完整word平行四边形知识点及典型例题

合集下载

完整word版平行四边形知识点归纳和题型归类推荐文档

完整word版平行四边形知识点归纳和题型归类推荐文档

【知识网络】平行四边形知识点归纳和题型归类厂\匹纽对纹 / ---------- 7/ \分劃平杵Z ---------四边骼平行四边?g知形一组邻边梱寻菱形正方形【要点梳理】要点一、平行四边形1 .定义:的四边形叫做平行四边形2.性质:(1)(2) ;(3) ;(4)中心对称图形.3 .面积:S平行四边形底咼4.判定:边:(1) 的四边形是平行四边形;(2) 的四边形是平行四边形;(3) 的四边形是平行四边形.角:(4) 的四边形是平行四边形;对角线:的四边形是平行四边形要点诠释:平行线的性质:(1)平行线间的距离都;(2)等底等高的平行四边形面积要点二、矩形1.定义:的平行四边形叫做矩形2.性质:(1)边:(2)角:(3)对角线:(4)是中心对称图形,也是轴对称图形.3 .面积:S矩形=长宽4.判定:(1) 的平行四边形是矩形.(2) 的平行四边形是矩形.(3) 的四边形是矩形.要点诠释:由矩形得直角三角形的性质:C BA(1)直角三角形斜边上的中线等于斜边的_________________(2)直角三角形中,30度角所对应的直角边等于斜边的(1) ________________________ 边:(2) 角: ______________________________ (3) 对角线: __________________________ (4) 是中心对称图形,也是轴对称图形的菱形是正方形; 的矩形是正方形; 的菱形是正方形; 的矩形是正方形; 对角线互相垂直平分且相等的四边形是正方形; 四条边都相等,四个角都是直角的四边形是正方形原四边形 一般四边形 矩形菱形正方形图示B FCAMDAMD恣G冷G BFCB FCBFC3 .面积:S菱形=底高=对角线对角线 4 •判定: (1) (2) (3) 的平行四边形是菱形; 的平行四边形是菱形; 的四边形是菱形. 要点四、正方形1.定义:2.性质:3.面积:(1) (2) (3)(4)(5) (6) 中点四边形(拓展) 常见四边形的中点四边形 4 •判定:四条边都_((1)边:_(2) 角:_ (3) 对角线: (4)是中心对称图形,也是轴对称图形.(5) 两条对角线把正方形分成四个全等的等腰直角三角形;1S 正方形二边长X 边长=丄X 对角线X 对角线 2,四个角都是形叫做正方形.C要点三、菱形1.定义: 2 .性质: 的平行四边形叫做菱形.平行四边形典型题训练7. 如图,点P 是矩形ABCD 勺边AD 的一个动点,矩形的两条边 AB形的两条对角线 AC 和BD 的距离之和是 ____________________8. 如图:已知在△ ABC 中, AB=AC D 为 BC 上任意一点,DE// AC 交 AB 于 E , DF// AB 交 AC 于 F , 求证:DE+DF=AC9.如图,在□ ABCD 中, E,F 为 BC 上两点,且 BE = CF , AF = DE. 求证:(ABF^A DCE (2)四边形 ABCD 是矩形。

(完整word)中考数学平行四边形知识点,文档

(完整word)中考数学平行四边形知识点,文档

欢送下载2021 中考数学平行四边形知识点整理2021 中考现在已经是所有初三学生着力备考的重点,为了帮助大家掌握正确的复习方向,现将 2021 中考数学平行四边形知识点为大家整理以下,希望大家能仔细参照阅读 ~1、平行四边形的看法两组对边分别平行的四边形叫做平行四边形。

平行四边形用符号□ ABCD表示,如平行四边形ABCD记作□ ABCD,读作平行四边形 ABCD。

2、平行四边形的性质(1)平行四边形的邻角互补,对角相等。

(2)平行四边形的对边平行且相等。

推论:夹在两条平行线间的平行线段相等。

(3)平行四边形的对角线互相均分。

(4)假设素来线过平行四边形两对角线的交点,那么这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二均分此平行四边形的面积。

3、平行四边形的判断(1)定义:两组对边分别平行的四边形是平行四边形(2)定理 1:两组对角分别相等的四边形是平行四边形(3)定理 2:两组对边分别相等的四边形是平行四边形(4)定理 3:对角线互相均分的四边形是平行四边形(5)定理 4:一组对边平行且相等的四边形是平行四边形4、两条平行线的距离唐宋或更早从前,针对“经学〞“律学〞“算学〞和“书学〞各科目,其相应教授者称为“博士〞,这与现在“博士〞含义已经相去甚远。

而对那些特别讲解“武事〞或讲解“经籍〞者,又称“授课老师〞。

“教授〞和“助教〞均原为学官称谓。

前者始于宋,乃“宗学〞“律学〞“医学〞“武学〞等科目的讲解者;此后者那么于西晋武帝时代即已成立了,主要协助国子、博士培养生徒。

“助教〞在古代不但要作入流的学识,其教书育人的职责也十清楚晰。

唐代国子学、太学等所设之“助教〞一席,也是当朝打眼的学官。

至明清两代,只设国子监〔国子学〕一科的“助教〞,其身价不谓显赫,也称得上朝廷要员。

至此,无论是“博士〞“授课老师〞,还是“教授〞“助教〞,其今天教师应拥有的根本看法都拥有了。

两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。

(完整word版)初二数学八下平行四边形所有知识点总结和常考题型练习题,

(完整word版)初二数学八下平行四边形所有知识点总结和常考题型练习题,

(完整word版)初二数学八下平行四边形所有知识点总结和常考题型练习题,平行四边形知识点一、四边形相关1 、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360°。

四边形的外角和定理:四边形的外角和等于360°。

推论:多边形的内角和定理: n 边形的内角和等于( n2) ? 180°;多边形的外角和定理:任意多边形的外角和等于360°。

2、多边形的对角线条数的计算公式设多边形的边数为 n,那么多边形的对角线条数为n(n3) 。

2二、平行四边形1.定义:两组对边分别平行的四边形是平行四边形.D C 平行四边形的定义既是平行四边形的一条性质,又是一个判定方法.O 2.平行四边形的性质:平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.〔 1〕角:平行四边形的对角相等,邻角互补;A B 〔 2〕边:平行四边形两组对边分别平行且相等;〔 3〕对角线:平行四边形的对角线互相平分;〔 4〕面积:①S底高= ah;②平行四边形的对角线将四边形分成 4 个面积相等的三角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法 1:两组对边分别相等的四边形是平行四边形③方法 2:一组对边平行且相等的四边形是平行四边形④方法 3:两组对角分别相等的四边形是平行四边形D C⑤方法 4:对角线互相平分的四边形是平行四边形三、矩形O1.矩形定义:有一个角是直角的平行四边形是矩形。

A B2.矩形性质①边:对边平行且相等;②角:对角相等、邻角互补,矩形的四个角都是直角;③对角线:对角线互相平分且相等;④对称性:轴对称图形〔对边中点连线所在直线, 2 条〕.3.矩形的判定:满足以下条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③说明四边形ABCD的三个角是直角.4.矩形的面积①设矩形 ABCD的两邻边长分别为a,b ,那么 S 矩形 =ab.四、菱形1.菱形定义:有一组邻边相等的平行四边形是菱形。

平行四边形知识点总结及对应例题.

平行四边形知识点总结及对应例题.

平行四边形、矩形、菱形、正方形知识点总结定义 :两组对边分别平行的四边形是平行四边形平行四边形的 性质:(1平行四边形 对边相(即AB=CD,AD=BC ); (2): 平行四边形 对边平行 (即: AB//CD,AD//BC ); (3): 平行四边形 对角相等 (即: ∠A=∠C,∠ B=∠D ); (4): 平行四边形 对角线互相平分 (即: OA=OC , OB=OD ); 判定方法: 1. 两组对边分别平行 的四边形是平行四边形(定义判定法)2. 一组对边平行且相等 的四边形是平行四边形;3. 两组对边分别相等 的四边形是平行四边形;4. 对角线互相平分 的四边形是平行四边形;5.两组对角分别相等 的四边形是平行四边形;考点 1 特殊的平行四边形的性质与判定1.矩形的定义、性质与判定(1)矩形的定义:有一个角是直角的平行四边形是矩形。

(2)矩形的性质:矩形的对角线 ____ ;矩形的四个角都是 _____ 角。

矩形具有 ___ 的一切性质。

矩形是轴对称图形,对称轴有 _________ 条,矩形也是中心对称图形,对称中心为 _______ 的交点。

矩形被对角线分成了 _________ 个等腰三角形。

(3)矩形的判定有一个是直角的平行四边形是矩形;有三个角是 ________ 的四边形是矩形;对角线 _ 的平行四边形是矩形。

温馨提示 :矩形的对角线是矩形比较常用的性质,当对角线的夹角中,有一个角为 60 度时,则构成一个等边三角 形;在判定矩形时,要注意利用定义或对角线来判定时,必须先证明此四边形为平行四边形,然后再请一个角为直角 或对角线相等。

很多同学容易忽视这个问题。

2.菱形的定义、性质与判定(1)菱形的定义:有一组邻边相等的平行四边形是菱形。

(2)菱形的性质菱形的____ 都相等;菱形的对角线互相___ ,并且每一条对角线___ 一组对角;菱形也具有平行四边形的一切性质。

菱形即是轴对称图形,对称轴有条。

平行四边形知识点总结及分类练习题

平行四边形知识点总结及分类练习题

平行四边形知识点总结及分类练习题一、知识点总结平行四边形是几何学中一个重要的概念,其性质和判定方法对于理解几何学中的其他问题有着至关重要的作用。

以下是对平行四边形知识点的总结:1、定义:平行四边形是一个四边形,其中相对的两边平行且相等。

可以用符号“▭”表示。

2、性质:1)对边平行:平行四边形的对边平行且相等。

2)对角相等:平行四边形的对角相等,邻角互补。

3)平行四边形的面积等于其底乘高。

3.判定方法:1)两组对边分别平行的四边形是平行四边形。

2)两组对边分别相等的四边形是平行四边形。

3)一组对边平行且相等的四边形是平行四边形。

4)对角线互相平分的四边形是平行四边形。

5)邻角互补的四边形是平行四边形。

4.特殊平行四边形:矩形、菱形和正方形都是特殊的平行四边形,它们分别具有以下性质:1)矩形:对角线相等,四个角都是直角。

2)菱形:对角线垂直且平分,四边相等。

3)正方形:对角线垂直且相等,四个角都是直角。

二、分类练习题1、选择题:1)下列哪个条件可以判定一个四边形为平行四边形?A.一组对边相等,一组对角相等B.一组对边平行,另一组对边相等C.一组对角相等,另一组对边平行D.一组对角相等,一组邻角互补答案:(C)一组对角相等,另一组对边平行。

因为一组对角相等,另一组对边平行的四边形可以由一组对边平行,另一组对边相等的四边形经过平移得到,因此选项C正确。

其他选项都不满足平行四边形的定义或判定方法。

2)下列哪个条件可以判定一个四边形为矩形?A.三个内角都是直角B.对角线相等且互相平分C.对角线互相垂直且平分D.一组对边平行且相等,一组邻角互补答案:(B)对角线相等且互相平分的四边形是矩形。

因为矩形的定义是对角线相等的平行四边形,而对角线相等且互相平分的四边形是平行四边形,因此选项B正确。

其他选项分别是矩形的定义或判定方法的一部分,但不足以单独判定一个四边形为矩形。

特殊平行四边形知识点总结及题型一、平行四边形的性质:1、平行四边形的对边平行且相等;2、平行四边形的对角相等;3、平行四边形的对角线互相平分。

平行四边形相关知识梳理与常考题型

平行四边形相关知识梳理与常考题型

平行四边形相关知识梳理与常考题型总结1.平行四边形的定义:(1)定义:两组对边分别平行的四边形是平行四边形;(2)表示:平行四边形用符号“□”来表示。

2.平行四边形性质:(1)边:两组对边分别平行且相等;(3)对角线:对角线互相平分。

3.平行四边形的判别方法:①两组对边分别平行的四边形是平行四边形②对角线互相平分的四边形是平行四边形③一组对边平行且相等的四边形是平行四边形④两组对边分别相等的四边形是平行四边形⑤两组对角分别相等的四边形是平行四边形4、三角形中位线——构造平行四边形(1) 定义:连结三角形两边中点的线段叫做三角形的中位线.(2)三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.三角形中位线定理的作用:①位置关系:可以证明两条直线平行.②数量关系:可以证明线段的倍分关系.1、已知如图,E 、F 、G 、H 分别是四边形ABCD 各边中点. 求证:四边形EFGH 是平行四边形2、分别以△ABC 的三边为边向同一侧作等边△ABD 、△BCE 、△ACF ,连接DE 、EF. 求证:四边形AFED 是平行四边形.3、已知如图,在四边形ABCD 中,E 、F 分别为AB 、CD 的中点.求证:4、已知:如图,四边形ABCD(1(2ABCD 的周长,为什么?)(21BD AC EF +<EA DF B C5.(黄冈市中考题)如图所示,平行四边形ABCD中,G、H是对角线BD上两点,且DG=BH,DF=BE.求证:四边形EHFG是平行四边形.6 已知:如图,在平行四边形ABCD中,AB=2BC,E,F在直线BC上,且BE=BC=CF.求证:AF⊥DE.7.(江西省中考题)已知:如图,平行四边形ABCD中,AE⊥BC,CF⊥BD,垂足分别为E、F,G、H分别是AD、BC的中点,GH交BD于点O.求证:GH与EF互相平分.DE FAB C8.(河南省中考题)已知:如图,平行四边形ABCD中,对角线AC的平行线MN分别交DA、DC 延长线于点M、N,交AB、BC于点P、Q.求证:MQ=NP.能力提高1.已知:如图,平行四边形ABCD中,AB=2BC,E为AB中点,DF⊥BC,垂足F.求证:∠AED=∠EFB.2.如图,在平行四边形ABCD中,BC=2AB,M为AD的中点,CE⊥AB,垂足为E,求证:∠DME=3∠AEM.作业1.如下图所示,ABCD是平行四边形,以AD、BC为边在形外作等边三角形ADE和CBF,连结BD、EF,且它们相交于O,求证:EO=FO,DO=BO.2.如图所示,∠EDA是平行四边形ABCD的外角,DF平分∠EDA与BA延长线交于F,FD 延长线与BC延长线交于G.求证:BF=BG.3.如图所示,平行四边形ABCD中,作AF⊥BC于F,交BD于E,若DE=2AB.求证:∠ABD=2∠EBC.取G 为DE 中点,连接AG.在RT△ADE中,AG为斜边上的中线。

(完整word)八年级下册平行四边形专题

(完整word)八年级下册平行四边形专题

平行四边形专题专题笔记(一)平行四边形的定义及性质1. 平行四边形的概念:两组对边分别平行的四边形是平行四边形2.平行四边形的性质(边,角,对角线,对称性)(1)边的性质:平行四边形的对边相等平行四边形的对边平行(2)角的性质:平行四边形的对角相等(3)对角线的性质:平行四边形的对角线互相平分(4)平行四边形是中心对称图形(二)平行四边形的判定:1.平行四边形的判定(1)两组对边分别平行的四边形是平行四边形(定义)(2)两组对边分别相等的四边形是平行四边形(3)对角线互相平分的四边形是平行四边形(4)一组对边平行且相等的四边形是平行四边形(注意:①必须是同一组对边平行且相等,也就是一组对边平行,另一组对边相等时,不一定是平行四边形。

②有两条边相等,并且另外两条边相等的四边形不一定是平行四边形)2.两条平行线间的距离的定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离,实际上平行线间的距离处处相等(三)三角形的中位线1.三角形中位线的定义:连接三角线两边中点的线段叫做三角形的中位线2.三角形中位线定理:三角形的中位线平行于三角线的第三边,且等于第三边的一半(要区别三角形中位线和中线不要搞混淆了,说的是中位线与第三边的位置关系,中位线与第三边的数量关系)(四)多边形的内角与外角和1.多边形及正多边形(1)多边形:在平面内,由若干条不在同一条直线上的线段首尾顺次相连组成的封闭图形。

(2)多边形的分类:多边形按组成它的线段的条数分为三边形(三角形)、四边形、五边形……由n条线段组成的多边形叫做n边形(3)多边形的对角线:连接多边形不相邻的两个顶点的线段叫做多边形的对角线(4)正多边形:在平面内,内角都相等、边也都相等的多边形叫做正多边形2.多边形的内角和与外角和(1)多边形的内角和:n变形的内角和等于(n-2)*180°(n≥3)(2)多边形的外角和:多边形的外角和等于360°(3)多边形的对角线有:(3)2n n专题强化训练。

(完整word版)_平行四边形知识点汇总,推荐文档

(完整word版)_平行四边形知识点汇总,推荐文档

平行四边形的知识点汇总平行四边形定义:两组对边分别平行的四边形叫做平行四边形。

平行四边形是中心对称图形,对称中心是两条对角线的交点。

平行四边形性质1:平行四边形的两组对边分别相等。

平行四边形性质2:平行四边形的两组对角分别相等。

平行四边形性质3:平行四边形的两条对角线互相平分。

平行四边形判定1:两组对边分别平行的四边形是平行四边形。

平行四边形判定2:两组对边分别相等的四边形是平行四边形。

平行四边形判定3:两组对角分别相等的四边形是平行四边形。

平行四边形判定4:两条对角线互相平分的四边形是平行四边形。

平行四边形判定5:一组对边平行且相等的四边形是平行四边形。

平行线之间的距离及特征平行线之间的距离定义:若两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离。

平行线之间的距离特征1:平行线之间的距离处处相等。

平行线之间的距离特征2:夹在两条平行线之间的平行线段相等。

矩形矩形定义1:有一个角是直角的平行四边形叫做矩形矩形定义2:有三个角是直角的四边形叫做矩形矩形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是各边的垂直平分线。

矩形性质1:矩形的四个角都是直角。

矩形性质2:矩形的对角线相等且互相平分。

(注意:矩形具有平行四边形的一切性质)直角三角形的性质:直角三角形斜边上的中线等于斜边的一半矩形判定1:有一个角是直角的平行四边形是矩形。

矩形判定2:有三个角是直角的四边形是矩形。

矩形判定3:对角线相等的平行四边形是矩形。

菱形菱形定义1:有一组邻边相等的平行四边形叫做菱形.菱形定义2:四条边都相等的四边形叫做菱形。

菱形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是对角线所在的直线。

菱形性质1:菱形的四条边都相等。

菱形性质2:菱形的对角线互相垂直平分。

菱形性质3:菱形的每一条对角线平分一组对角。

菱形的面积:菱形的面积等于对角线乘积的一半。

(完整版)平行四边形知识点与经典例题-

(完整版)平行四边形知识点与经典例题-

.平行四边形一、基础知识平行四边形平行四边形矩形菱形正方形等腰梯形定有两组对边分别平行的四边有一个角是直角有一组邻边相等的平有一组邻边相等且两腰相等的梯形是等义形是平行四边形。

的平行四边形是行四边形是菱形。

有一个角是直角的腰梯形。

矩形。

平行四边形。

1、对边平行且相等。

1 、四个角都是直1、四条边都相等。

拥有平行四边形、矩1、两腰相等两底平行性2、对角相等,邻角互补。

角。

2、两条对角线相互垂形、菱形的全部特2、同一底上的两角相3、对角线相互均分2、对角线相等。

直,而且每一条对角线征。

等质均分一组对角。

3、两条对角线相等1、定义:1、定义:1、定义:1、先证明是矩形再1、定义:先判断是梯2、判断定理:2、判断定理:2、判断定理:证明一组邻边相等。

形在证明两腰相等。

(1)两组对边分别相等的四( 1)对角线相等( 1)一组邻边相等的2、先证明是菱形再2、同一底上的两个角边形是平行四边形。

的平行四边形是平行四边形是菱形。

证一个角是直角。

相等的梯形是等腰梯(2)两组对角分别相等的四矩形。

( 2)对角线相互垂直形。

判边形是平行四边形。

( 2)有三个角是的四边形是菱形。

3、对角线相等的梯形(3)一组对边平行且相等的直角的四边形是是等腰梯形。

定四边形是平行四边形。

矩形。

(4)对角线相互均分的四边形是平行四边形。

对称性轴对称图形轴对称图形轴对称图形轴对称图形二、 1、三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三遍的一半。

2、由矩形的性质获得直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半。

三、例题例 1、如图 1,平行四边形 ABCD 中,AE⊥ BD ,CF⊥ BD ,垂足分别为E、F. 求证:∠ BAE = ∠ DCF.ADFBEC (图 1)例 2、如图 2,矩形 ABCD中, AC 与 BD 交于 O 点, BE⊥ AC 于 E, CF⊥ BD 于 F.求证: BE = CF.A DE FOB C(图 2)例 3、已知:如图 3,在梯形 ABCD中,AD∥ BC,AB = DC,点 E、F分别在 AB、CD 上,且 BE = 2EA,CF = 2FD. 求证:∠ BEC =∠ CFB.A DE FB C例 4、如图 6, E、 F 分别是平行四边形 ABCD的 AD、 BC边上的点,且 AE = CF.图 3(1)求证:△ ABE≌△ CDF;A E D(2)若M、N 分别是 BE、DF的中点,连结 MF、EN,试判断四边形MFNE是如何的四N边形,并证明你的结论 .MB F C(图 6)..例 5、如图 7YABCD 的对角线AC的垂直均分线与边AD, BC 分别订交于点E,F.,求证:四边形AFCE是菱形 .EA DBOC F图 7例 6、如图 8,四边形ABCD是平行四边形, O 是它的中心, E、F 是对角线 AC 上的点 .(1)假如,则△DEC≌ △BFA(请你填上一个能使结论建立的一个条件);(2)证明你的结论 .D CE FA B图 8A DO FGB CE图 9例 7、如图 9,已知在梯形 ABCD中, AD∥BC,AB = DC,对角线 AC和 BD 订交于点 O,E 是 BC边上一个动点(点E不与 B、C两点重合),EF∥ BD 交 AC 于点 F, EG∥ AC 交 BD 于点 C.(1)求证:四边形EFOG的周长等于 2OB;(2)请你将上述题目的条件“梯形 ABCD中, AD∥BC,AB = DC”改为另一种四边形,其余条件不变,使得结论,“四边形 EFOG 的周长等于 2OB”仍建立,并将改编后的题目画出图形,写出已知、求证、不用证明.例 8、有一块梯形形状的土地,现要均匀分给两个田户栽种(马上梯形的面积两均分),试设计两种方案(均分方案画在备用图 13(1)、(2)上),并赐予合理的解说 .备用图( 1)备用图(2)图 13..四、练习一、选择题1. 以下命题正确的选项是()(A) 、一组对边相等,另一组对边平行的四边形必定是平行四边形 (B) 、对角线相等的四边形必定是矩形(C) 、两条对角线相互垂直的四边形必定是菱形(D)、在两条对角线相等且相互垂直均分的四边形必定是正方形2. 已知平行四边形 ABCD 的周长 32, 5AB=3BC, 则AC 的取值范围为 ( )A. 6<AC<10 ;B. 6<AC<16; C. 10<AC<16 ; D. 4<AC<163. 两个全等的三角形(不等边)可拼成不一样的平形四边形的个数是()(A )1(B )2 (C )3 (D )44.延伸平形四边形 ABCD 的一边 AB 到 E ,使 BE =BD ,连结 DE 交 BC 于 F ,若∠ DAB = 120°, ∠ CFE =135°, AB = 1,则 AC 的长为3 ( )(A ) 1 (B )1.2 (C ) 2(D ) 1.55.若菱形 ABCD 中, AE 垂直均分 BC 于E ,AE =1cm ,则 BD 的长是( )(A )1cm(B )2cm ( C )3cm (D ) 4cm6. 若按序连结一个四边形各边中点所得的图形是矩形,那么这个四边形的对角线 () (A )相互垂直 ( B )相等 ( C )相互均分 (D )相互垂直且相等7. 如图,等腰△ ABC 中,D 是 BC 边上的一点, DE ∥AC ,DF ∥AB , AB=5那么四边形 AFDE 的周长是()(A )5( B )10(C )15(D )20AEDOBC( 第7题) (第 8题) (第 9题) (第 10题)8. 如图,将边长为 8cm 的正方形纸片 ABCD 折叠,使点 D 落在 BC 边中点 E 处,点 A 落在点 F 处,折痕为 MN ,则线段 CN 的长是().(A )3cm (B ) 4cm ( C ) 5cm (D )6cm9. 如图,在直角梯形 ABCD 中,AD ∥BC ,∠B=90°, AC 将梯形分红两个三角形,此中△ ACD 是周长为 18 cm 的等边三角形,则该 梯形的中位线的长是 () .(A)9 cm (B)12cm(c)9cm (D)18 cm210. 如图,在周长为 20cm 的□ABCD 中,AB ≠AD , AC 、 BD 订交于点 O ,OE ⊥BD 交AD 于E ,则△ ABE 的周长为( )(A)4cm(B)6cm(C)8cm(D)10cm11. 如图 2,四边形为矩形纸片.把纸片折叠,使点 B 恰巧落在边的中点 E 处,折痕为.若=6,则等于()ABCDABCDCDAFCDAF(A )4 3 (B )3 3(C )4 2D(D )8 A D12. 如图,已知四边形 ABCD 中, R 、P 分别是 BC 、 CD 上的点, E 、F 分别是AEEAP 、 RP 的中点,当点 P 在CD 上从 C 向D 挪动而点 R 不动时,那么以下结论P建立的是( )A 、线段 EF 的长渐渐增大B 、线段 EF 的长渐渐减小 BF C BRFCC 、线段 EF 的长不变 D、线段 EF 的长与点 P图2第 12题图13. 在梯形 ABCD 中, AD//BC ,对角线 AC ⊥BD ,且 AC5cm , BD=12c m ,则梯形中位线的长等于()A. 7.5cmB. 7cmC. 6.5cmD. 6cmE14. 国家级历史文假名城——金华,风光艳丽,花木葱郁.某广场上一个形状是AD紫绿平行四边形的花坛(如图) ,分别种有红、黄、蓝、绿、橙、紫6 种颜色的花.G红H假如有 AB ∥ EF ∥ DC , BC ∥ GH ∥ AD ,那么以下说法中错误的选项是(黄橙)蓝A .红花、绿花栽种面积必定相等B.紫花、橙花栽种面积必定相等BFCC.红花、蓝花栽种面积必定相等D.蓝花、黄花栽种面积必定相等第14题..二、填空题1. 假如四边形四个内角之比1:2:3:4,则这四边形为____形。

第18章 《平行四边形》知识点及考点典例

第18章 《平行四边形》知识点及考点典例

第十八章《平行四边形》知识点及考点典例一、平行四边形1、平行四边形的概念两组对边分别__________的四边形叫做平行四边形。

2、平行四边形的性质(1)平行四边形的邻角_______,对角_______。

(2)平行四边形的对边_______且________。

推论:夹在两条平行线间的平行线段_______。

(3)平行四边形的对角线_________。

(4)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积。

3、平行四边形的判定(1)定义:两组对边分别________的四边形是平行四边形(2)定理1:两组对角分别_________的四边形是平行四边形(3)定理2:两组对边分别_________的四边形是平行四边形(4)定理3:对角线___________的四边形是平行四边形(5)定理4:一组对边_________的四边形是平行四边形二、矩形1、矩形的概念有一个角是_______的平行四边形叫做矩形。

2、矩形的性质(1)具有平行四边形的一切性质(边、角、对角线);(2)矩形的四个角都是_______;(3)矩形的对角线_______;(4)矩形是______对称图形。

3、矩形的判定(1)定义:有一个角是________的平行四边形是矩形。

(2)定理1:有___________是直角的四边形是矩形。

(3)定理2:对角线相等的_______________是矩形。

4、矩形的面积S矩形=长×宽=ab三、菱形1、菱形的概念有一组___________的平行四边形叫做菱形2、菱形的性质(1)具有平行四边形的一切性质(边、角、对角线);(2)菱形的________边相等(3)菱形的对角线________,并且每一条对角线平分一组对角(4)菱形是________对称图形3、菱形的判定(1)定义:有一组___________的平行四边形是菱形(2)定理1:___________都相等的四边形是菱形(3)定理2:对角线___________的平行四边形是菱形4、菱形的面积S菱形=底边长×高=两条对角线乘积的一半四、正方形1、正方形的概念有一组邻边相等并且有一个角是直角的______________叫做正方形。

平行四边形重难点考点真题(word+答案)

平行四边形重难点考点真题(word+答案)

专题平行四边形1.平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

平行四边形用符号“□ABCD”表示,如平行四边形ABCD记作“□ABCD”,读作“平行四边形ABCD”。

2.平行四边形的性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等;(3)平行四边形的对角线互相平分。

3.平行四边形的判定:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)对角线互相平分的四边形是平行四边形;(5)两组对角分别相等的四边形是平行四边形。

4.平行四边形的面积:S平行四边形=底边长×高=ah【例题1】(2019▪广西池河)如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是()A.∠B=∠F B.∠B=∠BCF C.AC=CF D.AD=CF【例题2】(2018湖北黄石)如图,△ABC是等腰直角三角形,∠ACB=90°,分别以AB,AC为直角边向外作等腰直角△ABD和等腰直角△ACE,G为BD的中点,连接CG,BE,CD,BE与CD交于点F.(1)判断四边形ACGD的形状,并说明理由.(2)求证:BE=CD,BE⊥CD.专题知识回顾专题典型题考法及解析一、选择题1. (福建福州)平面直角坐标系中,已知□ABCD的三个顶点坐标分别是A(m,n),B ( 2,-l ),C(-m,-n),则点D的坐标是()A.(-2 ,l ) B.(-2,-l ) C.(-1,-2 ) D .(-1,2 )2.(河北省)关于□ABCD的叙述,正确的是()A.若AB⊥BC,则□ABCD是菱形 B.若AC⊥BD,则□ABCD是正方形C.若AC=BD,则□ABCD是矩形 D.若AB=AD,则□ABCD是正方形3.(湖南湘西)下列说法错误的是()A.对角线互相平分的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等,另一组对边平行的四边形是平行四边形4.(2019•山东临沂)如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND5.(山东淄博)如图,△ABC的面积为16,点D是BC边上一点,且BD=14BC,点G是AB上一点,点H 在△ABC内部,且四边形BDHG是平行四边形.则图中阴影的面积是()专题典型训练题A. 3B. 4C. 5D. 6 二、填空题6.(2019广西百色)四边形具有不稳定性.如图,矩形ABCD 按箭头方向变形成平行四边形A 'B 'C 'D ',当变形后图形面积是原图形面积的一半时,则∠A '= .6.(2019湖南娄底)如图,平行四边形ABCD 的对角线 AC 、BD 交于点 O ,点 E 是 AD 的中点,△BCD 的周长为 18,则△DEO 的周长是 .7.( 2019河南省)如图,在□ABCD 中,BE⊥AB交对角线AC 于点E ,若∠1=20°,则∠2的度数是_________.8.( 2019湖北省十堰市)如图,在平行四边形ABCD 中,AB=213cm,AD=4cm,A C ⊥BC,则△DBC 比△ABC 的周长长__________cm.9.(2019浙江金华)如图,已知AB △CD ,BC △DE .若△A =20°,△C =120°,则△AED 的度数是 .BF10.(江苏省无锡市)如图,已知□OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为_______.11. (2019•湖北武汉)如图,在▱ABCD中,E.F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为.三、解答题12.(2019徐州)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.13.(2019湖南郴州)如图,平行四边形ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:四边形ACDF是平行四边形.14. (湖南省永州市)如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD.(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.15.(2019安徽)如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.16.(2019湖南张家界)如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使BE=AB,连接DE,分别交BC,AC交于点F,G.(1)求证:BF=CF;(2)若BC=6,DG=4,求FG的长.17. (2019•南京)如图,D是△ABC的边AB的中点,DE∥BC,CE∥AB,AC与DE相交于点F.求证:△ADF≌△CEF.18.(2018海南)如图,将▱ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.(1)求证:四边形CEDF是平行四边形;(2)若AB=3,AD=4,∠A=60°,求CE的长.19.(2019辽宁本溪)如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.20.(江苏省扬州市)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M 处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.21.(2019四川省凉山州)如图,□ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD 分别交于点E、F。

(完整版)平行四边形的性质及判定典型例题

(完整版)平行四边形的性质及判定典型例题

平行四边形的性质及判定 (典型例题)1.平行四边形及其性质例1如图,O 是卜二・ABCD 对角线的交点.△ OBC 的周长为59, BD=38 , AC=24,贝卩AD= __ 若厶OBC 与厶OAB 的周长之差为 15,贝y AB=QABCD 的周长= _____ .AC ,可得BC ,再由平行四边形对边相等知 AD=BC ,由平行四 边形的对角线互相平分,可知△ OBC 与厶OAB 的周长之差就为BC 与AB 之差,可得AB ,进而可得」ABCD 的周长.解 EBCD 中0A 二= OB = OD = |E D (平行四边形的对角线互相平分)•••△ OBC 的周长=0B + 0C +EC分析: 根据平行四边形对角线互相平先 所OC =1=19 + 12 + BC=59••• BC=28—ABCD 中,•BC=AD(平行四边形对边相等)•AD=28△ OBC的周长-△ OAB的周长=(OB + OC + BC)-(OB + OA+AB)=BC-AB=15•AB=13•••二ABCD的周长=AB + BC + CD + AD=2(AB + BC)=2(13 + 28)=82说明:本题条件中的△ OBC占厶OAB的周长之差为15”,用符号语言表示出来后,便容易发现其实质,即BC与AB之差是15 .例2判断题(1) 两条对边平行的四边形叫做平行四边形. ()(2) 平行四边形的两角相等.()(3) 平行四边形的两条对角线相等.()(4) 平行四边形的两条对角线互相平分. ()(5) 两条平行线中,一条直线上任一点到另一条直线的垂线段叫做两条平行线的距离.()(6) 平行四边形的邻角互补.()分析:根据平行四边形的定义和性质判断.解:(1) 错两组对边分别平行的四边形叫做平行四边形”是两组对边,而不是两条对边.如图四边形ABCD,两条对边AD // BC .显然四边形ABCD 不是平行四边形.(2) 错平行四边形的性定理1,“平行四边形的对角相等.”对角是指四边形中设有公共边的两个角,也就是相对的两个角.(3) 错平行四边形的性质定理3,“平行四边形的对角线互相平分.”一般地不相等.(矩形的两条对角线相等).(4) 对根据平行四边形的性质定理 3 可判断是正确的.(5) 错线段图形,而距离是指线段的长度,是正值正确的说法是:两条平行线中,一条直线上任一点到另一条直线的垂线段的长度叫做这两条平行线的距离.(6) 对由定义知道,平行四边形的对边平行,根据平行线的性质可知.平行四边形的邻角互补.例3 .如图1,在二ABCD中,E、F是AC上的两点.且AE=CF .求证:ED // BF .分析:欲址DE // BF,只需/ DEC二/ AFB,转证=/ ABF CDF, 因卜二,ABCD,则有AB丄CD,从而有/ BAC= / CDA .再由AF=CF 得AF=CE .满足了三角形全等的条件.证明:v AE=CFAE+EF二CF+EF••• AF=CE在二ABCD中AB // CD(平行四边形的对边平行)• / BAC= / DCA(两直线平行内错角相等)AB=CD(平行四边形的对边也相等)•••△ ABF刍乂 CDE(SAS)•••/ AFB= / DCE• ED // BF(内错角相等两直线平行)说明:解决平行四边形问题的基本思想是化为三角形问题不处理.例4如图已知在△ ABC中DE // BC // FG,若BD=AF、求证; DE + FG=BC .分析1:要证DE + FG=DC由于它们是平行线,由平行四边形定义和性质.考虑将DE平移列BC上为此,过E(或D)作EH // AB(或DM // AC),得至U DE=BH、只需证HC=FG ,因AF=BD=EH , / CEH=/ A. / AGF = Z C所以△ AFG幻/ EHC .此方法称为截长法.分析2:过C点作CK // AB交DE的延长线于K,只需证FG=EK , 转证△ AFG CKE .过E作EH // AB交于Hv DE // BC•••四边形DBHE是平行四边形(平行四边形定义)••• DB=EHDE=BH(平行四边形对边也相等)又BD=AF• AF=EHv BC // FGAGF= / C(两直线平行同位角相等)同理 / A= / CEH• △ AFG EHC(AAS)••• FG=HC••• BC二BH+HC二DE二FG.过C作CK // AB交DE的延长线于K.v DE // BC•四边形DBCK是平行四边形(平行四边形定义)•CK=BD DK=BC(平行四边形对边相等)又BD=AF•AF=CKv CK // AB• / A= / ECK(两直线平行内错角相等)v BC // FG•••/ AGF二/ AED(两直线平行同位角相等)又/ CEK二/ AED(对顶角相等)•••/ AGF= / CEK•••△ AFG S' CKE(AAS)FG=EKDE+EK=BC• DE+FG=BC例 5 如图I—ABCD 中,/ ABC=3 /A,点 E 在CD 上,CE=1 , EF丄CD交CB延长线于F,若AD=1,求BF的长.u --- ---------- r分析:根据平行四边形对角相等,邻角互补,可得/ C= / F=45°进而由勾股定理求出CF ,再根据平行四边形对边相等,得BF的长.解:在二ABCD 中,AD // BC•••/ A +/ ABC=180 (两直线平行同旁内角互补)vZ ABC=3 / A•••/ A=45 ,Z ABC=135•••Z C= Z A=45 (平行四边形的对角相等)•EF 丄CD•Z F=45°(直角三角形两锐角互余)•EF=CE=1在RtAOEF中,CF = JCE之》EF金=(勾股定理)v AD=BC=1二BF = CF”EC = Q[例6如图1,‘ ■ ABCD中,对角线AC长为10cm , Z CAB=30 , AB长为6cm,求一ABCD的面积.解:过点C作CH丄AB,交AB的延长线于点H .(图2)vZ CAB=30-■.CH 二丄= 1 X10=52 2••• S—ABCD = AB-CH = 6X5=30(cm2)答:二ABCD的面积为30cm2 .说明:由于二=底>高,题设中已知AB的长,须求出与底AB 相应的高,由于本题条件的制约,不便于求出过点D的高,故选择过点C 作高.例7如图,E、F分别在’・ABCD的边CD、BC上,且EF //求证:S△ ACE二S △ ABF分析:运用平行四形的性质,利用三角形全等,将其转化为等底同高的三角形.证明:将EF向两边延长分别交AD、AB的延长线于G、H.二ABCD DE // AB•••/ DEG= / BHF(两直线平行同位角相等)/ GDE= / DAB(同上)AD // BC•••/ DAB= / FBH(同上):丄 GDE= / FBHv DE // BH , DB // EH•四边形BHED是平行四边形V DE二BH(平行四边形对边相等)GDE 刍乂 FBH(ASA)••• S△ GDE=S △ FBH(全等三角形面积相等).GE=FH(全等三角形对应边相等).S△ ACE=S △ AFH(等底同高的三角形面积相等).S △ ADE = S △ ABF说明:平行四边形的面积等于它的底和高的积.即S二二a・ha .a 可以是平行四边形的任何一边,h必须是a边与其对边的距离.即对应的高,为了区别,可以把高记成ha,表明它所对应的底是a.例8如图,在二ABCD中,BE平分/ B交CD于点E, DF 平分/ D交AB于点F,求证BF=DE .分析EF二DE (目标)十BEDP 为口DF"d叫西3 ]1=Z 3 r Z 1=Z 2f t"S亠彩姑皤彩B口ABCD证明:T四边形ABCD是平行四边形二DE // FB,/ ABC= / ADC(平行四边形的对边也平行对角相等)•••/仁/ 3(两直线平行内错角相等)而Z]=^Z ADC,Z2=|ZABC•••/ 2= / 3• DF // BE(同位角相等两条直线平行)•四边形BEDF为平行四边形(平行四边形定义)• BF=DE .(平行四边形的对边相等)说明:此例也可通过△ ADF CBE来证明,但不如上面的方法简捷.例9如图,CD的Rt△ ABC斜边AB上的高,AE平分/ BAC 交CD于E, EF // AB,交BC于点F,求证CE=BF .分析作EG // BC,交AB于G,易得EG=BF .再由基本图, 可得EG=EC ,从而得出结论.过E点作EG // BC交AB于G点.v EF // AB••• EG=BFv CD为Rt△ ABC斜边AB上的高•/ BAC + / B=90°.Z BAC + / ACD = 90°•/ B= Z ACD•Z ACD=Z EGAv AE 平分Z BAC•Z 1= Z 2又AE=AE•△ AGE ACE(AAS)•CE=EG•CE=BF .说明:(1)在上述证法中,“平移”起着把条件集中的作用.(2)本题也可以设法平移AE .(连F点作FG // AE,交AB于G)例10如图,已知I —ABCD的周长为32cm , AB : BC=5 : 3, AE 丄BC 于E, AF 丄DC 于F,/ EAF=2 / C,求AE 和AF 的长.分析:从化简条件开始①由二ABCD的周长及两邻边的比,不难得到平行四边形的边长.口虹CD 的周长=321 fAB=10AB : BC-5 : 3 p |BC=6②/ EAF=2 / C告诉我们什么?AF i FC1 ZFAE^ZC=180°] oAE 1 EAF-2 Z C j討c=6°这样,立即可以看ADF、△ AEB都是有一个锐角为30°的直角三角形.于是有= = = 3再由勾股定理求出解:——ABCD的周长为32cm即AB+BC+CD+DA=32v AB=CD BC=DA(平行四边形的对边相等)/.AB + BC = - X32 = 16 2又AB : BC=5 : 35+3BC= —X3 = 65+3/ EAF+ / AFC+ / C+ / CEA=360 (四边形内角和等于360°v AE 丄BC / AEC=90AF 丄DC / AFC=90•••/ EAF+ / C=180/ EAF=2 / CT AB // CD(平行四边形的对边平行)•••/ ABE二/ C=60 (两直线平行同位角相等)同理/ ADF=60SRiAABE 中,ZBAE = 30* BE = |AB = 5£—■Al = ja =E^ = 5^3 (cm)在RtAADF中,ZDAF = 30° DF= ^AP = |B C=3■f-j d—iAF - 7A D3 -I>F a = M Ccm)说明:化简条件,化简结论,总之,题目中哪一部分最复杂就从化简那一部分开始,这是一种常用的解题策略,我们把这种解题策略称为:从最复杂的地方开始.它虽简单,却很有效.2 .平行四边形的判定例1填空题(1)如图1,四边形ABCD与四边形BEFC都是平行四边形,则四边形AEFD是—,理由是(2)如图2, D、E分别在△ ABC的边AB、AC上,DE=EF , AE=EC , DE // BC贝卩四边形ADCF是__,理由是__ ,四边形BCFD 是—,理由是—分析:判定一个四边形是平行四边形的方法较多,要从已知条件出发,具体问题具体分析:(1)根据平行四边形的性质可得AD平行且等于BC,BC平行且等于EF,从而得AD平行且等于EF,由判定定理4可得.(2)由AE=EC , DE=EF,由判定定理3可得四边形ADCF是平行四边形,从而得AD // CF即BD // CF,再由条件,可得四边形BCFD是平行四边形.解:(1)平行四边形,一组对边平行且相等的四边形是平行四边形(2)平行四边形,对角线互相平分的四边形是平行四边形,平行四边形,两组对边分别平行的四边形是平行四边形.说明:平行四边形的定义(两组对边分别平行的四边形叫做平行 四边形,既是平行四边形的一个性质,又是平行四边形的一个判定 方法.例 2 女口图,四边形 ABCD 中,AB=CD . / ADB 二 /CBD=90 .求 证:四边形ABCD 是平行四边形.分析:判定一个四边形是平行四边形,有三类五个判定方法, 这三类也是按边、角和对角线分类,具体的五个方法如下表:CIID 从对角钱看一(5 )对角线互相平分 因此必须根据已知条件与图形结构特点,选择判定方法.证法一:v AB=CD . Z ADB= / CBD=90 , BD=DB .••• Rt △ ABD 坐 Rt △ CDB .「( 1)两组对边分别平存C I )从边看 —(2)两组对边分别相等_(3)-组对边平行且相尊 (1)从边看 (II )从角看 (4)两组对角分别相等 的四边形绘平行四边形•••/ ABD= / CDB,/ A= / C.•/ ABD+ / CBD= / CDB+ / ADB即 / ABC= / CDA .•四边形ABCD 是平行四边形(两组对角分别相等的四边形是平行四边形).证法二:vZ ADB= / CBD=90 , AB=CD、BD=DB .•Rt△ ABD 坐Rt△ CDB .•Z ABD=Z CDB.•AB //CD.(内错角相等两直线平行)•四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形).证法三:由证法一知,Rt △ ABD幻Rt △ CDB .••• DA=BC又T AB二CD•四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形)说明:证明一个四边形是平行四边形,往往有多种证题思路,我们必须注意分析,通过比较,选择最简捷的证题思路.本题三种证法中,证法二与证法三比较简捷,本题还可用定义来证明.例3如图,‘「ABCD中,E、G、F、H分别是四条边上的点, 且AE=CF , BG=DH,求证:EF与GH互相平分.分析:只须证明EGFH为平行四边形.证明:连结EG 、GF、FH 、HE.T四边形ABCD是平行四边形•••/ A= / C, AD=CB .T BG=DH•AH=CG又AE=CF•△ AEH CFG(SAS)•HE=GF同理可得EG=FH•四边形EGFH 是平行四边形(两组对边分别相等的四边形是平行四边形)•EF 与GH 互相平分(平行四边形的对角线互相平分).说明:平行四边形的性质,判定的综合运用是解决有关线段和角问题基本方法.例4如图,二ABCD中,AE丄BD于E, CF丄BD于F.求证:四边形AECF是平行四边形.分析:由平行四边形的性质,可得△ ABE CDF••• AE= CF进而可得四边形AECF是平行四边形.证明:口ABCD中,AB屯CD(平行四边形的对边平行,对边相等)•/ ABD= / CDB(两直线平行内错角相等)AE 丄BD、CF 丄BD•AE // CF / AEB= / CFD=90•△ ABE CDF(AAS)•AE=CF•四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形)说明:平行四边形的定义,既是平行四边形的一个性质,又是平行四边形的一个判定方法.例5如图,二ABCD中,E、F分别在AD、BC上,且AE=CF , AF、BE相交于G, CE、DF相交于H求证:EF与GH互相平分分析:欲证EF与GH互相平分,只需四边形EGFH为平行四边形,利用已知条件可知四边形AFCE、四边形EBFD都为平行四边形,所以可得AF // EC , BE // DF,从而四边形GEHF为平行四边形.证明:」ABCD中,AD丄BC(平行四边形对边平行且相等)v AE=CF /. DE=BFT四边形AFCE、四边形BFDE是平行四边形(一组对边平行且相等的四边形是平形四边形)二AF // CE , BE // DF(平行四边形对边平行)•••四边形EGFH是平行四边形(两组对边分别平行的四边形是平行四边形)••• GH与EF互相平分(平行四边形的对角线互相平分)说明:平行四边形问题,并不都是以求证某一个四边形为平行四边形的形式出现的.往往更多的是求证线段的相等、角的相等、直线的平行、线段的互相平分等等.要灵活地根据题中已知条件,以及定义、定理等.先判定某一四边形为平行四边形,然后再应用平行四边形的性质加以证明.例6如图,已知—ABCD中,EF在BD上,且BE=DF ,点G、H 在AD、CB上,且有AG=CH , GH与BD交于点0,求证EG丄HF分析:证EF 、GH 互相平分二GEHF 为平行四边形.证明:连 BG 、DH 、GF 、EHT ABCD 为平行四边形.••• AD 垒 BC又 AG=HC• DG 丄 BH•四边形BGDH 为平行四边形(一组对边平行且相等的四边形是平行四边形)• HO = GO , DO=BO (平行四边形的对角线互相平分) 又 BE=DF•OE=OF•四边形GEHF为平行四边形(对角线互相平分的四边形是平行四边形)••• EG丄HF.(平行四边形的对边平行相等)说明:由于条件BE=DF涉及到对角线BD,所以考虑用对角线互相平分来证明例7如图,——ABCD中,AE丄BD于E, CF丄BD于F, G、H分别为AD、BC的中点,求证:EF和GH互相平分.分析:连结EH , HF、FG、GE,只须证明EHFG为平行四边证法一:连结EH , HF、FG、GEv AE丄BD , G是AD中点.-■.GE=C J D =^AD2/ GED二 / GDE同理可得HF =HB =^EC,Z HFE =Z HEFV四边形ABCD是平行四边形••• AD 岂BC,/ GDE= / HBF••• GE=HF,/ GED= / HFB•GE // HF•四边形GEHF为平行四边形(一组对边平行且相等的四边形是平行四边形)•EF和GH互相平分.(平行四边形对角线互相平分)证法二:容易证明厶ABE CDF• BE=DFT四边形ABCD为平行四边形••• AD 些BCT G、H分别为AD、BC的中点•DG 丄BH•四边形BHDG为平行四边形(一组对边平行且相等的四边形是平行四边形)•BD和GH互相平分(平行四边形对角线互相平分)•OG=OH , OB=OD又BE=DF•OE=OF•EF和GH互相平分.例8如图,已知线段a、b与/ a,求作:—ABCD ,使/ ABC二/ a, AB=a , BC=b ,分析:已知两边与夹角,可先确定△ ABC,根据判定定理2(两组对边分别相等的四边形是平行四边形),再确定点D,从而平行四边形可作出.作法:(1) 作/ EBF二/ a,⑵在BE、BF上分别截取BA=a , BC=b ,⑶分别为A、C为圆心,b, a为半径作弧,两弧交于点D, 二四边形ABCD为所求.*证明:由作法可知AB=CD = aBC=AD=b二四边形ABCD 为平行四边形(两组对边分别相等的四边形为平 行四边形)且/ ABC 二 / a, AB=a , BC=b- ABCD 为所求说明:常见的平行四边形作图有以下几种:(1) 已知两邻边(AB 、BC)和夹角(/ B).(2) 已知一边(BC)和两条对角线(AC , BD).(3) 已知一边(BC)和这条边与两条对角线的夹角 (如/ DBC ,Z ACB).⑷已知一边(CD)和一个内角(/ ABC)以及过这个角的顶点的一条对角线(BD ,且BD > CD)求作平行四边形(如图)完成这些作图的关键点,都在于先作出一个三角形,然后再完成平行四边形的作图,体现了把平行四边形的问题化归为三角形问题的思想方法.。

(完整版)平行四边形全章知识点总结

(完整版)平行四边形全章知识点总结

平行四边形【知识脉络】【基础知识】Ⅰ. 平行四边形(1)平行四边形性质1)平行四边形的定义:有两组对边分别平行的四边形叫做平行四边形.2)平行四边形的性质(包括边、角、对角线三方面) : AB DO C边:①平行四边形的两组对边分别平行; ②平行四边形的两组对边分别相等;角:③平行四边形的两组对角分别相等;对角线:④平行四边形的对角线互相平分.【补充】平行四边形的邻角互补;平行四边形是中心对称图形,对称中心是对角线的交点.(2)平行四边形判定1)平行四边形的判定(包括边、角、对角线三方面):A B DO CD 边:①两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形; ③一组对边平行且相等的四边形是平行四边形; 角:④两组对角分别相等的四边形是平行四边形; 对角线:⑤对角线互相平分的四边形是平行四边形.2)三角形中位线:连接三角形两边中点的线段叫做三角形的中位线.3)三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.4)平行线间的距离:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离。

两条平行线间的距离处处相等。

Ⅱ. 矩形(1)矩形的性质1)矩形的定义:有一个角是直角的平行四边形叫做矩形.2)矩形的性质:①矩形具有平行四边形的所有性质;②矩形的四个角都是直角;③矩形的对角线相等;④矩形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线的交点.(2)矩形的判定1)矩形的判定:①有一个角是直角的平行四边形是矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形.2)证明一个四边形是矩形的步骤:方法一:先证明该四边形是平行四边形,再证一角为直角或对角线相等;方法二:若一个四边形中的直角较多,则可证三个角为直角. 3)直角三角形斜边中线定理:(如右图)直角三角形斜边上的中线等于斜边的一半.Ⅲ. 菱形(1)菱形的性质 1)菱形的定义:有一组邻边相等的平行四边形叫做菱形. 2)菱形的性质: ①菱形具有平行四边形的所有性质; ②菱形的四条边都相等; ③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角; ④菱形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线交点. 3)菱形的面积公式:菱形的两条对角线的长分别为b a ,,则ab S 21菱形 (2)菱形的判定1)菱形的判定:①有一组邻边相等的平行四边形是菱形;②对角线互相垂直的平行四边形是菱形;③四条边都相等的四边形是菱形.2)证明一个四边形是菱形的步骤:方法一:先证明它是一个平行四边形,然后证明“一组邻边相等”或“对角线互相垂直”; 方法二:直接证明“四条边相等”.Ⅳ. 正方形(1)正方形的性质1)正方形的定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形.2)正方形的性质:正方形具有平行四边形、矩形、菱形的所有性质,即①正方形的四条边都相等;②四个角都是直角;③对角线互相垂直平分且相等,并且每条对角线平分一组对角.3)正方形既是轴对称图形,又是中心对称图形,它有四条对称轴,对角线的交点是对称中心.(2)正方形的判定1)正方形的判定:①有一组邻边相等且有一个角是直角的平行四边形是正方形;②有一组邻边相等的矩形是正方形;③对角线互相垂直的矩形是正方形;④有一个角是直角的菱形是正方形;⑤对角线相等的菱形是正方形;⑥对角线互相垂直平分且相等的四边形是正方形.中点四边形1、顺次连接四边形各边中点所围成四边形是平行四边形2、顺次连接菱形各边中点所围成四边形是矩形3、顺次连接矩形各边中点所围成四边形是菱形4、顺次连接等腰梯形各边中点所围成四边形是菱形5、顺次连接正方形各边中点所围成四边形是正方形例:如果顺次连接一个四边形各边中点所得新的四边形是菱形,那么对这个四边形的形状描述最准确的是()A.矩形B.等腰梯形C.菱形D.对角线相等的四边形解:矩形,等腰梯形均能得到菱形但不够全面,菱形无法得到菱形,即只要对角线相等不管是什么形状均可,故选D.。

(完整word版)平行四边形(知识点、经典例题、常考题型练习),推荐文档

(完整word版)平行四边形(知识点、经典例题、常考题型练习),推荐文档

平行四边形(一)【知识梳理】1、平行四边形:平行四边形的定义决定了它有以下几个基本性质:(1)平行四边形对角相等;(2)平行四边形对边相等;(3)平行四边形对角线互相平分。

除了定义以外,平行四边形还有以下几种判定方法:(1)两组对角分别相等的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形。

2、特殊平行四边形:一、矩形(1)有一角是直角的平行四边形是矩形(2)矩形的四个角都是直角;(3)矩形的对角线相等。

(4)矩形判定定理1:有三个角是直角的四边形是矩形(5)矩形判定定理2:对角线相等的平行四边形是矩形二、菱形(1)把一组邻边相等的平行四边形叫做菱形.(2)定理1:菱形的四条边都相等(3)菱形的对角线互相垂直,并且每条对角线平分一组对角.(4)菱形的面积等于菱形的对角线相乘除以2(5)菱形判定定理1:四边都相等的四边形是菱形(6)菱形判定定理2:对角线互相垂直的平行四边形是菱形。

三、正方形(1)有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形(2)性质:①四个角都是直角,四条边相等②对角线相等,并且互相垂直平分,每条对角线平分一组对角(3)判定:①一组邻边相等的矩形是正方形②有一个角是直角的菱形是正方形平行四边形矩形 菱形正方 形 等腰梯形 直角梯形梯形四边形知识结构如下图(1)弄清定义及四边形之间关系图1:(2)四边形之间关系图2:2、几种特殊的四边形的性质和判定:3、一些定理和推论:三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半。

推论:夹在两平行线间的平行线段相等。

推论:直角三角形斜边上的中线等于斜边的一半;推论:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

【例题精讲】填空题:四边形正方形【巩固】1、下列说法中错误..的是( ) A .四个角相等的四边形是矩形 B .四条边相等的四边形是正方形 C .对角线相等的菱形是正方形 D .对角线互相垂直的矩形是正方形2、如果一个四边形的两条对角线互相平分,互相垂直且相等,那么这个四边形是 ( ) A .矩形 B .菱形 C .正方形 D .菱形、矩形或正方形3、下面结论中,正确的是( )A .对角线相等的四边形是矩形B .对角线互相平分的四边形是平行四边形C .对角线互相垂直的四边形是菱形D .对角线互相垂直且相等的四边形是正方形4、如图,在ABC △中,点D 、E 、F 分别在边AB 、BC 、CA 上,且DE CA ∥,DF BA ∥.下列四种说法:①四边形AEDF 是平行四边形;②如果90BAC ∠=o,那么四边形AEDF 是矩形; ③如果AD 平分BAC ∠,那么四边形AEDF 是菱形;④如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形. 其中,正确的有 .(只填写序号)【例1】如图,在平行四边形ABCD 中,点E ,F 分别是AD ,BC 的中点. 求证:四边形BFDE 是平行四边形.【巩固】已知,如图9,E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE . 四边形ABCD 是平行四边形吗?请说明理由.【例2】如图,梯形ABCD 中,AB ∥CD ,AC 平分∠BAD ,CE ∥AD 交AB 于点E .F ED CBAA FCDEAEDCFB求证:四边形AECD 是菱形.【例3】如图,在等边△ABC 中,点D 是BC 边的中点,以AD 为边作等边△ADE . (1)求∠CAE 的度数;(2)取AB 边的中点F ,连结CF 、CE ,试证明四边形AFCE 是矩形.【巩固】如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD . (1)试判断四边形OCED 的形状,并说明理由; (2)若AB =6,BC =8,求四边形OCED 的面积.【例4】如图所示,在△ABC 中,分别以AB 、AC 、BC 为边在BC 的同侧作等边△ABD 、等边△ACE 、等边△BCF .(1)求证:四边形DAEF 是平行四边形;三角形ABD,三角形ACE,三角形BCF 都是等边三角形 首先我们来证明DAEF 为平行四边形 角DBF=60度-角FBA=角ABCABCDECBA DFE而DB=AB, BF=BC三角形DBF全等于三角形ABC所以:DF=AC=AE同理可证:DA=FE所以:DAEF为平行四边形(1)如图,如果角DAE=90度,则DAEF为矩形则必须:角BAC=360度-2*60度-90度=150度(而如果,另一种情况,BC为短边,F将落在DAECB的包围之中,角DAE=2*60度+角BAC>90度,DAEF不可能为矩形,而BC为短边,角BAC<90度)(2)如果:DA=AE,则:DAEF为菱形则必须:AB=AC(3)如果:角BAC=60度则:角DAE=3*60度=180度D,A,E共线,所以:以D、A、E、F为顶点的四边形不存在据此,(2)的结论应稍加改变为:当AB=AC,且角BAC不等于60度时,四边形DAEF是菱形(2)探究下列问题:(只填满足的条件,不需证明)①当△ABC满足_________________________条件时,四边形DAEF是矩形;②当△ABC满足_________________________条件时,四边形DAEF是菱形;③当△ABC满足_________________________条件时,以D、A、E、F为顶点的四边形不存在.平行四边形(二)【知识梳理】由平行四边形的结构知,平行四边形可以分解为一些全等的三角形,并且包含着平行线的有关性质,因此,平行四边形是全等三角形知识和平行线性质的有机结合,平行四边形包括矩形、菱形、正方形。

平行四边形知识点总结及对应例题

平行四边形知识点总结及对应例题

平行四边形、矩形、菱形、正方形知识点总结定义:两组对边分别平行的四边形是平行四边形平行四边形的性质:(1):平行四边形对边相等(即:AB=CD,AD=BC);(2):平行四边形对边平行(即:AB//CD,AD//BC);(3):平行四边形对角相等(即:∠A=∠C,∠B=∠D);(4):平行四边形对角线互相平分(即:O A=OC,OB=OD);判定方法:1. 两组对边分别平行的四边形是平行四边形(定义判定法);2. 一组对边平行且相等的四边形是平行四边形;3. 两组对边分别相等的四边形是平行四边形;4. 对角线互相平分的四边形是平行四边形;5.两组对角分别相等的四边形是平行四边形;考点1 特殊的平行四边形的性质与判定1.矩形的定义、性质与判定(1)矩形的定义:有一个角是直角的平行四边形是矩形。

(2)矩形的性质:矩形的对角线_________;矩形的四个角都是________角。

矩形具有________的一切性质。

矩形是轴对称图形,对称轴有_____________条,矩形也是中心对称图形,对称中心为_____________的交点。

矩形被对角线分成了____________个等腰三角形。

(3)矩形的判定有一个是直角的平行四边形是矩形;有三个角是_____________的四边形是矩形;对角线_____的平行四边形是矩形。

温馨提示:矩形的对角线是矩形比较常用的性质,当对角线的夹角中,有一个角为60度时,则构成一个等边三角形;在判定矩形时,要注意利用定义或对角线来判定时,必须先证明此四边形为平行四边形,然后再请一个角为直角或对角线相等。

很多同学容易忽视这个问题。

2.菱形的定义、性质与判定(1)菱形的定义:有一组邻边相等的平行四边形是菱形。

(2)菱形的性质菱形的_______都相等;菱形的对角线互相_______,并且每一条对角线______一组对角;菱形也具有平行四边形的一切性质。

菱形即是轴对称图形,对称轴有____条。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、知识点讲解: 1.平行四边形的性质:1()两组对边分别平行;??DC)两组对边分别相等;(2??O是平行四边形?四边形ABCD)两组对角分别相等;(3??()对角线互相平
分;4?AB?.)邻角互补(5?
2.平行四边形的判定:
DCOAB . 矩形的性质:3.
1;()具有平行四边形的所有通性?CDCD??ABCD因为四边形是矩形;()四个角都是直角2??O (3)对角线相等.?ABAB是轴对称图形,它有两条对称轴. (4) 矩形的判定:4 有一个角是直角的平行四边形;(1) (2)有三个角是直角的四边形;对角线相等的平行四边形;(3)是矩形. ?四边形ABCD(4)对角线相等且互相平分
的四边形.
两对角线相交成60°时得等边三角形。

5. 菱形的性质:D1有通性;()具有平行四边形的所??是菱形ABCD?因为)四个边都相等;2(?OCA?(角.3)对角线垂直且平分对?
6. 菱形的判定:BD?一组邻边等?(1)平行四边形??四边形ABCD是菱形.
)四个边都相等2(?O?CA边形3)对角线垂直的平行四(?菱形中有一个角等于60°时,
较短对角线等于边长;
菱形中,若较短对角线等于边长,则有等边三角形;B菱形中,两对角线把菱形分成4个全等的直角三角形,每个直角三角形的斜边是菱形的边,两直角边分别是两对角线的一半。

菱形的面积等于两对角线长积的一半。

正方形的性质:7.CDCD1)具有平行四边形的所有通性;(???四边形ABCD是正方形O
角都是直角;2)四个边都相等,四个(??(.3)对角线相等垂直且平分对角?BABA
正方形的判定:8.
一个直角?1()平行四边形?一组邻边等??一个直角?(2)菱形??对角线相等)菱形?(3?. ABCD是正方形?四边形?一组邻边等矩形?(4)??对角线互相垂直?(5)矩形?.三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三9. 1 遍的一半。

直角三角形斜边上的中线等于由矩形的性质得到直角三角形的一个性质:
2.斜边的一半。

二、例题1,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F. 求证:例1:如图∠BAE =∠DCF.
A D F E
B C)1(图例2如图2,矩形ABCD中,AC与BD交于O点,BE⊥AC于E,CF⊥BD A D
E F 于F.
求证:BE = CF.
O
B C
(图2)
例3.已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边
形.
E 分,BC的对角线AC的垂直平分线与边AD ABCD4例如图7,A D F.
别相交于点E,
.
求证:四边形AFCE是菱形O B C F 7 图
例5、顺次连接四边形各边中点,所得的图形是;
顺次连结矩形四边中点所得四边形是_________;;顺次连结菱形四边中点所得四边形是_________ABACADBCDABCANABC外角⊥例6.已知:如图,在△,中,,垂足为点=是△,CAMCEANE,的平分线,,垂足为点⊥∠M
ADCE为矩形; 1)求证:四边形(E A ABC满足什么条件时,四边形(2)当△N
ADCE是一个正方形?并给出证明.
C B D
(第6题)
例7.如图,在正方形ABCD中,P为对角线BD上一点,
PE⊥BC,垂足为E, PF⊥CD,垂足为F,
求证:EF=AP
例8.□ABCD外,AE⊥CE,BE⊥DE 如图所示,E为,
□ABCD为矩形求证:
重合,那与点B3 cm,将其折叠,使点DABAD9例、如图,矩形纸片ABCD,长=9cm,宽=的长为。

么折叠后DE的长为,折痕EF E
A
D
C
B
F
G
10.例,DP =OCDAC、BD交于点O,过点作DP∥OC,且的对角线. 18①如图,矩形ABCD,试判断四边形CODP连结CP的形状.并证明。

的形状是______________②如果题目中的矩形变为菱形,则四边形CODP ____________ ③如果题目中的矩形变为正方形,则四边形CODP的形状是 A
A
A B
B
B
O
O
O
C C
D D
D
C
P
P
P
11. 例.四边形ABCD、DEFG都是正方形,连接AE、如图所示,CG.(1)求证:AE=CG;
(2)观察图形,猜想AE与CG之间的位置关系,
并证明你的猜想.。

相关文档
最新文档