高中物理磁场专题(2020年九月整理).doc
高中物理 磁场计算专题(附答案详解)
专题:磁场计算题(附答案详解)1、如图所示,从离子源产生的甲、乙两种离子,由静止经加速电压U加速后在纸面内水平向右运动,自M点垂直于磁场边界射入匀强磁场,磁场方向垂直于纸面向里,磁场左边界竖直.已知甲种离子射入磁场的速度大小为v1,并在磁场边界的N点射出;乙种离子在MN的中点射出;MN长为l.不计重力影响和离子间的相互作用.求:(1)磁场的磁感应强度大小;(2)甲、乙两种离子的比荷之比.2、如图所示,在y>0的区域存在方向沿y轴负方向的匀强电场,场强大小为E;在y<0的区域存在方向垂直于xOy平面向外的匀强磁场.一个氕核11H和一个氘21H先后从y轴上y=h点以相同的动能射出,速度方向沿x轴正方向.已知11H进入磁场时,速度方向与x轴正方向的夹角为60°,并从坐标原点O处第一次射出磁场.11H的质量为m,电荷量为q.不计重力.求:(1)11H第一次进入磁场的位置到原点O的距离;(2)磁场的磁感应强大小;(3)21H第一次离开磁场的位置到原点O的距离.3、一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示:中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy平面;磁场的上、下两侧为电场区域,宽度均为l′,电场强度的大小均为E,方向均沿x轴正方向;M、N为条状区域边界上的两点,它们的连线与y轴平行.一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出.不计重力.(1)定性画出该粒子在电磁场中运动的轨迹;(2)求该粒子从M点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为π6,求该粒子的比荷及其从M点运动到N点的时间.4、如图所示,竖直放置的平行金属板板间电压为U,质量为m、电荷量为+q的带电粒子在靠近左板的P点,由静止开始经电场加速,从小孔Q射出,从a点进入磁场区域,abde是边长为2L的正方形区域,ab边与竖直方向夹角为45°,cf与ab平行且将正方形区域等分成两部分,abcf中有方向垂直纸面向外的匀强磁场B1,defc中有方向垂直纸面向里的匀强磁场B2,粒子进入磁场B1后又从cf 上的M点垂直cf射入磁场B2中(图中M点未画出),不计粒子重力,求:(1)粒子从小孔Q射出时的速度;(2)磁感应强度B1的大小;(3)磁感应强度B2的取值在什么范围内,粒子能从边界cd间射出.5、如图所示,在真空中xOy平面的第一象限内,分布有沿x轴负方向的匀强电场,场强E=4×104 N/C,第二、三象限内分布有垂直于纸面向里且磁感应强度为B2的匀强磁场,第四象限内分布有垂直纸面向里且磁感应强度为B1=0.2 T的匀强磁场.在x轴上有一个垂直于y轴的平板OM,平板上开有一个小孔P,在y轴负方向上距O点为 3 cm的粒子源S可以向第四象限平面内各个方向发射α粒子,且OS>OP.设发射的α粒子速度大小v均为2×105 m/s,除了垂直于x轴通过P点的α粒子可以进入电场,其余打到平板上的α粒子均被吸收.已知α粒子的比荷为qm=5×107 C/kg,重力不计,试问:(1)P点距O点的距离;(2)α粒子经过P点第一次进入电场,运动后到达y轴的位置与O点的距离;(3)要使离开电场的α粒子能回到粒子源S处,磁感应强度B2应为多大?6、如图25所示,在xOy平面的0≤x≤23a范围内有沿y轴正方向的匀强电场,在x>23a范围内某矩形区域内有一个垂直于xOy平面向里的匀强磁场,磁感应强度大小为B.一质量为m、电荷量为+q的粒子从坐标原点O以速度v0沿x轴正方向射入电场,从M点离开电场,M点坐标为(23a,a).再经时间t=3mqB进入匀强磁场,又从M点正上方的N点沿x轴负方向再次进入匀强电场.不计粒子重力,已知sin 15°=6-24,cos 15°=6+24.求:(1)匀强电场的电场强度;(2)N点的纵坐标;(3)矩形匀强磁场的最小面积.7、如图甲所示,竖直挡板MN左侧空间有方向竖直向上的匀强电场和垂直纸面的匀强磁场,电场和磁场的范围足够大,电场强度E=40 N/C,磁感应强度B随时间t变化的关系图象如图乙所示,选定磁场垂直于纸面向里为正方向.t=0时刻,一质量m=8×10-4 kg、电荷量q=+2×10-4 C的微粒在O点具有竖直向下的速度v=0.12 m/s,O′是挡板MN上一点,直线OO′与挡板MN垂直,g取10m/s2.求:(1)微粒再次经过直线OO′时与O点的距离;(2)微粒在运动过程中离开直线OO′的最大高度.(3)水平移动挡板,使微粒能垂直射到挡板上,挡板与O点间的距离应满足的条件.8、如图所示,在竖直平面内,水平x轴的上方和下方分别存在方向垂直纸面向外和方向垂直纸面向里的匀强磁场,其中x轴上方的匀强磁场磁感应强度大小为B1,并且在第一象限和第二象限有方向相反、强弱相同的平行于x轴的匀强电场,电场强度大小为E1,已知一质量为m的带电小球从y轴上的A(0,L)位置斜向下与y轴负半轴成60°角射入第一象限,恰能做匀速直线运动。
2020版高考物理课标Ⅲ专用专题十 磁场
强外磁场中,外磁场的磁感应强度大小为B0,方向垂直于纸面向外。已知a、b两点的磁感应强
度大小分别为 13 B0和 12 B0,方向也垂直于纸面向外。则 (
)
A.流经L1的电流在b点产生的磁感应强度大小为 172 B0
B.流经L1的电流在a点产生的磁感应强度大小为 1 B0 12
C.流经L2的电流在b点产生的磁感应强度大小为 1 B0 12
和B、方向均垂直于纸面向外的匀强磁场。一质量为m、电荷量为q(q>0)的粒子垂直于x轴射 入第二象限,随后垂直于y轴进入第一象限,最后经过x轴离开第一象限。粒子在磁场中运动的 时间为 ( )
A. 5 m 6qB
C. 11 m 6qB
B. 7 m 6qB
D. 13 m 6qB
栏目索引
答案 B 本题考查了带电粒子在组合场中的运动,要求学生对粒子在匀强磁场中的运动轨 迹进行确定,从而确定运动时间,体现了分析和解决问题的能力,是学科核心素养中科学推理素 养的具体表现。
ML和LN受到的安培力的合力F1= B2Il ,MN受到的安培力与ML和LN受到的安培力的合力的方向
相同,故线框受到பைடு நூலகம்安培力为F合=F+F1=1.5F,故选B。
栏目索引
2.(2018课标Ⅱ,20,6分)(多选)如图,纸面内有两条互相垂直的长直绝缘导线L1、L2,L1中的电流
方向向左,L2中的电流方向向上;L1的正上方有a、b两点,它们相对于L2对称。整个系统处于匀
由qvB= mv2 得粒子在第二象限内运动的轨迹半径r= mv ,当粒子进入第一象限时,由于磁感应强
r
Bq
度减为 1 B,故轨迹半径变为2r,轨迹如图所示。由几何关系可得cos θ= 1 ,θ=60°,则粒子运动时
高中物理 磁场专题!
知识组1磁现象和磁场一.磁现象和电流的磁效应1.磁现象(1)磁性和磁体物体具有吸引铁、钴、镍等物质的性质叫磁性。
具有磁性的物体叫磁体。
(2)磁极磁体的各部分磁性强弱不同,磁性最强的区域叫磁极。
任何磁体都有两个磁极,一个叫南极(又称S极),另一个叫北极(又称N极)。
(3)磁极间的相互作用同名磁极相互排斥,异名磁极相互吸引。
(4)磁化和去退磁使原来没有磁性的物体获得磁性的过程叫做磁化;反过来,磁化后的物体失去磁性的过程叫做退磁或去磁。
(5)磁性材料磁性材料是由铁磁性物质或亚铁磁性物质组成,如铁、钴、镍等.它一般分为两类,即软磁性材料和硬磁性材料。
其中磁化后容易去磁的为软磁性材料,不容易去磁的为硬磁性材料。
【说明】物体磁化后的磁极与使该物体产生磁性的磁体的相邻磁极互为异名磁极。
2.电流的磁效应(1)奥斯特实验①1820年,丹麦物理学家奥斯特发现,沿南北方向放置的导线通电后,其下方与导线平行的小磁针会发生偏转。
②奥斯特实验的意义:发现了电流的磁效应,首次揭示了电与磁的联系。
【注意】在做“奥斯特实验时”,为减弱地磁场的影响,通电导线应南北放置,且放在小磁针的正下方或正上方(不应将小磁针放在通电导线的延长线上)。
因为小磁针静止时指向南北方向,若将导线东西放置,小磁针可能不偏转。
③电流的磁效应:通电导线周围有磁场,即电流的周围有磁场,电流的磁场使放在导线周围的磁针发生偏转,磁场的方向跟电流的方向有关,这种现象叫做电流的磁效应。
(2)磁铁对通电导线的作用如图所示,磁铁对通电导体棒产生力的作用,使导体棒运动。
(3)电流和电流间的相互作用①如图所示,相互平行而且距离较近的两条导线,当导线中分别通以方向相同或方向相反的电流时,观察到发生的现象是:通同向电流的两根导线会靠近,通异向电流的两根导线会远离。
②结论:同向电流相互吸引,异向电流相互排斥。
二.磁场和地磁场1.磁场(1)磁场的定义磁体或电流周围空间存在的一种特殊物质,磁体与磁体之间、磁体与通电导体之间、通电导体与通电导体之间的相互作用,是通过磁场发生的。
高中物理【磁场】专题分类典型题(带解析)
高中物理磁场专题分类题型一、【磁场的描述 磁场对电流的作用】典型题1.如图所示,带负电的金属环绕轴OO ′以角速度ω匀速旋转,在环左侧轴线上的小磁针最后平衡时的位置是( )A .N 极竖直向上B .N 极竖直向下C .N 极沿轴线向左D .N 极沿轴线向右解析:选C .负电荷匀速转动,会产生与旋转方向反向的环形电流,由安培定则知,在磁针处磁场的方向沿轴OO ′向左.由于磁针N 极指向为磁场方向,可知选项C 正确.2.磁场中某区域的磁感线如图所示,则( )A .a 、b 两处的磁感应强度的大小不等,B a >B bB .a 、b 两处的磁感应强度的大小不等,B a <B bC .同一通电导线放在a 处受力一定比放在b 处受力大D .同一通电导线放在a 处受力一定比放在b 处受力小解析:选A .磁感线的疏密程度表示磁感应强度的大小,由a 、b 两处磁感线的疏密程度可判断出B a >B b ,所以A 正确,B 错误;安培力的大小跟该处的磁感应强度的大小B 、电流大小I 、导线长度L 和导线放置的方向与磁感应强度的方向的夹角有关,故C 、D 错误.3.将长为L 的导线弯成六分之一圆弧,固定于垂直纸面向外、大小为B 的匀强磁场中,两端点A 、C 连线竖直,如图所示.若给导线通以由A 到C 、大小为I 的恒定电流,则导线所受安培力的大小和方向是( )A .ILB ,水平向左B .ILB ,水平向右C .3ILB π,水平向右D .3ILB π,水平向左解析:选D .弧长为L ,圆心角为60°,则弦长AC =3L π,导线受到的安培力F =BIl =3ILB π,由左手定则可知,导线受到的安培力方向水平向左.4.如图所示,M 、N 和P 是以MN 为直径的半圆弧上的三点,O 为半圆弧的圆心,∠MOP =60°,在M 、N 处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示,这时O 点的磁感应强度大小为B 1.若将M 处长直导线移至P 处,则O 点的磁感应强度大小为B 2,那么B 2与B 1之比为( )A .3∶1B .3∶2C .1∶1D .1∶2解析:选B .如图所示,当通有电流的长直导线在M 、N 两处时,根据安培定则可知:二者在圆心O 处产生的磁感应强度大小都为B 12;当将M 处长直导线移到P 处时,两直导线在圆心O 处产生的磁感应强度大小也为B 12,做平行四边形,由图中的几何关系,可得B 2B 1=B 22B 12=cos 30°=32,故选项B 正确.5.阿明有一个磁浮玩具,其原理是利用电磁铁产生磁性,让具有磁性的玩偶稳定地飘浮起来,其构造如图所示.若图中电源的电压固定,可变电阻为一可以随意改变电阻大小的装置,则下列叙述正确的是( )A .电路中的电源必须是交流电源B .电路中的a 端点须连接直流电源的负极C .若增加环绕软铁的线圈匝数,可增加玩偶飘浮的最大高度D .若将可变电阻的电阻值调大,可增加玩偶飘浮的最大高度解析:选C .电磁铁产生磁性,使玩偶稳定地飘浮起来,电路中的电源必须是直流电源,电路中的a 端点须连接直流电源的正极,选项A 、B 错误;若增加环绕软铁的线圈匝数,电磁铁产生的磁性更强,电磁铁对玩偶的磁力增强,可增加玩偶飘浮的最大高度,选项C 正确;若将可变电阻的电阻值调大,电磁铁中电流减小,产生的磁性变弱,则降低玩偶飘浮的最大高度,选项D 错误.6.一通电直导线与x 轴平行放置,匀强磁场的方向与xOy 坐标平面平行,导线受到的安培力为F .若将该导线做成34圆环,放置在xOy 坐标平面内,如图所示,并保持通电的电流不变,两端点ab 连线也与x 轴平行,则圆环受到的安培力大小为( )A .FB .23πFC .223πFD .32π3F 解析:选C .根据安培力公式,安培力F 与导线长度L 成正比;若将该导线做成34圆环,由L =34×2πR ,解得圆环的半径R =2L 3π,34圆环ab 两点之间的距离L ′=2R =22L 3π.由F L =F ′L ′解得:F ′=223πF ,选项C 正确. 7.在绝缘圆柱体上a 、b 两个位置固定有两个金属圆环,当两环通有如图所示电流时,b 处金属圆环受到的安培力为F 1;若将b 处金属圆环移动到位置c ,则通有电流为I 2的金属圆环受到的安培力为F 2.今保持b 处金属圆环原来位置不变,在位置c 再放置一个同样的金属圆环,并通有与a 处金属圆环同向、大小为I 2的电流,则在a 位置的金属圆环受到的安培力( )A .大小为|F 1-F 2|,方向向左B .大小为|F 1-F 2|,方向向右C .大小为|F 1+F 2|,方向向左D .大小为|F 1+F 2|,方向向右解析:选A .c 金属圆环对a 金属圆环的作用力大小为F 2,根据同方向的电流相互吸引,可知方向向右,b金属圆环对a金属圆环的作用力大小为F1,根据反方向的电流相互排斥,可知方向向左,所以a金属圆环所受的安培力大小|F1-F2|,由于a、b间的距离小于a、c 间距离,所以两合力的方向向左.8.如图,两根相互平行的长直导线过纸面上的M、N两点,且与纸面垂直,导线中通有大小相等、方向相反的电流.a、O、b在M、N的连线上,O为MN的中点,c、d位于MN的中垂线上,且a、b、c、d到O点的距离均相等.关于以上几点处的磁场,下列说法正确的是()A.O点处的磁感应强度为零B.a、b两点处的磁感应强度大小相等,方向相反C.c、d两点处的磁感应强度大小相等,方向相同D.a、c两点处磁感应强度的方向不同解析:选C.由安培定则可知,两导线中的电流在O点产生的磁场均竖直向下,合磁感应强度一定不为零,选项A错;由安培定则知,两导线中的电流在a、b两点处产生的磁场的方向均竖直向下,由于对称性,M中电流在a处产生的磁场的磁感应强度等于N中电流在b处产生的磁场的磁感应强度,同时M中电流在b处产生的磁场的磁感应强度等于N 中电流在a处产生的磁场的磁感应强度,所以a、b两点处磁感应强度大小相等,方向相同,选项B错;根据安培定则,两导线中的电流在c、d两点处产生的磁场垂直c、d两点与导线的连线方向向下,且产生的磁场的磁感应强度大小相等,由平行四边形定则可知,c、d 两点处的磁感应强度大小相等,方向相同,选项C正确;a、c两点处磁感应强度的方向均竖直向下,选项D错.9. (多选)如图所示,金属细棒质量为m,用两根相同轻弹簧吊放在水平方向的匀强磁场中,弹簧的劲度系数为k,棒ab中通有恒定电流,棒处于平衡状态,并且弹簧的弹力恰好为零.若电流大小不变而方向反向,则()A .每根弹簧弹力的大小为mgB .每根弹簧弹力的大小为2mgC .弹簧形变量为mg kD .弹簧形变量为2mg k解析:选AC .电流方向改变前,对棒受力分析,根据平衡条件可知,棒受到的安培力竖直向上,大小等于mg ;电流方向改变后,棒受到的安培力竖直向下,大小等于mg ,对棒受力分析,根据平衡条件可知,每根弹簧弹力的大小为mg ,弹簧形变量为mg k,选项A 、C 正确.10.如图所示,两平行光滑金属导轨CD 、EF 间距为L ,与电动势为E 0的电源相连,质量为m 、电阻为R 的金属棒ab 垂直于导轨放置构成闭合回路,回路平面与水平面成θ角,回路其余电阻不计.为使ab 棒静止,需在空间施加的匀强磁场磁感应强度的最小值及其方向分别为( )A .mgR E 0L,水平向右 B .mgR cos θE 0L,垂直于回路平面向上 C .mgR tan θE 0L,竖直向下 D .mgR sin θE 0L,垂直于回路平面向下 解析:选D .对金属棒受力分析,受重力、支持力和安培力,如图所示;从图可以看出,当安培力沿斜面向上时,安培力最小,故安培力的最小值为:F A =mg sin θ,故磁感应强度的最小值为B =F A IL =mg sin θIL ,根据欧姆定律,有E 0=IR ,故B =mgR sin θE 0L,故D 正确.11.已知直线电流在其空间某点产生的磁场,其磁感应强度B 的大小与电流强度成正比,与点到通电导线的距离成反比.现有平行放置的三根长直通电导线,分别通过一个直角三角形△ABC的三个顶点且与三角形所在平面垂直,如图所示,∠ACB=60°,O为斜边的中点.已知I1=2I2=2I3,I2在O点产生的磁场磁感应强度大小为B,则关于O点的磁感应强度,下列说法正确的是()A.大小为2B,方向垂直AB向左B.大小为23B,方向垂直AB向左C.大小为2B,方向垂直AB向右D.大小为23B,方向垂直AB向右解析:选B.导线周围的磁场的磁感线,是围绕导线形成的同心圆,空间某点的磁场沿该点的切线方向,即与该点和导线的连线垂直,根据右手螺旋定则,可知三根导线在O点的磁感应强度的方向如图所示.已知直线电流在其空间某点产生的磁场,其磁感应强度B 的大小与电流强度成正比,与点到通电导线的距离成反比,已知I1=2I2=2I3,I2在O点产生的磁场磁感应强度大小为B,O点到三根导线的距离相等,可知B3=B2=B,B1=2B,由几何关系可知三根导线在平行于AB方向的合磁场为零,垂直于AB方向的合磁场为23B.综上可得,O点的磁感应强度大小为23B,方向垂直于AB向左.故B正确,A、C、D 错误.12.(多选)光滑平行导轨水平放置,导轨左端通过开关S与内阻不计、电动势为E的电源相连,右端与半径为L=20 cm的两段光滑圆弧导轨相接,一根质量m=60 g、电阻R=1 Ω、长为L的导体棒ab,用长也为L的绝缘细线悬挂,如图所示,系统空间有竖直方向的匀强磁场,磁感应强度B=0.5 T,当闭合开关S后,导体棒沿圆弧摆动,摆到最大高度时,细线与竖直方向成θ=53°角,摆动过程中导体棒始终与导轨接触良好且细线处于张紧状态,导轨电阻不计,sin 53°=0.8,g=10 m/s2,则()A.磁场方向一定竖直向下B.电源电动势E=3.0 VC.导体棒在摆动过程中所受安培力F=3 ND.导体棒在摆动过程中电源提供的电能为0.048 J解析:选AB.导体棒向右沿圆弧摆动,说明受到向右的安培力,由左手定则知该磁场方向一定竖直向下,A项正确;导体棒摆动过程中只有安培力和重力做功,由动能定理知BIL·L sin θ-mgL(1-cos θ)=0,代入数值得导体棒中的电流为I=3 A,由E=IR得电源电动势E=3.0 V,B项正确;由F=BIL得导体棒在摆动过程中所受安培力F=0.3 N,C项错误;由能量守恒定律知电源提供的电能W等于电路中产生的焦耳热Q和导体棒重力势能的增加量ΔE的和,即W=Q+ΔE,而ΔE=mgL(1-cos θ)=0.048 J,D项错误.13.(多选)某同学自制的简易电动机示意图如图所示.矩形线圈由一根漆包线绕制而成,漆包线的两端分别从线圈的一组对边的中间位置引出,并作为线圈的转轴.将线圈架在两个金属支架之间,线圈平面位于竖直面内,永磁铁置于线圈下方.为了使电池与两金属支架连接后线圈能连续转动起来,该同学应将()A.左、右转轴下侧的绝缘漆都刮掉B.左、右转轴上下两侧的绝缘漆都刮掉C.左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉D.左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉解析:选AD.若将左、右转轴下侧的绝缘漆都刮掉,这样当线圈在图示位置时,线圈的上下边受到水平方向的安培力而转动,转过一周后再次受到同样的安培力而使其连续转动,选项A正确;若将左、右转轴上下两侧的绝缘漆都刮掉,则当线圈在图示位置时,线圈的上下边受到安培力而转动,转过半周后再次受到相反方向的安培力而使其停止转动,选项B 错误;左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉,电路不能接通,故不能转起来,选项C 错误;若将左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉,这样当线圈在图示位置时,线圈的上下边受到安培力而转动,转过半周后电路不导通,转过一周后再次受到同样的安培力而使其连续转动,选项D 正确.14.光滑的金属轨道分水平段和圆弧段两部分,O 点为圆弧的圆心.两金属轨道之间的宽度为0.5 m ,匀强磁场方向如图所示,大小为0.5 T .质量为0.05 kg 、长为0.5 m 的金属细杆置于金属水平轨道上的M 点.当在金属细杆内通以电流强度为2 A 的恒定电流时,金属细杆可以沿轨道由静止开始向右运动.已知MN =OP =1 m ,则下列说法中正确的是( )A .金属细杆开始运动时的加速度大小为5 m/s 2B .金属细杆运动到P 点时的速度大小为5 m/sC .金属细杆运动到P 点时的向心加速度大小为10 m/s 2D .金属细杆运动到P 点时对每一条轨道的作用力大小为0.75 N解析:选D .金属细杆在水平方向受到安培力作用,安培力大小F 安=BIL =0.5×2×0.5 N =0.5 N ,金属细杆开始运动时的加速度大小为a =F 安m=10 m/s 2,选项A 错误;对金属细杆从M 点到P 点的运动过程,安培力做功W 安=F 安·(MN +OP )=1 J ,重力做功W G =-mg ·ON =-0.5 J ,由动能定理得W 安+W G =12m v 2,解得金属细杆运动到P 点时的速度大小为v =20 m/s ,选项B 错误;金属细杆运动到P 点时的向心加速度大小为a ′=v 2r=20 m/s 2,选项C 错误;在P 点金属细杆受到轨道水平向左的作用力F 和水平向右的安培力F 安,由牛顿第二定律得F -F 安=m v 2r,解得F =1.5 N ,每一条轨道对金属细杆的作用力大小为0.75 N ,由牛顿第三定律可知金属细杆运动到P 点时对每一条轨道的作用力大小为0.75 N ,选项D 正确.二、【磁场对运动电荷的作用】典型题1.如图所示,a 、b 、c 、d 为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线中通有大小相同的电流,方向如图所示.一带正电的粒子从正方形中心O 点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是( )A .向上B .向下C .向左D .向右解析:选B .根据安培定则及磁感应强度的矢量叠加,可得O 点处的磁场方向水平向左,再根据左手定则判断可知,带电粒子受到的洛伦兹力方向向下,B 正确.2.如图,半径为R 的圆形区域内有垂直于纸面的匀强磁场,半径OC 与OB 夹角为60°.甲电子以速率v 从A 点沿直径AB 方向射入磁场,从C 点射出.乙电子以速率v 3从B 点沿BA 方向射入磁场,从D 点(图中未画出)射出,则( )A .C 、D 两点间的距离为2RB .C 、D 两点间的距离为3RC .甲在磁场中运动的时间是乙的2倍D .甲在磁场中运动的时间是乙的3倍解析:选B .洛伦兹力提供向心力,q v B =m v 2r 得r =m v qB,由几何关系求得r 1=R tan 60°=3R ,由于质子乙的速度是v 3,其轨道半径r 2=r 13=33R ,它们在磁场中的偏转角分别为60°和120°,根据几何知识可得BC =R ,BD =2r 2tan 60°=R ,所以CD =2R sin 60°=3R ,故A 错误,B 正确;粒子在磁场中运动的时间为t =θ2πT =θ2π·2πm qB,所以两粒子的运动时间之比等于偏转角之比,即为1∶2,即甲在磁场中运动的时间是乙的12倍,故C 、D 错误. 3. (多选)如图所示,一轨道由两等长的光滑斜面AB 和BC 组成,两斜面在B 处用一光滑小圆弧相连接,P 是BC 的中点,竖直线BD 右侧存在垂直纸面向里的匀强磁场,B 处可认为处在磁场中,一带电小球从A 点由静止释放后能沿轨道来回运动,C 点为小球在BD 右侧运动的最高点,则下列说法正确的是( )A .C 点与A 点在同一水平线上B .小球向右或向左滑过B 点时,对轨道压力相等C .小球向上或向下滑过P 点时,其所受洛伦兹力相同D .小球从A 到B 的时间是从C 到P 时间的2倍解析:选AD .小球在运动过程中受重力、洛伦兹力和轨道支持力作用,因洛伦兹力永不做功,支持力始终与小球运动方向垂直,也不做功,即只有重力做功,满足机械能守恒,因此C 点与A 点等高,在同一水平线上,选项A 正确;小球向右或向左滑过B 点时速度等大反向,即洛伦兹力等大反向,小球对轨道的压力不等,选项B 错误;同理小球向上或向下滑过P 点时,洛伦兹力也等大反向,选项C 错误;因洛伦兹力始终垂直BC ,小球在AB 段和BC 段(设斜面倾角均为θ)的加速度均由重力沿斜面的分力产生,大小为g sin θ,由x =12at 2得小球从A 到B 的时间是从C 到P 的时间的2倍,选项D 正确. 4.如图甲所示有界匀强磁场Ⅰ的宽度与图乙所示圆形匀强磁场Ⅱ的半径相等,一不计重力的粒子从左边界的M 点以一定初速度水平向右垂直射入磁场Ⅰ,从右边界射出时速度方向偏转了θ角;该粒子以同样的初速度沿半径方向垂直射入磁场Ⅱ,射出磁场时速度方向偏转了2θ角.已知磁场Ⅰ、Ⅱ的磁感应强度大小分别为B 1、B 2,则B 1与B 2的比值为( )A .2cos θB .sin θC .cos θD .tan θ解析:选C .设有界磁场Ⅰ宽度为d ,则粒子在磁场Ⅰ和磁场Ⅱ中的运动轨迹分别如图1、图2所示,由洛伦兹力提供向心力知Bq v =m v 2r ,得B =m v rq,由几何关系知d =r 1sin θ,d =r 2tan θ,联立得B 1B 2=cos θ,选项C 正确.5.如图所示,正方形区域内存在垂直纸面的匀强磁场.一带电粒子垂直磁场边界从a 点射入,从b 点射出.下列说法正确的是( )A .粒子带正电B .粒子在b 点速率大于在a 点速率C .若仅减小磁感应强度,则粒子可能从b 点右侧射出D .若仅减小入射速率,则粒子在磁场中运动时间变短解析:选C .由左手定则知,粒子带负电,A 错.由于洛伦兹力不做功,粒子速率不变,B 错.由R =m vqB , 若仅减小磁感应强度B ,R 变大,则粒子可能从b 点右侧射出,C 对.由R =m v qB ,若仅减小入射速率v, 则R 变小,粒子在磁场中的偏转角θ变大.由t =θ2πT ,T =2πm qB 知,运动时间变长,D 错.6.如图所示,两个同心圆,半径分别为r 和2r ,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B .圆心O 处有一放射源,放出粒子的质量为m 、带电量为q ,假设粒子速度方向都和纸面平行.(1)图中箭头表示某一粒子初速度的方向,OA 与初速度方向夹角为60°,要想使该粒子经过磁场后第一次通过A 点,则初速度的大小是多少?(2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少?解析:(1)如图甲所示,设粒子在磁场中的轨道半径为R 1,则由几何关系得R 1=3r3又q v 1B =m v 21R 1得v 1=3Bqr3m.(2)如图乙所示,设粒子轨迹与磁场外边界相切时,粒子在磁场中的轨道半径为R 2,则由几何关系有(2r -R 2)2=R 22+r 2可得R 2=3r 4,又q v 2B =m v 22R 2,可得v 2=3Bqr 4m故要使粒子不穿出环形区域,粒子的初速度不能超过3Bqr4m. 答案:(1)3Bqr 3m (2)3Bqr4m7. (多选)如图所示为一个质量为m 、带电荷量为+q 的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度大小为B 、方向垂直纸面向里的匀强磁场中.现给圆环向右初速度v 0,在以后的运动过程中,圆环运动的v -t 图象可能是下图中的( )解析:选BC .当q v B =mg 时,圆环做匀速直线运动,此时图象为B ,故B 正确;当q v B >mg 时,F N =q v B -mg ,此时:μF N =ma ,所以圆环做加速度逐渐减小的减速运动,直到q v B =mg 时,圆环开始做匀速运动,故C 正确;当q v B <mg 时,F N =mg -q v B ,此时:μF N =ma ,所以圆环做加速度逐渐增大的减速运动,直至停止,所以其v -t 图象的斜率应该逐渐增大,故A 、D 错误.8.如图所示,水平放置的平行板长度为L 、两板间距也为L ,两板之间存在垂直纸面向里、磁感应强度大小为B 的匀强磁场,在两板正中央P 点有一个不计重力的电子(质量为m 、电荷量为-e ),现在给电子一水平向右的瞬时初速度v 0,欲使电子不与平行板相碰撞,则( )A .v 0>eBL 2m 或v 0<eBL4mB .eBL 4m <v 0< eBL2mC .v 0>eBL2mD .v 0<eBL4m解析:选A .此题疑难点在于确定“不与平行板相碰撞”的临界条件.电子在磁场中做匀速圆周运动,半径为R =m v 0eB ,如图所示.当R 1=L 4时,电子恰好与下板相切;当R 2=L2时,电子恰好从下板边缘飞出两平行板(即飞出磁场).由R 1=m v 1eB ,解得v 1=eBL4m ,由R 2=m v 2eB ,解得v 2=eBL 2m ,所以欲使电子不与平行板相碰撞,电子初速度v 0应满足v 0>eBL 2m 或v 0<eBL4m ,故选项A 正确.9.如图所示,在x >0,y >0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy 平面向里,大小为B ,现有一质量为m 、电荷量为q 的带正电粒子,从x 轴上的某点P (不在原点)沿着与x 轴成30°角的方向射入磁场.不计重力的影响,则下列有关说法中正确的是( )A .只要粒子的速率合适,粒子就可能通过坐标原点B .粒子在磁场中运动所经历的时间一定为5 πm 3qBC .粒子在磁场中运动所经历的时间可能为πmqBD .粒子在磁场中运动所经历的时间可能为πm6qB解析:选C .利用“放缩圆法”:根据同一直线边界上粒子运动的对称性可知,粒子不可能通过坐标原点,A 项错误;粒子运动的情况有两种,一种是从y 轴边界射出,最短时间要大于2πm 3qB ,故D 项错误;对应轨迹①时,t 1=T 2=πm qB ,C 项正确,另一种是从x 轴边界飞出,如轨迹③,时间t 3=56T =5πm 3qB,此时粒子在磁场中运动时间最长,故B 项错误.10.如图所示,OM 的左侧存在范围足够大、磁感应强度大小为B 的匀强磁场,磁场方向垂直纸面向外,OM 左侧到OM 距离为L 的P 处有一个粒子源,可沿纸面向各个方向射出质量为m 、电荷量为q 的带正电粒子(重力不计),速率均为v =qBLm,则粒子在磁场中运动的最短时间为( )A .πm 2qBB .πm 3qBC .πm 4qBD .πm 6qB解析:选B .粒子进入磁场中做匀速圆周运动,洛伦兹力提供向心力,则有:q v B =m v 2r ,将题设的v 值代入得:r =L ,粒子在磁场中运动的时间最短,则粒子运动轨迹对应的弦最短,最短弦为L ,等于圆周运动的半径,根据几何关系,粒子转过的圆心角为60°,运动时间为T 6,故t min =T 6=16×2πm qB =πm 3qB,故B 正确,A 、C 、D 错误.11.(2019·高考全国卷Ⅲ)如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场.一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限.粒子在磁场中运动的时间为( )A .5πm 6qBB .7πm6qBC .11πm 6qBD .13πm6qB解析:选B .带电粒子在不同磁场中做圆周运动,其速度大小不变,由r =m vqB 知,第一象限内的圆半径是第二象限内圆半径的2倍,如图所示.粒子在第二象限内运动的时间:t 1=T 14=2πm 4qB =πm 2qB ;粒子在第一象限内运动的时间:t 2=T 26=2πm ×26qB =2πm 3qB ,则粒子在磁场中运动的时间t =t 1+t 2=7πm 6qB,选项B 正确.12.如图,在直角三角形OPN 区域内存在匀强磁场,磁感应强度大小为B 、方向垂直于纸面向外.一带正电的粒子从静止开始经电压U 加速后,沿平行于x 轴的方向射入磁场;一段时间后,该粒子在OP 边上某点以垂直于x 轴的方向射出.已知O 点为坐标原点,N 点在y 轴上,OP 与x 轴的夹角为30°,粒子进入磁场的入射点与离开磁场的出射点之间的距离为d ,不计重力.求:(1)带电粒子的比荷;(2)带电粒子从射入磁场到运动至x 轴的时间.解析: (1)设带电粒子的质量为m ,电荷量为q ,加速后的速度大小为v .由动能定理有qU =12m v 2①设粒子在磁场中做匀速圆周运动的半径为r ,由洛伦兹力公式和牛顿第二定律有 q v B =m v 2r②由几何关系知d =2r ③ 联立①②③式得q m =4UB 2d2.④(2)由几何关系知,带电粒子射入磁场后运动到x 轴所经过的路程为 s =πr2+r tan 30°⑤带电粒子从射入磁场到运动至x 轴的时间为t =sv ⑥联立②④⑤⑥式得t =Bd 24U ⎝⎛⎭⎫π2+33.⑦ 答案:(1)4U B 2d 2 (2)Bd 24U ⎝⎛⎭⎫π2+33三、【带电粒子在组合场中的运动】典型题1.(多选)回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D 形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的是( )A .增大匀强电场间的加速电压B .增大磁场的磁感应强度C .减小狭缝间的距离D .增大D 形金属盒的半径解析:选BD .回旋加速器利用电场加速和磁场偏转来加速粒子,粒子射出时的轨道半径恰好等于D 形盒的半径,根据q v B =m v 2R 可得,v =qBR m ,因此离开回旋加速器时的动能E k =12m v 2=q 2B 2R 22m 可知,与加速电压无关,与狭缝距离无关,A 、C 错误;磁感应强度越大,D 形盒的半径越大,动能越大,B 、D 正确.2.质谱仪是一种测定带电粒子质量和分析同位素的重要工具.图中的铅盒A 中的放射源放出大量的带正电粒子(可认为初速度为零),从狭缝S 1进入电压为U 的加速电场区加速后,再通过狭缝S 2从小孔G 垂直于MN 射入偏转磁场,该偏转磁场是以直线MN 为切线、磁感应强度为B ,方向垂直于纸面向外半径为R 的圆形匀强磁场.现在MN 上的F 点(图中未画出)接收到该粒子,且GF =3R .则该粒子的比荷为(粒子的重力忽略不计)( )。
(新课标)2020年高考物理考点汇总考点9磁场
考点9磁场1. (2020 -江苏物理卷•T9)如图所示,在匀强磁场中附加另一匀强磁场,附加磁场位于图中阴影区域,附加磁场区域的对称轴00与SS垂直。
a、b、c三个质子先后从S点沿垂直于磁场的方向射入磁场,它们的速度大小相等,b的速度方向与SS垂直,a、c的速度方向与b的速度方向间的夹角分别为、,且。
三个质子经过附加磁场区域后能达到同一点S',则下列说法中正确的有()A. 三个质子从S运动到S'的时间相等B. 三个质子在附加磁场以外区域运动时,运动轨迹的圆心均在00轴上C•若撤去附加磁场,a到达SS连线上的位置距S点最近D.附加磁场方向与原磁场方向相同【命题立意】本题以三个速度大小相同的质子在磁场中运动,考查带电粒子在磁场中的运动,题目设置较难。
【思路点拨】解答本题可按以下思路分析:【规范解答】选C、0三个质子从S 运动到S的过程中,运动轨迹的长度从a、b、c依次增大,由于洛仑兹力对质子不做功,三个质子速度大小始终相等,运动时间不相等,A错误;三个质子在附加磁场以外区域及附加磁场区域运动时,以质子b为例画出其运动轨迹图两种情况(R>r和R<r)如图①②所示,由图可以看出质子b 的运动轨迹的圆心不在00轴上,所以B 错误;用作图法 可知,若撤去附加磁场,a 到达SS 连线上的位置距S 点距离为x a 2Rsin (㊁)2Rcos)2Rcos ,b 到达SS 连线上的位置距S 点距离为x b 2R ,c 到达SS 连线上的位置距S 点距离为x c 2Rsin() 2Rcos ,可知a 到达SS 连线上的位置距 S 点2最近,C 正确;因b 要增大曲率,才 能使到达SS 连线上的位置向S 点靠近,所以附 加磁场方向与原磁场方向相同,D 正确。
2. (2020 •新课标全国卷・T25) (18分)如图所示,在O W x < ,—, ______________________________ a 、O W y W a 范围内有垂直于xy 平面向外的匀强磁「场,磁感 血;…益…=…彩2. ■ ■ 〃 H应强度大小为B 。
2020年高中物理讲义(第10章)-磁场(附详解)
.内容要求要点解读磁场、磁感应强度、磁感线Ⅰ新课标卷高考近几年未直接考查,而是结合安培力、洛伦兹力、电磁感应等内容间接考查。
高考要求知道其内容及含义,并能在有关问题中识别和直接使用。
通电直导线和通电线圈周围磁场的方向Ⅰ常考点,多以选择题考查安培定则的应用,要求考生会分项多条通电导线周围磁场的叠加。
安培力、安培力的方向Ⅰ常考点,往往结合平衡条件、牛顿运动定律和电磁感应问题综合考查。
匀强磁场中的安培力Ⅱ常考点,选择题或计算题均有可能,特别是安培力作用下的平衡或运动问题,并且常结合电磁感应问题综合考查。
洛伦兹力、洛伦兹力的方向Ⅰ热点。
要求考生会用左手定则判断洛伦兹力的方向,知道安培力是洛伦兹力的宏观表现。
洛伦兹力公式Ⅱ高频点或热点。
要求考查能熟练运用洛伦兹力公式,常结合带电粒子在磁场中的运动综合考查。
带电粒子在匀强磁场中的运动Ⅱ热点也是难点。
考查形式有选择题,也有压轴计算题,多涉及有界磁场,还会考查电、磁复合场,对考生各种能力要求较高。
复习时要注意多研究一些以最新科技成果为背景的题目,注意将实际问题模型化能力的培养。
质谱仪和回旋加速器Ⅰ熟悉其工作原理,多注意其他类似元件的工作原理,例如速度选择题、电磁流量计、磁流体发电机、霍尔元件等。
带电粒子在组合场、叠加场中的运动Ⅱ重力场、电场、磁场的组合或叠加,这部分内容涵盖了力、电、磁的核心内容,是高考的重点和难点,综合度高,难度大。
10 磁场§10-1 磁场性质一、磁场1.力的角度——磁感应强度:把一段检验电流放在磁场中时,用它受到的最大安培力与其电流强度和长度的乘积之比来描述该点的磁感应强度大小,即FBIL 。
2.“形”的角度——磁感线:磁感线的疏密反映磁场的强弱(磁感应强度的大小),切线方向是磁场方向。
3.磁场的叠加:由于磁感应强度是矢量,故磁场叠加时合磁场的磁感应强度可以由平行四边形定则计算。
二、安培定则和左手定则使用手使用范围安培定则右手环形电流→磁场、直线电流→环形磁场左手定则左手电(流)+磁→(安培)力判断通电导线在磁场中的运动方向:1.把弯曲导线分成很多直线电流元,先用左手定则判断各电流元受力方向,然后判断整段导线所受合力的方向,从而确定导线的运动方向。
高考物理全国卷2020年高考物理一轮复习专题09磁场知识点考点归纳
专题09 磁场目录第一节磁场的描述磁场对电流的作用 (1)【基本概念、规律】 (1)【重要考点归纳】 (3)考点一安培定则的应用和磁场的叠加 (3)考点二安培力作用下导体运动情况的判定 (3)【思想方法与技巧】 (3)用视图转换法求解涉及安培力的力学问题 (3)第二节磁场对运动电荷的作用 (4)【基本概念、规律】 (4)【重要考点归纳】 (5)考点一洛伦兹力和电场力的比较 (5)考点二带电粒子在匀强磁场中的运动 (5)考点三“磁偏转”和“电偏转” (6)【思想方法与技巧】 (6)带电粒子在磁场中运动的临界和极值问题 (6)第三节带电粒子在复合场中的运动 (7)【基本概念、规律】 (7)【重要考点归纳】 (9)考点一带电粒子在叠加场中的运动 (9)考点二带电粒子在组合场中的运动 (9)【思想方法与技巧】 (10)带电粒子在交变电场、磁场中的运动 (10)带电粒子在磁场中运动的多解问题 (10)第一节磁场的描述磁场对电流的作用【基本概念、规律】一、磁场、磁感应强度1.磁场(1)基本性质:磁场对处于其中的磁体、电流和运动电荷有磁力的作用.(2)方向:小磁针的N极所受磁场力的方向.2.磁感应强度(1)物理意义:描述磁场强弱和方向.(2)定义式:B=FIL(通电导线垂直于磁场).(3)方向:小磁针静止时N极的指向.(4)单位:特斯拉,符号T.二、磁感线及特点1.磁感线在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的磁感应强度的方向一致.2.磁感线的特点(1)磁感线上某点的切线方向就是该点的磁场方向.(2)磁感线的疏密定性地表示磁场的强弱,在磁感线较密的地方磁场较强;在磁感线较疏的地方磁场较弱.(3)磁感线是闭合曲线,没有起点和终点.在磁体外部,从N极指向S极;在磁体内部,由S极指向N 极.(4)同一磁场的磁感线不中断、不相交、不相切.(5)磁感线是假想的曲线,客观上不存在.3.电流周围的磁场三、安培力的大小和方向1.安培力的大小(1)磁场和电流垂直时,F=BIL.(2)磁场和电流平行时:F=0.2.安培力的方向(1)用左手定则判定:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向.(2)安培力的方向特点:F⊥B,F⊥I,即F垂直于B和I决定的平面.(注意:B和I可以有任意夹角)【重要考点归纳】考点一安培定则的应用和磁场的叠加1.安培定则的应用在运用安培定则判定直线电流和环形电流的磁场时应分清“因”和“果”.原因(电流方向)结果(磁场绕向)直线电流的磁场大拇指四指环形电流的磁场四指大拇指2.磁场的叠加磁感应强度是矢量,计算时与力的计算方法相同,利用平行四边形定则或正交分解法进行合成与分解.特别提醒:两个电流附近的磁场的磁感应强度是由两个电流分别独立存在时产生的磁场在该处的磁感应强度叠加而成的.3.解决这类问题的思路和步骤:(1)根据安培定则确定各导线在某点产生的磁场方向;(2)判断各分磁场的磁感应强度大小关系;(3)根据矢量合成法则确定合磁场的大小和方向.考点二安培力作用下导体运动情况的判定1.判定通电导体在安培力作用下的运动或运动趋势,首先必须弄清楚导体所在位置的磁场分布情况,然后利用左手定则准确判定导体的受力情况,进而确定导体的运动方向或运动趋势的方向.2.在应用左手定则判定安培力方向时,磁感线方向不一定垂直于电流方向,但安培力方向一定与磁场方向和电流方向垂直,即大拇指一定要垂直于磁场方向和电流方向决定的平面.【思想方法与技巧】用视图转换法求解涉及安培力的力学问题1.安培力(1)方向:根据左手定则判断.(2)大小:由公式F=BIL计算,且其中的L为导线在磁场中的有效长度.如弯曲通电导线的有效长度L 等于连接两端点的直线的长度,相应的电流方向沿两端点连线由始端流向末端,如图所示.2.视图转换对于安培力作用下的力学问题,需画出导体棒的受力示意图.但在三维空间无法准确画出其受力情况,可将三维立体图转化为二维平面图,即画出俯视图、剖面图或侧视图等.此时,金属棒用圆代替,电流方向用“×”或“·”表示.3.解决安培力作用下的力学问题的思路: (1)选定研究对象;(2)变三维为二维,画出平面受力分析图,判断安培力的方向时切忌跟着感觉走,一定要用左手定则来判断,注意F 安⊥B 、F 安⊥I ;(3)根据力的平衡条件或牛顿第二定律列方程求解.第二节 磁场对运动电荷的作用【基本概念、规律】一、洛伦兹力1.定义:运动电荷在磁场中所受的力. 2.大小(1) v ∥B 时,F =0. (2) v ⊥B 时,F =qvB .(3) v 与B 夹角为θ时,F =qvB sin_θ. 3.方向(1)判定方法:应用左手定则,注意四指应指向正电荷运动方向或负电荷运动的反方向. (2)方向特点:F ⊥B ,F ⊥v .即F 垂直于B 、v 决定的平面.(注意B 和v 可以有任意夹角). 由于F 始终垂直于v 的方向,故洛伦兹力永不做功. 二、带电粒子在匀强磁场中的运动1.若v ∥B ,带电粒子以入射速度v 做匀速直线运动.2.若v ⊥B ,带电粒子在垂直于磁感线的平面内,以入射速度v 做匀速圆周运动. 3.基本公式(1)向心力公式:qvB =m v 2r.(2)轨道半径公式:r =mv Bq.(3)周期公式:T =2πr v =2πm qB ;f =1T =Bq 2πm ;ω=2πT =2πf =Bqm.特别提示:T 的大小与轨道半径r 和运行速率v 无关,只与磁场的磁感应强度B 和粒子的比荷q m有关.【重要考点归纳】考点一洛伦兹力和电场力的比较1.洛伦兹力方向的特点(1)洛伦兹力的方向总是垂直于运动电荷速度方向和磁场方向确定的平面.(2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化.(3)左手判断洛伦兹力方向,但一定分正、负电荷.2.洛伦兹力与电场力的比较考点二带电粒子在匀强磁场中的运动1.圆心的确定(1)已知入射点、出射点、入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨迹的圆心(如图甲所示,图中P为入射点,M为出射点).(2)已知入射方向、入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心(如图乙所示,P为入射点,M为出射点).2.半径的确定可利用物理学公式或几何知识(勾股定理、三角函数等)求出半径大小.3.运动时间的确定粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为θ时,其运动时间表示为:t=θ2πT4.求解粒子在匀强磁场中运动问题的步骤:(1)画轨迹:即确定圆心,画出运动轨迹.(2)找联系:轨迹半径与磁感应强度、运动速度的联系,偏转角度与圆心角、运动时间的联系,在磁场中的运动时间与周期的联系.(3)用规律:即牛顿运动定律和圆周运动的规律,特别是周期公式、半径公式.考点三“磁偏转”和“电偏转”【思想方法与技巧】带电粒子在磁场中运动的临界和极值问题1.带电粒子进入有界磁场区域,一般存在临界问题(或边界问题)以及极值问题.解决这类问题的方法思路如下:(1)直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值.(2)以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界条件下的特殊规律和特殊解.2.带电粒子在有界磁场中的运动,一般涉及临界和边界问题,临界值、边界值常与极值问题相关联.因此,临界状态、边界状态的确定以及所需满足的条件是解决问题的关键.常遇到的临界和极值条件有:(1)带电体在磁场中,离开一个面的临界状态是对这个面的压力为零.(2)射出或不射出磁场的临界状态是带电体运动的轨迹与磁场边界相切,对应粒子速度的临界值.(3)运动时间极值的分析①周期相同的粒子,当速率相同时,轨迹(弦长)越长,圆心角越大,运动时间越长.②周期相同的粒子,当速率不同时,圆心角越大,运动时间越长.第三节带电粒子在复合场中的运动【基本概念、规律】一、带电粒子在复合场中的运动 1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠或在同一区域,电场、磁场交替出现. 2.带电粒子在复合场中的运动分类 (1)静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动. (2)匀速圆周运动当带电粒子所受的重力与电场力大小相等、方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.(3)非匀变速曲线运动当带电粒子所受的合外力的大小和方向均变化,且与初速度方向不在同一条直线上时,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.二、带电粒子在复合场中运动的应用实例 1.质谱仪(1)构造:如图所示,由粒子源、加速电场、偏转磁场和照相底片等构成.(2)原理:粒子由静止在加速电场中被加速,根据动能定理可得关系式qU =12mv 2.粒子在磁场中受洛伦兹力偏转,做匀速圆周运动,根据牛顿第二定律得关系式qvB =m v 2r.由以上两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷. r =1B2mUq ,m =qr 2B 22U ,q m =2U B 2r2. 2.回旋加速器(1)构造:如图所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处接交流电源.D 形盒处于匀强磁场中.(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子经电场加速,经磁场回旋,由qvB =mv 2r ,得E km =q 2B 2r 22m,可见粒子获得的最大动能由磁感应强度B 和D 形盒半径r 决定,与加速电压无关.3.速度选择器(如图所示)(1)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器.(2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =qvB ,即v =E B. 4.磁流体发电机(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能. (2)根据左手定则,如图中的B 是发电机正极.(3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的磁感应强度为B ,则由qE =q U L=qvB 得两极板间能达到的最大电势差U =BLv .5.电磁流量计工作原理:如图所示,圆形导管直径为d ,用非磁性材料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负离子),在洛伦兹力的作用下横向偏转,a 、b 间出现电势差,形成电场,当自由电荷所受的电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定,即:qvB =qE =q Ud ,所以v =U Bd,因此液体流量Q =Sv =πd 24·U Bd =πdU4B.【重要考点归纳】考点一带电粒子在叠加场中的运动1.带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)电场力、磁场力、重力并存①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.2.带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,除受场力外,还受弹力、摩擦力作用,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.考点二带电粒子在组合场中的运动带电粒子在组合场中的运动,实际上是几个典型运动过程的组合,因此解决这类问题要分段处理,找出各分段之间的衔接点和相关物理量,问题即可迎刃而解.常见类型如下:1.从电场进入磁场(1)粒子先在电场中做加速直线运动,然后进入磁场做圆周运动.在电场中利用动能定理或运动学公式求粒子刚进入磁场时的速度.(2)粒子先在电场中做类平抛运动,然后进入磁场做圆周运动.在电场中利用平抛运动知识求粒子进入磁场时的速度.2.从磁场进入电场(1)粒子进入电场时的速度与电场方向相同或相反,做匀变速直线运动(不计重力).(2)粒子进入电场时的速度方向与电场方向垂直,做类平抛运动.3.解决带电粒子在组合场中的运动问题的思路。
高二物理《磁场》重要知识点整理(有答案)
物理重要知识点整理——磁场一.基本概念:1.磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质。
磁场的方向:规定磁场中任意一点小磁针N 极受力的方向(或者小磁针静止时N 极的指向)就是那一点的磁场方向。
2.磁感线:磁感线不是真实存在的,是人为画上去的。
曲线的疏密能代表磁场的强弱,磁感线越密的地方磁场越强,磁感线从N 极进来,S 极进去,磁感线都是闭合曲线且磁感线不相交。
.几种典型磁场的磁感线(1)条形磁铁 (2)通电直导线a.安培定则:用右手握住导线,让伸直的大拇指所指的方向跟电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向。
b.其磁感线是内密外疏的同心圆。
(3)环形电流磁场a.安培定则:让右手弯曲的四指和环形电流的方向一致,伸直的大拇指的方向就是环形导线中心轴线的磁感线方向。
b.所有磁感线都通过内部,内密外疏(4)通电螺线管a.安培定则: 让右手弯曲的四指所指的方向跟电流的方向一致,伸直的大拇指的方向就是螺线管内部磁场的磁感线方向。
b. 通电螺线管的磁场相当于条形磁铁的磁场。
例1下列说法正确的是( )A .通过某平面的磁感线条数为零,则此平面处的磁感应强度一定为零B .空间各点磁感应强度的方向就是该点磁场方向C .两平行放置的异名磁极间的磁场为匀强磁场D .磁感应强度为零,则通过该处的某面积的磁感线条数不一定为零【解析】 磁感应强度反映磁场的强弱和方向,它的方向就是该处磁场的方向,故B 正确.通过某平面的磁感线条数为零,可能是因为平面与磁感线平行,而磁感应强度可能不为零,故A 错误.只有近距离的两异名磁极间才是匀强磁场,故C 错误.若某处磁感应强度为零,说明该处无磁场,通过该处的某面积的磁感线条数一定为零,故D 错.【答案】 B3.磁通量:磁感应强度B 与面积S 的乘积,叫做穿过这个面的磁通量。
物理意义:表示穿过一个面的磁感线条数。
定义:BS =Φ θco sBS =Φ(θ为B 与S 间的夹角) 例1关于磁通量,下列说法正确的是( )A .磁通量不仅有大小而且有方向,是矢量B .在匀强磁场中,a 线圈面积比b 线圈面积大,则穿过a 线圈的磁通量一定比穿过b 线圈的大C .磁通量大,磁感应强度不一定大D .把某线圈放在磁场中的M 、N 两点,若放在M 处的磁通量比在N 处的大,则M 处的磁感应强度一定比N 处大【解析】 磁通量是标量,大小与B 、S 及放置角度均有关,只有C 项说法完全正确.【答案】 C二.安培力:阻碍物体的相对运动。
高中物理磁场大题(超全)
高中物理磁场大题一.解答题(共30小题)1.如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连续发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响).已知t=0时刻进入两板间的带电粒子恰好在t时刻经极板边缘射入磁场.上述m、q、l、t、B为已知量.(不考虑粒子间相互影响及返回板间的情况)(1)求电压U的大小.(2)求t时进入两板间的带电粒子在磁场中做圆周运动的半径.(3)何时射入两板间的带电粒子在磁场中的运动时间最短?求此最短时间.2.如图所示,在xOy平面内,0<x<2L的区域内有一方向竖直向上的匀强电场,2L<x<3L的区域内有一方向竖直向下的匀强电场,两电场强度大小相等.x>3L的区域内有一方向垂直于xOy平面向外的匀强磁场.某时刻,一带正电的粒子从坐标原点以沿x轴正方向的初速度v进入电场;之后的另一时刻,一带负电粒子以同样的初速度从坐标原点进入电场.正、负粒子从电场进入磁场时速度方向与电场和磁场边界的夹角分别为60°和30°,两粒子在磁场中分别运动半周后在某点相遇.已经两粒子的重力以及两粒子之间的相互作用都可忽略不计,两粒子带电量大小相等.求:(1)正、负粒子的质量之比m1:m2;(2)两粒子相遇的位置P点的坐标;(3)两粒子先后进入电场的时间差.3.如图所示,相距为R的两块平行金属板M、N正对着放置,s1、s2分别为M、N板上的小孔,s1、s2、O三点共线,它们的连线垂直M、N,且s2O=R.以O为圆心、R为半径的圆形区域内存在磁感应强度为B、方向垂直纸面向外的匀强磁场.D 为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板.质量为m、带电量为+q的粒子,经s1进入M、N间的电场后,通过s2进入磁场.粒子在s1处的速度和粒子所受的重力均不计.(1)当M、N间的电压为U时,求粒子进入磁场时速度的大小υ;(2)若粒子恰好打在收集板D的中点上,求M、N间的电压值U;(3)当M、N间的电压不同时,粒子从s1到打在D上经历的时间t会不同,求t 的最小值.4.如图所示,直角坐标系xoy位于竖直平面内,在‑m≤x≤0的区域内有磁感应强度大小B=4.0×10﹣4T、方向垂直于纸面向里的条形匀强磁场,其左边界与x轴交于P点;在x>0的区域内有电场强度大小E=4N/C、方向沿y轴正方向的条形匀强电场,其宽度d=2m.一质量m=6.4×10﹣27kg、电荷量q=﹣3.2×10‑19C 的带电粒子从P点以速度v=4×104m/s,沿与x轴正方向成α=60°角射入磁场,经电场偏转最终通过x轴上的Q点(图中未标出),不计粒子重力.求:(1)带电粒子在磁场中运动时间;(2)当电场左边界与y轴重合时Q点的横坐标;(3)若只改变上述电场强度的大小,要求带电粒子仍能通过Q点,讨论此电场左边界的横坐标x′与电场强度的大小E′的函数关系.5.如图所示,两平行金属板AB中间有互相垂直的匀强电场和匀强磁场.A板带正电荷,B板带等量负电荷,电场强度为E;磁场方向垂直纸面向里,磁感应强.平行金属板右侧有一挡板M,中间有小孔O′,OO′是平行于两金属板度为B1.CD为磁场的中心线.挡板右侧有垂直纸面向外的匀强磁场,磁场应强度为B2边界上的一绝缘板,它与M板的夹角θ=45°,O′C=a,现有大量质量均为m,B2含有各种不同电荷量、不同速度的带电粒子(不计重力),自O点沿OO′方向进入电磁场区域,其中有些粒子沿直线OO′方向运动,并进入匀强磁场B中,求:2的带电粒子的速度;(1)进入匀强磁场B2(2)能击中绝缘板CD的粒子中,所带电荷量的最大值;(3)绝缘板CD上被带电粒子击中区域的长度.6.在平面直角坐标系xoy中,第I象限存在沿y轴负方向的匀强电场,第IV 象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m,电荷垂直于y轴射入电场,量为q的带正电的粒子从y轴正半轴上的M点以速度v经x轴上的N点与x轴正方向成45°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示.不计粒子重力,求:(1)M、N两点间的电势差U;MN(2)粒子在磁场中运动的轨道半径r;(3)粒子从M点运动到P点的总时间t.7.如图所示的平行板器件中,存在相互垂直的匀强磁场和匀强电场,磁场的磁=0.40T,方向垂直纸面向里,电场强度E=2.0×105V/m,PQ为板间中感应强度B1线.紧靠平行板右侧边缘xOy坐标系的第一象限内,有垂直纸面向外的匀强磁场,磁感应强度B=0.25T,磁场边界AO和y轴的夹角∠AOy=45°.一束带电量q=8.02×10﹣19C的正离子从P点射入平行板间,沿中线PQ做直线运动,穿出平行板后从y轴上坐标为(0,0.2m)的Q点垂直y轴射入磁场区,离子通过x轴时的速度方向与x轴正方向夹角在45°~90°之间.则:(1)离子运动的速度为多大?(2)离子的质量应在什么范围内?(3)现只改变AOy区域内磁场的磁感应强度大小,使离子都不能打到x轴上,磁感应强度大小B应满足什么条件?28.如图所示,在空间中存在垂直纸面向里的匀强磁场,其竖直边界AB、CD的宽度为d,在边界AB左侧是竖直向下、场强为E的匀强电场.现有质量为m、带电的水平初速度射入电场,随后与量为+q的粒子(不计重力)从P点以大小为v边界AB成45°射入磁场.若粒子能垂直CD边界飞出磁场,穿过小孔进入如图所示两竖直平行金属板间的匀强电场中减速至零且不碰到正极板.(1)请画出粒子上述过程中的运动轨迹,并求出粒子进入磁场时的速度大小v;(2)求匀强磁场的磁感应强度B;(3)求金属板间的电压U的最小值.9.如图甲,真空中竖直放置两块相距为d的平行金属板P、Q,两板间加上如图的周期性变化的电压,在Q板右侧某个区域内存在磁感应强度大乙最大值为U小为B、方向垂直于纸面向里的有界匀强磁场.在紧靠P板处有一粒子源A,自t=0开始连续释放初速不计的粒子,经一段时间从Q板小孔O射入磁场,然后射出磁场,射出时所有粒子的速度方向均竖直向上.已知电场变化周期T=,粒子质量为m,电荷量为+q,不计粒子重力及相互间的作用力.求:(1)t=0时刻释放的粒子在P、Q间运动的时间;(2)粒子射入磁场时的最大速率和最小速率;(3)有界磁场区域的最小面积.10.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的半径为L,电势为φ1,内圆弧面CD的半径为,电势为φ2.足够长的收集板MN平行边界ACDB,O到MN板的距离OP=L.假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子引力的影响.(1)求粒子到达O点时速度的大小;(2)如图2所示,在边界ACDB和收集板MN之间加一个半圆形匀强磁场,圆心为O,半径为L,方向垂直纸面向内,则发现从AB圆弧面收集到的粒子经O点进入磁场后有能打到MN板上(不考虑过边界ACDB的粒子再次返回),求所加磁感应强度的大小;(3)同上问,从AB圆弧面收集到的粒子经O点进入磁场后均不能到达收集板MN,求磁感应强度所满足的条件.试写出定量反映收集板MN上的收集效率η与磁感应强度B的关系的相关式子.11.如图,静止于A处的离子,经电压为U的加速电场加速后沿图中圆弧虚线通过静电分析器,从P点垂直CN进入矩形区域的有界匀强电场,电场方向水平向左.静电分析器通道内有均匀辐向分布的电场,已知圆弧所在处场强为E,方向如图所示;离子质量为m、电荷量为q;=2d、=3d,离子重力不计.(1)求圆弧虚线对应的半径R的大小;(2)若离子恰好能打在NQ的中点上,求矩形区域QNCD内匀强电场场强E的值;(3)若撤去矩形区域QNCD内的匀强电场,换为垂直纸面向里的匀强磁场,要求离子能最终打在QN 上,求磁场磁感应强度B 的取值范围.12.如图甲所示,一对平行金属板M 、N 长为L ,相距为d ,O 1O 为中轴线.当两板间加电压U MN =U 0时,两板间为匀强电场,忽略两极板外的电场.某种带负电的粒子从O 1点以速度v 0沿O 1O 方向射入电场,粒子恰好打在上极板M 的中点,粒子重力忽略不计.(1)求带电粒子的比荷;(2)若MN 间加如图乙所示的交变电压,其周期,从t=0开始,前内U MN =2U ,后内U MN =﹣U ,大量的上述粒子仍然以速度v 0沿O 1O 方向持续射入电场,最终所有粒子刚好能全部离开电场而不打在极板上,求U 的值;(3)紧贴板右侧建立xOy 坐标系,在xOy 坐标第I 、IV 象限某区域内存在一个圆形的匀强磁场区域,磁场方向垂直于xOy 坐标平面,要使在(2)问情景下所有粒子经过磁场偏转后都会聚于坐标为(2d ,2d )的P 点,求磁感应强度B 的大小范围.13.如图所示,在第一、二象限存在场强均为E 的匀强电场,其中第一象限的匀强电场的方向沿x 轴正方向,第二象限的电场方向沿x 轴负方向.在第三、四象限矩形区域ABCD 内存在垂直于纸面向外的匀强磁场,矩形区域的AB 边与x 轴重合.M点是第一象限中无限靠近y轴的一点,在M点有一质量为m、电荷量为e沿y轴负方向开始运动,恰好从N点进入磁场,若OM=2ON,的质子,以初速度v不计质子的重力,试求:(1)N点横坐标d;(2)若质子经过磁场最后能无限靠近M点,则矩形区域的最小面积是多少;(3)在(2)的前提下,该质子由M点出发返回到无限靠近M点所需的时间.14.如图所示,在xOy平面直角坐标系中,直线MN与y轴成30°角,P点的坐标为(,0),在y轴与直线MN之间的区域内,存在垂直于xOy平面向外、磁感应强度为B的匀强磁场.在直角坐标系xOy的第Ⅳ象限区域内存在沿y轴,正方向、大小为的匀强电场,在x=3a处垂直于x轴放置一平面荧光屏,从y轴上0≤y≤2a的区间垂直于y轴与x轴交点为Q,电子束以相同的速度v和磁场方向射入磁场.已知从y=2a点射入的电子在磁场中轨迹恰好经过O点,忽略电子间的相互作用,不计电子的重力.求:(1)电子的比荷;(2)电子离开磁场垂直y轴进入电场的位置的范围;(3)从y轴哪个位置进入电场的电子打到荧光屏上距Q点的距离最远?最远距离为多少?15.如图(a)所示,水平放置的平行金属板A、B间加直流电压U,A板正上方有“V”字型足够长的绝缘弹性挡板.在挡板间加垂直纸面的交变磁场,磁感应强度随时间变化如图(b),垂直纸面向里为磁场正方向,其中B1=B,B2未知.现有一比荷为、不计重力的带正电粒子从C点静止释放,t=0时刻,粒子刚好从小孔O进入上方磁场中,在 t1时刻粒子第一次撞到左挡板,紧接着在t1+t2时刻粒子撞到右挡板,然后粒子又从O点竖直向下返回平行金属板间.粒子与挡板碰撞前后电量不变,沿板的分速度不变,垂直板的分速度大小不变、方向相反,不计碰撞的时间及磁场变化产生的感应影响.求:(1)粒子第一次到达O点时的速率;(2)图中B2的大小;(3)金属板A和B间的距离d.16.如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响).已知t=0时刻进入两板间的带电粒子恰好在t时,刻经极板边缘射入磁场.上述m、q、l、t、B为已知量.(不考虑粒子间相互影响及返回板间的情况)(1)求电压U的大小.(2)求t时刻进入两板间的带电粒子在磁场中做圆周运动的半径.(3)带电粒子在磁场中的运动时间.17.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场由加了电压的相距为d的两块水平平行放置的导体板形成,如图甲所示.大量电子(其重力不计)由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t,当在两板间加如图乙所示的周期为2t0、幅值恒为U的电压时,所有电子均从两板间通过,然后进入水平宽度为l,竖直宽度足够大的匀强磁场中,最后通过匀强磁场打在竖直放置的荧光屏上.问:(1)电子在刚穿出两板之间时的最大侧向位移与最小侧向位移之比为多少?(2)要使侧向位移最大的电子能垂直打在荧光屏上,匀强磁场的磁感应强度为多少?(3)在满足第(2)问的情况下,打在荧光屏上的电子束的宽度为多少?(已知电子的质量为m、电荷量为e)18.如图所示xOy平面内,在x轴上从电离室产生的带正电的粒子,以几乎为零的初速度飘入电势差为U=200V的加速电场中,然后经过右侧极板上的小孔沿x 轴进入到另一匀强电场区域,该电场区域范围为﹣l≤x≤0(l=4cm),电场强度大小为E=×104V/m,方向沿y轴正方向.带电粒子经过y轴后,将进入一与y 轴相切的圆形边界匀强磁场区域,磁场区域圆半径为r=2cm,圆心C到x轴的距离为d=4cm,磁场磁感应强度为B=8×10﹣2T,方向垂直xoy平面向外.带电粒子最终垂直打在与y轴平行、到y轴距离为L=6cm的接收屏上.求:(1)带电粒子通过y轴时离x轴的距离;(2)带电粒子的比荷;(3)若另一种带电粒子从电离室产生后,最终打在接收屏上y=cm处,则该粒子的比荷又是多少?19.如图所示,在竖直平面内,虚线MO与水平线PQ相交于O,二者夹角θ=30°,在MOP范围内存在竖直向下的匀强电场,电场强度为E,MOQ上方的某个区域有垂直纸面向里的匀强磁场,磁感应强度为B,O点处在磁场的边界上,现有一群质量为m、电量为+q的带电粒子在纸面内以速度v(0≤v≤)垂直于MO从O 点射入磁场,所有粒子通过直线MO时,速度方向均平行于PQ向左,不计粒子的重力和粒子间的相互作用力.求:(1)速度最大的粒子在磁场中的运动时间;(2)速度最大的粒子打在水平线POQ上的位置离O点的距离;(3)磁场区域的最小面积.20.如图所示为某一仪器的部分原理示意图,虚线OA、OB关于y轴对称,∠AOB=90°,OA、OB将xOy平面分为Ⅰ、Ⅱ、Ⅲ三个区域,区域Ⅰ、Ⅲ内存在水平方向的匀强电场,电场强度大小相等、方向相反.质量为m电荷量为q的带电粒子自x轴上的粒子源P处以速度v0沿y轴正方向射出,经时间t到达OA上的M点,且此时速度与OA垂直.已知M到原点O的距离OM=L,不计粒子的重力.求:(1)匀强电场的电场强度E的大小;(2)为使粒子能从M点经Ⅱ区域通过OB上的N点,M、N点关于y轴对称,可在区域Ⅱ内加一垂直xOy平面的匀强磁场,求该磁场的磁感应强度的最小值和粒子经过区域Ⅲ到达x轴上Q点的横坐标;(3)当匀强磁场的磁感应强度取(2)问中的最小值时,且该磁场仅分布在一个圆形区域内.由于某种原因的影响,粒子经过M点时的速度并不严格与OA垂直,成散射状,散射角为θ,但速度大小均相同,如图所示,求所有粒子经过OB时的区域长度.21.在xoy平面直角坐标系的第Ⅰ象限有射线OA,OA与x轴正方向夹角为30°,如图所示,OA与y轴所夹区域存在y轴负方向的匀强电场,其它区域存在垂直坐标平面向外的匀强磁场;有一带正电粒子质量m,电量q,从y轴上的P点沿着x轴正方向以大小为v的初速度射入电场,运动一段时间沿垂直于OA方向经过Q点进入磁场,经磁场偏转,过y轴正半轴上的M点再次垂直进入匀强电场.已知OP=h,不计粒子的重力.(1)求粒子垂直射线OA经过Q点的速度v;Q(2)求匀强电场的电场强度E与匀强磁场的磁感应强度B的比值;(3)粒子从M点垂直进入电场后,如果适当改变电场强度,可以使粒子再次垂直OA进入磁场,再适当改变磁场的强弱,可以使粒子再次从y轴正方向上某点垂直进入电场;如此不断改变电场和磁场,会使粒子每次都能从y轴正方向上某点垂直进入电场,再垂直OA方向进入磁场…,求粒子从P点开始经多长时间能够运动到O点?22.如图所示,图面内有竖直线DD′,过DD′且垂直于图面的平面将空间分成Ⅰ、Ⅱ两区域.区域I有方向竖直向上的匀强电场和方向垂直图面的匀强磁场B (图中未画出);区域Ⅱ有固定在水平面上高h=2l、倾角α=的光滑绝缘斜面,斜面顶端与直线DD′距离s=4l,区域Ⅱ可加竖直方向的大小不同的匀强电场(图中未画出);C点在DD′上,距地面高H=3l.零时刻,质量为m、带电荷量为q=、方向与水平面夹角θ=的速度,在区域I 的小球P在K点具有大小v内做半径r=的匀速圆周运动,经CD水平进入区域Ⅱ.某时刻,不带电的绝缘小球A由斜面顶端静止释放,在某处与刚运动到斜面的小球P相遇.小球视为质点,不计空气阻力及小球P所带电量对空间电磁场的影响.l已知,g为重力加速度.(1)求匀强磁场的磁感应强度B的大小;(2)若小球A、P在斜面底端相遇,求释放小球A的时刻t;A(3)若小球A、P在时刻t=β(β为常数)相遇于斜面某处,求此情况下区域Ⅱ的匀强电场的场强E,并讨论场强E的极大值和极小值及相应的方向.23.如图,在x轴上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外;在x轴下方存在匀强电场,电场方向与xOy平面平行,且与x轴成45°夹从y轴上P点沿y轴正方角.一质量为m、电荷量为q(q>0)的粒子以速度v向射出,一段时间后进入电场,进入电场时的速度方向与电场方向相反;又经过,磁场方向变为垂直纸面向里,大小不变,不计重力.一段时间T(1)求粒子从P点出发至第一次到达x轴时所需的时间;(2)若要使粒子能够回到P点,求电场强度的最大值.24.一半径为R的薄圆筒处于磁感应强度大小为B的匀强磁场中,磁场方向与筒的中心轴线平行,筒的横截面如图所示.图中直径MN的两端分别开有小孔,筒可绕其中心轴线转动,圆筒的转动方向和角速度大小可以通过控制装置改变.一的角速度不计重力的负电粒子从小孔M沿着MN方向射入磁场,当筒以大小为ω转过90°时,该粒子恰好从某一小孔飞出圆筒.(1)若粒子在筒内未与筒壁发生碰撞,求该粒子的荷质比和速率分别是多大?(2)若粒子速率不变,入射方向在该截面内且与MN方向成30°角,则要让粒子与圆筒无碰撞地离开圆筒,圆筒角速度应为多大?25.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg,AO部分粗糙且长L=2m,动摩擦因数μ=0.3,OB部分光滑.另一小物块a.放在车的最左端,和车一起以v=4m/s的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a、b两物块视为质点质量均为m=1kg,碰撞时间极短且不粘连,碰后一起向右运动.(取g=10m/s2)求:(1)物块a与b碰后的速度大小;(2)当物块a相对小车静止时小车右端B到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.26.如图所示,在光滑的水平面上有一长为L的木板B,上表面粗糙,在其左端有一光滑的圆弧槽C,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B、C静止在水平面上.现有滑块A以初速V0从右端滑上B,并以V滑离B,恰好能到达C的最高点.A、B、C的质量均为m,试求:(1)木板B上表面的动摩擦因素μ;(2)圆弧槽C的半径R;(3)当A滑离C时,C的速度.27.如图所示,一质量M=0.4kg的小物块B在足够长的光滑水平台面上静止不动,其右侧固定有一轻质水平弹簧(处于原长).台面的右边平滑对接有一等高的水平传送带,传送带始终以υ=1m/s的速率逆时针转动.另一质量m=0.1kg的小物块A以速度υ=4m/s水平滑上传送带的右端.已知物块A与传送带之间的动摩擦因数μ=0.1,传送带左右两端的距离l=3.5m,滑块A、B均视为质点,忽略空气阻力,取g=10m/s2.(1)求物块A第一次到达传送带左端时速度大小;;(2)求物块A第一次压缩弹簧过程中弹簧的最大弹性势能Epm(3)物块A会不会第二次压缩弹簧?28.历史上美国宇航局曾经完成了用“深度撞击”号探测器释放的撞击器“击中”坦普尔1号彗星的实验.探测器上所携带的重达370kg的彗星“撞击器”将以1.0×104m/s的速度径直撞向彗星的彗核部分,撞击彗星后“撞击器”融化消失,这次撞击使该彗星自身的运行速度出现1.0×10﹣7m/s的改变.已知普朗克常量h=6.6×10﹣34J•s.(计算结果保留两位有效数字).求:①撞击前彗星“撞击器”对应物质波波长;②根据题中相关信息数据估算出彗星的质量.29.如图,ABD为竖直平面内的轨道,其中AB段是水平粗糙的、BD段为半径R=0.4m 的半圆光滑轨道,两段轨道相切于B点.小球甲从C点以速度υ沿水平轨道向右运动,与静止在B点的小球乙发生弹性碰撞.已知甲、乙两球的质量均为m,小球甲与AB段的动摩擦因数为μ=0.5,C、B距离L=1.6m,g取10m/s2.(水平轨道足够长,甲、乙两球可视为质点)(1)甲乙两球碰撞后,乙恰能通过轨道的最高点D,求乙在轨道上的首次落点到B点的距离;(2)在满足(1)的条件下,求的甲的速度υ;(3)若甲仍以速度υ向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B点的距离范围.30.动量定理可以表示为△p=F△t,其中动量p和力F都是矢量.在运用动量定理处理二维问题时,可以在相互垂直的x、y两个方向上分别研究.例如,质量为m的小球斜射到木板上,入射的角度是θ,碰撞后弹出的角度也是θ,碰撞前后的速度大小都是υ,如图所示.碰撞过程中忽略小球所受重力.a.分别求出碰撞前后x、y方向小球的动量变化△px 、△py;b.分析说明小球对木板的作用力的方向.参考答案与试题解析一.解答题(共30小题)1.(2017•吉林模拟)如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连续发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的时电压(不考虑极边缘的影响).已知t=0时刻进入两板间的带电粒子恰好在t、B为已知量.(不考虑粒子间相互影刻经极板边缘射入磁场.上述m、q、l、t响及返回板间的情况)的大小.(1)求电压U时进入两板间的带电粒子在磁场中做圆周运动的半径.(2)求t(3)何时射入两板间的带电粒子在磁场中的运动时间最短?求此最短时间.【解答】解:(1)t=0时刻进入两极板的带电粒子在电场中做匀变速曲线运动,时刻刚好从极板边缘射出,t则有 y=l,x=l,电场强度:E=…①,由牛顿第二定律得:Eq=ma…②,2…③偏移量:y=at由①②③解得:U=…④.(2)t0时刻进入两极板的带电粒子,前t时间在电场中偏转,后t时间两极板没有电场,带电粒子做匀速直线运动.带电粒子沿x轴方向的分速度大小为:vx =v=…⑤带电粒子离开电场时沿y轴负方向的分速度大小为:vy =a•t…⑥带电粒子离开电场时的速度大小为:v=…⑦设带电粒子离开电场进入磁场做匀速圆周运动的半径为R,由牛顿第二定律得:qvB=m…⑧,由③⑤⑥⑦⑧解得:R=…⑨;(3)在t=2t时刻进入两极板的带电粒子,在电场中做类平抛运动的时间最长,飞出极板时速度方向与磁场边界的夹角最小,而根据轨迹几何知识可知,轨迹的圆心角等于粒子射入磁场时速度方向与边界夹角的2倍,所以在t=2t时刻进入两极板的带电粒子在磁场中运动时间最短.带电粒子离开磁场时沿y轴正方向的分速度为:vy ′=at…⑩,设带电粒子离开电场时速度方向与y轴正方向的夹角为α,则:tanα=,由③⑤⑩解得:α=,带电粒子在磁场运动的轨迹图如图所示,圆弧所对的圆心角为:2α=,所求最短时间为:tmin=T,带电粒子在磁场中运动的周期为:T=,联立以上两式解得:tmin=;答:(1)电压U的大小为;。
(word版)高中物理选修31磁场知识点及习题,文档
一、磁场知识要点磁场的产生⑴磁极周围有磁场。
⑵电流周围有磁场〔奥斯特〕。
安培提出分子电流假说〔又叫磁性起源假说〕,认为磁极的磁场和电流的磁场都是由电荷的运动产生的。
〔不等于说所有磁场都是由运动电荷产生的。
〕⑶变化的电场在周围空间产生磁场〔麦克斯韦〕。
磁场的根本性质磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。
这一点应该跟电场的根本性质相比拟。
磁感应强度FB〔条件是匀强磁场中,或L很小,并且L⊥B〕。
ILT,1T=1N/(Am)=1kg/(As2)磁感应强度是矢量。
单位是特斯拉,符号为磁感线⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。
磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N极的指向。
磁感线的疏密表示磁场的强弱。
⑵磁感线是封闭曲线〔和静电场的电场线不同〕 。
⑶要熟记常见的几种磁场的磁感线: ⑷安培定那么〔右手螺旋定那么〕 :对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。
磁通量如果在磁感应强度为的匀强磁场中有一个与磁场方向垂直的平面,其面积为,那么定义 B 与 S 的乘积为穿过这个面S的磁通量,用Φ表示。
Φ是标量,但是有方向〔进该面或出该面〕。
单位为韦伯,符号为bb222W 。
1W=1Tm=1Vs=1kgm/(As)。
可以认为磁通量就是穿过某个面的磁感线条数。
在匀强磁场磁感线垂直于平面的情况下,=/,所以磁感应强度又叫磁通密度。
在匀强磁场中,当B与S的夹角为α时,B ΦS有=sinα 。
Φ BS地球磁场 通电直导线周围磁场 通电环行导线周围磁场二、安培力〔磁场对电流的作用力〕知识要点安培力方向的判定⑴用左手定那么。
⑵用“同性相斥,异性相吸〞〔只适用于磁铁之间或磁体位于螺线管外部时〕。
⑶用“同向电流相吸,反向电流相斥〞〔反映了磁现象的电本质〕。
高考物理总复习 专题十 磁场(讲解部分)
四指
大拇指
2.磁场的叠加 (1)磁感应强度是矢量,计算时与力的计算方法相同,遵守平行四边形定则, 可以用正交分解法进行合成与分解。 (2)两个电流附近的磁场的磁感应强度是由两个电流分别独立存在时产生 的磁场在该处的磁感应强度叠加而成的。
例1 (2017课标Ⅲ,18,6分)如图,在磁感应强度大小为B0的匀强磁场中,两长 直导线P和Q垂直于纸面固定放置,两者之间的距离为l。在两导线中均通 有方向垂直于纸面向里的电流I时,纸面内与两导线距离均为l的a点处的磁 感应强度为零。如果让P中的电流反向、其他条件不变,则a点处磁感应强 度的大小为 ( )
取值范围为2.4 Ω≤R≤4 Ω,则选A。
答案 A
二、通电导体在磁场中运动情况的判定 1.五种判定方法
电流元法 特殊位置法 等效法 结论法
转换研究对象法
分割为电流元 体所受合力方向
安培力方向 运动方向
整段导
特殊位置 安培力方向 运动方向
环形电流 条形磁铁
小磁针 通电螺线管
多个环形电流
同向电流相互吸引,异向电流相互排斥,两不平行 的直线电流相互作用时,有转到平行且电流方向 相同的趋势
(1)质子最初进入D形盒的动能多大? (2)质子经回旋加速器后得到的最大动能多大? (3)交变电源的频率是多少?
解题导引
解析 (1)质子在电场中加速,根据动能定理得
1 qU=Ek-0,则Ek= 1 qU=1×104 eV。
2
2
(2)质子在回旋加速器的磁场中,绕行的最大半径为R,则
qvB= mv2 ,解得v= qBR
①t= θ ·T
2π
②t= L
v
常用解三角形法:例:(左
图)R= L 或由R2=L2+
2020年高中物理学业水平测试专题考点复习讲义:专题13 磁 场
考纲原文考情分析1.磁现象及其应用、磁场、磁感线、磁感应强度(Ⅰ)2.安培力、洛伦兹力(Ⅰ)本专题主要考查安培力、洛伦兹力,尤其是对磁场、电流(运动电荷)以及安培力(洛伦兹力)三者的方向判断是考查的重点;对磁感线、磁感应强度及其意义的考查较少.考点1磁现象及其应用、磁场、磁感线、磁感应强度(Ⅰ)1.磁现象:能够吸引铁质物体的性质叫磁性,磁体上磁性最强的部分叫做磁极.磁体、电流周围存在着磁场,磁场是客观存在的物质.2.磁场:磁体或电流周围存在磁场,磁体间通过磁场来发生相互作用.3.磁场方向的规定:小磁针N极的受力方向或静止时小磁针N极的指向.磁感应强度的方向就是磁场的方向.4.描述磁场的方法(1)用形象直观的方法——磁感线;(2)用物理量的方法——磁感应强度(B).5.磁感线的特点(1)磁感线是假想的线;(2)两条磁感线不会相交;(3)磁感线一定是闭合的.6.匀强磁场(1)B的大小和方向处处相同;(2)磁感线是一组方向一致的等间距的平行线.1.(2019年6月广东学业水平考试)如图所示,一小磁针被放入水平向右的匀强磁场中,忽略其他磁场的影响,当小磁针静止时,其N极的指向是()A.竖直向上B.竖直向下C.水平向左D.水平向右2.(2018年1月广东学业水平考试)维修电器的师傅通常用螺丝刀直接吸附小螺丝钉,对吸附螺丝钉现象正确解释是()A.螺丝钉被磁化B.螺丝钉被感应带电C.螺丝钉被摩擦带电D.螺丝钉被接触带电3.(2017年6月广东学业水平考试)把小磁针放入水平向右的匀强磁场B中.下列图中小磁针静止时N极指向正确的是()4.(2017年1月广东学业水平考试)下列关于磁场和磁感线的描述正确的是()A.两条磁感线可以相交B.磁感线是真实存在的曲线C.两条磁感线之间不存在磁场D.磁感线是为了形象地描述磁场而引入的假想曲线5.(2016年6月广东学业水平考试)磁感线可以用来描述磁场,下列关于磁感线的说法不正确的是()A.磁感线的疏密表示磁场的强弱B.磁感线从S极出发,终止于N极C.匀强磁场的磁感线疏密分布均匀D.磁感线上任一点的切线方向表示该点的磁场方向6.(2015年1月广东学业水平考试)一小磁针放置在某磁场(未标出方向)中,静止时的指向如图所示.下列分析正确的是()A.N极指向该点磁场方向B.S极指向该点磁场方向C.该磁场是匀强磁场D.a点的磁场方向水平向右7.(2014年6月广东学业水平考试)如图所示,竖直放置的长直导线通有恒定电流,侧旁小磁针N极的最终指向应为()A.平行纸面向右B.平行纸面向左C.垂直纸面向里D.垂直纸面向外考点2安培力、洛伦兹力(Ⅰ)1.奥斯特实验发现了电流的磁效应,说明电流能够产生磁场,它使人们第一次认识到电与磁之间确实存在着某种联系.电流周围的磁场方向用安培定则判断.2.磁场对通电导体(导线)的作用力叫做安培力,其方向判断方法是左手定则,影响安培力大小的因素有B、I、L和通电导线在磁场中的放置方式.(1)安培力的计算公式:F=BIL sin α;通电导线与磁场方向垂直时,此时安培力有最大值F=BIL;通电导线与磁场方向平行时,此时安培力有最小值F=0.(2)左手定则:伸开左手,使拇指跟其余的四指垂直,且与手掌都在同一平面内,让磁感线穿入手心,并使四指指向电流方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向.3.洛伦兹力:磁场对运动电荷的作用力.4.安培力是洛伦兹力的宏观表现.5.左手定则判定洛伦兹力的方向:伸开左手,使拇指跟其余的四指垂直,且与手掌都在同一平面内,让磁感线穿入手心,并使四指指向正电荷运动的方向(与负电荷运动的方向相反),这时拇指所指的方向就是运动的电荷在磁场中所受洛伦兹力的方向.6.洛伦兹力的方向既与磁场方向垂直,也与电荷的运动方向垂直.1.(2019年6月广东学业水平考试)如图所示,在水平向右的匀强磁场中,有一通电直导线,电流方向垂直纸面向里,则直导线所受的安培力方向是()A.竖直向下B.竖直向上C.水平向左D.水平向右2.(2019年6月广东学业水平考试)如图所示,在垂直纸面向里的匀强磁场中,一带正电的粒子某时刻速度方向刚好水平向左,则此时该粒子受到的洛伦兹力的方向垂直磁场A.水平向左B.水平向右C.竖直向上D.竖直向下3.(2019年6月广东学业水平考试)如图所示,将一根通以强电流的长直导线,平行放置在阴极射管的正下方,则阴极射线将()A.向上偏转B.向下偏转C.向纸内偏转D.向纸外偏转4.(2018年6月广东学业水平考试)如图所示,通电直导线放在匀强磁场中,“”表示导线中电流I的方向垂直纸面向里,“⊙”表示导线中电流I的方向垂直纸面向外.下图标出导线所受安培力F方向正确的是()5.(2017年6月广东学业水平考试)如图所示为一半圆形的匀强磁场B,当一束粒子对着圆心射入该磁场,发现所有粒子都从M点射出,下列说法正确的是()A.这束粒子全部带负电荷B.这束粒子全部带正电荷C.这束粒子全部不带电D.这束粒子中有的带正电荷,有的带负电荷6.(2017年6月广东学业水平考试)一根通电直导线垂直放在匀强磁场中,关于它受到的安培力,下列说法正确的是()A.安培力方向与磁场方向相同B.安培力方向与电流方向相同C.安培力的大小与磁场强弱有关D.安培力的大小与电流大小无关7.(2016年6月广东学业水平考试)如图所示,运动电荷在磁场中没有受到洛伦兹力的8.(2015年6月广东学业水平考试)如图所示,通有直流电的两平行金属杆MN和PQ 放置在匀强磁场中,杆与磁场垂直,受到的安培力分别为F1、F2,关于力的方向,下列判断正确的是()A.F1、F2都向下B.F1、F2都向上C.F1向下,F2向上D.F1向上,F2向下9.(2014年6月广东学业水平考试)一个带正电的粒子以速度v进入匀强磁场中,速度方向与磁感线的方向相同,不计重力,能正确反映粒子运动轨迹的图是()一、单项选择题1.(2018年6月广东学业水平考试)发现电流磁效应的科学家是()A.安培B.奥斯特C.法拉第D.洛伦兹2.关于磁感线,下列说法中正确的是()A.磁感线是真实存在的B.磁感线切线方向可以表示磁感应强度的方向C.磁感线一定是直线D.沿着磁感线方向,磁感应强度越来越小3.(2018年6月广东学业水平考试)通电螺线管内部磁场的方向取决于()A.螺线管的匝数B.螺线管的长度C.螺线管中的电流方向D.螺线管中是否有铁芯4.如图,一通电螺线管通有图示电流,1、2、4小磁针放在螺线管周围,3小磁针放在螺线管内部,四个小磁针静止在如图所示位置,则四个小磁针的N、S极标注正确的是()A.1 B.2C.3 D.45.(2017年1月广东学业水平考试)如图所示,小磁针放在水平通电直导线的正下方,当小磁针静止时,N极的指向是()A.水平向右B.水平向左C.垂直纸面向里D.垂直纸面向外6.下列说法正确的是()A.一切电荷的周围都存在磁场B.磁铁吸引铁棒,说明磁铁周围的磁场对铁棒有力的作用,由于铁棒周围没有磁场,因而对磁铁无磁力作用C.铁棒内分子电流取向变得大致相同时,对外就显出磁性D.磁感线的方向,就是正的运动电荷的受力方向7.19世纪法国学者安培提出了著名的分子电流假说.他认为,在原子、分子等物质微粒内部,存在着一种环形电流——分子电流(分子电流实际上是由原子内部电子的绕核运动形成的),分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极.下面将分子电流(箭头表示电子运动方向)等效为小磁体的图示中正确的是()8.(2015年1月广东学业水平考试)如图所示,带电粒子垂直进入匀强磁场.下列判断正确的是()A.粒子向左偏转B.粒子向右偏转C.粒子垂直纸面向里偏转D.粒子垂直纸面向外偏转9.对磁感线的认识,下列说法正确的是()A.磁感线总是从磁体的北极出发,终止于磁体的南极B.磁感线上某点的切线方向与放在该点小磁针南极的受力方向相同C.磁感线的疏密可以反映磁场的强弱D.磁感线是磁场中客观存在的线10.如果运动电荷除磁场力外不受其他任何力的作用,则带电粒子在磁场中做下列运动可能成立的是()A.做匀变速直线运动B.做匀变速曲线运动C.做变加速直线运动D.做变加速曲线运动11.下列哪种力是洛伦兹力()A.电荷间的相互作用力B.电场对电荷的作用力C.磁铁对小磁针的作用力D.磁场对运动电荷的作用力12.下列说法中,错误的是()A.电流、磁体周围都存在磁场B.电场、磁场是起着传递电力或磁力的连续介质C.电场和磁场一定对放入其中的电荷有力的作用D.磁极之间、电流之间的相互作用都是通过磁场发生的13.(2018年6月广东学业水平考试)如图所示,两根长直导线M、N位于纸面内平行放置,分别通以电流I1、I2,则下列说法正确的是()A.电流I2在导线M处产生的磁场方向垂直纸面向里B.电流I1在导线N处产生的磁场方向垂直纸面向外C.导线N受到的安培力向左D.导线N受到的安培力向右14.(2018年6月广东学业水平考试)如图所示,小磁针放置在螺线管轴线的左侧.当螺线管通以恒定电流时,不计其他磁场的影响,小磁针静止时N极的指向是()A.向右B.向左C.向上D.向下15.如图所示,在匀强磁场中有一通电直导线,电流方向垂直纸面向里,则直导线受到安培力的方向是()A.向上B.向下C.向左D.向右16.(2015年6月广东学业水平考试)带电粒子M和N,先后以不同的速度沿PO方向射入圆形匀强磁场区域,运动轨迹如图所示,不计重力,下列分析正确的是()A.M带正电,N带负电B.M和N都带正电C.M带负电,N带正电D.M和N都带负电17.一通电螺线管其磁感应强度最大的地方是()A.螺线管的内部B.螺线管的南极C.螺线管的北极D.螺线管的南极和北极18.如图所示,表示磁场对直线电流的作用,其中正确的是()19.直导线AB与圆线圈的平面垂直且隔有一小段距离,直导线固定,线圈可以自由运动.当通过如图所示的电流时(同时通电),从左向右看,线圈将() A.顺时针转动,同时靠近直导线ABB.顺时针转动,同时离开直导线ABC.逆时针转动,同时靠近直导线ABD.不动20.(2017年1月广东学业水平考试)如图所示,阴极射线管水平放在蹄形磁铁的N、S 两极间,射线管的阴极A接直流高压电源负极,阳极B接正极,则管内电子束的偏转方向()A.向上B.向下C.向N极D.向S极二、非选择题21.如图所示,金属细杆MN水平悬挂在间距为L的竖直平行金属导线下方,并处于竖直向上,磁感应强度为B的匀强磁场中.已知电源电动势为E、内阻为r,定值电阻阻值为R,其余电阻均可不计.则(1)闭合开关时,细杆向左偏还是向右偏?(2)闭合开关瞬间,电路中电流I多大?(3)闭合开关瞬间,细杆MN所受安培力F多大?基础梳理·真题过关考点11.D 2.A 3.D 4.D 5.B6.【解析】选A.在磁场中小磁针静止时N极指向即为磁场方向,磁感线上某点的切线方向也是磁场方向,故A正确.7.【解析】选D.由右手螺旋定则可知导线右侧的磁场垂直纸面向外,故小磁针的N极也垂直指向纸面外.考点21.A 2.D 3.B 4.B 5.B 6.C7.D8.【解析】选D.由左手定则可判断D正确.9.【解析】选C.带电粒子只有运动方向不平行于磁场时才受洛伦兹力,该粒子不受力,故轨迹与速度方向一致.学业达标·实战演练一、单项选择题1.B 2.B 3.C 4.B 5.D 6.C7.【解析】选B.由安培定则可判断分子电流的等效磁体N极向左,S极向右,故B正确.8.【解析】选D.由左手定则可知粒子垂直纸面向外偏转,D正确.9.【解析】选C.磁感线是假想的曲线,其疏密反映磁场强弱,磁感线是闭合曲线,无始无终,其方向与小磁针N极的受力方向或静止时N极指向相同,故C正确.10.【解析】选D.由于洛伦兹力只改变速度方向,故只受洛伦兹力的粒子在磁场中做匀速圆周运动,即为变加速曲线运动,故D正确.11.D12.C13.C14.B15.C16.C17.【解析】选A.通电螺线管其磁感应强度最大的地方是螺线管的内部,故A正确.18.【解析】选A.由左手定则可知A正确.19.【解析】选C.先用安培定则判断出AB导线右侧的磁场向里,因此,环形电流内侧受力向下、外侧受力向上,从左向右看应逆时针方向转,当转到与AB共面时,AB与环左侧吸引,与环右侧排斥,由于左侧离AB较近,则引力大于斥力,所以环靠近导线AB,故选项C正确.20.B二、非选择题21.【解析】(1)由左手定则:MN向右偏.(2)由闭合电路欧姆定律得:I=ER+r.(3)由安培力计算公式:F=ILB=BLER+r. 【答案】见解析。
高中物理--磁场专题
磁场一.知识点梳理考试要点基本概念一、磁场和磁感线(三合一)1、磁场的来源:磁铁和电流、变化的电场2、磁场的基本性质:对放入其中的磁铁和电流有力的作用3、磁场的方向(矢量)方向的规定:磁针北极的受力方向,磁针静止时N极指向。
4、磁感线:切线~~磁针北极~~磁场方向5、典型磁场——磁铁磁场和电流磁场(安培定则(右手螺旋定则))6、磁感线特点: ① 客观不存在、② 外部N 极出发到S ,内部S 极到N 极③ 闭合、不相交、④ 描述磁场的方向和强弱 二.磁通量(Φ 韦伯 Wb 标量)通过磁场中某一面积的磁感线的条数,称为磁通量,或磁通 二.磁通密度(磁感应强度B 特斯拉T 矢量)大小:通过垂直于磁感线方向的单位面积的磁感线的条数叫磁通密度。
SB Φ=1 T = 1 Wb / m2 方向:B 的方向即为磁感线的切线方向 意义:1、描述磁场的方向和强弱 2、由场的本身性质决定 三.匀强磁场1、定义:B 的大小和方向处处相同,磁感线平行、等距、同向2、来源:①距离很近的异名磁极之间 ②通电螺线管或条形磁铁的内部,边缘除外 四.了解一些磁场的强弱永磁铁―10 -3 T ,电机和变压器的铁芯中―0.8~1.4 T超导材料的电流产生的磁场―1000T ,地球表面附近―3×10-5~7×10-5 T 比较两个面的磁通的大小关系。
如果将底面绕轴L 旋转,则磁通量如何变化?地球磁场 通电直导线周围磁场 通电环行导线周围磁场NSLⅡ 磁场对电流的作用——安培力一.安培力的方向 ——(左手定则)伸开左手,使大拇指与四指在同一个平面内,并跟四指垂直,让磁感线穿入手心,使四指指向电流的流向,这时大拇指的方向就是导线所受安培力的方向。
(向里和向外的表示方法(类比射箭))规律:(1)左手定则(2)F ⊥B ,F ⊥I ,F 垂直于B 和I 所决定的平面。
但B 、I 不一定垂直安培力的大小与磁场的方向和电流的方向有关,两者夹角为900时,力最大,夹角为00时,力=0。
(完整word版)物理选修3-1磁场知识归纳
电场、恒定电流、磁场知识点汇总(一)磁场知识点汇总一、磁场⒈磁场是一种客观物质,存在于磁体和运动电荷(或电流)周围。
⒉磁场(磁感应强度)的方向规定为磁场中小磁针N 极的受力方向(磁感线的切线方向)。
⒊磁场的基本性质是对放入其中的磁体、运动电荷(或电流)有力的作用。
二、磁感线⒈磁感线是徦想的,用来对磁场进行直观描述的曲线,它并不是客观存在的。
⒉磁感线是闭合曲线⎩⎨⎧→→极极磁体的内部极极磁体的外部N S S N ⒊磁感线的疏密表示磁场的强弱,磁感线上某点的切线方向表示该点的磁场方向。
⒋任何两条磁感线都不会相交,也不能相切。
三、安培定则是用来确定电流方向与磁场方向关系的法则弯曲的四指代表⎩⎨⎧)()(环形电流或通电螺线管电流的方向直线电流磁感线的环绕方向四、 安培分子电流假说揭示了磁现象的电本质,即磁体的磁场和电流的磁场一样,都是由电荷的运动产生的。
五、几种常见磁场⒈直线电流的磁场:无磁极,非匀强,距导线越远处磁场越弱⒉通电螺线管的磁场:管外磁感线分布与条形磁铁类似,管内为匀强磁场。
⒊地磁场(与条形磁铁磁场类似)⑴地磁场N 极在地球南极附近,S 极在地球北极附近。
地磁场B 的水平分量总是从地球南极指向北极,而竖直分量南北相反,在南半球垂直地面向上,在北半球垂直地面向下⑵在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平向北。
⑶假如地磁场是由地球表面所带电荷产生,则地球表面所带电荷为负电荷(根据安培定则、地磁场的方向与地球自转方向判断)。
六、磁感应强度:⑴定义式LIFB =(定义B 时,B I ⊥)⑵B 为矢量,方向与磁场方向相同,并不是在该处电流的受力方向,运算时遵循矢量运算法则。
七、磁通量⒈定义一:φ=BS ,S 是与磁场方向垂直的面积,即φ=B ⊥S ,如果平面与磁场方向不垂直,应把面积投影到与磁场垂直的方向上,求出投影面积⊥S ⒉定义二:表示穿过某一面积磁感线条数磁通量是标量,但有正、负,正、负号不代表方向,仅代表磁感线穿入或穿出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁场一.知识点梳理考试要点基本概念一、磁场和磁感线(三合一)1、磁场的来源:磁铁和电流、变化的电场2、磁场的基本性质:对放入其中的磁铁和电流有力的作用3、磁场的方向(矢量)方向的规定:磁针北极的受力方向,磁针静止时N极指向。
4、磁感线:切线~~磁针北极~~磁场方向5、典型磁场——磁铁磁场和电流磁场(安培定则(右手螺旋定则))6、磁感线特点:①客观不存在、②外部N极出发到S,内部S极到N极③闭合、不相交、④描述磁场的方向和强弱二.磁通量(Φ 韦伯Wb 标量)通过磁场中某一面积的磁感线的条数,称为磁通量,或磁通二.磁通密度(磁感应强度B 特斯拉T 矢量)大小:通过垂直于磁感线方向的单位面积的磁感线的条数叫磁通密度。
SBΦ= 1 T = 1 Wb / m2方向:B的方向即为磁感线的切线方向意义:1、描述磁场的方向和强弱2、由场的本身性质决定三.匀强磁场1、定义:B的大小和方向处处相同,磁感线平行、等距、同向2、来源:①距离很近的异名磁极之间②通电螺线管或条形磁铁的内部,边缘除外四.了解一些磁场的强弱永磁铁―10-3 T,电机和变压器的铁芯中―0.8~1.4 T超导材料的电流产生的磁场―1000T,地球表面附近―3×10-5~7×10-5 T比较两个面的磁通的大小关系。
如果将底面绕轴L旋转,则磁通量如何变化?地球磁场通电直导线周围磁场通电环行导N SLⅡ磁场对电流的作用——安培力一.安培力的方向 ——(左手定则)伸开左手,使大拇指与四指在同一个平面内,并跟四指垂直,让磁感线穿入手心,使四指指向电流的流向,这时大拇指的方向就是导线所受安培力的方向。
(向里和向外的表示方法(类比射箭))规律:,F I ,F 垂直于B 和I 所决定的平面。
但B900时,力最大,夹角为00时,力=0 B ⊥时,F = B I L在匀强磁场中,当通电导线与磁场方向垂直时,电流所受的安培力等于磁感应将度B 、电流I 和导线的长度L 三者的乘积在非匀强磁场中,公式F =BIL 近似适用于很短的一段通电导线 三.磁感应强度的另一种定义 匀强磁场,当B ⊥ I 时,ILFB 练习有磁场就有安培力(×) 磁场强的地方安培力一定大(×) 磁感线越密的地方,安培力越大(×) 判断安培力的方向Ⅲ电流间的相互作用和等效长度 一.电流间的相互作用总结:通电导线有转向电流同向的趋势 二.等效长度 推导:I 不受力 F 同向吸引 FF转向同向, 同时靠近水平方向:向左=F 1 sinα = BIL 1 sin α = B I h 向右=F 2 s inβ = BIL 2 sin β = B I h ⇒水平方向平衡竖直方向:左导 F 1 cos α = BIL 1 cos α 右导 F 2 cos β = BIL 2 cos β ⇒ F = B I L推广:等效长度为导线两端连线的长度一 .洛伦兹力的方向——左手定则:四指指向正电荷的运动方向或负电荷运动的反方向 大拇指指向洛伦兹力的方向 f ⊥ B f ⊥ v4、q 、v 、B 三有一个或三个“反,则f变向若有两个“反向”则f 反向不变(1)电荷静止,f =0(2)v ∥B ,f =0(3)v ⊥B ,f 最大 二.洛伦兹力的大小已知:I ⊥ B 匀强、导线截面积s 、 电荷电量q 、电荷定向移动速率v 单位体积内电荷数n 、导线长度L有:nqsv I = BIL F = 三.洛伦兹力不做功SvFv qvB f nsLFf B 条件=⇒=⇒⊥ A B1、判断三种粒子电荷的正负2、三个完全相同的金属带电球,同一高度,同时下落(1)落地速度V 1 = V 3 < V 2 (2)下落时间 t 1 = t 2 < t 3四、带 电 粒子 的 圆 周 运 动 1、运动状态v ⊥ 匀强B ,忽略重力f ⊥ v ,洛伦兹力不做功,速率不变 f = q v B ,充当向心力 2.轨道半径和周期半径qBmvr r mv qvB =⇒=2 周期qBm T qB mvr vr T ππ22=⇒== 周期与速率无关,对于确定的磁场,周期取决于荷质比。
五、电流表构造:蹄形磁铁和铁芯间的磁场是均匀地福向分布的.(2)铝框上绕有线囵,铝框转轴上装有两个螺旋弹簧和一个指针. 六、安培分子电流假说导体中的电流是由大量的自由电子的定向移动而形成的,而电流的周国又有磁场,所以电流的磁场应该是由于电荷的运动产生的.那么,磁铁的磁场是否也是由电荷的运动产生的呢?安培提出在磁铁中分子、原于存在着一种环形电流一一分子电流,分子电流使每个物质微粒都成为微小的磁体.磁铁的分子电流的取向大致相同时,对外显磁性;磁铁的分子电流取向杂乱无章时,对外不显磁性。
近代的原子结构理论证实了分子电流的存在.根据物质的微观结构理论,微粒原子由原子核和核外电子组成,原子核带正电,核外电子带vFeH 42f = 2eBvEB匀速圆周运动负电,电子在库仑力的作用下,绕核高速旋转,形成分子电流.可见,磁铁和电流的磁场本质上都是运动电荷产生的三种场力的特点1、重力的特点:其大小为mg,方向竖直向下;做功与路径无关,与带电粒子的质量及起、讫点的高度差有关2、电场力的特点:大小为qE,方向与E的方向及电荷的种类有关;做功与路径无关,与带电粒子的带电量及起、终点的电势差有关3、洛伦兹力的特点:大小与带电粒子的速度、磁感应强度、带电量及速度与磁感应强度间的夹角有关,方向垂直于B和V决定的平面;无论带电粒子在磁场中做什么运动,洛伦兹力都不做功一、速度选择器的原理1、原理图2、带电粒子的受力特点:电场力F与洛仑兹力f方向相反3、带电粒子匀速通过速度选择器的条件:带电粒子匀速通过速度选择器是指粒子从S1水平射入,沿直线匀速通过叠加场区,并从S2水平射出。
从力的角度看,电场力F与洛仑兹力f平衡,即BqVqE=推出BEV=二.质谱仪——分离同位素测定荷质比的仪器经速度选择器的各种带电粒子,射入偏转磁场(B′),不同电性,不同荷质比的粒子就会沉积在不同的地方.由qE=qvB,RvmBqv2='s=2R,联立,得不同粒子的荷质比即与沉积处离出口的距离s成反比.三、磁流体发电机+VfFU加速电场带电粒子束V◎◎+-偏转电场E× × × × ×× × × × ×× × × × ×× × × × ×偏转磁场B+qS2S1磁流体发电——高速的等离子流射入平行板中间的匀强磁场区域,在洛仑兹力作用下使正、负电荷分别聚集在A 、B 两板,于是在板间形成电场.当板间电场对电荷的作用力等于电荷所受的洛仑兹力时,两板间形成一定的电势差.合上电键S 后,就能对负载供电. 由 qvB=qE 和 U=Ed ,得两板间的电势差(电源电动势)为ε=U=vBd .即决定于两板间距,板间磁感强度和入射离子的速度. 四、电磁流量计如图所示为电磁流量计的示意图,直径为d 的非磁性材料制成的圆形导管内,有可以导电的液体流动,磁感应强度为B 的匀强磁场垂直液体流动方向而穿过一段圆形管道。
若测得管壁内a 、b 两点的电势差为U ,试求管中液体的流量Q为多少m 3/s解qVB d U q =; V d Q 241π= 得 BdU Q 4π= 五、霍尔效应如图所示,厚度为h ,宽度为d 的导体板放在垂直于它的磁感应强度为B 的匀强磁场中,当电流通过导体板时,在导体板的上侧面A 和下侧面A’会产生电势差。
这种现象称为霍尔效应。
实验表明,当磁场不太强时,电势差U 、电流I 的B 的关系为:dIBKU =式中的比例系数K 称为霍尔系数。
霍尔效应可解释如下:外部磁场的洛仑兹力使运动的电子聚集在导体板的一侧,在导体板的另一侧会出现多余的正电荷,从而形成横向电场。
横向电场对电子施加与洛仑兹力方向相反的静电力。
当静电力与洛仑兹力达到平衡时,导体板上下两侧之间就会形成稳定的电势差。
六、测定电子的比荷在实验中,汤姆生采用了如图所示的阴极射线管,从电子枪C 出来的电子经过A 、B 间的电场加速后,水平射入长度为L 的D 、E 平行板间,接着在荧光屏F中心出现荧光斑。
若在D 、E 间加上方向向下、场强为E 的匀强电场,电子将向上偏转;如果再利用通电线圈在D 、E电场区加上一垂直纸面的磁感应强度为B 的匀强磁场(图中未画出)荧光斑恰好回到荧光屏中心。
接着再去掉电场,电子向下偏转,偏转角为θ。
七、回旋加速器(1)有关物理学史知识和回旋加速器的基本结构和原理1932年美国物理学家应用了带电粒子在磁场中运动的特点发明了回旋加速器,其原理如图所示。
A 0处带正电的粒子源发出带正电的粒子以速度v 0垂直进入匀强磁场,在磁场中匀速× × × × × × × × × ×转动半个周期,到达A 1时,在A 1 A 1/处造成向上的电场,粒子被加速,速率由v 0增加到v 1,然后粒子以v 1在磁场中匀速转动半个周期,到达A 2/时,在A 2/ A 2处造成向下的电场,粒子又一次被加速,速率由v 1增加到v 2,如此继续下去,每当粒子经过A A /的交界面时都是它被加速,从而速度不断地增加。
带电粒子在磁场中作匀速圆周运动的周期为qBT mπ2=,为达到不断加速的目的,只要在A A /上加上周期也为T 的交变电压就可以了。
即T 电=qBT mπ2=实际应用中,回旋加速是用两个D 形金属盒做外壳,两个D 形金属盒分别充当交流电源的两极,同时金属盒对带电粒子可起到静电屏蔽作用,金属盒可以屏蔽外界电场,盒内电场很弱,这样才能保证粒子在盒内只受磁场力作用而做匀速圆周运动。
(2)带电粒子在D 形金属盒内运动的轨道半径是不等距分布的设粒子的质量为m ,电荷量为q ,两D 形金属盒间的加速电压为U ,匀强磁场的磁感应强度为B ,粒子第一次进入D 形金属盒Ⅱ,被电场加速1次,以后每次进入D 形金属盒Ⅱ都要被电场加速2次。
粒子第n 次进入D 形金属盒Ⅱ时,已经被加速(2n -1)次。
由动能定理得(2n -1)qU =21Mv n 2。
……①第n 次进入D 形金属盒Ⅱ后,由牛顿第二定律得qv n B =mnnr v 2 …… ②由①②两式得rn =qBqU n m)12(2- ……③同理可得第n +1次进入D 形金属盒Ⅱ时的轨道半径r n+1=qBqU n m)12(2+ ……④所以带电粒子在D 形金属盒内任意两个相邻的圆形轨道半径之比为12121+-=+n n r r n n ,可见带电粒子在D 形金属盒内运动时,轨道是不等距分布的,越靠近D 形金属盒的边缘,相邻两轨道的间距越小。