长为()A.2B.4C.6D.83.已知扇形的周长为,圆心角为,则扇形的面积为?4.一个扇形的弧长与面积都是,则这个扇形圆心角的弧度数为()A.B.C.D.5.已知弧度的圆心角所对的弦长为,那么,这个圆心角所对的弧长是()A.B.C.D.6.半径为,圆心角为的扇形的弧长为()A.B.C.D.7.设扇形的弧长为,半径为,则该扇形的面积为?8.已知扇形的周长为,面积为,则扇形圆心角的弧度数为?。
4.1 任意角、弧度制及任意角的三角函数练习题
§4.1 任意角、弧度制及任意角的三角函数一、选择题1.sin 2cos 3tan 4的值( ).A .小于0B .大于0C .等于0D .不存在 解析 ∵sin 2>0,cos 3<0,tan 4>0, ∴sin 2cos 3tan 4<0. 答案 A2.已知点P (sin 5π4,cos 3π4)落在角θ的终边上,且θ∈[0,2π),则θ是第________象限角.( )A .一B .二C .三D .四 解析:因P 点坐标为(-22,-22),∴P 在第三象限. 答案:C3.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的中心角的弧度数是( )A .1B .4C .1或4D .2或4解析 设此扇形的半径为r ,弧长是l ,则⎩⎨⎧2r +l =6,12rl =2,解得⎩⎨⎧r =1,l =4或⎩⎨⎧r =2,l =2.从而α=l r =41=4或α=l r =22=1.答案 C4.若cos α=-32,且角α的终边经过点(x,2),则P 点的横坐标x 是( ).A .2 3B .±2 3C .-2 2D .-2 3解析 由cos α=x x 2+4=-32,解得,x =-2 3.答案 D5.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( )A.45-B.35-C.35D.45解析 设(,2)P a a 是角θ终边上任意一点,则由三角函数定义知:cos θ=,所以223cos 22cos 12(15θθ=-=⨯-=-,故选B. 答案 B6.已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( ).A .-12 B.12 C .-32 D.32解析 ∵r =64m 2+9,∴cos α=-8m 64m 2+9=-45,∴m >0,∴4m 264m 2+9=125,∴m =±12.∵m >0,∴m =12. 答案 B7.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( ).A.⎝ ⎛⎭⎪⎫-12,32B.⎝ ⎛⎭⎪⎫-32,-12C.⎝ ⎛⎭⎪⎫-12,-32D.⎝ ⎛⎭⎪⎫-32,12解析 设α=∠POQ ,由三角函数定义可知,Q 点的坐标(x ,y )满足x =cos α, y =sin α,∴x =-12,y =32,∴Q 点的坐标为⎝ ⎛⎭⎪⎫-12,32.答案 A 二、填空题8.若β的终边所在直线经过点P ⎝ ⎛⎭⎪⎫cos 3π4,sin 3π4,则sin β=________, tan β=________.解析:因为β的终边所在直线经过点P ⎝ ⎛⎭⎪⎫cos 3π4,sin 3π4,所以β的终边所在直线为y =-x ,则β在第二或第四象限. 所以sin β=22或-22,tan β=-1. 答案:22或-22-1 9.已知点P (tan α,cos α)在第三象限,则角α的终边在第______象限. 解析 ∵点P (tan α,cos α)在第三象限,∴tan α<0,cos α<0. ∴角α在第二象限. 答案 二10.弧长为3π,圆心角为135的扇形的半径为 ,面积为 .解析 由扇形面积公式得:12lR =6π.答案 4;6π11.若三角形的两个内角α,β满足sin αcos β<0,则此三角形为________. 解析 ∵sin αcos β<0,且α,β是三角形的两个内角. ∴sin α>0,cos β<0,∴β为钝角.故三角形为钝角三角形. 答案 钝角三角形 12.函数y =sin x +12-cos x 的定义域是________. 解析由题意知⎩⎨⎧sin x ≥0,12-cos x ≥0,即⎩⎨⎧sin x ≥0,cos x ≤12.∴x 的取值范围为π3+2k π≤x ≤π+2k π,k ∈Z.答案 ⎣⎢⎡⎦⎥⎤π3+2k π,π+2k π(k ∈Z)三、解答题13. (1)确定tan -3cos8·tan5的符号;(2)已知α∈(0,π),且sin α+cos α=m (0<m <1),试判断式子sin α-cos α的符号.解析 (1)∵-3,5,8分别是第三、第四、第二象限角, ∴tan(-3)>0,tan5<0,cos8<0, ∴原式大于0.(2)若0<α<π2,则如图所示,在单位圆中,OM =cos α,MP =sin α,∴sin α+cos α=MP +OM >OP =1.若α=π2,则sin α+cos α=1.由已知0<m <1,故α∈⎝ ⎛⎭⎪⎫π2,π.于是有sin α-cos α>0.14.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,求sin θ,cos θ.解析:∵θ的终边过点(x ,-1)(x ≠0),∴tan θ=-1x,又tan θ=-x ,∴x 2=1,∴x =±1. 当x =1时,sin θ=-22,cos θ=22; 当x =-1时,sin θ=-22,cos θ=-22. 15.如图所示,A ,B 是单位圆O 上的点,且B 在第二象限,C 是圆与x 轴正半轴的交点,A 点的坐标为⎝ ⎛⎭⎪⎫35,45,△AOB 为正三角形.(1)求sin ∠COA ; (2)求cos ∠COB .解析 (1)根据三角函数定义可知sin ∠COA =45.(2)∵△AOB 为正三角形,∴∠AOB =60°, 又sin ∠COA =45,cos ∠COA =35,∴cos ∠COB =cos(∠COA +60°) =cos ∠COA cos 60°-sin ∠COA sin 60° =35·12-45·32=3-4310. 16.角α终边上的点P 与A (a,2a )关于x 轴对称(a >0),角β终边上的点Q 与A 关于直线y =x 对称,求sin α·cos α+sin β·c os β+tan α·tan β的值.解析 由题意得,点P 的坐标为(a ,-2a ), 点Q 的坐标为(2a ,a ). 所以,sin α=-2aa 2+-2a2=-25, cos α=a a 2+-2a 2=15, tan α=-2aa=-2,sin β=a 2a 2+a 2=15,cos β=2a 2a2+a2=25, tan β=a 2a =12,故有sin α·cos α+sin β·cos β+tan α·tan β =-25×15+15×25+(-2)×12=-1.。
专题44 高中数学任意角(原卷版)
专题44 任意角1.角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.2.角的表示如图,(1)始边:射线的起始位置OA ,(2)终边:射线的终止位置OB ,(3)顶点:射线的端点O . 这时,图中的角α可记为“角α”或“∠α”或简记为“α”.3.角的分类按旋转方向,角可以分为三类:4.象限角把角放在平面直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.象限角的判定方法(1)根据图象判定.依据是终边相同的角的概念,因为0°~360°之间的角的终边与坐标系中过原点的射线可建立一一对应的关系.(2)将角转化到0°~360°范围内.在直角坐标平面内,在0°~360°范围内没有两个角终边是相同的. (3)nα所在象限的判断方法:确定nα终边所在的象限,先求出nα的范围,再直接转化为终边相同的角即可. (4)αn 所在象限的判断方法:已知角α所在象限,要确定角αn所在象限,有两种方法: ①用不等式表示出角αn 的范围,然后对k 的取值分情况讨论:被n 整除;被n 除余1;被n 除余2;…;被n除余n -1.从而得出结论.②作出各个象限的从原点出发的n 等分射线,它们与坐标轴把周角分成4n 个区域.从x 轴非负半轴起,按逆时针方向把这4n个区域依次循环标上1,2,3,4.α的终边在第几象限,则标号为几的区域,就是α的终边所n所在的象限就可以由标号区域所在的象限直观地看出.落在的区域.如此,αn5.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.所有与角α终边相同的角,连同角α在内可以用式子k·360°+α,k∈Z表示,在运用时需注意以下四点:(1)k是整数,这个条件不能漏掉.(2)α是任意角.(3)k·360°与α之间用“+”连接,如k·360°-30°应看成k·360°+(-30°),k∈Z.(4)终边相同的角不一定相等,但相等的角终边一定相同,终边相同的角有无数个,它们相差周角的整数倍.(5)终边相同的角常用的三个结论①终边相同的角之间相差360°的整数倍;②终边在同一直线上的角之间相差180°的整数倍;③终边在相互垂直的两直线上的角之间相差90°的整数倍.提示:(1)关于x轴对称:若角α与β的终边关于x轴对称,则角α与β的关系是β=-α+k·360°,k∈Z.(2)关于y轴对称:若角α与β的终边关于y轴对称,则角α与β的关系是β=180°-α+k·360°,k∈Z.(3)关于原点对称:若角α与β的终边关于原点对称,则角α与β的关系是β=180°+α+k·360°,k∈Z.(4)关于直线y=x对称:若角α与β的终边关于直线y=x对称,则角α与β的关系是β=-α+90°+k·360°,k∈Z.题型一角的有关概念的判断1.下列说法正确的是()A.终边相同的角一定相等B.钝角一定是第二象限角C.第一象限角一定不是负角D.小于90°的角都是锐角2.给出下列说法:①锐角都是第一象限角;②第一象限角一定不是负角;③小于180°的角是钝角、直角或锐角;④始边和终边重合的角是零角.其中正确说法的序号为________(把正确说法的序号都写上).3.下列结论:①三角形的内角必是第一、二象限角;②始边相同而终边不同的角一定不相等;③钝角比第三象限角小;④小于180°的角是钝角、直角或锐角.其中正确的结论为________(填序号).4.下列说法正确的是()A.三角形的内角一定是第一、二象限角B.钝角不一定是第二象限角C.终边与始边重合的角是零角D.钟表的时针旋转而成的角是负角5.已知集合A={第一象限角},B={锐角},C={小于90°的角},则下面关系正确的是() A.A=B=C B.A⊆CC.A∩C=B D.B∪C⊆C6.设A={小于90°的角},B={锐角},C={第一象限角},D={小于90°而不小于0°的角},那么有() A.B C A B.B A C C.D(A∩C) D.C∩D=B7.给出下列四个命题:①-75°是第四象限角;②225°是第三象限角;③475°是第二象限角;④-315°是第一象限角.其中正确的命题有()A.1个B.2个C.3个D.4个8.下列说法正确的是()A.三角形的内角是第一象限角或第二象限角B.第四象限的角一定是负角C.60°角与600°角是终边相同的角D.将表的分针拨慢10分钟,则分针转过的角为60°9.下列命题正确的是()A.终边与始边重合的角是零角B.终边和始边都相同的两个角一定相等C.在90°≤β<180°范围内的角β不一定是钝角D.小于90°的角是锐角10.若将钟表拨慢10分钟,则时针转了______度,分针转了________度.11.已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,作出下列各角,并指出它们是第几象限角.①420°.②855°.③-510°.题型二终边相同的角的表示及应用1.50°角的始边与x轴的非负半轴重合,把终边按顺时针方向旋转2周,所得角是________.2.下列各个角中与2 019°终边相同的是()A.-149°B.679°C.319°D.219°3.下面与-850°12′终边相同的角是()A.230°12′B.229°48′C.129°48′D.130°12′4.已知0°≤α<360°,且α与600°角终边相同,则α=________,它是第________象限角.5.角-870°的终边所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.在-360°~0°范围内与角1 250°终边相同的角是()A.170°B.190°C.-190°D.-170°7.与600°角终边相同的角可表示为()A.k·360°+220°(k∈Z) B.k·360°+240°(k∈Z)C.k·360°+60°(k∈Z) D.k·360°+260°(k∈Z)8.已知角α=-3000°,则与角α终边相同的最小正角是________.9.与2019°角的终边相同的最小正角是________,绝对值最小的角是________.10.若α,β两角的终边互为反向延长线,且α=-120°,则β=________.11.写出与α=-1910°终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.12.在-360°~360°之间找出所有与下列各角终边相同的角,并判断各角所在的象限.①790°;②-20°.13.在0°到360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角:(1)-120°;(2)640°.14.在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角.(1)-120°;(2)660°;(3)-950°08′.15.已知角α=2020°.(1)把α改写成k·360°+β(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α终边相同,且-360°≤θ<720°.16.在与角1030°终边相同的角中,求满足下列条件的角.(1)最小的正角;(2)最大的负角.17.在与530°终边相同的角中,求满足下列条件的角.(1)最大的负角;(2)最小的正角;(3)-720°到-360°的角.18.在与角10 030°终边相同的角中,求满足下列条件的角β.(1)最大的负角和最小的正角;(2)[360°,720°)内的角.19.已知角β为以O为顶点,x轴为始边,逆时针旋转60°所成的角.(1)写出角β的集合S;(2)写出S中适合不等式-360°<β<720°的元素.20.在角的集合{α|α=k·90°+45°,k∈Z}中,(1)有几种终边不相同的角?(2)若-360°<α<360°,则集合中的α共有多少个?21.已知角的集合M={α|α=30°+k·90°,k∈Z},回答下列问题:(1)集合M有几类终边不相同的角?(2)集合M中大于-360°且小于360°的角是哪几个?(3)写出集合M中的第二象限角β的一般表达式.22.若角α与β的终边在一条直线上,则α与β的关系是__________.23.若角α,β的终边相同,则α-β的终边在()A.x轴的非负半轴B.y轴的非负半轴C.x轴的非正半轴D.y轴的非正半轴24.已知角α的终边与角-690°的终边关于y轴对称,则角α=___________.25.角α与角β的终边关于y轴对称,则α与β的关系为()A.α+β=k·360°,k∈Z B.α+β=k·360°+180°,k∈ZC.α-β=k·360°+180°,k∈Z D.α-β=k·360°,k∈Z26.若角α满足180°<α<360°,角5α与α有相同的始边,且又有相同的终边,那么角α=________.27.已知α,β都是锐角,且α+β的终边与-280°角的终边相同,α-β的终边与670°角的终边相同,求角α,β的大小.28.终边在第一或第三象限的角的集合是________.29.终边在直线y=-x上的所有角的集合是()A.{α|α=k·360°+135°,k∈Z} B.{α|α=k·360°-45°,k∈Z}C.{α|α=k·180°+225°,k∈Z} D.{α|α=k·180°-45°,k∈Z}30.终边落在直线y=3x上的角的集合为________.31. 一只红蚂蚁与一只黑蚂蚁在一个单位圆(半径为1的圆)上爬动,两只蚂蚁均从点A(1,0)同时逆时针匀速爬动,红蚂蚁每秒爬过α角,黑蚂蚁每秒爬过β角(其中0°<α<β<180°),如果两只蚂蚁都在第14 s时回到A 点,并且在第2 s时均位于第二象限,求α,β的值.题型三象限角的判定(任意角终边位置的确定和表示)1.若α是第一象限角,则下列各角中属于第四象限角的是()A.90°-αB.90°+αC.360°-αD.180°+α2.已知α是第二象限的角,则180°-α是第________象限的角.3.若角α的终边在y轴的负半轴上,则角α-150°的终边在()A.第一象限B.第二象限C.y轴的正半轴上D.x轴的负半轴上4.若α=k·180°+45°,k∈Z,则α所在象限是()A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限5.若β是第二象限角,则270°+β是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角6.若α是第二象限角,则2α,α2分别是第几象限的角?7.已知α为第三象限角,则α2所在的象限是( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限8.若α是第一象限角,则2α,α2分别是第几象限角?9.(1)若α为第三象限角,试判断90°-α的终边所在的象限;(2)若α为第四象限角,试判断α2的终边所在的象限.10.若α是第一象限角,则-α2是( )A .第一象限角B .第一、四象限角C .第二象限角D .第二、四象限角11.已知角2α的终边在x 轴的上方,那么α是( )A .第一象限角B .第一、二象限角C .第一、三象限角D .第一、四象限角12.已知θ为第二象限角,那么θ3是( )A .第一或第二象限角B .第一或第四象限角C .第二或第四象限角D .第一、二或第四象限角13.已知α是第一象限角,则角α3的终边可能落在________.(填写所有正确的序号)①第一象限 ②第二象限 ③第三象限 ④第四象限题型四 区域角的表示1.已知,如图所示.分别写出终边落在OA ,OB 位置上的角的集合;②写出终边落在阴影部分(包括边界)的角的集合.2.已知角α的终边在如图阴影表示的范围内(不包含边界),那么角α的集合是________.3.已知角α的终边在图中阴影所表示的范围内(不包括边界),那么α∈________.4.如图,终边落在阴影部分的角的集合是( ) A .{α|-45°≤α≤120°} B .{α|120°≤α≤315°}C .{α|k ·360°-45°≤α≤k ·360°+120°,k ∈Z}D .{α|k ·360°+120°≤α≤k ·360°+315°,k ∈Z}5.写出终边落在阴影部分的角的集合.6.写出角的终边在图中阴影区域的角的集合(包括边界).7.写出终边落在图中阴影区域内(不包括边界)的角的集合.8.如图,分别写出适合下列条件的角的集合:(1)终边落在射线OB上;(2)终边落在直线OA上;(3)终边落在阴影区域内(含边界).9.如图,α,β分别是终边落在OA,OB位置上的两个角,且α=60°,β=315°.(1)求终边落在阴影部分(不包括边界)的角γ的集合;(2)求终边落在阴影部分(不包括边界),且在0°~360°范围内的角的集合.10.已知集合A={α|k·180°+45°<α<k·180°+60°,k∈Z},集合B={β|k·360°-55°<β<k·360°+55°,k∈Z}.(1)在平面直角坐标系中,表示出角α终边所在区域;(2)在平面直角坐标系中,表示出角β终边所在区域;(3)求A∩B.。
1.1.3任意角、弧度制习题
, k Z} , k Z}
4 3 4
, k Z}
4 5 D { | 2k , k Z} 4 E { | 2k
, 或 2k
5 4
,k Z}
4
则相等的角的集合是
。
任意角、弧度
实地演习 1.(2)已知 M
{ | k 2 k 4
k , k Z },
任意角、弧度
实地演习 4.一个角的7倍所在的终边与这个角的终边重合, 问这样的角有几个,试求出它们。
任意角、弧度
实地演习 3.已知:
A { | 2k B { | 2k
5 6
2k , k Z },
1 4
2
2k , k Z },
求 A B, A B. 思考:将B改为下面集合,重求之。
B { | k
2
1 4
3.已知角 的终边,如何确定角2 、表示各种与角相关的公式;
5.用弧度制表示角并求角的三角函数值。
任意角、弧度
实地演习 1.(1)已知
A { | 2k B { | 2k C { | k
4
, k Z} , k Z}
N { |
2
则集合M与N的关系最正确的是:
A. M N
C. M N B. M N D. M N
任意角、弧度
实地演习 58 2.(1)在 (4 , 4 ) 内,找出与角 终边相同的 7 角是 ; (2)圆的弧长等于该圆内接正三角形的边长,则该 弧所对的圆心角是 ; (3)1弧度的圆心角所对弦长为2,则该圆心角所对 的弧长是 。
高一数学(必修一)《第五章 任意角》练习题及答案解析-人教版
高一数学(必修一)《第五章 任意角》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.喜洋洋从家步行到学校,一般需要10分钟,则10分钟时间钟表的分针走过的角度是( )A .30°B .﹣30°C .60°D .﹣60°2.将880-︒化为360k α+⨯︒(0360α︒≤<︒,Z k ∈)的形式是( )A .()1603360︒+-⨯︒B .()2002360︒+-⨯︒C .()1602360︒+-⨯︒D .()2003360︒+-⨯︒3.下列角中终边在y 轴非负半轴上的是( )A .45︒B .90︒C .180︒D .270︒4.下列说法中正确的是( )A .锐角是第一象限的角B .终边相同的角必相等C .小于90︒的角一定为锐角D .第二象限的角必大于第一象限的角 5.在0°到360范围内,与405终边相同的角为( )A .45-B .45C .135D .2256.若750︒角的终边上有一点(),3P a ,则a 的值是( )AB .C .D .-7.下列命题:①钝角是第二象限的角;②小于90的角是锐角;③第一象限的角一定不是负角;④第二象限的角一定大于第一象限的角;⑤手表时针走过2小时,则时针转过的角度为60;⑥若 4.72α=-,则α是第四象限角.其中正确的命题的个数是( )A .1B .2C .3D .48.角296π-的终边所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限 9.下列命题中正确的是( ).A .第一象限角一定不是负角B .小于90°的角一定是锐角C .钝角一定是第二象限角D .第一象限角一定是锐角 10.已知α为第三象限角,cos 02α>和tan 3α=,则tan 2α的值为( )A .13-B .13C .13-D .13-+13-11.下列与94π的终边相同的角的集合中正确的是( ) A .(){}245Z k k ααπ=+︒∈ B .()9360Z 4k k ααπ⎧⎫=⋅︒+∈⎨⎬⎩⎭C .(){}360315Z k k αα=⋅︒-︒∈D .()5Z 4k k πααπ⎧⎫=+∈⎨⎬⎩⎭12.已知集合{}9045,M x x k k ==⋅︒+︒∈Z ,集合{}4590,N x x k k ==⋅︒+︒∈Z ,则有( )A .M NB .N MC .M ND .M N ⋂=∅13.若角α的终边与函数()1f x x =-的图象相交,则角α的集合为( )A .π5π|2π+2π,Z 44k k k αα⎧⎫<<+∈⎨⎬⎩⎭B .3π7π|2π+2π,Z 44k k k αα⎧⎫<<+∈⎨⎬⎩⎭C .3ππ|2π2π,Z 44k k k αα⎧⎫-<<+∈⎨⎬⎩⎭D .5ππ|2π2π,Z 44k k k αα⎧⎫-<<+∈⎨⎬⎩⎭二、双空题14.与角-2021°终边重合的最大负角是__________,与角2022°终边重合的最小正角是__________.三、填空题15.如图,终边落在阴影部分(不含边界)的角的集合是________.16.若角α的终边在函数y x =-的图象上,试写出角α的集合为_________.四、多选题17.如果2θ是第四象限角,那么θ可能是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角参考答案与解析1.D【分析】根据分针旋转方向结合任意角的定义即可求出【详解】因为分针为顺时针旋转,所以10分钟时间钟表的分针走过的角度是 360606︒-=-︒. 故选:D .2.D【分析】根据给定条件直接计算即可判断作答.【详解】880200()3360-︒=︒+-⨯︒.故选:D3.B【分析】求出以x 轴的非负半轴为始边,终边在y 轴非负半轴上的一个角即可判断作答.【详解】因x 轴的非负半轴绕原点逆时针旋转90°即可与y 轴非负半轴重合因此,以x 轴的非负半轴为始边,y 轴非负半轴为终边的一个角是90°于是得:终边在y 轴非负半轴上的角的集合为{|36090,Z}k k αα=⋅+∈显然,A ,C ,D 不满足,符合条件的是B.故选:B4.A【分析】根据锐角的定义,可判定A 正确;利用反例可分别判定B 、C 、D 错误,即可求解.【详解】对于A 中根据锐角的定义,可得锐角α满足090α︒<<︒是第一象限角,所以A 正确; 对于B 中例如:30α=与390β=的终边相同,但αβ≠,所以B 不正确;对于C 中例如:30α=-满足90α<,但α不是锐角,所以C 不正确;对于D 中例如:390α=为第一象限角,120β=为第二象限角,此时αβ>,所以D 不正确.故选:A.5.B【分析】根据终边相同角的概念判断即可;【详解】解:因为40536045=+,所以在0°到360范围内与405终边相同的角为45;故选:B6.B【分析】结合已知条件可求得750与30的终边相同,然后利用三角函数值的定义即可求解.【详解】因为750236030=⨯+所以750与30的终边相同从而223cos750cos3023a a ===+,解得a =故选:B.7.A【分析】利用任意角的定义逐项判断可得出合适的选项. 【详解】①因为大于90小于180的角为钝角,所以钝角的终边在第二象限,钝角是第二象限的角对; ②小于90的角包含负角,负角不是锐角,所以小于90的角是锐角错;③330-是第一象限角,所以第一象限角一定不是负角错;④120是第二象限角,390是第一象限角120390<,所以第二象限角一定大于第一象限角错; ⑤因为时针顺时针旋转,所以针转过的角为负角23060-⨯=-,⑤错; ⑥3 4.7124 4.722π-≈->-,且 4.722π->-,即32 4.722ππ-<-<-,所以α是第四象限角错. 故正确的命题只有①故选:A.8.C 【分析】将角化为k πα+(k Z ∈)的形式,由此确定正确选项.【详解】29566πππ-=-+,在第三象限. 故选:C9.C【分析】明确锐角、钝角、象限角的定义,通过举反例排除错误的选项,得到正确的选项.【详解】解:A 不正确,如330-︒就是第一象限角.B 不正确,如30-︒是小于90︒的角,但30-︒并不是锐角.C 正确,因为钝角大于90︒且小于180︒,它的终边一定在第二象限.D 不正确,如330-︒就是第一象限角,但330-︒并不是锐角.故选:C .10.A 【分析】利用正切的二倍角公式可得23tan 2tan 3022αα+-=,求出tan 2α,再根据α的范围可得答案.【详解】∵tan 3α=,∴22tan231tan 2αα=- 即23tan2tan 3022αα+-=∴1tan 23α=-1tan 23α=-α为第三象限角,所以()3ππ2π2π2k k k α+<<+∈Z ()π3πππ224k k k α+<<+∈Z ∵cos02α>,∴2α为第四象限角 ∴tan 02α<,∴1tan23α=-故选:A.11.C【分析】由任意角的定义判断 【详解】94057203154rad π︒=︒=-︒,故与其终边相同的角的集合为9{|2,}4k k Z πααπ=+∈或{|315360,}k k Z αα=-︒+⋅︒∈角度制和弧度制不能混用,只有C 符合题意故选:C12.CN ∴中存在元素x M ∉;M N ∴.故选:C .13.C【分析】只有当角α的终边与在直线y x =上时,则与函数()1f x x =-的图象无交点,其余情况一直有交点,结合选项可得答案.【详解】当角α的终边与直线y x =重合时,则角α的终边与函数()1f x x =-的图象无交点.又因为角α的终边为射线 所以3ππ2π2π44k k α-<<+ k ∈Z . 故选:C14. -221° 222°【分析】根据终边相同的角相差360︒的整数倍,利用集合的描述法可写出符合条件的集合,给k 赋值进行求解即可.【详解】解:根据终边相同的角相差360︒的整数倍故与-2021°终边相同的角可表示为:{|3602021k αα=︒-︒ }k Z ∈则当4k =时,则53602021221α=⨯︒-︒=-︒,此时为最大的负角.与角2022°终边相同的角可表示为:{|3602022k αα=︒+︒ }k Z ∈当5k =-时,则53602022222α=-⨯︒+︒=︒,此时为最小的正角.故答案为:-221°,222°15.{}|36045360120,k k k Z αα︒︒︒︒⋅-<<⋅+∈ 【解析】写出与OA 终边相同的角的集合和与OB 终边相同的角的集合,根据区域角的表示方法即可得解.【详解】由题图可知与OA 终边相同的角的集合为{}|360120,k k Z αα︒︒=⋅+∈与OB 终边相同的角的集合为(){}|36045,k k Z αα︒︒=⋅+-∈,故终边落在阴影部分(不含边界)的角的集合是{}|36045360120,k k k Z αα︒︒︒︒⋅-<<⋅+∈.故答案为:{}|36045360120,k k k Z αα︒︒︒︒⋅-<<⋅+∈ 【点睛】此题考查区域角的表示方法,关键在于准确找准区域边界所对应的角的表示方式.16.{|180135,}k k αα=⋅︒+︒∈Z【解析】函数y x =-的图象是第二、四象限的平分线,可以先在0︒~360︒范围内找出满足条件的角,再进一步写出满足条件的所有角,并注意化简.【详解】解:函数y x =-的图象是第二、四象限的平分线,在0︒~360︒范围内,以第二象限射线为终边的角为135︒,以第四象限射线为终边的角为315︒∴α的集合为{|360135k αα=⋅︒+︒或360315,}k k Z α=⋅︒+︒∈{|180135,}k k Z αα==⋅︒+︒∈故答案为:{|180135,}k k Z αα=⋅︒+︒∈【点睛】本题考查终边相同角的表示,角的终边是以原点为顶点的一条射线,因此当只有角的终边在直线上时,则要分类讨论.由原点把直线分成两条射线.17.BD【解析】依题意求出2θ的取值范围,从而得出θ的取值范围,即可判断θ所在的象限; 【详解】解:由已知得2222k k ππθπ-<<,k Z ∈所以4k k ππθπ-<<,k Z ∈当k 为偶数时,则θ在第四象限,当k 为奇数时,则θ在第二象限,即θ在第二或第四象限.故选:BD .。
三角函数第一节任意角练习含答案
《任意角》评测练习1下列命题:(1)始边和终边都相同的角一定相等 (2)始边相同而终边不同的角一定不相等(3)始边相同、终边相同且旋转方向也相同的两个角一定相等 (4)始边想通过、终边相同而旋转方向不相同的两个角一定不相等 其中正确的命题是 2、下列命题中,正确的是(1)第一象限的角都是锐角 (2)第二象限的角都是钝角 (3)小于90的角都是锐角 (4)锐角都是第一象限角3、在0到360范围内,找出与下列各角终边相同的角,并指出它们是第几象限角 (1)26-: (2)118524': (3)900: (4)83710'-:4、写出与下列各角终边相同的角的集合,并把集合中适合不等式360360α-≤<的元素表示出来。
(1)25- (2)83436'- (3)455 (4)05、(1)若角α的终边为第二象限的角平分线,则角α的集合是 ; (2)若角α的终边为第一、三象限的角平分线,则角α的集合是 。
6、设,αβ满足180180αβ-<<<,则αβ-的范围是:7、根据下列条件写出角α与角β之间的关系式: (1)两角,αβ的终边关于原点对称;(2)两角,αβ的终边关于x 轴对称;(3)两角,αβ的终边关于y 轴对称;(4)两角,αβ的终边关于直线y x =对称;8、自上午7点整到校至中午11点40分放学,时钟的时针和分针各转了多少度上午7点整和中午11点40分两针所成的最小正角各是多少度9、将下列落在图示部分的角(阴影部分)135 135第一章 三角函数 § 任意角和弧度制1. 任意角一、选择题1.与405°角终边相同的角是( )A .k ·360°-45°,k ∈ZB .k ·180°-45°,k ∈ZC .k ·360°+45°,k ∈ZD .k ·180°+45°,k ∈Z 2.若α=45°+k ·180° (k ∈Z ),则α的终边在( ) A .第一或第三象限 B .第二或第三象限 C .第二或第四象限 D .第三或第四象限3.设A ={θ|θ为锐角},B ={θ|θ为小于90°的角},C ={θ|θ为第一象限的角},D ={θ|θ为小于90°的正角},则下列等式中成立的是( ) A .A =B B .B =C C .A =CD .A =D4.若α是第四象限角,则180°-α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角5.集合M =⎩⎨⎧⎭⎬⎫x |x =k ·180°2±45°,k ∈Z ,P =⎩⎨⎧⎭⎬⎫x |x =k ·180°4±90°,k ∈Z ,则M 、P 之间的关系为( ) A .M =P B .M PC .MPD .M ∩P =∅6.已知α为第三象限角,则α2所在的象限是( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限二、填空题7.若角α与β的终边相同,则α-β的终边落在________. 8.经过10分钟,分针转了________度.9.如图所示,终边落在阴影部分(含边界)的角的集合是______________________________.10.若α=1 690°,角θ与α终边相同,且-360°<θ<360°,则θ=________.三、解答题11.在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角. (1)-150°;(2)650°;(3)-950°15′.12.如图所示,写出终边落在阴影部分的角的集合.能力提升13.如图所示,写出终边落在直线y=3x上的角的集合(用0°到360°间的角表示).14.设α是第二象限角,问α3是第几象限角第一章三角函数§任意角和弧度制1.任意角答案1.C 2..A 3.D 4.C 5.B6.D7.x轴的正半轴8.-609.{α|k·360°-45°≤α≤k·360°+120°,k∈Z}10.-110°或250°11.解(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.12.解设终边落在阴影部分的角为α,角α的集合由两部分组成.①{α|k·360°+30°≤α<k·360°+105°,k∈Z}.②{α|k·360°+210°≤α<k·360°+285°,k∈Z}.∴角α的集合应当是集合①与②的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°或(2k+1)·180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|k·180°+30°≤α<k·180°+105°,k∈Z}.13.解终边落在y=3x (x≥0)上的角的集合是S1={α|α=60°+k·360°,k∈Z},终边落在y=3x (x≤0) 上的角的集合是S2={α|α=240°+k·360°,k∈Z},于是终边在y=3x上角的集合是S={α|α=60°+k·360°,k∈Z}∪{α|α=240°+k·360°,k∈Z}={α|α=60°+2k·180°,k∈Z}∪{α|α=60°+(2k+1)·180°,k∈Z}={α|α=60°+n·180°,n∈Z}.14.解当α为第二象限角时,90°+k·360°<α<180°+k·360°,k∈Z,∴30°+k 3·360°<α3<60°+k3·360°,k ∈Z .当k =3n 时,30°+n ·360°<α3<60°+n ·360°,此时α3为第一象限角;当k =3n +1时,150°+n ·360°<α3<180°+n ·360°,此时α3为第二象限角;当k =3n +2时,270°+n ·360°<α3<300°+n ·360°,此时α3为第四象限角.综上可知α3是第一、二、四象限角.任意角和弧度制练习题一选择题1、下列角中终边与330°相同的角是( )A .30°B .-30°C .630°D .-630°2、-1120°角所在象限是 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3、把-1485°转化为α+k ·360°(0°≤α<360°, k ∈Z )的形式是 ( ) A .45°-4×360°B .-45°-4×360°C .-45°-5×360°D .315°-5×360°4、终边在第二象限的角的集合可以表示为: ( )A .{α∣90°<α<180°}B .{α∣90°+k ·180°<α<180°+k ·180°,k ∈Z }C .{α∣-270°+k ·180°<α<-180°+k ·180°,k ∈Z }D .{α∣-270°+k ·360°<α<-180°+k ·360°,k ∈Z } 5、下列命题是真命题的是( )Α.三角形的内角必是一、二象限内的角 B .第一象限的角必是锐角 C .不相等的角终边一定不同{}Z k k ∈±⋅=,90360|αα={}Z k k ∈+⋅=,90180| αα6、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=C C .A ⊂CD .A=B=C7.在“①160°②480°③-960°④-1600°”这四个角中,属于第二象限的角是( )A.①B.①②C.①②③D.①②③④8.若α是第一象限的角,则2α是( ) A.第一象限的角B.第一或第四象限的角C.第二或第三象限的角D.第二或第四象限的角9.下列结论中正确的是( )A.小于90°的角是锐角B.第二象限的角是钝角C.相等的角终边一定相同D.终边相同的角一定相等10角α的终边落在y=-x(x >0)上,则sin α的值等于( )22 B.22 C.±22D.±2111.集合A={α|α=k ·90°,k ∈N +}中各角的终边都在( )轴的正半轴上轴的正半轴上轴或y 轴上轴的正半轴或y 轴的正半轴上12.α是一个任意角,则α与-α的终边是( )A.关于坐标原点对称B.关于x 轴对称C.关于直线y=x 对称D.关于y 轴对称 13.集合X={x |x=(2n+1)·180°,n ∈Z},与集合Y={y |y=(4k ±1)·180°,k ∈Z}之间的关系是( C )C.X=Y≠Y14.设α、β满足-180°<α<β<180°,则α-β的范围是( )°<α-β<0° °<α-β<180° °<α-β<0°°<α-β<360°15.下列命题中的真命题是( )A .三角形的内角是第一象限角或第二象限角B .第一象限的角是锐角C .第二象限的角比第一象限的角大D .角α是第四象限角的充要条件是2k π-2π<α<2k π(k ∈Z )16.设k ∈Z ,下列终边相同的角是 ( )A .(2k +1)·180°与(4k ±1)·180°B .k ·90°与k ·180°+90°C .k ·180°+30°与k ·360°±30°D .k ·180°+60°与k ·60°17.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( )A .2B .1sin 2C .1sin 2D .2sin18.一钟表的分针长10 cm ,经过35分钟,分针的端点所转过的长为:( )A .70 cmB .670cm C .(3425-3π)cm D .3π35 cm 19.若90°<-α<180°,则180°-α与α的终边( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .以上都不对20.设集合M ={α|α=5-2ππk ,k ∈Z },N ={α|-π<α<π},则M ∩N 等于 ( ) A .{-105ππ3,} B .{-510ππ4,7} C .{-5-105ππππ4,107,3,} D .{07,031-1ππ } 21.某扇形的面积为12cm ,它的周长为4cm ,那么该扇形圆心角的度数为 ( )A .2°B .2C .4°D .422.设集合M ={α|α=k π±6π,k ∈Z },N ={α|α=k π+(-1)k6π,k ∈Z }那么下列结论中正确的是( ) A .M =NB .M NC .N MD .M N 且N M二、填空题(每小题4分,共16分,请将答案填在横线上) 23.若角α是第三象限角,则2α角的终边在 2α角的终边在_____________ 24.与-1050°终边相同的最小正角是 . 25.已知α是第二象限角,且,4|2|≤+α则α的范围是 . 26.已知扇形的周长为20 cm ,当扇形的中心角为多大时,它有最大面积,最大面积是 27. 在半径为12 cm 的扇形中, 其弧长为5π cm, 中心角为θ. θ=__________ (用角度制表示).28. 已知一扇形在圆的半径为10cm ,扇形的周长是45cm ,那么这个扇形的圆心角为 弧度.任意角的三角函数一、选择题1.有下列命题:①终边相同的角的三角函数值相同; ②同名三角函数的值相同的角也相同;③终边不相同,它们的同名三角函数值一定不相同; ④不相等的角,同名三角函数值也不相同. 其中正确的个数是( )B.12.若角α、β的终边关于y 轴对称,则下列等式成立的是( )α=sin β α=cos βα=tan βα=cot β3.角α的终边上有一点P (a ,a ),a ∈R ,a ≠0,则sin α的值是( ) A.22 B.-22 C. 22或-224.若x x sin |sin |+|cos |cos x x +xx tan |tan |=-1,则角x 一定不是( )A.第四象限角B.第三象限角C.第二象限角D.第一象限角·cos3·tan4的值( ) A.小于0B.大于0C.等于0D.不存在6.若θ是第二象限角,则( )2θ>02θ<02θ>02θ<0 二、填空题7.若角α的终边经过P (-3,b ),且cos α=-53,则b =_________,sin α=_________. 8.在(0,2π)内满足x 2cos =-cos x 的x 的取值范围是_________. 9.已知角α的终边在直线y =-3x 上,则10sin α+3cos α=_________. 10.已知点P (tan α,cos α)在第三象限,则角α的终边在第_________象限.三、解答题11.已知角α的顶点在原点,始边为x 轴的非负半轴.若角α的终边过点P (-3,y ),且sin α=43y (y ≠0),判断角α所在的象限,并求cos α和tan α的值.1.下列说法正确的是 [ ]A .小于90°的角是锐角B .大于90°的角是钝角C .0°~90°间的角一定是锐角D .锐角一定是第一象限的角2.设A={钝角},B={小于180°的角},C={第二象限的角}, D={小于180°而大于90°的角},则 下列等式中成立的是 [ ]A .A=CB .A=BC .C=D D .A=DA .第一象限角B .第二象限角C .第一象限角或第三象限角D .第一象限角或第二象限角A .重合B .关于原点对称C .关于x 轴对称D .关于y 轴对称5.若α,β的终边互为反向延长线,则有 [ ]A .α=-βB .α=2k π+β(k ∈Z)C .α=π+βD .α=(2k+1)π+β(k ∈Z)6已知集合()()⎭⎬⎫⎩⎨⎧∈⋅-+=⋃⎭⎬⎫⎩⎨⎧∈⋅-+==⎭⎬⎫⎩⎨⎧∈±==Z k k a a Z k k a a B Z k k a a A k k ,31,31,,3ππππππ则A 、B 的关系A .A=B B B A ⊃C B A ⊂D .以上都不对7.在直角坐标系中,若角α与角β的终边关于y 轴对称,则α与β的关系一定是 [ ]A .α+β=πB .α+β=2k π(k ∈Z)C .α+β=n π(n ∈Z)D .α+β=(2k+1)π(k ∈Z)8.终边在第一、三象限角的平分线上的角可表示为 [ ]A .k ·180°+45°(k ∈Z)B .k ·180°±45°(k ∈Z)C .k ·360°+45°(k ∈Z)D .以上结论都不对9.一条弦的长等于半径,则这条弦所对的四周角的弧度为 [ ] A 1 B 2 C 6π或65π D 3π或35π 10.若1弧度的圆心角,所对的弦长等于2,这圆心角所对弧长 [ ] A 21sin B 6π C 1/21sin D 221sin答案:BDDDD BCDCA CBCAD ABDBCBC第二或第四象限;第一或第二象限或终边在y 轴的非负半轴。
《任意角》同步练习及答案(共四套)
《5.1.1 任意角》分层同步练习(一)基础巩固1.下列说法中正确的是()A.第一象限的角是锐角B.锐角是第一象限的角C.小于90°的角是锐角D.第二象限的角必大于第一象限的角2.下面各组角中,终边相同的是( )A .390,690B .,750C .480,D .3000,3.若角的终边在轴的负半轴上,则角的终边在( )A .第一象限B .第二象限C .轴的正半轴上D .轴的负半轴上4.终边在直线上的角的取值集合是( )A.B.C. D. 5.给出下列四个结论: ①角是第四象限角;②185角是第三象限角;③475角是第二象限角;④角是第一象限角.其中正确的个数为( )A .1B .2C .3D .46.将角的终边按顺时针方向旋转所得的角等于________.7.已知,则与角终边相同的最小正角为_______,最大负角为________.8.已知角的顶点与坐标原点重合,始边落在x 轴的非负半轴上,在范围内,找出与下列各角终边相同的角,并判断它们是第几象限角.(1);(2);(3)能力提升9.在~0范围内所有与30角终边相同的角为( )︒︒330-︒︒︒420-︒︒840-︒αy α150-︒y x y x =-α{}360135,n n Z αα=⋅+∈{}36045,n n Z α=⋅-∈{}180225,n n Z αα=⋅+∈{}18045,n n Z αα=⋅-∈15-︒︒︒350-︒90︒30︒2015α=-︒α0360α︒≤<︒750795-'95020720-︒︒︒A .B .C .或D .或10.若角是第三象限角,则角的终边所在的区域是如图所示的区域(不含边界)( )A .③⑦B .④⑧C .②⑤⑧D .①③⑤⑦11.在直角坐标系中,终边在坐标轴上的角的集合是__________.12.写出终边在下列各图所示阴影部分内的角的集合.素养达成13.写出终边在第一象限角平分线与轴的正半轴之间(包括两条边界线)的角的集合(分别用角度和弧度制来表示),并在直角坐标系中用阴影部分表示出来。
专题32 任意角和弧度制(解析版)
专题32 任意角和弧度制知识点一任意角1.中午12点15分时,钟表上的时针和分针所成的角是()A.90°B.75°C.82.5°D.60°【答案】C【解析】根据钟面的特征可知12点15分时,分针指向3,而时针在12和1之间,而15分等于四分之一小时,故时针走了四分之一大格,根据每大格30°即可得到结果.×30°=82.5°.中午12点15分时,钟表上的时针和分针所成的角是90°-142.如果时钟上的时针、分针和秒针都是匀速地转动,那么从3时整(3∶00)开始,在1分钟的时间内,3根针中,出现一根针与另外两根针所成的角相等的情况有()A.1次B.2次C.3次D.4次【答案】D【解析】从3时整(3∶00)开始,在1分钟的时间内,3根针中,出现一根针与另外两根针所成的角相等的情况有:①当秒针转到大约45°的位置时,以及大约225°的位置时,秒针平分时针与分针.②当秒针转到大约180°的位置时,时针平分秒针与分针.③当秒针转到大约270°的位置时,分针平分秒针与时针.综上,共4次.3.如图,钟表中9点30分时,时钟的分针与时针所成角的度数为()A.90°B.105°C.120°D.135°【答案】B【解析】钟表12个数字,每相邻两个数字之间的夹角为30°,钟表上9点30分,时针指向9.5,分针指向6,两者之间相隔3.5个数字.3×30°+15°=105°,∴钟面上9点30分时,分针与时针所成的角的度数是105°.4.400°角终边所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】400°=360°+40°,∵40°是第一象限,∴400°角终边所在象限是第一象限.5.给出下列四个命题:①-75°角是第四象限角;②225°角是第三象限角;③475°角是第二象限角;④-315°角是第一象限角,其中真命题有()A.1个B.2个C.3个D.4个【答案】D【解析】对于①:如图1所示,-75°角是第四象限角;对于②:如图2所示,225°角是第三象限角;对于③:如图3所示,475°角是第二象限角;对于④:如图4所示,-315°角是第一象限角.6.如果α是第三象限的角,则下列结论中错误的是()A.-α为第二象限角B.180°-α为第二象限角C.180°+α为第一象限角D.90°+α为第四象限角【答案】B【解析】若α是第三象限角,则360°·k+180°<α<360°·k+270°;则360°·k+90°<-α<360°·k+180°,360°·k+270°<180°-α<360°·k+360°此时为第四象限角.7.终边与x轴重合的角α的集合是()A.{α|α=k·360°,k∈Z}B.{α|α=k·180°,k∈Z}C.{α|α=k·90°,k∈Z}D.{α|α=k·180°+90°,k∈Z}【答案】B【解析】设终边在x轴上的角为α,当α在x轴正半轴时,α=k·360°=2k·180°,其中k∈Z;当α在x轴负半轴时,α=2k·180°+180°=(2k+1)·180°,其中k∈Z,综上所述:α的集合是{α|α=k·180°,k∈Z}.8.若角α满足α=k·120°+30°(k∈Z),则α的终边一定在()A.第一象限或第二象限或第三象限B.第一象限或第二象限或第四象限C.第一象限或第二象限或x轴非负半轴上D.第一象限或第二象限或y轴非正半轴上【答案】D【解析】当k=3n,n∈Z时,α=n·360°+30°,为第一象限角;当k=3n+1,n∈Z时,α=n·360°+150°,为第二象限角;当k=3n+2,n∈Z时,α=n·360°+270°,为y轴非正半轴上的角.则α的终边一定在第一象限或第二象限或y轴非正半轴上.9.与-457°角的终边相同的角的集合是()A.{α|α=457°+k·360°,k∈Z}B.{α|α=97°+k·360°,k∈Z}C.{α|α=263°+k·360°,k∈Z}D.{α|α=-263°+k·360°,k∈Z}【答案】C【解析】由于-457°=-1×360°-97°=-2×360°+263°,故与-457°角终边相同的角的集合是{α|α=-457°+k·360°,k∈Z}={α|α=263°+k·360°,k∈Z}.10.与405°角终边相同的角是()A.k·360°-45°,k∈ZB.k·180°-45°,k∈ZC.k·360°+45°,k∈ZD.k·180°+45°,k∈Z【答案】C【解析】405°=360°+45°,故选C.11.集合{α|k·180°+45°≤α≤k·180°+90°,k∈Z}中的角所表示的范围(阴影部分)是()A.B.C.D.【答案】C【解析】当k=2n时,{α|2n·180°+45°≤α≤2n·180°+90°,n∈Z},此时α的终边和45°≤α≤90°的终边一样.当k=2n+1时,{α|2n·180°+180°+45°≤α≤2n·180°+180°+90°,n∈Z},此时α的终边和225°≤α≤270°的终边一样.12.下列说法正确的是()A.小于90°的角是锐角B.钝角必是第二象限角,第二象限角必是钝角C.第三象限的角大于第二象限的角D.角α与角β的终边相同,角α与角β可能不相等【答案】D【解析】小于90°的角除了锐角还有零角与负角,故A错;钝角必是第二象限角,但第二象限角不一定为钝角,故B错;第三象限角不一定大于第二象限角,如224°,500°,故C错;D正确.13.判断下列各组角中,哪些是终边相同的角.(1)k·90°与k·180°+90°(k∈Z);(2)k·180°±60°与k·60°(k∈Z);(3)(2k+1)·180°与(4k±1)·180°(k∈Z);(4)k·180°+30°与k·180°±30°(k∈Z).【答案】(1)由于k·90°表示90°的整数倍,而k·180°+90°=(2k+1)·90°表示90°的奇数倍,故这两个角不是终边相同的角.(2)由于k·180°±60°=(3k±1)·60°表示60°的非3的整数倍.而k·60°表示60°的整数倍,故这两个角不是终边相同的角.(3)由于(2k+1)·180°表示180°的奇数倍,(4k±1)·180°也表示180°的奇数倍,故(2k+1)·180°与(4k±1)·180°(k∈Z)是终边相同的角.(4)由于k·180°+30°=(6k+1)·30°表示30°的(6k+1)倍,而k·180°±30°=(6k±1)·30°表示30°的(6k±1)倍,故这两个角不是终边相同的角.14.如图,分别写出适合下列条件的角的集合:(1)终边落在射线OB上;(2)终边落在直线OA上;(3)终边落在阴影区域内(含边界).【答案】(1)终边落在射线OB上的角的集合为S1={α|α=60°+k·360°,k∈Z};(2)终边落在直线OA上的角的集合为S2={α|α=30°+k·180°,k∈Z};(3)终边落在阴影区域内(含边界)的角的集合为S3={α|30°+k·180°≤α≤60°+k·180°,k∈Z}.15.已知角x的终边落在图示阴影部分区域,写出角x组成的集合.【答案】(1){x|k·360°-135°≤x≤k·360°+135°,k∈Z}.(2){x|k·360°+30°≤x≤k·360°+60°,k∈Z}∪{x|k·360°+210°≤x≤k·360°+240°,k∈Z}={x|2k·180°+30°≤x≤2k·180°+60°或(2k+1)·180°+30°≤x≤(2k+1)·180°+60°,k∈Z}={x|k·180°+30°≤x≤k·180°+60°,k∈Z}.16.如图所示,阴影表示角α终边所在的位置,写出角α的集合.【答案】(1)终边落在x轴非负半轴上的角的集合为{α|α=k·360°,k∈Z},终边落在60°角终边上的角的集合为{α|α=k·360°+60°,k∈Z},终边落在130°角终边上的角的集合为{α|α=k·360°+130°,k∈Z},终边落在220°角终边上的角的集合为{α|α=k·360°+220°,k∈Z},∴终边落在阴影部分的角的集合可表示为{α|k·360°≤α≤k·360°+60°,k∈Z}∪{α|k·360°+130°≤α≤k·360°+220°,k∈Z},(2)终边落在75°角终边上的角的集合为{α|α=k·360°+75°,k∈Z},终边落在-45°角终边上的角的集合为{α|α=k·360°-45°,k∈Z},故终边落在阴影部分的角的集合为{α|k·360°-45°≤α<k·360°+75°,k∈Z}.17.写出如图所示阴影部分的角α的范围.【答案】(1)因为与45°角终边相同的角可写成45°+k·360°,k∈Z的形式,与-180°+30°=-150°角终边相同的角可写成-150°+k·360°,k∈Z的形式.所以图(1)阴影部分的角α的范围可表示为{α|-150°+k·360°<α≤45°+k·360°,k∈Z}.(2)同理可表示图(2)中角α的范围为{α|45°+k·360°≤α≤300°+k·360°,k∈Z}.知识点二弧度制18.下列说法中,错误的是()A.半圆所对的圆心角是πradB.周角的大小等于2πC.1弧度的圆心角所对的弧长等于该圆的半径D.长度等于半径的弦所对的圆心角的大小是1弧度【答案】D【解析】根据弧度的定义及角度与弧度的换算知A 、B 、C 均正确,D 错误. 19.比值lr (l 是圆心角α所对的弧长,r 是该圆的半径)( )A .既与α的大小有关,又与r 的大小有关B .与α及r 的大小都无关C .与α的大小有关,而与r 的大小无关D .与α的大小无关,而与r 的大小有关 【答案】C【解析】由题意,比值lr =|α|,∴比值lr 与α的大小有关,而与r 的大小无关,故选C.20.下列转化结果错误的是( ) A .60°化成弧度是π3 B .-103π化成度是-600° C .-150°化成弧度是-7π6 D .π12化成度是15° 【答案】C【解析】对于A,60°=60×π180=π3;对于B ,-10π3=-103×180°=-600°;对于C ,-150°=-150×π180=-56π;对于D ,π12=112×180°=15°. 21.在△ABC 中,满足∠A =π6,∠B =π3,则∠C 等于( )A .120°B .90°C .75°D .135°【答案】B【解析】∵三角形的内角和为π,∴∠C =π-π3-π6=π2,∵π=180°,∴∠C =90°.22.圆的半径是6cm ,则15°的圆心角与圆弧围成的扇形面积是() A .π2cm 2B .3π2cm 2C .πcm 2D .3πcm 2【答案】B【解析】15°化为弧度为π180×15=π12.∴15°的圆心角与圆弧围成的扇形面积是12|α|r 2=12×π12×36=3π2(cm 2)23.扇形圆心角为π3,则扇形内切圆的圆面积与扇形面积之比为()A .1∶3B .2∶3C .4∶3D .4∶9【答案】B【解析】设扇形的半径为R ,扇形内切圆半径为r ,则R =r +rsin π6=r +2r =3r . ∴S 内切=πr 2.S 扇形=12|α|R 2=12×π3×R 2=12×π3×9r 2=32πr 2,∴S 内切∶S 扇形=2∶3.24.若2弧度的圆心角所对的弧长为2cm ,则这个圆心角所夹的扇形的面积是( ) A .4cm 2B .2cm 2C .4πcm 2D .1cm 2【答案】D【解析】弧度是2的圆心角所对的弧长为2,所以根据弧长公式,可得圆的半径为1,所以扇形的面积为:12×2×1=1(cm 2). 25.已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的面积为( )A .4cm 2B .6cm 2C .8cm 2D .16cm 2【答案】A【解析】设扇形的半径为R,所以2R+2R=8,所以R=2,扇形的弧长为4,半径为×4×2=4(cm2).2,扇形的面积为:1226.若角α,β的终边关于y轴对称,则α与β的关系一定是(其中k∈Z)()A.α+β=πB.α-β=π2C.α-β=π+2kπ2D.α+β=(2k+1)π【答案】D【解析】可以取几组特殊角代入检验.27.已知集合A={α|2kπ≤α≤(2k+1)π,k∈Z},B={α|-4≤α≤4},则A∩B等于()A.∅B.{α|-4≤α≤π}C.{α|0≤α≤π}D.{α|-4≤α≤-π或0≤α≤π}【答案】D【解析】集合A限制了角α终边只能落在x轴上方或x轴上.28.给出下列命题,其中正确的是()(1)弧度角与实数之间建立了一一对应关系;(2)终边相同的角必相等;(3)锐角必是第一象限角;(4)小于90°的角是锐角;(5)第二象限的角必大于第一象限角.A.(1)B.(1)(2)(5)C.(3)(4)(5)D.(1)(3)【答案】D【解析】∵角的弧度制是与实数一一对应的,第一个命题正确,终边相同的角有无数个,它们的关系可能相等,也可能不等,锐角一定是第一象限角,但第一象限角不一定是锐角,小于90°的角可能是负角,象限角不能比较大小,∴(1)(3)的说法是正确的,故选D.29.圆O的半径为1,P为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A与点P重合)沿圆周逆时针滚动,则点A第一次回到点P的位置时,点A走过的路径的长度为________.【答案】(【解析】由图可知:∵圆O 的半径r =1,正方形ABCD 的边长a =1,∴以正方形的边为弦时所对的圆心角为π3,正方形在圆上滚动时点的顺序依次为如图所示,∴当点A 首次回到点P 的位置时,正方形滚动了3圈共12次,设第i 次滚动,点A 的路程为Ai ,则A 1=π6×|AB |=π6, A 2=π6×|AC |=√2π6, A 3=π6×|DA |=π6,A 4=0,∴点A 所走过的路径的长度为3(A 1+A 2+A 3+A 4)=2+√22π. 30.一条弦的长度等于半径r ,求:(1)这条弦所对的劣弧长;(2)这条弦和劣弧所组成的弓形的面积.【答案】(1)在半径为r 的⊙O 中弦AB =r ,则△OAB 为等边三角形,所以∠AOB =π3,则弦AB 所对的劣弧长为π3r .(2)∵S △AOB =12·OA ·OB ·sin ∠AOB =√34r 2, S 扇形OAB =12|α|r 2=12×π3×r 2=π6r 2,∴S 弓形=S 扇形OAB -S △AOB =π6r 2-√34r 2=(π6−√34)r 2. 31.如图,一长为√3dm ,宽为1dm 的长方形木块在桌面上作无滑动翻滚,翻滚到第四次时被一小木块挡住,使木块底面与桌面所成角为π6,试求点A 走过的路程及走过的弧所在的扇形的总面积.(圆心角为正)【答案】在扇形ABA 1中,圆心角恰为π2,弧长l 1=π2·|AB |=π2·√3+1=π,面积S 1=12·π2·|AB |2=12·π2·4=π.在扇形A 1CA 2中,圆心角也为π2,弧长l 2=π2·|A 1C |=π2·1=π2,面积S 2=12·π2·|A 1C |2=12·π2·12=π4.在扇形A 2DA 3中,圆心角为π-π2-π6=π3,弧长l 3=π3·|A 2D |=π3·√3=√33π,面积S 3=12·π3·|A 2D |2=12·π3·(√3)2=π2,∴点A 走过的路程长l =l 1+l 2+l 3=π+π2+√3π3=(9+2√3π6),点A 走过的弧所在的扇形的总面积S =S 1+S 2+S 3=π+π4+π2=7π4.32.用弧度表示顶点在原点,始边重合于x 轴的非负半轴,终边落在如图所示的阴影部分内的角的集合(不包括边界).【答案】(1)∵330°的终边也可看作-30°的终边,∴-30°=-π6,75°=5π12,∴{θ|−π6=2kπ<θ<5π12+2kπ,k∈Z?}(2)∵225°的终边也可看作-135°的终边,∴-135°=-3π4,135°=3π4,∴{θ|−3π4+2kπ<θ<3π4+2kπ,k∈Z?}。
任意角三角函数练习题
任意角三角函数练习题在学习三角函数的过程中,我们经常遇到各种各样的练习题。
这些练习题旨在帮助我们强化对任意角三角函数的理解和应用。
本篇文章将以一系列练习题的形式呈现,通过解答这些题目,我们可以更好地掌握任意角三角函数的概念和计算方法。
1. 计算下列各式的值:(1) sin(45°)(2) cos(120°)(3) tan(60°)(4) sec(30°)(5) csc(150°)(6) cot(75°)解答:(1) sin(45°) = √2 / 2(2) cos(120°) = -1 / 2(3) tan(60°) = √3(4) sec(30°) = 2 / √3(5) csc(150°) = 2 / √3(6) cot(75°) = -√32. 根据给定的正弦、余弦或正切值,求角的大小:(1) sinA = 1/2,求A的度数。
(2) cosB = -√3/2,求B的度数。
(3) tanC = 2,求C的度数。
解答:(1) sinA = 1/2,A = 30°或150°。
(2) cosB = -√3/2,B = 150°或210°。
(3) tanC = 2,C = 63.4°或243.4°。
3. 解下列方程:(1) sinx = 1/2(2) cos2x = -3/4(3) tan(2x + 30°) = -1解答:(1) sinx = 1/2,x = 30°或150°。
(2) cos2x = -3/4,2x = 135°或225°,x = 67.5°或112.5°。
(3) tan(2x + 30°) = -1,2x + 30° = 135°或315°,x = 52.5°或142.5°。
(完整版)任意角的三角函数练习题及标准答案详解
随意角的三角函数一、选择题1.以下四个命题中,正确的选项是( )A.在定义域内,只有终边同样的角的三角函数值才相等B.{|= k +, k∈ Z }≠{|= - k +, k∈ Z }6 6C.若是第二象限的角,则 sin2 < 0 D .第四象限的角可表示为{| 2k +3<< 2k , k∈ Z }22.若角的终边过点 (- 3,- 2),则 ( )A . sin tan > 0B . cos tan > 0 C.sin cos > 0 D . sin cot > 0 3.角的终边上有一点P(a, a), a∈R ,且 a≠ 0,则 sin 的值是 ( )A .2 2 2D . 1 2B . - C.±2 224.α是第二象限角,其终边上一点P( x,5),且 cos α=4x,则 sin α的值为()10 6 2 10A.4 B.4 C.4 D.- 4 5. 使 lg ( cos θ·tan θ)存心义的角θ是()A.第一象限角B.第二象限角C .第一或第二象限角D.第一、二象限角或终边在y 轴上6. 设角α是第二象限角,且|cos 2 |=-cos 2 ,则角 2 是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角7.已知会合E={θ|cos θ< sin θ,0≤θ≤2π},F={θ|tan θ< sin θ},那么 E∩F 是区间 ( )1 / 6二、填空题1.已知角的终边落在直线y= 3x 上,则 sin = ________.2.已知 P(- 3 ,y)为角的终边上一点,且sin =13,那么y的值等于________.133.已知锐角终边上一点P(1, 3 ),则的弧度数为________.4.( 1) sin 9tan7_________4 35.三、解答题1.已知角的终边过P(- 3 , 4),求的三角函数值2.已知角的终边经过点P(x,- 3 )(x>0).且cos=x,求sin、cos、tan的值.23.(1)已知角α 终边上一点P(3k,-4k)(k<0),求sinα,cosα,tanα的值;4.一个扇形的周长为 l ,求扇形的半径、圆心角各取何值时,此扇形的面积最大.9 . 化简或求值:三角函数的引诱公式一、选择题(本大题共12 个小题,每题 5 分,共 60 分 . 在每题给出的四个选择中,只 有一项为哪一项切合题目要求的 .) 1 、与- 463°终边同样的角可表示为( )A .k ·360°+ 436°( k ∈ Z )B .k ·360°+ 103°( k ∈ Z )C .k ·360°+ 257°( k ∈ Z )D .k ·360°- 257°( k ∈ Z ) 2、以下四个命题中可能建立的一个是( )A 、 sin1且 cos1 B 、 sin0且cos122C 、 tan1且 cos1 D 、 是第二象限时, tansiacos43、若 sin,且是第二象限角,则 tan 的值为()54 33 4C 、A 、B 、4D 、3434、若 sin cos2 ,则 tancot 等于( )A 、 1B 、 2C 、 -1D 、-21、 tan 300 sin 450 的值为( )A 、 13 B 、 13 C 、 1 3D 、1 35、若 A 、B 、 C 为△ ABC 的三个内角,则以下等式建立的是( )A 、 sin(BC ) sin AB 、 cos(BC ) cos AC 、 tan(B C ) tan AD 、 cot( BC ) cot A6、 12 sin( 2) cos(2) 等于()A . sin2- cos2B .cos2- sin2C . ±( sin2-cos2)D . sin2+cos27 、 sin α cos =α 1 , 且< α < , 则 cos α - sin α 的 值 为842( )3 3 3 3 A .B .C .D .22442 8、在△ ABC 中,若最大角的正弦值是2,则△ ABC 必是( )A 、等边三角形B 、直角三角形C 、钝角三角形D 、锐角三角形4 / 69、以下不等式中,不建立的是()A 、 sin 130 sin 140B 、 cos130 cos140C 、 tan130 tan140D 、cot 130 cot 14010、已知函数 f ( x)cos x,则以下等式建立的是()2A 、 f (2 x) f ( x)B 、C 、 f (x)f ( x)D 、 f ( 2 x) f ( x)f ( x)f ( x)11sin 、 cos 是对于 x 的方程 4x 22mx m 0的两个实根,则 m 值为( )、若A 、 m4,0B 、 m 15C 、 m 15D 、 m 15312、 已 知 f (x) a sin( x )b cos( x) 4 ( a, b, ,为非零实数),f (2011) 5则 f (2012) ( )A .1B . 3C . 5D .不可以确立二、填空题(本大题共4 个小题 ,每题5 分,共 20 分 .将答案填在题中横线上)13、化简 sin 2sin 2 sin 2 sin 2cos 2 cos 2 .14、若 sin3 cos0 ,则 cos2 sin 的值为.3sin2 cos15、 cos( 945 ).16、 tan 1tan 2 tan 3tan 89.三、解答题(本大题共6 道小题,共 70 分 .解答应写出文字说明 ,证明过程或演算步骤)17、求值 sin 2 120cos180 tan45 cos 2( 330 ) sin( 210 )sin 2 () cos( ).18、 化简:) cos 3 (tan(2 ) tan()19、已知sin( ) 1) cos 的值.,求 sin( 2) tan(220、已知sin 4和 tan 的值 .. 求cos51 sin 1 sin21、( 10 分)已知α是第三角限的角,化简sin 1 sin122、已知sin() 1,求证tan(2) tan0。
(完整word版)任意角和弧度制测试题(含答案),推荐文档
任意角和弧度制测试题一.选择题1.已知A={第一象限},B={锐角},C={小于90°的角},那么A,B,C 的关系是( )。
.;.;.;..A B A C B B C C C A C D A B C =⋃=⊆==I2.有下列说法:(1)终边相同的角一定相等;(2)不相等的角的终边不重合;(3)角α与角-α的终边关于Y 轴对称;(4)小于180°的角是锐角、钝角或直角。
其中错误的个数为 ( )。
A. 1 B.2 C.3 D.43.若角α是第四象限角,则180°-α是( )。
A.第一象限角; B.第二象限角; C. 第三象限角; D.第四象限角.4.若α=-3,则角α的终边在( )。
A.第一象限;B.第二象限;C.第三象限;D.第四象限。
5.圆弧的长等于该圆内接正三角形的边长,则该弧所对的圆心角的弧度数是( )A .3B .1C .23 D .3π6.设集合,,,22k M x x k Z N x x k k Z πππ⎧⎫⎧⎫==∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭,则M 与N 的关系是( )A.M N =B.M N ⊆C.M N ⊇D.M N =∅I7.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( )A.2B.1sin 2C.2sin1D.sin28.若α是钝角,则,k k Z θπα=+∈是( )A. 第二象限角B. 第三象限角C. 第二象限角或第三象限角D. 第二象限角或第四象限角9.设k Z ∈,下列终边相同的角是( )A . ()21180k +o 与()41180k ±oB . 90k ⋅o 与18090k ⋅+o oC . 18030k ⋅+o o 与36030k ⋅±o oD . 18060k ⋅+o o 与60k ⋅o10.若角α是第二象限的角,则2α是( ) (A )第一象限或第二象限的角 (B )第一象限或第三象限的角(C )第二象限或第四象限的角 (D )第一象限或第四象限的角11.在单位圆中,面积为1的扇形所对的圆心角为( )弧度 A . 1 B . 2 C .3 D . 412.某扇形面积为21cm ,它的周长为4cm ,那么该扇形圆心角的大小为( ) A 、︒2 B 、rad 2 C 、︒4 D 、rad 4 二.填空题1.时钟从6时50分走到10时50分,时针旋转了_____________弧度。
高中数学(人教A版)必修一课后习题:任意角(课后习题)【含答案及解析】
第五章三角函数任意角和弧度制任意角课后篇巩固提升合格考达标练1.(2021山西太原高一期末)475°角的终边所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限475°=360°+115°,又因为115°是第二象限角,而475°与115°终边相同,故475°角的终边所在的象限是第二象限.故选B.2.若θ是第四象限角,则90°+θ是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角,将θ的终边按逆时针方向旋转90°得90°+θ的终边,则90°+θ是第一象限角.3.(2021广东潮州高一期末)下列角中终边与340°相同的角是()A.20°B.-20°C.620°D.-40°340°角终边相同的角的集合为{x|x=340°+k·360°,k∈Z},当k=-1时,可得x=-20°.故选B. 4.如图,终边在阴影部分(含边界)的角的集合是()A.{α|-45°≤α≤120°}B.{α|120°≤α≤315°}C.{α|-45°+k·360°≤α≤120°+k·360°,k∈Z}D.{α|120°+k·360°≤α≤315°+k·360°,k∈Z},终边落在阴影部分(含边界)的角的集合是{α|-45°+k·360°≤α≤120°+k·360°,k∈Z}.故选C.5.已知角α,β的终边关于直线x+y=0对称,且α=-60°,则β=.30°+k·360°,k∈Z-90°到0°的范围内,-60°角的终边关于直线y=-x对称的射线的对应角为-45°+15°=-30°,所以β=-30°+k·360°,k∈Z.6.与-2 020°角终边相同的最小正角是;最大负角是.°-220°-2 020°=-6×360°+140°,140°-360°=-220°,所以最小正角为140°,最大负角为-220°. 7.已知角α的终边在图中阴影部分所表示的范围内(不包括边界),写出角α的集合.0°~360°范围内,终边落在阴影部分内的角为30°<α<150°与210°<α<330°,故所有满足题意的角α的集合为{α|k·360°+30°<α<k·360°+150°,k∈Z}∪{α|k·360°+210°<α<k·360°+330°,k∈Z}={α|n·180°+30°<α<n·180°+150°,n∈Z}.等级考提升练8.(2021北京西城高一期末)下列各角中,与27°角终边相同的是()A.63°B.153°C.207°D.387°27°角终边相同的角的集合为{α|α=27°+k·360°,k∈Z},取k=1,可得α=387°.故与27°角终边相同的是387°.故选D.9.射线OA绕端点O逆时针旋转120°到达OB位置,由OB位置绕端点O旋转到达OC位置,得∠AOC=-150°,则射线OB旋转的方向与角度分别为()A.逆时针,270°B.顺时针,270°C.逆时针,30°D.顺时针,30°,∠AOB=120°,设∠BOC=θ,所以∠AOC=∠AOB+∠BOC=120°+θ=-150°,解得θ=-270°,故需要射线OB绕端点O顺时针旋转270°.10.已知集合M={x|x=k·180°2±45°,k∈Z},P={x|x=k·180°4±90°,k∈Z},则M,P之间的关系为() A.M=P B.M⊆PC.M⊇PD.M∩P=⌀M,x=k·180°2±45°=k·90°±45°=(2k±1)·45°,k∈Z,对于集合P,x=k·180°4±90°=k·45°±90°=(k±2)·45°,k∈Z.∴M⊆P.11.(多选题)(2020海南临高高一期末)已知A={第一象限角},B={锐角},C={小于90°的角},那么A,B,C的关系是()A.B=A∩CB.B∪C=CC.B∩A=BD.A=B=CA,A∩C除了锐角,还包括其他角,比如-330°角,所以A选项错误.对B,锐角是小于90°的角,故B选项正确.对C,锐角是第一象限角,故C选项正确.对D,A,B,C中角的范围不一样,所以D选项错误.12.(多选题)已知角2α的终边在x轴的上方,那么角α可能是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角2α的终边在x轴的上方,所以k·360°<2α<k·360°+180°,k∈Z,则有k·180°<α<k·180°+90°,k∈Z.故当k=2n,n∈Z时,n·360°<α<n·360°+90°,n∈Z,α为第一象限角;当k=2n+1,n∈Z时,n·360°+180°<α<n·360°+270°,n∈Z,α为第三象限角.故选AC.13.终边落在直线y=-√33x上的角的集合是.β|β=150°+k·180°,k∈Z}0°~360°范围内,终边落在直线y=-√33x上的角有两个,即150°角与330°角(如图),又所有与150°角终边相同的角构成的集合S1={β|β=150°+k·360°,k∈Z},所有与330°角终边相同的角构成的集合S2={β|β=330°+k·360°,k∈Z},于是,终边落在直线y=-√33x上的角的集合S=S1∪S2={β|β=150°+k·360°,k∈Z}∪{β|β=330°+k·360°,k∈Z}={β|β=150°+k·180°,k∈Z}.14.若α与288°角终边相同,则在0°~360°内终边与角α4终边相同的角是 .°,162°,252°,342°,得α=288°+k ·360°(k ∈Z ),α4=72°+k ·90°(k ∈Z ).又α4在0°~360°内,所以k=0,1,2,3,相应地有α4=72°,162°,252°,342°.15.已知α=-1 910°.(1)把α写成β+k ·360°(k ∈Z ,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.设α=β+k ·360°(k ∈Z ),则β=-1 910°-k ·360°(k ∈Z ).令-1 910°-k ·360°≥0,解得k ≤-1 910360=-51136.k 的最大整数解为k=-6,求出相应的β=250°,于是α=250°-6×360°,它是第三象限角.(2)令θ=250°+n ·360°(n ∈Z ),取n=-1,-2就得到符合-720°≤θ<0°的角.250°-360°=-110°,250°-720°=-470°.故θ=-110°或θ=-470°. 新情境创新练16.已知α,β都是锐角,且α+β的终边与-280°角的终边相同,α-β的终边与670°角的终边相同,求角α,β的大小.,α+β=-280°+k ·360°,k ∈Z .∵α,β都是锐角,∴0°<α+β<180°.取k=1,得α+β=80°.① α-β=670°+k ·360°,k ∈Z .∵α,β都是锐角,∴-90°<α-β<90°.取k=-2,得α-β=-50°.② 由①②,得α=15°,β=65°.。
(完整版)任意角和弧度制练习题(含答案)
§1.1 任意角和弧度制班级 姓名 学号 得分一、选择题1.若α是第一象限角,则下列各角中一定为第四象限角的是 ( )(A) 90°-α (B) 90°+α (C)360°-α (D)180°+α2.终边与坐标轴重合的角α的集合是 ( )(A){α|α=k ·360°,k ∈Z} (B){α|α=k ·180°+90°,k ∈Z}(C){α|α=k ·180°,k ∈Z}(D){α|α=k ·90°,k ∈Z} 3.若角α、β的终边关于y 轴对称,则α、β的关系一定是(其中k ∈Z ) ( )(A) α+β=π (B) α-β=2π (C) α-β=(2k +1)π (D) α+β=(2k +1)π 4.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角的弧度数为 ( ) (A)3π (B)32π (C)3 (D)25.将分针拨快10分钟,则分针转过的弧度数是 ( ) (A)3π (B)-3π (C)6π (D)-6π *6.已知集合A ={第一象限角},B ={锐角},C ={小于90°的角},下列四个命题:①A =B =C ②A ⊂C ③C ⊂A ④A ∩C =B ,其中正确的命题个数为 ( )(A)0个 (B)2个 (C)3个 (D)4个二.填空题7.终边落在x 轴负半轴的角α的集合为 ,终边在一、三象限的角平分线上的角β的集合是 .8. -1223πrad 化为角度应为 . 9.圆的半径变为原来的3倍,而所对弧长不变,则该弧所对圆心角是原来圆弧所对圆心角的 倍.*10.若角α是第三象限角,则2α角的终边在 ,2α角的终边在 .三.解答题11.试写出所有终边在直线x y 3-=上的角的集合,并指出上述集合中介于-1800和1800之间的角.12.已知0°<θ<360°,且θ角的7倍角的终边和θ角终边重合,求θ.13.已知扇形的周长为20 cm,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?*14.如下图,圆周上点A依逆时针方向做匀速圆周运动.已知A点1分钟转过θ(0<θ<π)角,2分钟到达第三象限,14分钟后回到原来的位置,求θ.参考答案§1.1任意角和弧度制一、CDDCBA二、7.{x |x =k ·3600+1800, k ∈Z }, {x |x =k ·1800+450,k ∈Z } ; 8.-345°; 9. 31; 10.第二或第四象限, 第一或第二象限或终边在y 轴的正半轴上三、11.{ α|α=k ·3600+1200或α=k ·3600+3000, k ∈Z } -60° 120°12.由7θ=θ+k ·360°,得θ=k ·60°(k ∈Z )∴θ=60°,120°,180°,240°,300°13.∵l =20-2r ,∴S =21lr =21(20-2r )·r =-r 2+10r =-(r -5)2+25∴当半径r =5 cm 时,扇形的面积最大为25 cm 2,此时,α=r l =55220⨯-=2(rad) 14.A 点2分钟转过2θ,且π<2θ<23π,14分钟后回到原位,∴14θ=2k π,θ=72πk ,且2π<θ<43π,∴ θ=74π或75π。
(完整)三角函数习题及答案
第四章 三角函数§4-1 任意角的三角函数一、选择题:1.使得函数lg(sin cos )y θθ=有意义的角在( )(A)第一,四象限 (B)第一,三象限 (C)第一、二象限 (D)第二、四象限 2.角α、β的终边关于У轴对称,(κ∈Ζ)。
则(A)α+β=2κπ (B)α-β=2κπ(C)α+β=2κπ-π (D)α-β=2κπ-π 3.设θ为第三象限的角,则必有( )(A)tan cot 22θθ(B)tan cot 22θθ (C)sin cos 22θθ(D)sin cos 22θθ4.若4sin cos 3θθ+=-,则θ只可能是( )(A)第一象限角 (B)第二象限角 (C )第三象限角 (D)第四象限角5.若tan sin 0θθ且0sin cos 1θθ+,则θ的终边在( )(A)第一象限 (B)第二象限 (C)第三象限 (D )第四象限 二、填空题:6.已知α是第二象限角且4sin 5α= 则2α是第▁▁▁▁象限角,2α是第▁▁▁象限角.7.已知锐角α终边上一点A 的坐标为(2sina3,-2cos3),则α角弧度数为▁▁▁▁。
8.设1sin ,(,)sin y x x k k Z xπ=+≠∈则Y 的取值范围是▁▁▁▁▁▁▁。
9.已知cosx-sinx<-1,则x 是第▁▁▁象限角。
三、解答题:10.已知角α的终边在直线y =上,求sin α及cot α的值。
11.已知Cos(α+β)+1=0, 求证:sin (2α+β)+sin β=0。
12.已知()()cos ,5n f n n N π+=∈,求ƒ(1)+ƒ(2)+ƒ(3)+……+ƒ(2000)的值. §4-2 同角三角函数的基本关系式及诱导公式一、选择题:1.()sin 2cos 22ππ⎛⎫--- ⎪⎝⎭化简结果是( )(A)0 (B )1- (C)2sin 2 ()2sin 2D -2.若1sin cos 5αα+=,且0απ,则tan α的值为( ) ()43A - ()34B - ()34C ()43D -或34-3. 已知1sin cos 8αα=,且42ππα,则cos sin αα-的值为( )(A ()34B ()C ()D ±4. 已知4sin 5α=,并且α是第一象限角,则tan α的值是( ) ()43A - ()34B - ()34C ()43D5.的结果是( )()0cos100A ()0cos80B ()0sin80C ()0cos10D6. 若cot ,(0)m m α=≠且cos α,则角α所在的象限是( )(A )一、二象限 (B )二、三象限 (C)一、三象限 (D )一、四象限 填空题:7.化简()()()21sin 2sin 2cos αππαα+-+--=▁▁▁▁▁▁。
任意角的概念练习题
任意角的概念练习题一、单选题1. 下列哪个角是任意角?A. 直角B. 钝角C. 锐角D. 零角2. 以下哪个选择是任意角的特点?A. 角度大小小于90°B. 角度大小大于90°C. 角度大小可以是0°或大于90°的任意值D. 角度大小是180°3. 以下哪个角度不是任意角的特点?A. 可以是正数或负数B. 可以是小数或分数C. 角度大小只能是整数D. 可以用度、弧度或梯度来度量二、填空题1. 在坐标系中,横轴和纵轴的交点为原点,形成的角为__________。
2. 任意角的度数范围是______________。
3. 任意角的弧度范围是______________。
4. 以下几组角中,哪组角是任意角?A. -45°,120°,270°B. 30°,60°,90°C. 180°,270°,360°D. 0°,45°,90°三、解答题1. 画出以下角的标准位置:A. -30°B. 150°C. 240°2. 将以下角度转化为弧度制:A. 60°B. 135°C. 270°3. 将以下角度转化为度数制:A. π/4 弧度B. 3π/2 弧度C. π 弧度4. 以下角中,哪个角是一个全周角?A. 90°B. 180°C. 270°D. 360°四、计算题1. 已知角A的度数为70°,角B的度数为120°,求角A与角B之和的度数。
2. 已知角X的度数为155°,角Y的度数为75°,求角X与角Y之差的度数。
3. 两个任意角的和为180°,它们之间的差是90°,请计算这两个角的度数。
4. 角P的度数是角Q的180°的一半减去角R度数的一半,已知角R的度数为36°,请计算角P的度数。
习题《任意角》
任意角练习1.下列命题中,正确的是()A.第一象限角必是锐角B.终边相同的角必相等C.相等角的终边位置必相同D.不相等的角其终边位置必不相同2.-215°是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角3.下列各组角中,终边相同的是() A.390°,690°B.-330°,750°C.480°,-420°D.3000°,-840°4.与-457°角终边相同角的集合是() A.{α|α=k·360°+457°,k∈Z}B.{α|α=k·360°+97°,k∈Z}C.{α|α=k·360°+263°,k∈Z}D.{α|α=k·360°-263°,k∈Z}5.将射线OM 绕端点O 按逆时针方向旋转120°所得的角为( )A .120°B .-120°C .60°D .240°6.-30°是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角7.已知A ={第一象限角},B ={锐角},C ={小于90°的角},那么A 、B 、C 的关系是( )A .B =A ∩CB .B ∪C =CC .A CD .A =B =C8.已知角α是第二象限角,α2是( )。
A .第一象限角的集合B .第一或第二象限角的集合C .第一或第三象限角的集合D .第一或第四象限角的集合9.若角α和角β的终边关于x 轴对称,则角α可以用角β表示为( )A .k ·360°+β(k ∈Z)B .k ·360°-β(k ∈Z)C .k ·180°+β(k ∈Z)D .k ·180°-β(k ∈Z)10.若φ是第二象限角,那么φ2和90°-φ都不是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角答案解析1.C解析:锐角是第一象限角,但第一象限角不一定是锐角,因此A错误;由终边相同角的概念知C正确.故选:C.2.B解析:由于-215°=-360°+145°,而145°是第二象限角,则-215°也是第二象限角.故选:B.3.B解析:由于-330°=﹣3×360°+750°,故这两个角的终边相同.故选:B.4.C解析:与-457°角终边相同的角是α=k·360°-457°,k∈Z,而α=k·360°+263°=(k+2)·360°+263°-720°=(k+2)·360°-457°,k∈Z.∴与-457°角终边相同角的集合是C.故选:C.5.A解析:由角的定义可知:逆时针旋转120°,可得角的度数为120°,故选:A.解析:﹣30°=﹣360°+330°,所以﹣30°和330°是同一个终边所对的角,故是第四象限角.故选:D.7. B解析:A ={第一象限角}={θ|k ·360°<θ<90°+k ·360°,k ∈Z},B ={锐角}={θ|0<θ<90°},C ={小于90°的角}={θ|θ<90°},故选:B.8. C解析:角α是第二象限角即{α|90°+k ·360°<α<180°+k ·360°,k ∈Z},则45°+k ·180°<2<90°+k ·180°.故选:C.9.B解析:因为角α和角β的终边关于x 轴对称,所以α+β=k ·360°(k ∈Z),所以α=k ·360°-β(k ∈Z).故选:B.10. B解析:∵φ是第二象限角,∴k ·360°+90°<φ<k ·360°+180°,k ∈Z ,∴k ·180°+45°<φ2<k ·180°+90°,k ∈Z ,即φ2终边是第一或第三象限角,而-φ显然是第三象限角,∴90°-φ是第四象故选:B.。
(完整版)任意角和弧度制练习题有答案
任意角和弧度制练习题一、选择题1、下列角中终边与330°相同的角是()A.30° B.-30° C.630° D.-630°2、-1120°角所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3、把-1485°转化为α+k·360°(0°≤α<360°,k∈Z)的形式是()A.45°-4×360° B.-45°-4×360°C.-45°-5×360° D.315°-5×360°4.在“①160°②480°③-960°④—1600°”这四个角中,属于第二象限的角是()A.①B.①②C.①②③ D。
①②③④5、终边在第二象限的角的集合可以表示为: ()A.{α∣90°〈α<180°}B.{α∣90°+k·180°<α〈180°+k·180°,k∈Z}C.{α∣-270°+k·180°〈α<-180°+k·180°,k∈Z}D。
{α∣-270°+k·360°〈α<-180°+k·360°,k∈Z}6。
终边落在X轴上的角的集合是( )Α。
{α|α=k·360°,K∈Z } B.{α|α=(2k+1)·180°,K∈Z }C。
{ α|α=k·180°,K∈Z } D.{ α|α=k·180°+90°,K∈Z }7。
任意角的三角函数典型例题
任意角的三角函数典型例题例1 若角的终边经过点,试求的六个三角函数值和角的集合,并求出集合中绝对值最小的角.如图所示.例2 已知角的终边上一点,()求角的六个三角函数值.说明:此类题目应用定义解,但若此类题目没有给出的取值范围,要分类讨论求解.例3 当为第二象限角,试求的值.分析:应先由为第二象限角这一条件求出绝对值再求值.解:当为第二象限角时,,,故.说明:此类题目旨在考查对符号的判定.例4 若,且,试确定所在的象限.分析:用不等式表示出,进而求解.说明:应注意在求此题的最终解答时,要找出所在有关集合的交集.例5 计算:(1);(2).说明:应对特殊角的三角函数值熟练掌握,以便准确应用.例6已知为锐角,试证:.同角三角函数的基本关系式典型例题例1已知,试用表示其他五种三角函数.分析:本题首先应注意对进行分类,再利用同角三角函数的关系求之.解:由于,且,所以其他五种三角函数都有意义.(1)当在第一、二象限时,……(2)当在第三、四象限时,……说明:解决此类问题时,应注意尽可能地确定所在的象限,以便确定三角函数的符号.另外,在用一个角的三角函数值表示其他几个三角函数值时,应尽可能少地使用平方关系.例2 若是锐角,,则.分析:本题的解题思路入口处较宽,下面给出一种化切为弦的求法.例3化简.分析:对本题一般可采取化切为弦的办法进行化简.解:原式说明:化简三角函数式所得的最后结果,应满足以下要求:①函数的种类要最少;②项数要最少;③函数次数要最低;④能求出数值的要求出数值;⑤尽量使分母不含三角函数;⑥尽量使分母不含根式.例5 (1) 设,则(2)若,求函数y=Asin(ωχ+φ)的图象典型例题例.函数的横坐标伸长到原来的两倍,再向左平移个单位,所得到的曲线是的图像,试求函数的解析式.分析:这个问题有两种解法,一是考虑以上变换的“逆变换”,即将以上变换倒过来,由变换到;二是代换法,即设,然后按题设中的变换分两步得:,它就是,即可求得、、的值.解:解法一:问题即是将的图像先向右平移个单位,得到;再将横坐标压缩到原来的,得,即.这就是所求函数的解析式.解法二:设,将它的横坐标伸长到原来的两倍得到;再将其图像向左平移个单位,得.∴解之得:∴,即.小结:以上两种解法各有“千秋”,均为求解类似问题的好方法,注意熟练掌握.任意角的三角函数习题精选一、选择题3.若,,则的值是()A.1 B.C.3 D.4.若角的终边上有一点,则的值是()A. B. C. D.5.设,若且,则的范围是()二、填空题9.函数的值域为__________.11.化简.同角三角函数的基本关系式习题精选一、选择题1.已知,,那么().A.B.C.D.2.已知,,那么的值是().A.B.C.D.3.若为锐角且,则的值为().A.B.C.6 D.44.若角的终边落在直线上,则的值等于().A.2 B.-2 C.-2或2 D.05.已知,,其中,则实数的取值范围是().A.B.C.或D.二、填空题6.若是锐角,,则.7.设,则,.9.已知,则.三、解答题11.已知,求与的值.12.已知,求的值.13.已知,求的值.14.(1)若,求;(2)若,求的值.15.若,求的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任意角
一、选择题
1、下列说法正确的是
A 、第一象限的角始锐角
B 、锐角是第一象限角
C 、第一象限角都是正角
D 、正角都是第一象限角
2、下列与60︒角终边不相同的角是
A 、60-︒
B 、300-︒
C 、420︒
D 、780︒
3、与405︒终边相同的角是
A 、36045k •︒-︒
B 、360405k •︒-︒
C 、36045k •︒+︒
D 、18045k •︒+︒
4、已知α是第三象限角,则α-的终边在
A 、第一象限
B 、第二象限
C 、第三象限
D 、第四象限
5、已知,αβ的终边相同,则角αβ-的终边在
A 、x 轴的正半轴上
B 、y 轴的负半轴上
C 、x 轴的负半轴上
D 、y 轴的正半轴上
6、已知α是第三象限角,则2
α在第几象限 A 、第一象限或第二象限 B 、第二象限或第三象限
C 、第一象限或第三象限
D 、第二象限或第四象限
二、填空题
7、钟表经过3小时时针转了 ,分针转了 .
8、自行车大链轮有48齿,小链轮有20齿,当大链轮转逆时针转过一周时,小链轮转过得角度为
9、若角α满足180360α︒<<︒,角5α和角α有相同的始边,和终边,那么角α=
三、解答题
10、将下列各角表示为360(,0360)k k Z αα•︒+∈︒≤<︒的形式,并判断角在第几象限
(1)560︒ (2)560-︒
11、写出与下列各角终边相同的角的集合,并把集合中适合不等式720360β-︒≤≤︒的元素写出来
(1)210-︒ (2)1342︒
12、已知,αβ为锐角,且αβ+的终边与角280-︒的终边相同,αβ-的终边与角670︒的终边相同,求角,αβ是大小。