二元一次方程组测试题(难)
浙教版初中数学七年级下册第二单元《二元一次方程组》单元测试卷(困难)(含答案解析)
浙教版初中数学七年级下册第二单元《二元一次方程组》单元测试卷(困难)(含答案解析)考试范围:第二单元; 考试时间:120分钟;总分:120分, 学校:___________姓名:___________班级:___________考号:___________注意:本试卷包含Ⅰ、Ⅱ两卷。
第Ⅰ卷为选择题,所有答案必须用2B 铅笔涂在答题卡中相应的位置。
第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。
答案写在试卷上均无效,不予记分。
第I 卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知方程2x −3y =7,用含x 的代数式表示y 为( ) A. y =7−2x3B. y =2x−73C. x =7+3x2D. x =7−3x22. 已知x 2m−1+3y 4−2n =−7是关于x ,y 的二元一次方程,则m ,n 的值是( ) A. {m =2n =1B. {m =1n =−32C. {m =1n =52D. {m =1n =323. 若方程mx −2y =3x +4 是关于x,y 的二元一次方程,则m 满足( ) A. m ≠−2B. m ≠0C. m ≠3D. m ≠44. 已知关于x ,y 的二元一次方程组{x −y =3ax +3y =2−a ,下列结论中正确的是( )①当这个方程组的解x ,y 的值互为相反数时,a =−1; ②当x 为正数,y 为非负数时,−14<a ≤12; ③无论a 取何值,x +2y 的值始终不变.A. ①②B. ②③C. ①③D. ①②③5. 三个同学对问题“若方程组{a 1x +b 1y =c1a 2x +b 2y =c 2的解是{x =3y =4,求方程组{3a 1x +2b 1y =5c13a 2x +2b 2y =5c 2的解.”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是( )A. {x =3y =2B. {x =3y =4C. {x =5y =10D. {x =6y =86. 在解方程组{ax +5y =104x −by =−4时,由于粗心,甲看错了方程组中的a ,得到的解为{x =−3y =−1,乙看错了方程组中的b ,得到的解为{x =5y =4.则原方程组的解( ) A. {x =−2y =8B. {x =15y =8C. {x =−2y =6D. {x =−5y =87. 当实数m ,n 满足m −2n =1时,称点P(m +2,n+23)为创新点,若以关于x ,y 的方程组{2x +3y =4,2x −3y =4a的解为坐标的点Q(x,y)为创新点,则a 的值为( ) A. −25B. 25C. −23D. 238. 已知x ,y 是整数,满足x −y +3=0,ax −y −a =0,则整数a 的所有可能值有( ) A. 4个B. 5个C. 6个D. 8个9. 某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利10%(相对于进价),另一台空调调价后售出则亏本10%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出.( )A. 既不获利也不亏本B. 可获利1%C. 要亏本2%D. 要亏本1%10. 将两块完全相同的长方体木块先按图1的方式放置,再按图2的方式放置,测得的数据如图(单位:cm)所示.则桌子的高度ℎ=( )A. 30cmB. 35cmC. 40cmD. 45cm11. 用白铁皮做罐头盒,每张铁片可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有36张白铁皮,设用x 张制盒身,y 张制盒底,恰好配套制成罐头盒,则下列方程组中符合题意的是( )A. {x +y =36y =2xB. {x +y =36x =2yC. {x +y =362×25x =40yD. {x +y =3625x =2×40y12. 三角形然幻方是锻炼思维的有趣数学问题,例:把数字1、2、3、…、9分别填入如图所示的9个圆圈内,要求△ABC 和△DEF 的每条边上三个圆圈内数字之和都等于18,则x +y +z的和是( )A. 6B. 15C. 18D. 24第II 卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 已知二元一次方程2x −y =1,用y 的代数式表示x 为______ .14. 若关于x 、y 的二元一次方程组{3x −my =52x +ny =6的解是{x =1y =2,则关于a 、b 的二元一次方程组{3(a +b )−m (a −b )=52(a +b )+n (a −b )=6的解是_____. 15. 已知关于x ,y 的方程组{3x −5y =2a,2x +7y =a −18,有下列三种说法: ①当a =8时,x ,y 互为相反数; ②x ,y 都是负整数的解只有1组; ③{x =21,y =−3是该方程组的解.其中说法正确的有 (填序号).16. 为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为______.三、解答题(本大题共9小题,共72.0分。
《二元一次方程组》基础测试题及参考答案
《二元一次方程》基础测试题一、选择题1.方程2x+y =0,3x-xy =1,2x+y ﹣x =7,x −1y =0二元一次方程的个数是( ) A .1个 B .2个 C .3个 D .4个2.把方程2x-y=3改写成用含x 的式子表示y 的形式( )A .y=2x-3B .y=2x+3C .1322x y =+D .132x y =+ 3.若{x =5y =2是关于x 和y 的二元一次方程2x ﹣by =6的解,则b 的值是( ) A . 2 B .﹣2 C . 4 D .﹣44.关于二元一次方程组{y =x +1x −2y =7,消去y 可得( ) A .x-x ﹣1=7 B .x-2x ﹣1=7 C .x-2x ﹣2=7 D .x+2x-2=75.已知二元一次方程组{2x −y =7x −2y =−3,则x+y 的值为( ) A .﹣4 B .4 C .﹣5 D .56.若方程x+y =2,x ﹣2y =8和kx-y =6有公共解,则k 的值是( )A .1B .﹣1C .2D .﹣27.现在小强的年龄是小玲的2倍,2年前小强的年龄是小玲的3倍,今年小强和小玲的年龄是多少岁?设小强今年x 岁,小玲今年y 岁,可列方程组( )A .{x +2=3(y +2)x =2yB .{x −2=3(y −2)x =2yC .{x +2=2(y +2)x =3yD .{x −2=3(y −2)x =3y8.若|x+2y ﹣2|+√x −y +1=0,则x+y 的值为( )A .4B .2C .1D .09.一个两位数数位上的数字之和是8,将它的十位数字和个位数字交换后,得到新的两位数,若新两位数比原两位数小18,则原两位数为( )A .26B .53C .35D .6210.已知关于x 、y 的二元一次方程组的解3+2=+22+3=x y k x y k ⎧⎨⎩满足x+y=2,则k 的值为( ) A .0 B .1 C .2 D .411.已知方程组213616x y z x y z -+=-⎧⎨+-=⎩,则x+y 的值为( ) A .3 B .4 C .5 D .612.今有牛五、羊二,值金十两;牛二、羊五,值金八两,牛、羊各值金几何?题目大意是:5头牛、2只羊共值金10两,2头牛、5只羊共值金8两,每头牛、每只羊各值金多少两?解:设一头牛值金x 两,一只羊值金y 两,则列方程组( )A .{5y −2x =102y −5x =8B .{5y −2x =82y −5x =10C .{5y +2x =102y +5x =8D .{5y +2x =82y +5x =10二、填空题13.方程ax+(a +1)y =3a -1是关于x 、y 的二元一次方程,则a 的范围是_______。
中考数学总复习《二元一次方程组》专项测试卷(附答案)
中考数学总复习《二元一次方程组》专项测试卷(附答案)一、单选题(共12题;共24分)1.方程组 {y =2x 3x +y =15,的解是( ) A .{x =3y =6,B .{x =4y =3, C .{x =4y =8,D .{x =2y =3,2.以下是方程3x +2y =12的一个解的是( )A .{x =−1y =2B .{x =2y =−1C .{x =2y =3D .{x =3y =23.如图,在某张桌子上放相同的木块, R =32 , S =96 ,则桌子的高度是( )A .63B .58C .60D .644.已知{x =1,y =−2是关于x ,y 的二元一次方程ax +y =1的一个解,那么a 的值为( ) A .3B .1C .-1D .-35.已知关于x 、y 的方程组 {x +y =1−ax −y =3a +5 ,满足 x ≥12y ,则下列结论:①a ≥−2 ;②a =−53时, x =y ;③当 a =−1 时,关于x 、y 的方程组{x +y =1−ax −y =3a +5 的解也是方程 x +y =2 的解;④若 y ≤1 ,则 a ≤−1 ,其中正确的有( ) A .1个B .2个C .3个D .4个6.一个长方形的长减少3cm ,宽增加2cm ,就成为一个正方形,并且长方形的面积与正方形的面积相等.如果设这个长方形的长为xcm ,宽为ycm ,那么所列方程组正确的是( )A .{x +3=y −2(x +3)(y −2)=xyB .{x −3=y +2(x −3)(y +2)=xyC .{3−x =y +2(3−x)(y +2)=xyD .{x −2=y +3(x −2)(y +3)=xy7.若 |b +2|+(a −3)2=0 ,则 b a 的值为( )A .﹣bB .−18C .﹣8D .88.已知关于 x,y 的二元一次方程组 {3x +y =−4m +2x −y =6 的解满足 x +y <3 ,则m 的取值范围是( ) A .m >−52B .m <−52C .m >52D .m <529.已知关于x ,y 的二元一次方程ax +b =y ,当x 取不同值时,对应y 的值分别如下表所示:x … -1 0 1 2 3 … y…321-1…A .x <0B .x >0C .x <2D .x >210.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2(见下页).图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是{3x +2y =19x +4y =23,类似地,图2所示的算筹图我们可以表述为A .{2x +y =114x +3y =27B .{2x =y =114x +3y =22C .{3x +2y =19x +4y =23D .{2x +y =64x +3y =2711.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为( ) A .54B .45C .27D .7212.用代入消元法解方程组 {3x −y =2,①y =1−2x ,② 时,把②代入①,得( )A .3x-1-2x= 2B .3x-(1-2x )= 2C .3x+(1-2x )=2D .3(1-2x )-y=2二、填空题(共6题;共6分)13.若 (a −1)2+|b −2|=5 ,则以a 、b 为边长的等腰三角形的周长为 14.如图,将长方形ABCD 分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形的长与宽之比为5:3,则AD :AB=15.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品(必须保证买两种),共花35元.毽子单价3元,跳绳单价5元,关于购买毽子和跳绳两种体育用品的数量购买的方案共有种.16.如果√x−2+(2y+1)2=0,那么xy=17.方程x2-y2=31的正整数解为。
新人教版初中数学七年级下册第8章《二元一次方程组》检测试卷(含答案)
人教版数学七年级下册第八章《二元一次方程组》测试题一、选择题(每小题只有一个正确答案)1.下列各方程组中,属于二元一次方程组的是( )A. B. C. D.2.下列各组数中,方程2x-y=3和3x+4y=10的公共解是( )A. B. C. D.3.用代入法解方程组有以下步骤:①由(1),得y=(3);②由(3)代入(1),得7x-2×=3;③整理得3=3;④∴x可取一切有理数,原方程组有无数个解以上解法,造成错误的一步是( )A.① B.② C.③ D.④4.一船顺水航行45千米需要3小时,逆水航行65千米需要5小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则x,y的值为( )A. B. C. D.5.|3x-y-4|+|4x+y-3|=0,那么x与y的值分别为( )A. B. C. D.6.从方程组中求x与y的关系是( )A.x+y=-1 B.x+y=1 C. 2x-y=7 D.x+y=97.如果ax+2y=1是关于x,y的二元一次方程,那么a的值应满足( )A.a是有理数 B.a≠0 C.a=0 D.a是正有理数8.已知甲数的60%加乙数的80%等于这两个数的和的72%,若设甲数为x,乙数为y,则下列方程中符合题意的是( )A. 60%x+80%y=x+72%y B. 60%x+80%y=60%x+yC. 60%x+80%y=72%(x+y) D. 60%x+80%y=x+y9.下列各组数中,不是方程2x+y=10的解是( )A .B .C .D .10.如图所示,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ).A .400 cm 2B .500 cm2C .600 cm 2D .4 000 cm 211.有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨,3辆大车与5辆小车一次可以运货为(单位:吨)( ) A . 25.5 B . 24.5 C . 26.5 D . 27.512.一文具店的装订机的价格比文具盒的价格的3倍少1元,购买2把装订机和6个文具盒共需70元,问装订机与文具盒价格各是多少元?设文具盒的价格为x 元,装订机的价格为y 元,依题意可列方程组为( )A .B .C .D . 二、填空题 13.在括号内填写一个二元一次方程,使其与二元一次方程5x -2y =1组成方程组的解是 你所填写的方程为______________.14.已知方程3x -2y =5的一个解中,y 的值比x 的值大1,则这个方程的这个解是________. 15.已知方程组则x -y =______,x +y =______.16.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,所列方程组为______. 17.已知方程2x 2n -1-3y 3m -n +1=0是二元一次方程,则m =______,n =______. 三、解答题18、用代入消元法解方程组 20.用加减消元法解方程组⎩⎨⎧-=-=+54032y x y x 3410,490;x y x y +=⎧⎨+-=⎩19、用适当的方法解下列方程组(1)20328x y x y -=⎧⎨+=⎩ (2)23533x yx y -⎧=⎪⎪⎨+⎪=⎪⎩20.甲、乙两人共同解方程组⎩⎨⎧-=-=+ ②by x ①y ax 24155,由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧-=-=13y x人教版数学七年级下册同步单元复习卷: 第8章 二元一次方程组(1) 一、选择题(每小题3分,共42分)请将正确答案的代号填涂在答题卡上 1.下列各数中,既是分数又是负数的是( ) A .1B .﹣3C .0D .2.252.﹣2019的相反数是( ) A .﹣2019B .2019C .﹣D .3.“2017中国企业跨国投资研讨会”于11月17日在长沙召开,共同聚焦“‘一带一路’跨国投资与服务新时代”,该研讨会表示,在2016年,中国企业对7961家境外企业累计实现投资约170100000000美元,170100000000用科学记数法可表示为( ) A .1.701×1011B .1.701×1010C .17.01×1010D .170.1×1094.下列各组数中,互为倒数的是( ) A .2与﹣2B .﹣与C .﹣1与(﹣1)2016D .﹣与﹣5.计算﹣100÷10×,结果正确的是( ) A .﹣100B .100C .1D .﹣16.下列说法正确的是()A.整式就是多项式B.﹣的系数是C.π是单项式D.x4+2x3是七次二项式7.下列各组单项式中,不是同类项的一组是()A.x2y和2xy2B.﹣32和3C.3xy和﹣D.5x2y和﹣2yx28.下列计算正确的是()A.3a+2b=5ab B.3x2y﹣yx2=2x2yC.5x+x=5x2D.6x﹣x=69.下列运用等式的性质,变形正确的是()A.若x2=6x,则x=6B.若2x=2a﹣b,则x=a﹣bC.若3x=2,则x=D.若a=b,则a﹣c=b﹣c10.若|a+3|+(b﹣2)2=0,则a b的值为()A.﹣6B.﹣9C.9D.611.多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的和不含二次项,则m为()A.2B.﹣2C.4D.﹣412.某商品的原价是每件x元,在销售时每件加价20元,再降价15%,则现在每件的售价是()元.A.15%x+20B.(1﹣15%)x+20C.15%(x+20)D.(1﹣15%)(x+20)13.有长为l的篱笆,利用他和房屋的一面墙围成如图形状的长方形园子,园子的宽为t,则所围成的园子面积为()A.(l﹣2t)t B.(l﹣t)t C.(﹣t)t D.(l﹣)t 14.按照如图所示的计算机程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第2018次得到的结果为()A.1B.2C.3D.4二、填空题(每小题3分,共15分)15.临沂某天的最高温度为8℃,最大温差11℃,该天最低温度是.16.在数轴上,点A表示的数是5,若点B与A点之间距离是8,则点B表示的数是.17.若2a﹣3b2=5,则2018﹣4a+6b2的值是.18.关于x的方程mx+4=3x﹣5的解是x=1,则m=.19.如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中由个基础图形组成.三、解答题(本题共7个小题,共计63分)20.(12分)计算下列各题:(1)(﹣5)﹣(﹣6)+(+1)(2)﹣12×(﹣+)(3)﹣1100﹣(1﹣0.5)××[3﹣(﹣3)2]21.(6分)对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a ﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.22.(12分)先化简,再求值.(1)﹣x2+5x+4﹣7x﹣4+2x2,其中x=﹣2.(2)m﹣2(m﹣n2)+(﹣m+n2),其中m=﹣2,n=﹣23.(7分)2017年12月,旗团委号召各校组织开展捐赠衣物的“暖冬行动”.某校七年级六个班参加了这次捐赠活动,若每班捐赠衣物以100件为基准,超过的件数用正数表示,不足的件数用负数表示,记录如下:(1)捐赠衣物最多的班比最少的班多多少件?(2)该校七年级学生共捐赠多少件衣物?该校七年级学生平均每人捐赠多少件衣物?24.(7分)为了有效控制酒后驾车,交警队一辆汽车每天在一条东西方向的公路上巡视.某天早晨从A地出发,晚上到达B地,约定向东为正方向,当天行驶记录如下(单位:km):+18,﹣19,﹣13,+15,+10,﹣14,+19,﹣20.问:(1)B地在A地哪个方向?距A地多少千米?(2)若该警车每千米耗油0.2L,警车出发时,油箱中有油20L,请问中途有没有给警车加油?若有,至少加多少升油?请说明理由.25.(7分)如图所示,1925年数学家莫伦发现的世界上第一个完美长方形,它恰能被分割成10个大小不同的正方形,请你计算:(1)如果标注1、2的正方形边长分别为1,2,第3个正方形的边长=;第5个正方形的边长=;(2)如果标注1、2的正方形边长分别为x,y,第10个正方形的边长=.(用含x、y的代数式表示)26.(12分)开学期间,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把25元,抹布每块5元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按定价的90%付款.小敏需要购买扫帚6把,抹布x块(x>6).(1)若小敏按方案一购买,需付款多少元(用含x的式子表示);(2)若小敏按方案二购买,需付款多少元(用含x的式子表示);(3)当x=10时,通过计算说明此时按哪种方案购买较为合算;(4)当x=10时,你能给小敏提供一种更为省钱的购买方案吗?试写出你的购买方法.2018-2019学年山东省临沂市临沭县七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共42分)请将正确答案的代号填涂在答题卡上1.下列各数中,既是分数又是负数的是()A.1B.﹣3C.0D.2.25【分析】根据有理数的分类即可求出答案.【解答】解:既是分数又是负数的是故选:B.【点评】本题考查有理数的分类,解题的关键是正确理解有理数的分类,本题属于基础题型.2.﹣2019的相反数是()A.﹣2019B.2019C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2019的相反数是:2019.故选:B.【点评】此题主要考查了相反数,正确把握定义是解题关键.3.“2017中国企业跨国投资研讨会”于11月17日在长沙召开,共同聚焦“‘一带一路’跨国投资与服务新时代”,该研讨会表示,在2016年,中国企业对7961家境外企业累计实现投资约170100000000美元,170100000000用科学记数法可表示为()A.1.701×1011B.1.701×1010C.17.01×1010D.170.1×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:170100000000=1.701×1011.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列各组数中,互为倒数的是()A.2与﹣2B.﹣与C.﹣1与(﹣1)2016D.﹣与﹣【分析】根据倒数的定义,可得答案.【解答】解:﹣与﹣互为倒数,故选:D.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.5.计算﹣100÷10×,结果正确的是()A.﹣100B.100C.1D.﹣1【分析】直接利用有理数的乘除运算法则计算得出答案.【解答】解:﹣100÷10×=﹣10×=﹣1.故选:D.【点评】此题主要考查了有理数的乘除运算,正确掌握运算法则是解题关键.6.下列说法正确的是()A.整式就是多项式B.﹣的系数是C.π是单项式D.x4+2x3是七次二项式【分析】根据整式的定义,单项式的系数,单项式的定义以及多项式概念对各选项分析判断即可得解.【解答】解:A、整式就是多项式,错误,因为单项式和多项式统称为整式,故本选项错误;B、﹣的系数是﹣,故本选项错误;C、π是单项式,故本选项正确;D、x4+2x3是四次二项式,故本选项错误.故选:C.【点评】本题考查了多项式,单项式,熟练掌握相关概念是解题的关键.7.下列各组单项式中,不是同类项的一组是()A.x2y和2xy2B.﹣32和3C.3xy和﹣D.5x2y和﹣2yx2【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、所含字母相同且相同字母的指数也相同,故B正确;C、所含字母相同且相同字母的指数也相同,故C正确;D、所含字母相同且相同字母的指数也相同,故D正确;故选:A.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.8.下列计算正确的是()A.3a+2b=5ab B.3x2y﹣yx2=2x2yC.5x+x=5x2D.6x﹣x=6【分析】根据合并同类项的法则解答即可.【解答】解:A、3a与2b不是同类项,错误;B、3x2y﹣yx2=2x2y,正确;C、5x+x=6x,错误;D、6x﹣x=5x,错误;故选:B.【点评】此题考查合并同类项,关键是根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断.9.下列运用等式的性质,变形正确的是()A.若x2=6x,则x=6B.若2x=2a﹣b,则x=a﹣bC.若3x=2,则x=D.若a=b,则a﹣c=b﹣c【分析】根据等式的性质解答.【解答】解:A、当x=0时,该等式的变形不成立,故本选项错误;B、若2x=2a﹣b,则x=a﹣b,故本选项错误;C、在等式3x=2的两边同时除以2,等式仍成立,即x=,故本选项错误;D、在等式a=b的两边同时减去c,等式仍成立,即a﹣c=b﹣c,故本选项正确.故选:D.【点评】考查的是等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.10.若|a+3|+(b﹣2)2=0,则a b的值为()A.﹣6B.﹣9C.9D.6【分析】根据非负数的性质列式求出ab的值,然后再代入代数式进行计算.【解答】解:根据题意得,a+3=0,b﹣2=0,解得a=﹣3,b=2,∴a b=(﹣3)2=9.故选:C.【点评】本题主要考查了非负数的性质,几个非负数相加等于0,则每一个算式都等于0.11.多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的和不含二次项,则m为()A.2B.﹣2C.4D.﹣4【分析】先把两多项式的二次项相加,令x的二次项为0即可求出m的值.【解答】解:∵多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3相加后不含x的二次项,∴﹣8x2+2mx2=(2m﹣8)x2,∴2m﹣8=0,解得m=4.故选:C.【点评】本题考查的是整式的加减,根据题意把两多项式的二次项相加得到关于m的方程是解答此题的关键.12.某商品的原价是每件x元,在销售时每件加价20元,再降价15%,则现在每件的售价是()元.A.15%x+20B.(1﹣15%)x+20C.15%(x+20)D.(1﹣15%)(x+20)【分析】先提价的价格是原价+20,再降价的价格是降价前的1﹣15%,得出此时价格即可.【解答】解:根据题意可得:(1﹣15%)(x+20),故选:D.【点评】本题考查了列代数式,解答本题的关键是读懂题意,列出代数式.13.有长为l的篱笆,利用他和房屋的一面墙围成如图形状的长方形园子,园子的宽为t,则所围成的园子面积为()A.(l﹣2t)t B.(l﹣t)t C.(﹣t)t D.(l﹣)t 【分析】表示出长,利用长方形的面积列出算式即可.【解答】解:园子的面积为t(l﹣2t).故选:A.【点评】此题考查列代数式,利用长方形的面积计算方法是解决问题的关键.14.按照如图所示的计算机程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第2018次得到的结果为()A.1B.2C.3D.4【分析】将x=2代入,然后依据程序进行计算,依据计算结果得到其中的规律,然后依据规律求解即可.【解答】解:当x=2时,第一次输出结果=×2=1;第二次输出结果=1+3=4;第三次输出结果=4×=2,;第四次输出结果=×2=1,…2018÷3=672…2.所以第2018次得到的结果为4.故选:D.【点评】本题主要考查的是求代数式的值,熟练掌握相关方法是解题的关键.二、填空题(每小题3分,共15分)15.临沂某天的最高温度为8℃,最大温差11℃,该天最低温度是﹣3℃.【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:∵临沂某天的最高温度为8℃,最大温差11℃,∴该天最低温度是:8﹣11=﹣3(℃).故答案为:﹣3℃【点评】此题主要考查了有理数的加减,正确掌握运算法则是解题关键.16.在数轴上,点A表示的数是5,若点B与A点之间距离是8,则点B表示的数是﹣3或13.【分析】分点B在点A的左边与右边两种情况讨论求解.【解答】解:①当点B在点A的左边时,5﹣8=﹣3,②当点B在点A的右边时,5+8=13,所以点B表示的数是﹣3或13.故答案为:﹣3或13.【点评】本题考查了数轴,注意分点B在点A的左右两边两种情况讨论.17.若2a﹣3b2=5,则2018﹣4a+6b2的值是2008.【分析】首先把2018﹣4a+6b2化成2018﹣2(2a﹣3b2),然后把2a﹣3b2=5代入化简后的算式,求出算式的值是多少即可.【解答】解:∵2a﹣3b2=5,∴2018﹣4a+6b2=2018﹣2(2a﹣3b2)=2018﹣2×5=2018﹣10=2008故答案为:2008.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.关于x的方程mx+4=3x﹣5的解是x=1,则m=﹣6.【分析】把x=1代入方程mx+4=3x﹣5,得到关于m的一元一次方程,解之即可.【解答】解:把x=1代入方程mx+4=3x﹣5得:m+4=3﹣5,解得:m=﹣6,故答案为:﹣6.【点评】本题考查了一元一次方程的解,正确掌握代入法是解题的关键.19.如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中由(3n+1)个基础图形组成.【分析】观察图形很容易看出每加一个图案就增加三个基础图形,以此类推,便可求出结果.【解答】解:第一个图案基础图形的个数:3+1=4;第二个图案基础图形的个数:3×2+1=7;第三个图案基础图形的个数:3×3+1=10;…∴第n个图案基础图形的个数就应该为:(3n+1).故答案为:(3n+1).【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题(本题共7个小题,共计63分)20.(12分)计算下列各题:(1)(﹣5)﹣(﹣6)+(+1)(2)﹣12×(﹣+)(3)﹣1100﹣(1﹣0.5)××[3﹣(﹣3)2]【分析】(1)运用加减运算律和运算法则计算可得;(2)运用乘法分配律计算可得;(3)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=(﹣5+1)+6=﹣4+6=2;(2)原式=(﹣12)×﹣(﹣12)×+(﹣12)×=﹣4+3﹣6=﹣7;(3)原式=﹣1﹣××(3﹣9)=﹣1﹣×(﹣6)=﹣1+1=0.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则及其运算律.21.(6分)对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a ﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.【分析】(1)根据新定义计算可得;(2)根据数轴得出a<0<b且|a|>|b|,从而得出a+b<0、a﹣b<0,再根据绝对值性质解答可得.【解答】解:(1)2⊙(﹣4)=|2﹣4|+|2+4|=2+6=8;(2)由数轴知a<0<b,且|a|>|b|,则a+b<0、a﹣b<0,所以原式=﹣(a+b)﹣(a﹣b)=﹣a﹣b﹣a+b=﹣2a.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算法则和运算顺序及绝对值的性质.22.(12分)先化简,再求值.(1)﹣x2+5x+4﹣7x﹣4+2x2,其中x=﹣2.(2)m﹣2(m﹣n2)+(﹣m+n2),其中m=﹣2,n=﹣【分析】(1)直接合并同类项,进而计算得出答案;(2)直接去括号进而合并同类项,再把已知代入求出答案.【解答】解:(1)﹣x2+5x+4﹣7x﹣4+2x2=x2﹣2x,当x=﹣2,原式=8;(2)原式=﹣3m+n2,当m=﹣2,n=﹣,原式=6+=.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.23.(7分)2017年12月,旗团委号召各校组织开展捐赠衣物的“暖冬行动”.某校七年级六个班参加了这次捐赠活动,若每班捐赠衣物以100件为基准,超过的件数用正数表示,不足的件数用负数表示,记录如下:(1)捐赠衣物最多的班比最少的班多多少件?(2)该校七年级学生共捐赠多少件衣物?该校七年级学生平均每人捐赠多少件衣物?【分析】(1)求出捐赠衣物最多的班额,捐赠衣物最少的班额,然后相减即可;(3)用标准捐赠衣物数加上记录的各班捐赠衣物数的和,计算即可得解.【解答】解:(1)19﹣(﹣7)=26,答:捐赠衣物最多的班比最少的班多26件;(2)18﹣3+19+14+9﹣7+6×100=50+600=650,答:该校七年级学生共捐赠650件衣物,平均每人捐赠2.6件衣物.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.24.(7分)为了有效控制酒后驾车,交警队一辆汽车每天在一条东西方向的公路上巡视.某天早晨从A地出发,晚上到达B地,约定向东为正方向,当天行驶记录如下(单位:km):+18,﹣19,﹣13,+15,+10,﹣14,+19,﹣20.问:(1)B地在A地哪个方向?距A地多少千米?(2)若该警车每千米耗油0.2L,警车出发时,油箱中有油20L,请问中途有没有给警车加油?若有,至少加多少升油?请说明理由.【分析】(1)把行驶记录求和,若结果为正,则B地在出发地的正东,若结果为负,再B地再出发点的正西;(2)计算各个记录的绝对值的和,计算出耗油量,根据邮箱里的油量判断是否需要加油,计算至少需要加多少升油.【解答】解:(1)18﹣19﹣13+15+10﹣14+19﹣20=(18+15+10)﹣(13+14+20)+(19﹣19)=43﹣47=﹣4即B地在A地的西方,距A地4千米.(2)因为(18+19+13+15+10+14+19+20)×0.2=128×0.2=25.6(L)因为25.6>20,所以途中至少加油5.6L答:途中警车需加油,至少需加油5.6L.【点评】本题考查了正负数的意义和有理数的混合运算,解决本题的关键是根据题意列出代数式,并能根据计算结果作答.25.(7分)如图所示,1925年数学家莫伦发现的世界上第一个完美长方形,它恰能被分割成10个大小不同的正方形,请你计算:(1)如果标注1、2的正方形边长分别为1,2,第3个正方形的边长=3;第5个正方形的边长=7;(2)如果标注1、2的正方形边长分别为x,y,第10个正方形的边长=3y﹣3x.(用含x、y的代数式表示)【分析】(1)根据正方形的性质即可解决问题;(2)根据各个正方形的边的和差关系分别表示出第(3)(4)(5)(6)(7),第10个正方形的边长=第7个正方形的边长﹣第一个正方形的边长﹣第3个正方形的边长;【解答】解:(1)观察图象可知第3个正方形的边长=3;第5个正方形的边长=7;故答案为3,7;(2):(1)第(3)个正方形的边长是:x+y,则第(4)个正方形的边长是:x+2y;第(5)个正方形的边长是:x+2y+y=x+3y;第(6)个正方形的边长是:(x+3y)+(y﹣x)=4y;第(7)个正方形的边长是:4y﹣x;第(10)个正方形的边长是:(4y﹣x)﹣x﹣(x+y)=3y﹣3x;故答案为3y﹣3x.【点评】本题考查了列代数式,正确理解各个正方形的边之间的和差关系是关键.26.(12分)开学期间,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把25元,抹布每块5元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按定价的90%付款.小敏需要购买扫帚6把,抹布x块(x>6).(1)若小敏按方案一购买,需付款多少元(用含x 的式子表示); (2)若小敏按方案二购买,需付款多少元(用含x 的式子表示); (3)当x =10时,通过计算说明此时按哪种方案购买较为合算;(4)当x =10时,你能给小敏提供一种更为省钱的购买方案吗?试写出你的购买方法.【分析】(1)根据题意列出算式即可;(2)根据题意列出算式即可;(3)把x =10分别代入求出结果,即可得出答案;(4)先在方案一买6把扫帚,再在方案二买4块抹布即可.【解答】解:(1)∵方案一:买一把扫帚送一块抹布,∴小敏需要购买扫帚6把,抹布x 块(x >6),若小敏按方案一购买,需付款25×6+5(x ﹣6)=(5x +120)元;(2)∵方案二:扫帚和抹布都按定价的90%付款,∴小敏需要购买扫帚6把,抹布x 块(x >6),若小敏按方案二购买,需付款25×6×0.9+5x •0.9=(4.5x +135)元;(3)方案一需:5×10+120=170元,方案二需4.5×10+135=180元, 故方案一划算;(4)其中6把扫帚6块抹布按方案一买,剩下4块抹布按方案二买,共需168元.【点评】本题考查了求代数式的值,列代数式的应用的应用,能正确根据题意列出算式是解此题的关键.人教版七年级下册 第八章二元一次方程组单元试题一、选择题(共10小题,每小题3分,共30分)1.二元一次方程组⎩⎨⎧ x +y =7,3x -y =5的解是( ) A.⎩⎨⎧ x =4,y =3B .⎩⎨⎧ x =5,y =2 C .⎩⎨⎧ x =3,y =4 D .⎩⎨⎧ x =-2,y =92.已知方程组⎩⎨⎧ 2x +y =4,x +2y =5,则x +y 的值为( )A .-1B .0C .2D .33.下列各方程中,是二元一次方程的是( )A.x 3-2y=y +5x B .3x +1=2xy C .15x =y 2+1 D .x +y =14.已知x 2m -1+3y 4-2n =-7是关于x ,y 的二元一次方程,则m ,n 的值是( ) A.⎩⎨⎧ m =2,n =1B .⎩⎨⎧ m =1,n =-32 C .⎩⎨⎧ m =1,n =52D .⎩⎨⎧ m =1,n =325.方程kx +3y =5有一组解是⎩⎨⎧ x =2,y =1,则k 的值是( )A .1B .-1C .0D .2 6.二元一次方程x +2y =10的所有正整数解有( )A .1个B .2个C .3个D .4个7.“珍爱生命,拒绝毒品”,学校举行的2017年禁毒知识竞赛共有60道题,曾浩同学答对了x 道题,答错了y 道题(不答视为答错),且答对题数比答错题数的7倍还多4道,那么下面列出的方程组中正确的是( )A.⎩⎨⎧ x +y =60,x -7y =4B .⎩⎨⎧ x +y =60,y -7x =4C .⎩⎨⎧ x =60-y ,x =7y -4D .⎩⎨⎧ y =60-x ,y =7x -48.关于x ,y 的方程组⎩⎨⎧ x +py =0,x +y =3的解是⎩⎨⎧ x =1,y =■,其中y 的值被盖住了,不过仍能求出p ,则p 的值是( )A .-12B .12C .-14D .149.若|x +y -5|与(x -y -1)2互为相反数,则x 2-y 2的值为( )A .-5B .5C .13D .1510.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为( )A.⎩⎨⎧ 8x -3=y ,7x +4=yB .⎩⎨⎧ 8x +3=y ,7x -4=yC .⎩⎨⎧ y -8x =3,y -7x =4D .⎩⎨⎧ 8x -y =3,7x -y =4二、填空题(共5小题,每小题4分,共20分)11.方程组⎩⎨⎧ x +y =1,3x -y =3的解是 .12.“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需 元.13.已知关于x ,y 的二元一次方程组⎩⎨⎧ 2x +y =k ,x +2y =-1的解互为相反。
专题04 二元一次方程组(真题测试)(解析版)
专题04 二元一次方程组(真题测试)一、单选题1. (2019 湖南邵阳) 某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()A. {x+7y=16x+13y=28 B. C. D.【答案】D【考点】二元一次方程组的解【解答】设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为,故答案为:D.【分析】设这种出租车的起步价为x元,超过2km后每千米收费y元,根据二人坐车产生的费用进行计算即可。
2. (2019 山东菏泽) 已知是方程组的解,则a+b的值是()A. ﹣1B. 1C. ﹣5D. 5【答案】A【考点】二元一次方程组的解【解答】将代入,可得:,两式相加:a+b=−1,故答案为:A.【分析】将x、y的值代入方程组后方程组中两式相加即可得到a+b的值。
3. (2019 湖北荆门) 已知实数x,y满足方程组则的值为()A. B. 1 C. 3 D.【答案】A【考点】二元一次方程的解【解答】解:,故答案为:A【分析】先解方程组,把x和y的值代入求值式即可。
4. (2018 北京) 方程组的解为()A. B. C. D.【答案】D【考点】二元一次方程组的解【解答】解:将4组解分别代入原方程组,只有D选项同时满足两个方程,故答案为:D.【分析】根据方程组的解能使方程组中的每一个方程都成立,故将4组解分别代入原方程组,一一判断即可得出答案。
5. (2019 湖北孝感) 已知二元一次方程组{x+y=12x+4y=9,则的值是()A. B. 5 C. D. 6【答案】C【考点】利用分式运算化简求值,解二元一次方程组【解答】,得,2y=7,解得y=72,把y=72代入①得,x+72=1,解得x=−52,① ,故答案为:C.【分析】利用加减消元法求出二元一次方程组的解,再将代数式的分子分母进行因式分解,进行约分化简,然后代入求值。
(完整版)二元一次方程组练习题含答案
二元一次方程组专题训练1.⎩⎨⎧=-=+33651643y x y x 2. ⎩⎨⎧=+=-6251023x y x y ⎩⎨⎧=-=+19542023b a b a 1、 2、 3、 ⎩⎨⎧=-=+1572532y x y x4、⎩⎨⎧=+-=18435276t s t s 5、 ⎩⎨⎧=-=+574973p q q p 6、⎩⎨⎧=-=+42634y x y x7、⎩⎨⎧-=-=+22223n m n m 8、⎩⎨⎧=--=-495336y x y x 9、10、⎩⎨⎧=-=-yx y x 23532 11、⎩⎨⎧=-=+124532n m n m12、⎩⎨⎧=+=+10232556y x y x13、⎩⎨⎧=+=+2.54.22.35.12y x y x 14、⎪⎩⎪⎨⎧=-+-=+6)(3)1(26132y x x y x15、⎪⎩⎪⎨⎧=+--=-+-04235130423512y x y x 16、⎪⎩⎪⎨⎧=--=+-4323122y x y x yx17、⎪⎩⎪⎨⎧-=-++=-+52251230223x y x y x二元一次方程组练习题一、选择题:1.下列方程中,是二元一次方程的是( ) A .3x -2y=4z B .6xy+9=0 C .1x+4y=6 D .4x=2.下列方程组中,是二元一次方程组的是( )A .228423119...23754624x y x y a b xBCD x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a -11b=21 ( )A .有且只有一解B .有无数解C .无解D .有且只有两解4.方程y=1-x 与3x+2y=5的公共解是( )A .3333...2422x x x x B C D y y y y ==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x -2│+(3y+2)2=0,则的值是( )A .-1B .-2C .-3D .326.方程组43235x y kx y -=⎧⎨+=⎩的解与x 与y 的值相等,则k 等于( )7.下列各式,属于二元一次方程的个数有( )①xy+2x -y=7; ②4x+1=x -y ; ③1x+y=5; ④x=y ; ⑤x 2-y 2=2⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+x A .1 B .2 C .3 D .48.某年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,•则下面所列的方程组中符合题意的有( ) A .246246216246 (22222222)x y x y x y x y B C D y x x y y x y x +=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩ 二、填空题9.已知方程2x+3y -4=0,用含x 的代数式表示y 为:y=_______;用含y 的代数式表示x 为:x=________. 10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x 3m -3-2y n -1=5是二元一次方程,则m=_____,n=______.12.已知2,3x y =-⎧⎨=⎩是方程x -ky=1的解,那么k=_______.13.已知│x -1│+(2y+1)2=0,且2x -ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________. 15.以57x y =⎧⎨=⎩为解的一个二元一次方程是_________. 16.已知2316x mx y y x ny =-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y -2ax=a+2(关于x ,y 的方程)•有相同的解,求a 的值.18.如果(a -2)x+(b+1)y=13是关于x ,y 的二元一次方程,则a ,b 满足什么条件?19.二元一次方程组437(1)3x y kx k y +=⎧⎨+-=⎩的解x ,y 的值相等,求k .20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?23.方程组2528x yx y+=⎧⎨-=⎩的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组2528x yx y+=⎧⎨-=⎩的解?24.(开放题)是否存在整数m ,使关于x 的方程2x+9=2-(m -2)x 在整数范围内有解,你能找到几个m 的值?你能求出相应的x 的解吗?《二元一次方程组》单元测试题一、选择题(每题3分,共30分) 1.下列方程组中,是二元一次方程组的是( ). (A ) 2311089x y x y ⎧+=⎨-=-⎩ (B )426xy x y =⎧⎨+=⎩ (C )21734x y y x-=⎧⎪⎨-=-⎪⎩(D )24795x y x y +=⎧⎨-=⎩ 2.二元一次方程组⎩⎨⎧==+xy y x 2,102的解是( ) (A )⎩⎨⎧==;3,4y x (B )⎩⎨⎧==;6,3y x (C )⎩⎨⎧==;4,2y x (D )⎩⎨⎧==.2,4y x 3.根据图1所示的计算程序计算y 的值,若输入2=x , 则输出的y 值是( )(A )0 (B )2- (C )2 (D )44.如果2315a b 与114x x y a b ++-是同类项,则x ,y 的值是( )(A )⎩⎨⎧==31y x (B )⎩⎨⎧==22y x (C )⎩⎨⎧==21y x (D )⎩⎨⎧==32y x 5.已知12x y =⎧⎨=⎩ 是方程组错误!未找到引用源。
《二元一次方程组》基础测试+提高测试
《二元一次方程》基础测试(一)填空题(每空2分,共26分):1.已知二元一次方程1213-+y x =0,用含y 的代数式表示x ,则x =_________; 当y =-2时,x =___ ____.【提示】把y 作为已知数,求解x .【答案】x =62y -;x =32.2.在(1)⎩⎨⎧-==23y x ,(2)⎪⎩⎪⎨⎧-==354y x ,(3)⎪⎪⎩⎪⎪⎨⎧-==2741y x 这三组数值中,_____是方程组x -3y =9的解,______是方程2 x +y =4的解,______是方程组⎩⎨⎧=+=-4293y x y x 的解.【提示】将三组数值分别代入方程、方程组进行检验.【答案】(1),(2);(1),(3);(1).【点评】方程组的解一定是方程组中各个方程共同的解.3.已知⎩⎨⎧=-=54y x ,是方程41x +2 my +7=0的解,则m =_______.【提示】把⎩⎨⎧=-=54y x 代入方程,求m .【答案】-53.4.若方程组⎩⎨⎧=-=+137by ax by ax 的解是⎩⎨⎧-=-=12y x ,则a =__,b =_.【提示】将⎩⎨⎧-=-=12y x 代入⎩⎨⎧=-=+137by ax by ax 中,原方程组转化为关于a 、b 的二元一次方程组,再解之.【答案】a =-5,b =3.5.已知等式y =kx +b ,当x =2时,y =-2;当x =-21时,y =3,则k =____,b =____. 【提示】把x 、y 的对应值代入,得关于k 、b 的二元一次方程组. 【答案】k =-2,b =2.【点评】通过建立方程组求解待定系数,是常用的方法. 6.若|3a +4b -c |+41(c -2 b )2=0,则a ∶b ∶c =_________. 【提示】由非负数的性质,得3 a +4 b -c =0,且c -2b =0.再用含b 的代数式表示a 、c ,从而求出a 、b 、c 的值.【答案】a =-32b ,c =2b ;a ∶b ∶c =-2∶3∶6. 【点评】用一个未知数的代数式表示其余的未知数,是一种常用的有效方法. 7.当m =_______时,方程x +2y =2,2x +y =7,mx -y =0有公共解.【提示】先解方程组⎩⎨⎧=+=+7222y x y x ,将求得的x 、y 的值代入方程mx -y =0,或解方程组⎪⎩⎪⎨⎧=-=+=+.07222y mx y x y x【答案】⎩⎨⎧-==14y x ,m =-41.【点评】“公共解”是建立方程组的依据.8.一个三位数,若百位上的数为x ,十位上的数为y ,个位上的数是百位与十位上的数的差的2倍,则这个三位数是_______________.【提示】将各数位上的数乘相应的位数,再求和. 【答案】100 x +10 y +2(x -y ). (二)选择题(每小题2分,共16分):9.已知下列方程组:(1)⎩⎨⎧-==23y y x ,(2)⎩⎨⎧=-=+423z y y x ,(3)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,(4)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x , 其中属于二元一次方程组的个数为………………………………………………( ) (A )1 (B )2 (C )3 (D )4【提示】方程组(2)中含有三个未知数,方程组(3)中y 的次数都不是1,故(2)、(3)都不是二元一次方程组.【答案】B .10.已知2 x b+5y 3a 与-4 x 2a y 2-4b 是同类项,则b a 的值为………………………( )(A )2 (B )-2 (C )1 (D )-1【提示】由同类项定义,得⎩⎨⎧-==+b a a b 42325,解得⎩⎨⎧=-=21b a ,所以b a =(-1)2=1.【答案】C .11.已知方程组⎩⎨⎧-=-=+1242m ny x n y mx 的解是⎩⎨⎧-==11y x ,那么m 、n 的值为……( ) (A )⎩⎨⎧-==11n m (B )⎩⎨⎧==12n m (C )⎩⎨⎧==23n m (D )⎩⎨⎧==13n m【提示】将⎩⎨⎧-==11n m 代入方程组,得关于m 、n 的二元一次方程组解之.【答案】D .12.三元一次方程组⎪⎩⎪⎨⎧=+=+=+651x z z y y x 的解是…………………………………………( )(A )⎪⎩⎪⎨⎧===501z y x (B )⎪⎩⎪⎨⎧===421z y x (C )⎪⎩⎪⎨⎧===401z y x (D )⎪⎩⎪⎨⎧===014z y x【提示】把三个方程的两边分别相加,得x +y +z =6或将选项逐一代入方程组验证,由x +y =1知(B )、(D )均错误;再由y +z =5,排除(C ),故(A )正确,前一种解法称之直接法...;后一种解法称之逆推验证法......【答案】A . 【点评】由于数学选择题多为单选题——有且只有一个正确答案,因而它比一般题多一个已知条件:选择题中有且只有一个是正确的.故解选择题除了直接法以外,还有很多特殊的解法,随着学习的深入,我们将逐一向同学们介绍. 13.若方程组⎩⎨⎧=+=-+14346)1(y x y a ax 的解x 、y 的值相等,则a 的值为……………( )(A )-4 (B )4 (C )2 (D )1【提示】把x =y 代入4x +3y =14,解得x =y =2,再代入含a 的方程.【答案】C . 14.若关于x 、y 的方程组⎩⎨⎧=-=+ky x ky x 73的解满足方程2x +3y =6,那么k 的值为( )(A )-23 (B )23 (C )-32 (D )-23【提示】把k 看作已知常数,求出x 、y 的值,再把x 、y 的值代入2 x +3 y =6,求出k .【答案】B . 15.若方程y =kx +b 当x 与y 互为相反数时,b 比k 少1,且x =21,则k 、b 的值分别是…………( ) (A )2,1 (B )32,35 (C )-2,1 (D )31,-32【提示】由已知x =21,y =-21,可得⎪⎩⎪⎨⎧=-+=-.12121b k b k 【答案】D .16.某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人.设全班有学生x 人,分成y 个小组,则可得方程组……………………………( )(A )⎩⎨⎧=-=+y x y x 3847 (B )⎩⎨⎧=++=x y x y 3847(C )⎩⎨⎧+=-=3847x y x y (D )⎩⎨⎧+=+=3847x y x y【提示】由题意可得相等关系:(1)7组的学生数=总人数-4;(2)8组的人数=总人数+3.【答案】C .(三)解下列方程组(每小题4分,共20分):17.⎩⎨⎧-=-=-.557832y x y x 【提示】用加减消元法先消去x .【答案】⎩⎨⎧-=-=.65y x18.⎪⎪⎩⎪⎪⎨⎧=+=+.15765545.04332y x y x 【提示】先整理各方程,化为整数系数的方程组,用加减法消去x .【答案】⎪⎩⎪⎨⎧=-=.223y x 19.⎪⎩⎪⎨⎧=+=4.1%40%2552y x y x 【提示】由第一个方程得x =52y ,代入整理后的第二个方程;或由第一个方程,设x =2 k ,y =5 k ,代入另一个方程求k 值.【答案】⎪⎪⎩⎪⎪⎨⎧==.15142528y x20.⎩⎨⎧-=++=+.b a y x b a y x 2127521257(a 、b 为非零常数)【提示】将两个方程左、右两边分别相加,得x +y =2a ①,把①分别与两个方程联立求解. 【答案】⎩⎨⎧-=+=.b a y b a x【点评】迭加消元,是未知数系轮换方程组的常用解法.21.⎪⎩⎪⎨⎧=++=-+=+-.10076702302z y x z y x z y x【提示】将第一个方程分别与另外两个方程联立,用加法消去y .【答案】⎪⎩⎪⎨⎧===.753z y x【点评】分析组成方程组的每个方程中各未知项系数的构成特点,是选择恰当解题方法的关键所在,因而解题前要仔细观察,才能找出解题的捷径. (四)解答题(每小题6分,共18分):22.已知方程组⎩⎨⎧+=+=+25332n y x ny x 的解x 、y 的和为12,求n 的值.【提示】解已知方程组,用n 的代数式表示x 、y ,再代入 x +y =12. 【答案】n =14.23.已知方程组⎩⎨⎧-=+=-1332by ax y x 与⎩⎨⎧=+=+3321123by ax y x 的解相同,求a 2+2ab +b 2 的值.【提示】先解方程组⎩⎨⎧=+=-1123332y x y x 求得x 、y ,再代入方程组⎩⎨⎧=+-=+3321by ax by ax 求a 、b .【答案】⎩⎨⎧=-=52b a .【点评】当n 个方程组的解相同,可将方程组中的任意两个方程联立成新的方程组.24.已知代数式x 2+ax +b 当x =1和x =-3时的值分别为0和14,求当x =3时代数式的值. 【提示】由题意得关于a 、b 的方程组.求出a 、b 写出这个代数式,再求当x =3时它的值. 【答案】5.【点评】本例在用待定系数法求出a 、b 的值后,应写出这个代数式,因为它是求值的关键步骤. (五)列方程组解应用问题(每1小题10分,共20分):25.某校去年一年级男生比女生多80人,今年女生增加20%,男生减少25%,结果女生又比男生多30人,求去年一年级男生、女生各多少人.【提示】设去年一年级男生、女生分别有x 人、y 人,可得方程组⎪⎩⎪⎨⎧=--+=-.30)100251()100201(80x y y x【答案】x =280,y =200.26.A 、B 两地相距20千米,甲、乙两人分别从A 、B 两地同时相向而行,两小时后在途中相遇.然后甲返回A 地,乙继续前进,当甲回到A 地时,乙离A 地还有2千米,求甲、乙两人的速度. 【提示】由题意,相遇前甲走了2小时,及“当甲回到A 地时,乙离A 地还有2千米”,可得列方程组的另一个相等关系:甲、乙同向行2小时,相差2千米.设甲、乙两人的速度分别为x 千米/时,y 千米/时,则⎩⎨⎧=-=+.2)(220)(2y x y x 【答案】甲的速度为5.5千米/时,乙的速度为4.5千米/时.《二元一次方程组》提高测试(一)填空题(每空2分,共28分):1.已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____. 【提示】要满足“二元”“一次”两个条件,必须a -2≠0,且b ≠0,及| a |-1=1. 【答案】a =-2,b ≠0.2.若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______.【提示】由“互为相反数”,得|2a +3 b -7|+(2a +5b -1)2=0,再解方程组⎩⎨⎧=-+=-+01520732b a b a【答案】a =8,b =-3.3.二元一次方程3x +2y =15的正整数解为_______________.【提示】将方程化为y =2315x-,由y >0、x >0易知x 比0大但比5小,且x 、y 均为整数. 【答案】⎩⎨⎧==61y x ,⎩⎨⎧==.33y x4.2x -3y =4x -y =5的解为_______________.【提示】解方程组⎩⎨⎧=-=-54532y x y x .【答案】⎩⎨⎧-==.11y x5.已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.【提示】把⎩⎨⎧==12y x -代入方程组,求m ,n 的值.【答案】-438.6.若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______.【提示】作y =x 的代换,先求出x 、y 的值.【答案】k =65. 7.已知2a =3b =4c ,且a +b -c =121,则a =_______,b =_______,c =_______.【提示】即作方程组⎪⎪⎩⎪⎪⎨⎧=-+==121432c b a cb a ,故可设a =2 k ,b =3 k ,c = 4 k ,代入另一个方程求k 的值. 【答案】a =61,b =41,c =31.【点评】设“比例系数”是解有关数量比的问题的常用方法. 8.解方程组⎪⎩⎪⎨⎧=+=+=+634323x z z y y x ,得x =______,y =______,z =______.【提示】根据方程组的特征,可将三个方程左、右两边分别相加,得2 x +3 y +z =6,再与3 y +z =4相减,可得x .【答案】x =1,y =31,z =3. (二)选择题(每小题2分,共16分):9.若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为…………………()(A )8 (B )9 (C )10 (D )11【提示】将y =-x 代入方程2 x -y =3,得x =1,y =-1,再代入含字母k 的方程求解.【答案】D .10.若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为( )(A )4 (B )-10 (C )4或-10 (D )-4或10 【提示】将x 、y 对应值代入,得关于| a |,b 的方程组⎪⎩⎪⎨⎧=+=-.631||62b a b 【答案】C .【点评】解有关绝对值的方程,要分类讨论.11.关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是……………………( )(A )y =2x +3 (B )y =2x -3 (C )y =2x +1 (D )y =-2x +1【提示】将x 、y 的两对数值代入ax +b =y ,求得关于a 、b 的方程组,求得a 、b 再代入已知方程. 【答案】B .【点评】通过列方程组求待定字母系数是常用的解题方法. 12.由方程组⎩⎨⎧=+-=+-0432032z y x z y x 可得,x ∶y ∶z 是………………………………( )(A )1∶2∶1 (B )1∶(-2)∶(-1) (C )1∶(-2)∶1 (D )1∶2∶(-1)【提示】解方程组时,可用一个未知数的代数式表示另外两个未知数,再根据比例的性质求解. 【答案】A .【点评】当方程组未知数的个数多于方程的个数时,把其中一个未知数看作已知常数来解方程组,是可行的方法.13.如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+10cy bx by ax 的解,那么,下列各式中成立的是…( )(A )a +4c =2 (B )4a +c =2 (C )a +4c +2=0 (D )4a +c +2=0【提示】将⎩⎨⎧=-=21y x 代入方程组,消去b ,可得关于a 、c 的等式.【答案】C .14.关于x 、y 的二元一次方程组⎩⎨⎧=+=-2312y mx y x 没有解时,m 的值是…………( )(A )-6 (B )-6 (C )1 (D )0【提示】只要满足m ∶2=3∶(-1)的条件,求m 的值. 【答案】B .【点评】对于方程组⎩⎨⎧=+=+222111c y b x a c y b x a ,仅当21a a =21b b ≠21c c 时方程组无解.15.若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a 、b 的值为( ) (A )2,3 (B )3,2 (C )2,-1 (D )-1,2【提示】由题意,有“相同的解”,可得方程组⎩⎨⎧=-=+52243y x y x ,解之并代入方程组⎪⎪⎩⎪⎪⎨⎧=-=-4352by x a y b ax ,求a 、b .【答案】B . 【点评】对方程组“解”的含义的正确理解是建立可解方程组的关键.16.若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是……………………( )(A )0 (B )1 (C )2 (D )-1 【提示】把c 看作已知数,解方程组⎩⎨⎧=-+=++0730452c b a c b a 用关于c 的代数式表示a 、b ,再代入a +b -c .【答案】A .【点评】本题还可采用整体代换(即把a +b -c 看作一个整体)的求解方法. (三)解方程组(每小题4分,共16分):17.⎪⎪⎩⎪⎪⎨⎧=+=-+.022325232y x y y x【提示】将方程组化为一般形式,再求解.【答案】⎪⎩⎪⎨⎧-==.232y x18.⎪⎩⎪⎨⎧⨯=++=-8001005.8%60%10)503(5)150(2y x y x 【提示】将方程组化为整系数方程的一般形式,再用加减法消元. 【答案】⎩⎨⎧==.30500y x19.⎪⎩⎪⎨⎧=++-=+--.6)(2)(3152y x y x y x y x 【提示】用换元法,设x -y =A ,x +y =B ,解关于A 、B 的方程组⎪⎩⎪⎨⎧=+=-623152B A BA , 进而求得x ,y .【答案】⎩⎨⎧-==.11y x20.⎪⎩⎪⎨⎧=---=+-=+-.441454y x z x z y z y x 【提示】 将三个方程左,右两边分别相加,得4x -4y +4z =8,故 x -y +z =2 ④,把④分别与第一、二个方程联立,然后用加、减消元法即可求得x 、z 的值.【答案】⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==.15451z y x(四)解答题(每小题5分,共20分):21.已知⎩⎨⎧=+-=-+0254034z y x z y x ,xyz ≠0,求222223y x z xy x +++的值.【提示】把z 看作已知数,用z 的代数式表示x 、y ,可求得x ∶y ∶z =1∶2∶3.设x =k , y =2 k ,z =3 k ,代入代数式. 【答案】516. 【点评】本题考查了方程组解法的灵活运用及比例的性质.若采用分别消去三个元可得方程21 y -14 z =0,21 x -7 z =0,14 x -7 y =0,仍不能由此求得x 、y 、z 的确定解,因为这三个方程不是互相独立的. 22.甲、乙两人解方程组⎩⎨⎧=+-=-514by ax by x ,甲因看错a ,解得⎩⎨⎧==32y x ,乙将其中一个方程的b 写成了它的相反数,解得⎩⎨⎧-=-=21y x ,求a 、b 的值.【提示】可从题意的反面入手,即没看错什么入手.如甲看错a ,即没看错b ,所求得的解应满足4 x -by =-1;而乙写错了一个方程中的b ,则要分析才能确定,经判断是将第二方程中的b 写错. 【答案】a =1,b =3.23.已知满足方程2 x -3 y =m -4与3 x +4 y =m +5的x ,y 也满足方程2x +3y =3m -8,求m 的值. 【提示】由题意可先解方程组⎩⎨⎧-=+-=-8332432m y x m y x 用m 的代数式表示x ,y再代入3 x +4 y =m +5. 【答案】m =5.24.当x =1,3,-2时,代数式ax 2+bx +c 的值分别为2,0,20,求:(1)a 、b 、c 的值;(2)当x=-2时,ax 2+bx +c 的值.【提示】由题得关于a 、b 、c 的三元一次方程组,求出a 、b 、c 再代入这个代数式. 【答案】a =1,b =-5,c =6;20.【点评】本例若不设第一问,原则上也应在求出a 、b 、c 后先写出这个代数式,再利用它求值.用待定系数法求a 、b 、c ,是解这类问题常用的方法.(五)列方程组解应用题(第1题6分,其余各7分,共20分):25.有一个三位整数,将左边的数字移到右边,则比原来的数小45;又知百位上的数的9倍比由十位上的数与个位上的数组成的两位数小3.求原来的数.【提示】设百位上的数为x ,由十位上的数与个位上的数组成的两位数为y ,根据题意,得⎩⎨⎧=++=-+.y x xy y x 391045100 【答案】x =4,y =39,三位数是439.【点评】本例分别设十位上的数和个位上的数为不同的未知数,无论从列方程组还是解方程组都更加简捷易行.26.某人买了4 000元融资券,一种是一年期,年利率为9%,另一种是两年期,年利率是12%,分别在一年和两年到期时取出,共得利息780元.两种融资券各买了多少? 【提示】若设一年期、二年期的融资券各买x 元,y 元,由题意,得⎪⎩⎪⎨⎧=⋅+=+78010012210090004y x y x【答案】x =1 200,y =2 800.【点评】本题列方程组时,易将二年期的融资券的利息误认为是10012y 元,应弄清题设给出的是年利率,故几年到期的利息应该乘几.27.汽车从A 地开往B 地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB 中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B 地.求AB 两地的距离及原计划行驶的时间.【提示】设原计划用x 小时,AB 两地距离的一半为y 千米,根据题意,得⎪⎪⎩⎪⎪⎨⎧-=++-=⋅+⋅21554040402250240x y y y x x 【答案】x =8,2y =360.【点评】 与本例中设AB 两地距离的一半为y 千米一样,也可设原计划的一半时间为x 小时.恰当地设未知数,可以使列方程组和解方程组都更加简便.。
七年级初一数学下学期第八章 二元一次方程组单元 易错题难题测试基础卷试题
七年级初一数学下学期第八章 二元一次方程组单元 易错题难题测试基础卷试题一、选择题1.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩2.下列各方程中,是二元一次方程的是( ) A .253x y x y-=+ B .x+y=1 C .2115x y =+ D .3x+1=2xy 3.已知1,2x y =⎧⎨=⎩是二元一次方程24x ay +=的一组解,则a 的值为( ) A .2 B .2- C .1 D .1-4.方程组3453572x y x y +=⎧⎪⎨-+=-⎪⎩的解是( ) A .20.25x y =⎧⎨=-⎩ B . 4.53x y =-⎧⎨=⎩ C .10.5x y =-⎧⎨=-⎩ D .10.5x y =⎧⎨=⎩5.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是( )A .①②③B .①③C .②③D .①②6.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( )A . 4.50.51y x y x =-⎧⎨=+⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =+⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩7.二元一次方程组2213x y a x y +=⎧⎪⎨+=⎪⎩的解也是方程36x y -=-的解,则a 等于( ) A .-3 B .13- C .3 D .138.将一张面值50元的人民币,兑换成5元和2元的零钱,兑换方案有( ) A .4种 B .5种 C .6种 D .7种9.8块相同的长方形地砖拼成面积为2400 cm 2的矩形ABCD (如图),则矩形ABCD 的周长为()A.200cm B.220cm C.240cm D.280cm10.已知代数式x a﹣b y2与xy2a+b是同类项,则a与b的值分别是()A.a=0,b=1 B.a=2,b=1 C.a=1,b=0 D.a=0,b=2二、填空题11.“八月十五月儿圆,中秋月饼香又甜”,每中秋,皓月当空,阖家团聚,品饼赏月,谈天说地,尽享天伦之乐.今年中秋节前夕某商场结合当地情况,决定启动一笔专项资金用于月饼进货,经过一段时间,该商场已购进的京式、广式、苏式月饼总价之比为2:3:4,根据市场需求,将把余下的资金继续购进这三种月饼,经测算需将余下资金的13购买京式月饼,则京式月饼的总价将达到这三种月饼总价的415.为了使广式月饼总价与苏式月饼的总价达到9:13,则该商场还需购买的广式月饼总价与苏式月饼的总价之比是_____.12.方程组251036238x y zx z⎧+-=⎪⎨⎪-=⎩__________________三元一次方程组(填“是”或“不是”).13.冬季降至,贫困山区恶劣的地理环境加之其落后的交通条件,无疑将使得山区在漫长冬季里物资更加匮乏,“让冬天不冷让爱心永驻”,重庆市公益组织心驿家号召全市人民为贫困山区的孩子们捐赠过冬衣物,本次捐赠共收集了11600件棉衣、7500件羽绒服及防寒服若干,自愿者将所有衣物分成若干A、B、C类组合,由自愿者们分别送往交通极其不便利的各个山区,一个A类组合含有60件棉衣,80件防寒服和50件羽绒服;一个B类组合含有40件棉衣,40件防寒服;一个C类组合含有40件棉衣,60件防寒服,50件羽绒服;求防寒服一共捐赠了_____件.14.关于x,y的方程组223321x y mx y m+=+⎧⎨-=-⎩的解满足不等式组5030x yx y->⎧⎨-<⎩,则m的取值范围_____.15.小纪念册每本5元,大纪念册每本7元.小明买这两种纪念册共花142元,则两种纪念册共买______本.16.有一水池,池底有泉水不断涌出.用10台抽水机20时可以把水抽干;用15台同样的抽水机,10时可以把水抽干.那么,用25台这样的抽水机__________小时可以把水抽干. 17.王虎用100元买油菜籽、西红柿种子和萝卜籽共100包.油菜籽每包3元,西红柿种子每包4元,萝卜籽1元钱7包,问王虎油菜籽、西红柿、萝卜籽各买了_______包. 18.若(x﹣y+3)2+=0,则x+y的值为______.19.若方程组2313{3530.9a ba b-=+=的解是8.3{1.2,ab==则方程组的解为________20.某“欣欣”奶茶店开业大酬宾推出...A B C D四款饮料.1千克A饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克B饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克C饮料的原料是3千克苹果,9千克梨,6千克西瓜;1千克D饮料的原料是2千克苹果,6千克梨,4千克西瓜;如果每千克苹果的成本价为2元,每千克梨的成本价为1.2元,每千克西瓜的成本价为3.5元.开业当天全部售罄,销售后,共计苹果的总成本为100元,并且梨的总成本为126元,那么西瓜的总成本为_____元三、解答题21.某生态柑橘园现有柑橘21吨,计划租用A,B两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A型车和3辆B型车一次可运柑橘12吨;用3辆A型车和4辆B型车一次可运柑橘17吨.(1)1辆A型车和1辆B型车满载时一次分别运柑橘多少吨?(2)若计划租用A型货车m辆,B型货车n辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A型车每辆需租金120元/次,B型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.22.阅读以下内容:已知有理数m,n满足m+n=3,且3274232m n km n+=-⎧⎨+=-⎩求k的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组3274232m n km n+=-⎧⎨+=-⎩,再求k的值;乙同学:将原方程组中的两个方程相加,再求k的值;丙同学:先解方程组3232m nm n+=⎧⎨+=-⎩,再求k的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x,y的方程组()()11821a x byb x ay⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x,也可以用①×2+②×5消去未知数y.求a和b的值.23.阅读下列材料,然后解答后面的问题.已知方程组372041027x y zx y z++=⎧⎨++=⎩,求x+y+z的值.解:将原方程组整理得2(3)()203(3)()27x y x y zx y x y z++++=⎧⎨++++=⎩①②,②–①,得x+3y=7③,把③代入①得,x+y+z=6.仿照上述解法,已知方程组6422641x yx y z+=⎧⎨--+=-⎩,试求x+2y–z的值.24.据永川区农业信息中心介绍,去年永川生态枇杷园喜获丰收,个体商贩张杰准备租车把枇杷运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满枇杷一次可运货12吨;用3辆甲型车和4辆乙型车装满枇杷一次可运货17吨,现有21吨枇杷,计划同时租用甲型车m辆,乙型车n辆,一次运完,且恰好每辆车都装满枇杷,根据以上信息,解答下列问题:(1)1辆甲型车和1辆乙型车都装满枇杷一次可分别运货多少吨?(2)请你帮个体商贩张杰设计共有多少种租车方案?25.a取何值时(a为整数),方程组2420x ayx y+=⎧⎨-=⎩的解是正整数,并求这个方程组的解.26.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,并且要求甲种产品比乙种产品多生产25件,问如何安排甲、乙两种产品,使总产值是1375千元,A,B两种原料还剩下多少吨?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】大房间有x个,小房间有y个,根据等量关系:大小共70个房间,共住480人,列方程组即可.【详解】大房间有x个,小房间有y个,由题意得:70 86480x yx y+=⎧⎨+=⎩,故选A.【点睛】本题考查了二元一次方程组的应用,弄清题意,找出等量关系列出方程组是解此类问题的关键.2.B解析:B【解析】根据二元一次方程的定义对四个选项进行逐一分析.解:A、分母中含有未知数,是分式方程,故本选项错误;B、含有两个未知数,并且未知数的次数都是1,是二元一次方程,故本选项正确;C、D、含有两个未知数,并且未知数的最高次数是2,是二元二次方程,故本选项错误.故选B.3.C解析:C【分析】把x与y的值代入方程计算即可求出a的值.【详解】把1,2xy=⎧⎨=⎩代入方程24x ay+=,得224a+=,解得1a=.故选C.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.D解析:D【分析】整理后①×7+②×2得出41x=41,求出x,把x的值代入①求出y即可.【详解】解:整理得:345 10143x yx y+=⎧⎨-=⎩①②,①×7+②×2得:41x=41,∴x=1,把x=1代入①得:3+4y=5,∴y=0.5,∴方程组的解是:10.5 xy=⎧⎨=⎩,故选D.【点睛】本题考查了解二元一次方程组,关键是把二元一次方程组转化成一元一次方程,解题时要根据方程组的特点进行有针对性的计算.5.A解析:A【分析】根据二元一次方程组的解法逐个判断即可.【详解】当5k =时,方程组为3563510x y x y +=⎧⎨+=⎩,此时方程组无解 ∴结论①正确由题意,解方程组35661516x y x y +=⎧⎨+=⎩得:2345x y ⎧=⎪⎪⎨⎪=⎪⎩把23x =,45y =代入310x ky +=得2431035k ⨯+= 解得10k =,则结论②正确 解方程组356310x y x ky +=⎧⎨+=⎩得:20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩又k 为整数 x 、y 不能均为整数∴结论③正确综上,正确的结论是①②③故选:A .【点睛】本题考查了二元一次方程组的解与解法,掌握二元一次方程组的解法是解题关键.6.C解析:C【分析】根据题中的等量关系即可列得方程组.【详解】设木头长为x 尺,绳子长为y 尺,∵用一根绳子去量一根木头的长、绳子还剩余4.5尺,∴y=x+4.5,∵将绳子对折再量木头,则木头还剩余1尺,∴0.5y=x+1,故选:C .【点睛】此题考查二元一次方程组的实际应用,正确理解题意找到题目中绳子和木头之间的等量关系是解题的关键.7.C解析:C【分析】把2x y +=与36x y -=-组成方程组,求出x ,y 的值,再代入方程213a x y +=,即可解答.【详解】 由题意得:236x y x y +=⎧⎨-=-⎩, 解得:13x y =-⎧⎨=⎩, 把13x y =-⎧⎨=⎩代入方程213a x y +=,得: ()21313a ⨯-+⨯=, 解得:3a =.故选:C .【点睛】本题考查了二元一次方程组的解,方程组的解为能使方程组中两方程都成立的未知数的值.8.C解析:C【分析】设可以兑换m 张5元的零钱,n 张2元的零钱,根据零钱的总和为50元,即可得出关于m ,n 的二元一次方程,结合m ,n 均为非负整数,即可得出结论.【详解】设可以兑换m 张5元的零钱,n 张2元的零钱,依题意,得:5m+2n =50,∴m =10﹣25n . ∵m ,n 均为非负整数,∴当n =0时,m =10;当n =5时,m =8;当n =10时,m =6;当n =15时,m =4;当n =20时,m =2;当n =25时,m =0.∴共有6种兑换方案.故选:C .【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.9.A解析:A【分析】设长方形地砖的长为xcm ,宽为ycm ,依据图形中所示的小长方形的长与宽之间的关系,长=3×宽,以及长方形的面积=24008cm 2,可以列出方程组,解方程组即可求得x ,y 的值,再求矩形ABCD 的周长.【详解】解:设长方形地砖的长为xcm ,宽为ycm ,根据题意得 x 324008y xy =⎧⎨=÷⎩, 解之得x 3010y =⎧⎨=⎩, 则矩形ABCD 的周长为2×(60+40)=200cm .故选A .【点睛】本题考查了图形与二元一次方程组,正确找到数量关系列出方程组是解题的关键.10.C解析:C【分析】根据同类项的定义可得关于a 、b 的方程组,解方程组即得答案.【详解】解:由同类项的定义,得122a b a b -=⎧⎨+=⎩,解得:10a b =⎧⎨=⎩. 故选:C .【点睛】本题考查了同类项的定义和二元一次方程组的解法,属于基本题目,正确理解题意、掌握解答的方法是解题的关键.二、填空题11.【分析】由题意设已购进京式月饼价格2m ,剩余资金为n ,根据题意列出方程进行解答即可.解:设已购进京式月饼价格2m ,剩余资金为n ,由题意可得:可得:①,解得:n=6m ,②,可得:解析:3:5【分析】由题意设已购进京式月饼价格2m ,剩余资金为n ,根据题意列出方程进行解答即可.【详解】解:设已购进京式月饼价格2m ,剩余资金为n ,由题意可得:可得:①()1429315m n m n +=+,解得:n=6m , ②23a b n +=,可得:a+b=4m , ③1349(2)113m a m b m n m n m +++=+-+=, ④(3m+a ):(4m+b )=9:13,93135342222m a m a m m b m b m +==+==,,,, ∴a :b=3:5,答:该商场还需购买的广式月饼总价与苏式月饼的总价之比是3:5.故答案为:3:5.【点睛】本题考查多次方程问题,解题的关键是根据题意列出多个方程得出其关系式解答.12.是【分析】根据三元一次方程组的定义可知,由两个或两个以上方程组成,该如果方程组内含有三个未知数,且未知数的次数都是一次的,就是三元一次方程组,由此判断作答即可.解:如果方程组中含有三解析:是【分析】根据三元一次方程组的定义可知,由两个或两个以上方程组成,该如果方程组内含有三个未知数,且未知数的次数都是一次的,就是三元一次方程组,由此判断作答即可.【详解】解:如果方程组中含有三个未知数,每个方程中含有未知数的项的次数都是一,并且方程组中一共有两个或两个以上的方程,这样的方程组叫做三元一次方程组. 所以251036238x y z x z ⎧+-=⎪⎨⎪-=⎩是三元一次方程组; 故填:是.【点睛】本题主要考查三元一次方程组的定义.13.14600【分析】根据题意,可以先设A 类组合x 个,B 类组合y 个,C 类组合z 个,然后根据题意可以列出三元一次方程组,从而可以得到x 、z 与y 的关系,然后即可求得需要防寒服多少件,本题得以解决.【详解析:14600【分析】根据题意,可以先设A 类组合x 个,B 类组合y 个,C 类组合z 个,然后根据题意可以列出三元一次方程组,从而可以得到x 、z 与y 的关系,然后即可求得需要防寒服多少件,本题得以解决.【详解】解:设A 类组合x 个,B 类组合y 个,C 类组合z 个,6040401160050507500x y z x ++=⎧⎨+=⎩, 化简,得28022130x y z y =-⎧⎨=-⎩, ∴需要的防寒服为:80x +40y +60z =80(280﹣2y )+40y +60(2y ﹣130)=22400﹣160y +40y +120y ﹣7800=14600,故答案为:14600.【点睛】本题考查三元一次方程组的应用,解答本题的关键是明确题意,列出相应的三元一次方程组,利用方程的知识解答.14.m>﹣【分析】利用方程组中两个式子加减可得到和x-3y用m来表示,根据等量代换可得到关于m的一元一次不等式组,解出来即可得到答案【详解】将两个方程相加可得5x﹣y=3m+2,将两个方程相减解析:m>﹣23【分析】利用方程组中两个式子加减可得到5x y-和x-3y用m来表示,根据等量代换可得到关于m的一元一次不等式组,解出来即可得到答案【详解】将两个方程相加可得5x﹣y=3m+2,将两个方程相减可得x﹣3y=﹣m﹣4,由题意得32040 mm+>⎧⎨--<⎩,解得:m>23 -,故答案为:m>23 -.【点睛】此题考查含参数的二元一次方程组与不等式组相结合的题目,注意先观察,通过二元一次方程的加减得到不等式组的相关式子,再进行等量代换15.26、24或22【解析】【分析】通过理解题意可以知道,本题有一组等量关系,即:小纪念册本数×5+大纪念册本数×7=142,可以根据此等量关系,列出方程求解作答.【详解】解:假设购买小纪念册解析:26、24或22【解析】【分析】通过理解题意可以知道,本题有一组等量关系,即:小纪念册本数×5+大纪念册本数×7=142,可以根据此等量关系,列出方程求解作答.【详解】解:假设购买小纪念册x 本,购买大纪念册y 本,则x ,y 为整数.则有题目可得二元一次方程:5x+7y=142,解得:x ,y 有4组整数解即:271x y =⎧⎨=⎩,206x y =⎧⎨=⎩,1311x y =⎧⎨=⎩,616x y =⎧⎨=⎩即有四种情况即:两种纪念册共买28、26、24或22本.故答案为28、26、24或22本.【点睛】本题考查了一次方程的实际应用,中等难度,解决此类问题的关键在于,找出题目中所给的等量关系,列出方程,求解方程.16.5【解析】【分析】设一台抽水机1小时的抽水量为1份,泉水每小时涌进的量为x 份,原有泉水量为y 份,根据等量关系:用10台抽水机20时可以把水抽干;用15台同样的抽水机10时可以把水抽干,列出方程组解析:5【解析】【分析】设一台抽水机1小时的抽水量为1份,泉水每小时涌进的量为x 份,原有泉水量为y 份,根据等量关系:用10台抽水机20时可以把水抽干;用15台同样的抽水机10时可以把水抽干,列出方程组进行求解即可得.【详解】设一台抽水机1小时的抽水量为1份,泉水每小时涌进的量为x 份,原有泉水量为y 份,由题意得201020101510y x y x +=⨯⎧⎨+=⨯⎩, 解得:5100x y =⎧⎨=⎩, 所以,用25台这样的抽水机去抽水时,泉水每小时涌出量用5台抽水机去抽,剩下的就抽原有的泉水了,100÷(25-5)=5(小时),故答案为:5.【点睛】本题考查了二元一次方程组的应用,弄清题意,找到等量关系列出方程组是解题的关键,这里要注意的是泉水是不断涌出的.17.3,20,77.【解析】先设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包,再根据题中的相等关系列出方程组,并根据实际意义找出满足题意的解即可.解:设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包根据题解析:3,20,77.【解析】先设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包,再根据题中的相等关系列出方程组,并根据实际意义找出满足题意的解即可.解:设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包根据题意可列方程组,100341007x y x z x y ++=⎧⎪⎨++=⎪⎩①② ②-3×①,得77020z y =+ 要使x 、y 、z 均为正整数,则3,20,77x y z ===故答案为3、20、77点睛:本题主要考查学生利用方程思想建模解决实际问题的能力.解题的技巧在于要利用题中的相等关系建立方程组,并用含一个未知数的式子表示另一个未知数,再根据实际情况得出满足题意的解.18.1【解析】试题分析:根据非负数的性质,可得二元一次方程组,解方程组可得,故x+y=-1+2=1.故答案为:1.解析:1【解析】试题分析:根据非负数的性质,可得二元一次方程组30{20x y x y -+=+=,解方程组可得12x y =-⎧⎨=⎩,故x+y=-1+2=1. 故答案为:1.19.【解析】试题分析:根据整体思想,可设a=x+2,b=y-1,可发现两个方程组相同,因此可知x+2=8.3,y-1=1.2,解得x=6.3,y=2.2,即方程组的解为: .20.5【分析】设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克,根据“苹果的总成本为元,并且梨的总成本为元”列出方程组,在解方程组的时候注意整体思想的应用,进而可得答案.【详解】解:设A解析:5【分析】设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克,根据“苹果的总成本为100元,并且梨的总成本为126元”列出方程组,在解方程组的时候注意整体思想的应用,进而可得答案.【详解】解:设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克, 根据题意,得:100223221263396 1.2a b c d a b c d ⎧+++=⎪⎪⎨⎪+++=⎪⎩, 整理得:2()(32)50()(32)35a b c d a b c d +++=⎧⎨+++=⎩, 解得:153220a b c d +=⎧⎨+=⎩, ∴3.5(64) 3.5(15202)192.5a b c d +++=⨯+⨯=,故答案为:192.5.【点睛】本题考查了二元一次方程组的应用,根据题意找到等量关系,列出方程组,解方程组时注意整体思想的应用是解决本题的关键.三、解答题21.(1)1辆A 型车满载时一次可运柑橘3吨,1辆B 型车满载时一次可运柑橘2吨;(2)①共有4种租车方案,方案1:租用1辆A 型车,9辆B 型车;方案2:租用3辆A 型车,6辆B 型车;方案3:租用5辆A 型车,3辆B 型车;方案4:租用7辆A 型车;②最省钱的租车方案是租用7辆A 型车,最少租车费是840元【分析】(1)设1辆A 型车满载时一次可运柑橘x 吨,1辆B 型车满载时一次可运柑橘y 吨,根据“用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)①根据一次运载柑橘21吨,即可得出关于m ,n 的二元一次方程,结合m ,n 均为非负整数,即可得出各租车方案;②根据租车总费用=租用每辆车的费用×租用的辆数,即可求出各租车方案所需费用,比较后即可得出结论.【详解】解:(1)设1辆A型车满载时一次可运柑橘x吨,1辆B型车满载时一次可运柑橘y吨,依题意,得:2312 3417 x yx y+=⎧⎨+=⎩,解得:32xy==⎧⎨⎩.故答案为:1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨.(2)①依题意,得:3m+2n=21,∴m=7﹣23 n.又∵m,n均为非负整数,∴19mn=⎧⎨=⎩或36mn=⎧⎨=⎩或53mn==⎧⎨⎩或7mn=⎧⎨=⎩.答:共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车.②方案1所需租车费为120×1+100×9=1020(元),方案2所需租车费为120×3+100×6=960(元),方案3所需租车费为120×5+100×3=900(元),方案4所需租车费为120×7=840(元).∵1020>960>900>840,故答案为:最省钱的租车方案是租用7辆A型车,最少租车费是840元.【点睛】本题主要考查列二元一次方程以及利用二元一次方程解决方案问题,正确理想二元一次方程组并运用二元一次方程解决方案问题是本题解题的关键.22.(1)见解析;(2)a和b的值分别为2,5.【分析】(1)分别选择甲、乙、丙,按照提示的方法求出k的值即可;(2)根据加减消元法的过程确定出a与b的值即可.【详解】解:(1)选择甲,3274 232m n km n+=-⎧⎨+=-⎩①②,①×3﹣②×2得:5m=21k﹣8,解得:m=2185k-,②×3﹣①×2得:5n=2﹣14k,解得:n=2145k -,代入m+n =3得:21821455k k --+=3, 去分母得:21k ﹣8+2﹣14k =15,移项合并得:7k =21,解得:k =3;选择乙, 3274232m n k m n +=-⎧⎨+=-⎩①②, ①+②得:5m+5n =7k ﹣6,解得:m+n =7-65k , 代入m+n =3得:7-65k =3, 去分母得:7k ﹣6=15,解得:k =3;选择丙, 联立得:3232m n m n +=⎧⎨+=-⎩①②, ①×3﹣②得:m =11,把m =11代入①得:n =﹣8,代入3m+2n =7k ﹣4得:33﹣16=7k ﹣4,解得:k =3;(2)根据题意得:1327a b +=⎧⎨+=⎩, 解得:52b a =⎧⎨=⎩, 检验符合题意,则a 和b 的值分别为2,5.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.3【分析】根据题目的解法,把x+2y-z 看成一个整体,进行解方程即可.【详解】解:由题意得,将原方程整理得(2x 2y z )+2(2x+z )=22①-3(x+2y-z )+(2x+z )=-1②⎧+-⎨⎩②×2得(6x 2y-z )+2(2x+z )=-2-+ ③①-③得(8x+2y z )=24-解得:x+2y-z=3.【点睛】本题主要考查了解三元一次方程组,解题的关键是要运用整体思维解方程组.24.(1)甲、乙两种车分别运载3吨,2吨;(2)共4种方案.【解析】【分析】(1)设甲、乙两种车分别运载x 吨,y 吨,根据题意列出二元一次方程组,求出x,y 即可得解;(2)列出二元一次方程,根据m ,n 都是整数,可得到方案.【详解】解:(1)设甲、乙两种车分别运载x 吨,y 吨;23123417x y x y +=⎧⎨+=⎩,解得32x y =⎧⎨=⎩; 答:1辆甲型车和1辆乙型车都装满枇杷一次可分别运货3吨,2吨;(2)设租甲、乙两种车分别m 辆,n 辆,由题意得:3m+2n=21.19m n =⎧⎨=⎩,36m n =⎧⎨=⎩,53m n =⎧⎨=⎩,70m n =⎧⎨=⎩共4种方案. 方案一:甲车1辆,乙车9辆;方案二:甲车3辆,乙车6辆;方案三:甲车5辆,乙车3辆方案四:甲车7辆,乙车0辆.答:甲车1辆,乙车9辆或甲车3辆,乙车6辆或甲车5辆,乙车3辆或甲车7辆,乙车0辆.【点睛】本题考查了二元一次方程组的实际应用,能够找到等量关系列出二元一次方程组是解题关键.25.当a=0时,21x y =⎧⎨=⎩;当a=-2时,42x y =⎧⎨=⎩;当a=-3时,84x y =⎧⎨=⎩【分析】先把a 当作已知求出x 、y 的值,再根据方程组有正整数解,得到关于a 的一元一次不等式组,求出m 的取值范围,再找出符合条件的正整数a 的值即可.【详解】解:方程组2420x ay x y +=⎧⎨-=⎩解得:8444x a y a ⎧=⎪⎪+⎨⎪=⎪+⎩∵方程组的解是正数,∴a >-4,∵方程组的解是正整数,a >-4,∴a=-3,-2,0,它的所有正整数解为:84x y =⎧⎨=⎩,42x y =⎧⎨=⎩,21x y =⎧⎨=⎩. 【点睛】本题考查的是解二元一次方程组及解二元一次不等式组,解答此题的关键是先把m 当作已知表示出x 、y 的值,再根据方程组有正整数解得出关于m 的不等式组,求出m 的正整数解即可.26.(1)生产甲种产品15件,生产乙种产品20件才能恰好使两种原料全部用完,此时总产值是135万元;(2)安排生产甲种产品25件,使总产值是1375千元,A 种原料还剩下20吨,B 种原料正好用完,还剩下0吨.【解析】分析:(1)可设生产甲种产品x 件,生产乙种产品y 件,根据等量关系:①生产甲种产品需要的A 种原料的吨数+生产乙种产品需要的A 种原料的吨数=A 种原料120吨,②生产甲种产品需要的B 种原料的吨数+生产乙种产品需要的B 种原料的吨数=B 种原料50吨;依此列出方程求解即可;(2)可设乙种产品生产z 件,则生产甲种产品(z +25)件,根据等量关系:甲种产品的产值+乙种产品的产值=总产值1375千元,列出方程求解即可.详解:(1)设生产甲种产品x 件,生产乙种产品y 件,依题意有:43120250x y x y +=⎧⎨+=⎩,解得1520x y =⎧⎨=⎩:, 15×50+30×20=750+600=1350(千元),1350千元=135万元.答:生产甲种产品15件,生产乙种产品20件才能恰好使两种原料全部用完,此时总产值是135万元;(2)设乙种产品生产z 件,则生产甲种产品(z +25)件,依题意有:(1+10%)×50(z +25)+(1﹣10%)×30z =1375,解得:z =0,z +25=25,120﹣25×4=120﹣100 =20(吨),50﹣25×2 =50﹣50 =0(吨).答:安排生产甲种产品25件,使总产值是1375千元,A 种原料还剩下20吨,B 种原料正好用完,还剩下0吨.点睛:考查了二元一次方程组的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.列二元一次方程组解决实际问题的一般步骤:(1)审题:找出问题中的已知条件和未知量及它们之间的关系.(2)设元:找出题中的两个关键的未知量,并用字母表示出来.(3)列方程组:挖掘题目中的关系,找出两个等量关系,列出方程组.(4)求解.(5)检验作答:检验所求解是否符合实际意义,并作答.。
二元一次方程组测试卷
二元一次方程组测试卷一、选择题(每题3分,共30分)1. 下列方程中,是二元一次方程的是()A. x + (1)/(y)=2B. xy = 9C. 3x - 2y = 4D. x^2+y = 62. 方程2x + y = 9在正整数范围内的解有()A. 1组。
B. 2组。
C. 3组。
D. 4组。
3. 若x = 2 y = 1是关于x、y的二元一次方程ax - 3y = 1的解,则a的值为()A. 2.B. -2.C. 5.D. -5.4. 二元一次方程组x + y = 5 x - y = 3的解是()A. x = 4 y = 1B. x = 1 y = 4C. x = 2 y = 3D. x = 3 y = 25. 用代入法解方程组y = 1 - x x - 2y = 4时,代入正确的是()A. x - 2 - x = 4B. x - 2 - 2x = 4C. x - 2 + 2x = 4D. x - 2 + x = 46. 已知x = m y = n和x = n y = m是方程2x - 3y = 1的解,则m - n的值为()A. 1.B. -1.C. 0.D. 2.7. 若方程组ax + by = 2 ax - by = 2与2x + 3y = 4 4x - 5y = -6的解相同,则a,b的值为()A. a = (23)/(11) b = (4)/(11)B. a = (23)/(11) b = -(4)/(11)C. a = -(23)/(11) b = (4)/(11)D. a = -(23)/(11) b = -(4)/(11)8. 某班有x名学生,其中女生人数占45%,则男生人数为()A. 0.45xB. 0.55xC. (x)/(0.45)D. (x)/(0.55)9. 甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙,设甲的速度为x米/秒,乙的速度为y米/秒,下列方程组正确的是()A. 5x = 5y + 10 4x = 4y + 2yB. 5x - 5y = 10 4x - 2x = 4yC. 5x + 10 = 5y 4x - 4y = 2D. 5x - 5y = 10 4x - 4y = 2y10. 关于x,y的方程组3x - y = m x + my = n的解是x = 1 y = 1,则| m - n|的值是()A. 5.B. 3.C. 2.D. 1.二、填空题(每题3分,共15分)1. 若x^2m - 1+5y^3n - 2m=7是二元一次方程,则m=_ ,n=_ 。
北师大版八年级数学上册难点探究专题利用二元一次方程组解决较复杂的问题测试卷
难点探究专题:利用二元一次方程组解决较复杂的问题◆类型一 图形问题1.(2016·乐陵模拟)如图,将正方形ABCD 的一角折叠,折痕为AE ,∠BAD 比∠BAE 大48°.设∠BAD 和∠BAE 的度数分别为x °、y °,那么x 、y 所适合的一个方程组是( )A.⎩⎨⎧y -x =48,y +x =90B.⎩⎨⎧y -x =48,y =2xC.⎩⎨⎧y -x =48,y +2x =90D.⎩⎨⎧x -y =48,x +2y =90第1题图 第2题图 2.如图,5个一样大小的小矩形拼成一个大的矩形,如果大矩形的周长为14cm ,则小矩形的周长为◆类型二 方案问题一、利用方程组解决方案问题 3.某景点的门票价格规定如下表:某校八年级(1)、(2)两班共100多人去游览该景点,其中(1)班不足50人,(2)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?二、结合一次函数解决方案问题 4.某中学需要添置某种教学仪器,方案一:到商家购买,每件需要8元;方案二:学校自己制作,每件4元,另外需要制作工具的租用费120元.设需要仪器x 件,方案一与方案二的费用分别为y 1、y 2(单位:元).(1)分别写出y 1、y 2的函数关系式; (2)当添置仪器多少件时,两种方案的费用相同?(3)若学校需要添置仪器50件,问应采用哪种方案?说明理由.5.某通讯公司推出①,②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x (分)与费用y (元)之间的函数关系如图所示.(1)有月租的收费方式是________(填“①”或“②”),月租费是________元;(2)分别求出①,②两种收费方式中y 与自变量x 之间的函数表达式;(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.购票人数1~50人51~100人100人以上 每人门票价12元 10元8元参考答案与解析1.D 2.6 解析:设小矩形的宽为x cm ,长为y cm ,则⎩⎨⎧2x =y ,2(3x +y +y )=14,解得⎩⎨⎧x =1,y =2.则小矩形的周长为6cm.3.解:(1)设八年级(1)班有x 人,(2)班有y 人,由题意得⎩⎨⎧12x +10y =1126,8x +8y =824,解得⎩⎨⎧x =48,y =55.答:八年级(1)班有48人,(2)班有55人; (2)∵1126>824,∴选择团体购票.团体购票节省的费用为1126-824=302(元). 4.解:(1)y 1=8x ,y 2=4x +120; (2)根据题意得⎩⎨⎧y =8x ,y =4x +120,解得 ⎩⎨⎧x =30,y =240,∴当添置仪器30件时,两种方案所需费用相同; (3)将x =50分别代入y 1=8x ,y 2=4x +120,得y 1=50×8=400,y 2=4×50+120=320.∵y 1>y 2,∴当添置50件仪器时,选择方案二. 5.解:(1)① 30 (2)①,②两种收费方式中y 与x 的函数表达式分别为y 1=0.1x +30,y 2=0.2x ; (3)联立得方程组⎩⎨⎧y =0.1x +30,y =0.2x ,解得⎩⎨⎧x =300,y =60.故当通话时间少于300分钟时,选择通话方式②实惠;当通话时间超过300分钟时,选择通话方式①实惠;当通话时间为300分钟时,选择通话方式①,②花费一样.掌握的三个数学答题方法树枝答题法关注数学题的解题过程2014年上海市中考状元徐瑜卿认为,数学是一门思维学科,并不是平时做题多就一定会拿高分。
(完整版)人教版第八章二元一次方程组单元测试题(含答案解析)
第八章二元一次方程组单元测试题题号一二三总分得分一、选择题(本大题共9 小题,共27 分)1.方程 2x- =0, 3x+y=0,2x+xy=1, 3x+y-2x=0, x2-x+1=0 中,二元一次方程的个数是()A. 5个B. 4个C. 3个D. 2个2. 假如 3x m+n+5y m-n-2=0是一个对于x、y 的二元一次方程,那么()A. B. C. D.3.以下各方程的变形,正确的选项是()A.由 3+x=5,得 x=5+3 C. 由y=0,得y=2B.D.由7x= ,得 x=49由3=x-2,得 x=2+34. 假如 x=y,那么以下等式不必定成立的是()A. x+a=y+aB. x-a=y-aC. ax=ayD.=5.已知甲、乙两种商品的进价和为100 元,为了促销而打折销售,若甲商品打八折,乙商品打六折,则可赚 50 元,若甲商品打六折,乙商品打八折,则可赚 30 元,甲、乙两种商品的订价分别为()A. 50元、150元B. 50元、100元C. 100元、50元D. 150元、50元6.把方程 x=1 变形为 x=2,其依照是()A. 分数的基天性质B. 等式的性质1C. 等式的性质2D. 解方程中的移项7.用“加减法”将方程组中的 x 消去后获得的方程是()A. 3y=2B. 7y=8C. -7y=2D. -7y=88.已知 2x-3y=1,用含 x 的代数式表示 y正确的选项是()A. y= x-1B. x=C. y=D. y=-- x9.在一次野炊活动中,小明所在的班级有x 人,分红 y 组,若每组 7 人,则余下 3 人;若每组 8 人,则缺 5 人,求全班人数的正确的方程组是()A. B. C. D.二、填空题(本大题共 6 小题,共 24 分)10.对于 x、y 方程( k2-1)x2+( k+1)x+2 ky=k+3,当 k= ______ 时,它为一元一次方程,当 k= ______ 时,它为二元一次方程.11.若( 2x-y)2与|x+2 y-5|互为相反数,则(x-y)2005= ______ .12.二元一次方程组的解是 ______ .13.一个两位数的十位数字与个位数字之和等于5,十位数字与个位数字之差为1,设十位数字为 x,个位数字为y,则用方程组表示上述语言为 ______ .14.方程 x( x+3 ) =0 的解是 ______ .15.由方程组,能够获得 x+y+z的值是 ______ .三、计算题(本大题共8 小题,共 49 分)16.解方程组:17. 解方程组:18.解方程组.19. 五一时期,春华旅行社组织一个由成人和学生共20 人构成的旅行团到凤凰古城旅游,景区门票售票标准是:成人门票148 元 /张,学生门票20 元 /张,该旅行团购置门票共花销 1936 元,问该团购置成人门票和学生门票各多少张?20.为迎接 6 月 5 日“世界环境日”,某校团委展开“光盘行动”,提议学生截止餐桌上的浪费.该校七年级(1)、( 2)、( 3)三个班共128 人参加了活动,此中七(3)班有 38 人参加,七( 1)班参加的人数比七(2)班多 10 人,请问七( 1)班和七( 2)班各有多少人参加“光盘行动”?21. 广安某水果店计划购进甲、乙两种新出产的水果共140 千克,这两种水果的进价、售价如表所示:进价(元 /千克)售价(元/千克)甲种58乙种913( 1)若该水果店估计进货款为1000 元,则这两种水果各购进多少千克?( 2)若该水果店决定乙种水果的进货量不超出甲种水果的进货量的 3 倍,应如何安排进货才能使水果店在销售完这批水果时赢利最多?此时收益为多少元?22. 某旅行社组织一批旅客出门旅行,原计划租用45座客车若干辆,但有15 人没有座位;若租用相同数目的60 座客车,则多出一辆车,且其他客车恰巧坐满.已知45 座客车租金为每辆 220 元, 60 座客车租金为每辆300 元,问:( 1)这批旅客的人数是多少?原计划租用多少辆45座客车?( 2)若租用同一种车,要使每位旅客都有座位,应当如何租用才合算?23. 为了更好治理岳阳河水质,安岳县污水办理企业计划购置10台污水办理设施,现有A、 B 两种型号的设施,此中每台的价钱、月办理污水量如表:A 型B 型价钱(万元 /台)m n办理污水量(吨/250200月)经检查:买一台 A 型比购 B 型多 3 万元,买 2 台 A 型比购置 3 台 B 型少 5 万元.( 1)求 m, n 的值;( 2)经估算,购置设施自己不超出117 万元,你以为有哪几种购置方案?( 3)在( 2)的条件下,若每个月要求办理无水不低于2050 吨,为节俭资本,请你为企业设计一种最省钱的方案.答案和分析【答案】1.D2.B3. D4. D5. D6. C7. D8.C9.A10.-1; 111.-112.13.14.0 或 -315.316. 解:,① ×3+②得: 16x=48,解得: x=3,把x=3 代入①得: y=2.因此原方程组的解为.17. 解:,① ×2+②得: 9x=18,解得: x=2,把x=2 代入②得: y=1,则方程组的解为.18. 解:方程组整理得:,①-② ×2 得: x=-1,把x=-1 代入②得: y=5 ,则方程组的解为.19.解:设购置成人门票 x 张,学生门票 y 张,由题意得解得答:购置成人门票12 张,学生门票8 张.20. 解:设七(1)班有x人参加“光盘行动”,七(2)班有 y 人参加“光盘行动”,,解得,,即七( 1)班有 50 人参加“光盘行动”,七(2)班有 40 人参加“光盘行动”.21.解:( 1)设购进甲种水果 x 千克,则购进乙种水果( 140-x)千克,依据题意可得:5x+9 ( 140-x) =1000 ,解得: x=65,∴140-x=75(千克),答:购进甲种水果 65 千克,乙种水果 75千克;( 2)由图表可得:甲种水果每千克收益为: 3 元,乙种水果每千克收益为: 4 元,设总收益为W,由题意可得出:W=3 x+4( 140-x) =-x+560,故W 随 x 的增大而减小,则 x 越小 W 越大,由于该水果店决定乙种水果的进货量不超出甲种水果的进货量的3 倍,∴140-x≤3x,解得: x≥35,∴当 x=35 时, W 最大 =-35+560=525 (元),故140-35=105 ( kg).答:当甲购进35 千克,乙种水果105 千克时,此时收益最大为525 元.22. 解:(1)设这批旅客的人数是x 人,原计划租用45 座客车 y 辆.依据题意,得,解这个方程组,得.答:这批旅客的人数240 人,原计划租45 座客车 5 辆;( 2)租 45 座客车: 240÷45≈5.(3辆),因此需租 6 辆,租金为220×6=1320(元),租 60 座客车: 240÷60=4 (辆),因此需租 4 辆,租金为300×4=1200 (元).答:租用 4 辆 60 座客车更合算.23. 解:(1)由题意得,解得;( 2)设购置污水办理设施 A 型设施 x 台, B 型设施( 10-x)台,依据题意得14x+11( 10-x)≤117,解得 x≤∵x 取非负整数,∴x=0, 1, 2,∴有三种购置方案:①A 型设施 0 台, B 型设施 10 台;② A 型设施 1 台, B 型设施 9 台;③ A 型设施 2 台, B 型设施 8 台;( 3)由题意: 250x+200( 10-x)≥2050,解 x≥1,又∵x≤,∴1≤x≤,而 x 取非负整数,∴x 为 1, 2,当x=1 时,购置资本为: 14×1+11×9=113 (万元),当x=2 时,购置资本为: 14×2+11×8=116 (万元),∴为了节俭资本,应选购 A 型设施 1 台, B 型设施 9 台.【分析】1.解: 2x- =0 是分式方程,不是二元一次方程;3x+y=0 是二元次方程;2x+xy=1 不是二元一次方程;3x+y-2x=0 是二元一次方程;2x -x+1=0 不是二元一次方程.含有两个未知数,而且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.本题主要考察的是二元一次方程的定义,掌握二元一次方程的定义是解题的重点.2. 解:依题意得:,解得.应选: B.依据二元一次方程的定义进行判断即可.本题考察了二元一次方程的定义,二元一次方程一定切合以下三个条件:(1)方程中只含有 2 个未知数;( 2)含未知数项的最高次数为一次;(3)方程是整式方程.3. 解:A、两边加的数不一样,故 A 不切合题意;B、两边乘的数不一样,故 B 不切合题意;C、左侧乘2,右侧加 2,故 C 不切合题意;D 、两边都加2,故 D 切合题意;应选: D.依据等式的性质,可得答案.本题考察了等式的性质,熟记等式的性质是解题重点.4.解: A、等式 x=y 的两边同时加上 a,该等式仍旧成立;故本选项正确;B、等式 x=y 的两边同时减去a,该等式仍旧成立;故本选项正确;C、等式 x=y 的两边同时乘以a,该等式仍旧成立;故本选项正确;D 、当 a=0 时,、无心义;故本选项错误;应选: D.利用等式的性质对每个式子进行变形即可找出答案.本题主要考察等式的性质.运用等式性质 2 时,一定注意等式两边所乘的(或除以的)数或式子不为0,才能保证所得的结果还是等式.5.解:设甲种商品的订价分别为x 元,则乙种商品的订价分别为y 元,依据题意得:,解得:.应选 D.设甲种商品的订价分别为x 元,则乙种商品的订价分别为y 元,依据“若甲商品打八折,乙商品打六折,则可赚 50元,若甲商品打六折,乙商品打八折,则可赚30 元”可得出对于 x、 y 的二元一次方程组,解方程组即可得出结论.本题考察认识二元一次方程组,依据数目关系列出二元一次方程组是解题的重点.6. 解:把方程x=1变形为x=2,其依照是等式的性质2,应选 C利用等式的基天性质判断即可.本题考察认识一元一次方程,以及等式的性质,娴熟掌握等式的性质是解本题的重点.7. 解:,①-②得: -7y=8,应选 D.方程组中双方程相减消去x 获得结果,即可做出判断.本题考察认识二元一次方程组,娴熟掌握运算法例是解本题的重点.8.解:方程 2x-3y=1 ,解得: y=.应选 C.将 x 看做已知数求出y 即可.本题考察认识二元一次方程,解题的重点是将x 看做已知数求出y.9.解:依据每组 7 人,则余下 3 人,得方程 7y+3= x,即 7y=x-3;依据每组8 人,则缺 5 人,即最后一组差 5 人不到 8 人,得方程8y-5=x,即 8y=x+5.可列方程组为:.应选: A.本题中不变的是全班的人数x 人.等量关系有:①每组 7 人,则余下 3 人;②每组 8 人,则缺 5 人,即最后一组差 5 人不到 8 人.由此列出方程组即可.本题考察二元一次方程组的实质运用,理解题目中不变的是全班的人数,用不一样的代数式表示全班的人数是本题的重点.10.解:由于方程为对于 x、 y 的一元一次方程,因此:①,解得 k=-1 ;②,无解,因此 k=-1 时,方程为一元一次方程.依据二元一次方程的定义可知,解得k=1,因此 k=1 时,方程为二元一次方程.故答案为: -1; 1.( 1)若方程为对于x、 y 的一元一次方程,则二次项系数应为0,而后 x 或 y 的系数中有一个为0,另一个不为0 即可.( 2)若方程为对于x、y 的二元一次方程,则二次项系数应为0 且 x 或 y 的系数不为0.考察了一元一次方程与二元一次方程的定义,本题比较简单,解答本题的重点是熟知一元一次方程与二元一次方程的定义.11.解:∵( 2x-y)2与|x+2y-5|互为相反数,∴( 2x-y)2+|x+2y-5|=0,∴,解得,,∴( x-y)2005=( 1-2)2005=-1 ,故答案为 -1.依据非负数的性质列出方程求出x、 y 的值,代入所求代数式计算即可.本题考察了非负数的性质:几个非负数的和为0 时,这几个非负数都为0.12. 解:,把①代入②得:x+2x=3,即 x=1,把x=1 代入①得: y=2,则方程组的解为,故答案为:方程组利用代入消元法求出解即可.本题考察认识二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13. 解:由题意,有.题中有两个等量关系:十位数字+个位数字 =5;十位数字 -个位数字 =1.依据这两个等量关系即可列出方程组.读懂题意,找出等量关系是列方程解应用题的重点.本题比较简单.注意十位数字与个位数字之差即为十位数字-个位数字,而不是个位数字 -十位数字.14.解:x(x+3)=0 ,∴x=0, x+3=0 ,∴方程的解是x1=0, x2=-3 .故答案为: 0 或 -3.推出方程x=0, x+3=0,求出方程的解即可.本题主要考察对解一元一次方程,解一元二次方程,等式的性质等知识点的理解和掌握,能把一元二次方程转变成一元一次方程是解本题的重点.15.解:∵① +② +③,得2x+2 y+2z=6,∴x+y+z=3,故答案为: 3.依据方程组,三个方程相加,即可获得x+y+z的值.本题考察三元一次方程组的解,解得重点是明确解三元一次方程组的解答方法.16.用加减法,先把 y 的系数转变成相同的或相反的数,而后双方程相加减消元,从而求出 x 的值,而后把x 的值代入一方程求y 的值.解二元一次方程组的基本思想是消元.消元的方法有代入法和加减法,本题主要考察了加减消元法.17.方程组利用加减消元法求出解即可.本题考察认识二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.方程组整理后,利用加减消元法求出解即可.本题考察认识二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.设购置成人门票 x 张,学生门票 y 张,则由“成人和学生共 20 人”和“购置门票共花销1936 元”列出方程组解决问题.本题考察二元一次方程组的实质运用,找出题目包含的数目关系是解决问题的重点.20.依据题意能够列出相应的二元一次方程组,从而能够解答本题.本题考察二元一次方程组的应用,解题的重点是明确题意,列出相应的二元一次方程组.21. (1)依据计划购进甲、乙两种新出产的水果共140 千克,从而利用该水果店估计进货款为1000 元,得出等式求出即可;(2)利用两种水果每千克的收益表示出总收益,再利用一次函数增减性得出最大值即可.主要考察了一次函数的应用以及一元一次不等式的应用和一元一次方程的应用等知识,利用一次函数增减性得出函数最值是解题重点.22.145×45座客车辆数+15=旅客总数,60× 45座客车辆数()本题中的等量关系为:(-1) =旅客总数,据此可列方程组求出第一小题的解;(2)需要分别计算 45 座客车和 60 座客车各自的租金,比较后再弃取.本题考察二元一次方程组的实质运用,找出题目包含的数目关系是解决问题的重点.23.( 1)利用买一台 A 型比购 B 型多 3 万元,买 2 台 A 型比购置 3 台 B 型少 5 万元可列二元一次方程组,而后解方程组可获得m、 n 的值;( 2)设购置污水办理设施 A 型设施 x 台, B 型设施( 10-x)台,利用购置设施自己不超出117 万元列不等式 14x+11( 10-x)≤117,解得 x≤,而后 x 取非负整数可获得购置方案;( 3)利用每个月要求办理无水不低于2050 吨列不等式250x+200( 10-x)≥2050,解 x≥1,加上 x≤,则 1≤x≤,再 x 取非负整数获得x 为 1, 2,而后比较x=1 和 x=2 的购置资本可获得最省钱的方案.本题考察了一元一次不等式的应用:由实质问题中的不等关系列出不等式,成立解决问题的数学模型,经过解不等式能够获得实质问题的答案.。
二元一次方程组测试题(难)
二元一次方程组测试题(一)
5
6
7
8
9
10.
11.
12.
13.
14.
15.据统计资料,茄子、西红柿的单位面积产量的比是1:2.把一块长为20m,宽为10m的长方形土地分为两块小长方形土地,分别种植茄子和西红柿.怎样划分这块土地,•才能使茄子、西红柿的总产量的比是3:4?
16.如图所示,长青化工厂与A、B两地有公路、铁路相连,这家化工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),且这两次运输共支出公路运费15000元,铁路运费97200元.
(1)这家化工厂购进原料多少吨?制成成品多少吨?
(2)这批产品的销售款比原料费与运输费的和多多少元?
17.甲菜农要分别运蔬菜给A市场10吨,B市场8吨,但现在仅有12吨蔬菜,还需从乙菜农处调6吨,经了解,从甲菜农处运1吨蔬菜到A、B市场的运费分别为250元和150元,从乙菜农处运1吨蔬菜到A、B市场的运费分别为400元和200元,要求总运费为4200元,问如何进行调运?
18.
19.
某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费如下:
甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲
校报名参加的学生人数多于100人,乙校报名参加的学生人
数少于100人.经核算,若两校分别组团共需花费10 800
元,若两校联合组团只需花赞18 000元.
(1)两所学校报名参加旅游的学生人数之和超过200人吗?
为什么?
(2)两所学校报名参加旅游的学生各有多少人?。
(完整版)初一数学二元一次方程组测试题及答案
0.《二元一次方程组》单元测试题一、选择题(每题3分,共30分)1.下列方程组中,是二元一次方程组的是().(A)(B)(C)(D)2.二元一次方程组的解是( )(A)(B)(C)(D)3.根据图1所示的计算程序计算的值,若输入,则输出的值是()(A)0 (B)(C)2 (D)44.如果与是同类项,则,的值是( )(A)(B)(C)(D)5.已知是方程组的解,则a+b= ( ).(A)2 (B)-2 (C)4 (D)-46.如图2,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x、y,那么下面可以求出这两个角的度数的方程组是( )(A)(B)(C)(D)7.如果是方程组的解,则一次函数y=mx+n的解析式为( )(A)y=-x+2 (B)y=x-2 (C)y=-x-2 (D)y=x+28.已知是二元一次方程组的解,则2m-n的算术平方根为()(A)(B)(C)2 (D)49.如果二元一次方程组的解是二元一次方程的一个解,那么的值是( )(A)3 (B)5 (C)7 (D)910.如图3,一次函数和(a≠0,b≠0)在同一坐标系的图象.则的解中()(A)m>0,n>0 (B)m>0,n<0 (C)m<0,n>0 (D)m<0,n<0二、填空题(每小题4分,共20分)11.若关于x,y的二元一次方程组的解满足x+y=1,则k的取值范围是.12.若直线经过一次函数的交点,则a的值是.13.已知2x-3y=1,用含x的代数式表示y,则y =,当x=0时,y=.14.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为_______.15.如图4,点A的坐标可以看成是方程组的解.三、解答题16.解下列方程组(每小题6分,共12分)(1) (2)17.已知是关于x,y的二元一次方程组的解,求出a+b的值.18.(8分)为了净化空气,美化环境,我市青羊区计划投资1.8万元种银杏和芙蓉树共80棵,已知某苗圃负责种活以上两种树苗的价格分别为:300元/棵,200元/棵,问可种银杏树和芙蓉树各多少棵?19.(10分)已知与的值互为相反数,求:(1)、的值;(2)的值.20.(本题12分)如图5,成都市某化工厂与A,B两地有公路和铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米).这两次运输共支出公路运费15000元,铁路运费97200元.请计算这批产品的销售款比原料费和运输费的和多多少元?(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:乙:根据甲、乙两名同学所列方程组,请你分别指出未知数x、y表示的意义,然后在等式右边的方框内补全甲、乙两名同学所列方程组.甲:x表示_____________________,y表示________________________乙:x表示_____________________,y表示________________________(2)甲同学根据他所列方程组解得x=300.请你帮他解出y的值,并解决该实际问题.参考答案一、1-5、DCDCB 6-10、BDCCA二、11.k=2; 12.-6; 13.,; 14. 35; 15.三、16.(1)x=0.5,y=5 (2)x=-3 , y=17.a+b=118.设银杏树为x,芙蓉树为y.由题意可得:解得19.20.解:(1)甲:x表示产品的重量,y表示原料的重量;乙:x表示产品销售额,y表示原料费甲方程组右边方框内的数分别为15000,97200,乙同甲(2)将x=300代入原方程组解得y=400∴产品销售额为300×8000=2400000元原料费为400×1000=400000元又∵运输费为15000+97200=112200元∴这批产品的销售款比原料费和运输费的和多2400000–(400000+112200)=1887800元。
第八章 二元一次方程(组)综合测试题-学而思培优-学而思培优
第八章二元一次方程(组)综合测试题-学而思培优-学而思培优第八章综合测试题满分100分,时间90分钟)一、选择题1.下列各式中,是关于x,y的二元一次方程的是(。
)A。
2x - yB。
x - 3y = -15C。
xy + x - 2 = 0D。
-y = x^22.若 (3/2)a + b/(3/4) = 6a - bxy与xy的和是单项式,则a +b = (。
)A。
-3B。
4/3C。
3D。
63.下列方程中的二元一次方程组的是(。
)A。
1+y=3.2x+1+y=4z+12B。
3x-2y=1.a=3.2m+n=3C。
mn=-1.y+2x=4D。
x+y=3.y=2x+14.已知方程组 {ax-by=4.ax+by=2.x=2.y=1} 的解为,则2a-3b的值为(。
)A。
-6B。
-4C。
4D。
65.XXX在解关于x、y的二元一次方程组{x+□y=3.3x-□y=1.y=1} 时得到了正确结果。
后来发现“□”处被墨水污损了,请你帮他找出□处的值分别是(。
)A。
□=1B。
□=2C。
□=1或2D。
无法确定6.解方程组 {ax+by=2.cx-7y=8.x=-2.y=2} 时,一学生把cx-7y=8看错而得到错误的解。
正确的解是{x=3.y=-2}。
那么a、b、c的值是(。
)A。
a=4.b=7.c=2B。
a=4.b=5.c=-2C。
a、b不能确定,c=-2D。
无法确定7.若关于x,y的二元一次方程组 {x+y=5k。
x-y=9k} 的解也是二元一次方程2x+3y=6的解,则k的值为(。
)A。
-3/4B。
-4/3C。
3/4D。
4/38.若二元一次方程组{3x-y=7.2x+3y=1.y=kx-9} 有公共解,则k的取值为(。
)A。
3B。
-3C。
-4D。
4二、XXX答题1.解关于x、y的二元一次方程组 {ax+by=c。
dx+ey=f},其中a、b、c、d、e、f均为已知数。
解法:求解二元一次方程组的一般方法是消元法。
完美二元一次方程组测试题及答案
《二元一次方程组》(一)填空题(每空2分,共28分):1.已知(a-2)x-by|a|-1=5是关于x、y的二元一次方程,则a=______,b=_____.2.若|2a+3b-7|与(2a+5b-1)2互为相反数,则a=______,b=______.3.二元一次方程3x+2y=15的正整数解为_______________.4.2x-3y=4x-y=5的解为_______________.5.已知是方程组的解,则m2-n2的值为_________.6.若满足方程组的x、y的值相等,则k=_______.7.已知==,且a+b-c=,则a=_______,b=_______,c=_______.8.解方程组,得x=______,y=______,z=______.(二)选择题(每小题2分,共16分):9.若方程组的解互为相反数,则k的值为…………………()(A)8 (B)9 (C)10 (D)1110.若,都是关于x、y的方程|a|x+by=6的解,则a+b的值为( )(A)4 (B)-10 (C)4或-10 (D)-4或1011.关于x,y的二元一次方程ax+b=y的两个解是,,则这个二元一次方程是……………………()(A)y=2x+3 (B)y=2x-3(C)y=2x+1 (D)y=-2x+1 12.由方程组可得,x∶y∶z是………………………………( )(A)1∶2∶1 (B)1∶(-2)∶(-1)(C)1∶(-2)∶1 (D)1∶2∶(-1)13.如果是方程组的解,那么,下列各式中成立的是…()(A)a+4c=2 (B)4a+c=2 (C)a+4c+2=0 (D)4a+c+2=0 14.关于x、y的二元一次方程组没有解时,m的值是…………()(A)-6 (B)-6 (C)1 (D)015.若方程组与有相同的解,则a、b的值为( )(A)2,3 (B)3,2 (C)2,-1 (D)-1,216.若2a+5b+4z=0,3a+b-7z=0,则a+b-c的值是……………………() (A)0 (B)1 (C)2 (D)-1(三)解方程组(每小题4分,共16分):17.18.19.20.《二元一次方程组》答案(一)填空题(每空2分,共28分):1.已知(a-2)x-by|a|-1=5是关于x、y的二元一次方程,则a=______,b=_____.【提示】要满足“二元”“一次”两个条件,必须a-2≠0,且b≠0,及| a|-1=1.【答案】a=-2,b≠0.2.若|2a+3b-7|与(2a+5b-1)2互为相反数,则a=______,b=______.【提示】由“互为相反数”,得|2a+3 b-7|+(2a+5b-1)2=0,再解方程组【答案】a=8,b=-3.3.二元一次方程3x+2y=15的正整数解为_______________.【提示】将方程化为y=,由y>0、x>0易知x比0大但比5小,且x、y均为整数.【答案】,4.2x-3y=4x-y=5的解为_______________.【提示】解方程组.【答案】5.已知是方程组的解,则m2-n2的值为_________.【提示】把代入方程组,求m,n 的值.【答案】-.6.若满足方程组的x、y的值相等,则k=_______.【提示】作y=x的代换,先求出x、y的值.【答案】k=.7.已知==,且a+b-c=,则a=_______,b=_______,c=_______.【提示】即作方程组,故可设a=2 k,b=3 k,c= 4 k,代入另一个方程求k的值.【答案】a=,b=,c=.【点评】设“比例系数”是解有关数量比的问题的常用方法.8.解方程组,得x=______,y=______,z=______.【提示】根据方程组的特征,可将三个方程左、右两边分别相加,得2 x+3 y+z=6,再与3 y+z=4相减,可得x.【答案】x=1,y=,z=3.(二)选择题(每小题2分,共16分):9.若方程组的解互为相反数,则k的值为…………………( )(A)8 (B)9 (C)10 (D)11【答【提示】将y=-x代入方程2 x-y=3,得x=1,y=-1,再代入含字母k的方程求解.案】D.10.若,都是关于x、y的方程|a|x+by=6的解,则a+b的值为()(A)4 (B)-10 (C)4或-10 (D)-4或10【提示】将x、y对应值代入,得关于|a|,b的方程组【答案】C.【点评】解有关绝对值的方程,要分类讨论.11.关于x,y的二元一次方程ax+b=y的两个解是,,则这个二元一次方程是……………………( )(A)y=2x+3 (B)y=2x-3(C)y=2x+1 (D)y=-2x+1【提示】将x、y的两对数值代入ax+b=y,求得关于a、b的方程组,求得a、b再代入已知方程.【答案】B.【点评】通过列方程组求待定字母系数是常用的解题方法.12.由方程组可得,x∶y∶z是………………………………()(A)1∶2∶1 (B)1∶(-2)∶(-1)(C)1∶(-2)∶1 (D)1∶2∶(-1)【提示】解方程组时,可用一个未知数的代数式表示另外两个未知数,再根据比例的性质求解.【答案】A.【点评】当方程组未知数的个数多于方程的个数时,把其中一个未知数看作已知常数来解方程组,是可行的方法.13.如果是方程组的解,那么,下列各式中成立的是…( )(A)a+4c=2 (B)4a+c=2 (C)a+4c+2=0 (D)4a+c+2=0 【提示】将代入方程组,消去b,可得关于a、c的等式.【答案】C.14.关于x、y的二元一次方程组没有解时,m的值是…………()(A)-6 (B)-6 (C)1 (D)0【提示】只要满足m∶2=3∶(-1)的条件,求m的值.【答案】B.【点评】对于方程组,仅当=≠时方程组无解.15.若方程组与有相同的解,则a、b的值为()(A)2,3 (B)3,2 (C)2,-1 (D)-1,2【提示】由题意,有“相同的解”,可得方程组,解之并代入方程组,求a、b.【答案】B.【点评】对方程组“解”的含义的正确理解是建立可解方程组的关键.16.若2a+5b+4z=0,3a+b-7z=0,则a+b-c的值是……………………()(A)0 (B)1 (C)2 (D)-1【提示】把c看作已知数,解方程组用关于c的代数式表示a、b,再代入a+b-c.【答案】A.【点评】本题还可采用整体代换(即把a+b-c看作一个整体)的求解方法.(三)解方程组(每小题4分,共16分):17.【提示】将方程组化为一般形式,再求解.【答案】18.【提示】将方程组化为整系数方程的一般形式,再用加减法消元.【答案】19.【提示】用换元法,设x-y=A,x+y=B,解关于A、B的方程组,进而求得x,y.【答案】20.【提示】将三个方程左,右两边分别相加,得4x-4y+4z=8,故x-y+z=2 ④,把④分别与第一、二个方程联立,然后用加、减消元法即可求得x、z的值.【答案】(四)解答题(每小题5分,共20分):21.已知,xyz≠0,求的值.【提示】把z看作已知数,用z的代数式表示x、y,可求得x∶y∶z=1∶2∶3.设x=k,y=2 k,z=3 k,代入代数式.【答案】.【点评】本题考查了方程组解法的灵活运用及比例的性质.若采用分别消去三个元可得方程21 y-14 z=0,21 x-7 z=0,14 x-7 y=0,仍不能由此求得x、y、z的确定解,因为这三个方程不是互相独立的.22.甲、乙两人解方程组,甲因看错a,解得,乙将其中一个方程的b写成了它的相反数,解得,求a、b的值.【提示】可从题意的反面入手,即没看错什么入手.如甲看错a,即没看错b,所求得的解应满足4 x-by=-1;而乙写错了一个方程中的b,则要分析才能确定,经判断是将第二方程中的b写错.【答案】a=1,b=3.23.已知满足方程2 x-3 y=m-4与3 x+4 y=m+5的x,y也满足方程2x+3y=3m-8,求m的值.【提示】由题意可先解方程组用m的代数式表示x,y再代入3 x+4 y=m+5.【答案】m=5.24.当x=1,3,-2时,代数式ax2+bx+c的值分别为2,0,20,求:(1)a、b、c的值;(2)当x=-2时,ax2+bx+c的值.【提示】由题得关于a、b、c的三元一次方程组,求出a、b、c再代入这个代数式.【答案】a=1,b=-5,c=6;20.【点评】本例若不设第一问,原则上也应在求出a、b、c后先写出这个代数式,再利用它求值.用待定系数法求a、b、c,是解这类问题常用的方法.(五)列方程组解应用题(第1题6分,其余各7分,共20分):25.有一个三位整数,将左边的数字移到右边,则比原来的数小45;又知百位上的数的9倍比由十位上的数与个位上的数组成的两位数小3.求原来的数.【提示】设百位上的数为x,由十位上的数与个位上的数组成的两位数为y,根据题意,得【答案】x=4,y=39,三位数是439.【点评】本例分别设十位上的数和个位上的数为不同的未知数,无论从列方程组还是解方程组都更加简捷易行.26.某人买了4 000元融资券,一种是一年期,年利率为9%,另一种是两年期,年利率是12%,分别在一年和两年到期时取出,共得利息780元.两种融资券各买了多少?【提示】若设一年期、二年期的融资券各买x元,y元,由题意,得【答案】x=1 200,y=2 800.【点评】本题列方程组时,易将二年期的融资券的利息误认为是y元,应弄清题设给出的是年利率,故几年到期的利息应该乘几.27.汽车从A地开往B地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B地.求AB两地的距离及原计划行驶的时间.【提示】设原计划用x小时,AB两地距离的一半为y千米,根据题意,得【答案】x=8,2y=360.【点评】与本例中设AB两地距离的一半为y千米一样,也可设原计划的一半时间为x小时.恰当地设未知数,可以使列方程组和解方程组都更加简便.。
二元一次方程组单元测试(含答案)
二元一次方程组单元测试(含答案) 第8章二元一次方程组章末检测一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列各方程组中,是二元一次方程组的是A。
{a+b=1.2a=b}B。
{3x-2y=5.2y-z=10}C。
{xy+3=1.xy=1}D。
{x-y=27.x+1.1y=405}2.二元一次方程2x-y=1有无数多个解,下列四组值中是该方程的解的是A。
{x=2.y=-0.5}B。
{x=4.y=7}C。
{x=1.y=-1}D。
{x=3.y=5}3.解方程组{3m-4n=7.9m-10n=-25}的最简单方法是A。
由②得m=(10n-25)/9,代入①中B。
由②得9m=10n-25,代入①中C。
由①得m=7/3-4n/3,代入②中D。
由①得3m=7+4n,代入②中4.下列说法正确的是A。
{x-3y=9.x+2xy=3}是二元一次方程组B。
方程x+3y=6的解是{x=3.y=1}C。
方程2x-y=3的解必是方程组{2x-y=3.3x+y=1}的解D。
{x=3.y=-12}是方程组{x- y=4.3x+3y=3}的解5.若|3x+2y-4|+27(5x+6y)²=0,则x,y的值分别是A。
{x=6.y=-5}B。
{x=5/2.y=-5/3}C。
{x=8.y=10}D。
{x=11/2.y=-11/3}6.七年级两个班植树,一天共植树30棵,已知甲班的植树棵数是乙班植树棵数的2倍,设甲、乙两班分别植树x棵,y棵,那么可列方程组A。
{x+y=30.x=2y}B。
{x+y=30.2x=y}C。
{x+y=30.y=2+x}D。
{x+y=30.x=2+y}7.若关于x,y的二元一次方程组{x-y=4k-5.3x+ay=b}的解满足x+y=9,则k的值是A。
1B。
2C。
3D。
48.已知关于x,y的二元一次方程组{2ax+b=y。
x+by=c}的解为{x=2.y=3},那么{ax+b/2.ay+c/3}的解为A。
二元一次方程组试题(含答案)
二元一次方程组测试题一、选择题1.方程2x -1y=0,3x+y=0,2x+xy=1,3x+y -2x=0,x 2-x+1=0中,二元一次方程的个数是( )A .1个B .2个C .3个D .4个2.二元一次方程组32325x y x y -=⎧⎨+=⎩的解是( ) A .3217 (230122)x x x x B C D y y y y =⎧⎧===⎧⎧⎪⎪⎨⎨⎨⎨==-=⎩⎩⎪⎪=⎩⎩ 3.关于x ,y 的二元一次方程组59x y k x y k +=⎧⎨-=⎩的解也是二元一次方程2x+3y=6的解,则k 的值是(• )A .k=-34B .k=34C .k=43D .k=-434.如果方程组1x y ax by c +=⎧⎨+=⎩有唯一的一组解,那么a ,b ,c 的值应当满足( )A .a=1,c=1B .a ≠bC .a=b=1,c ≠1D .a=1,c ≠15.方程3x+y=7的正整数解的个数是( )A .1个B .2个C .3个D .4个6.已知x ,y 满足方程组45x m y m +=⎧⎨-=⎩,则无论m 取何值,x ,y 恒有关系式是( )A .x+y=1B .x+y=-1C .x+y=9D .x+y=97.如果│x+y -1│和2(2x+y -3)2互为相反数,那么x ,y 的值为( )A .1122...2211x x x xBCD y y y y ==-==-⎧⎧⎧⎧⎨⎨⎨⎨==-=-=-⎩⎩⎩⎩8.若2,117x ax by y bx by =-+=⎧⎧⎨⎨=+=⎩⎩是方程组的解,则(a+b )·(a -b )的值为( )A .-353B .353C .-16D .16 二、填空题9.若2x 2a -5b +y a -3b =0是二元一次方程,则a=______,b=______.11.写出一个解为12x y =-⎧⎨=⎩的二元一次方程组__________. 12.a -b=2,a -c=12,则(b -c )3-3(b -c )+94=________. 13.已知32111x x y y ==-⎧⎧⎨⎨==⎩⎩和都是ax+by=7的解,则a=_______,b=______. 14.若2x 5a y b+4与-x 1-2b y 2a 是同类项,则b=________.15.方程mx -2y=x+5是二元一次方程时,则m________.16.方程组2332s t s t +-==4的解为________. 三、解答题17.解方程组(每小题4分,共8分)(1)257320x y x y -=⎧⎨-=⎩ 33(2)255(2)4x y x y +⎧=⎪⎨⎪-=-⎩18.已知y=3xy+x ,求代数式2322x xy y x xy y+---的值.(本小题5分)19.已知方程组256351648x y x y ax by bx ay +=--=⎧⎧⎨⎨-=-+=-⎩⎩与方程组的解相同.求(2a+b )2004的值.(本小题5分)20.已知x=1是关于x 的一元一次方程ax -1=2(x -b )的解,y=1是关于y •的一元一次方程b (y -3)=2(1-a )的解.在y=ax 2+bx -3中,求当x=-3时y 值.(本小题5分)215152y by +==- 时,甲看错了方程①中的a ,解得31x y =-⎧⎨=-⎩,乙看错了②中的b ,200620075()410x b a y =⎧+-⎨=⎩试求的值.(本小题5分)22.某商场按定价销售某种电器时,每台可获利48元,•按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等.求该电器每台的进价、•定价各是多少元?(本小题6分)23.一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50•个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,•多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?能配成多少张方桌.(本小题6分)24.甲、乙二人在上午8时,自A、B两地同时相向而行,上午10时相距36km,•二人继续前行,到12时又相距36km,已知甲每小时比乙多走2km,求A,B两地的距离.(•本小题6分)25.某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45•座客车每日每辆租金为220元,60座客车每日每辆租金为300元.试问:(1)春游学生共多少人?原计划租45座客车多少辆?(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算?(本小题6分)答案:一、选择题1.B 解析:②④是2.C 解析:用加减法,直接相加即可消去y,求得x的值.3.B 解析:解方程组可得x=7k,y=-2k,然后把x,y代入二元一次方程2x+3y=6,即2×7k+3×(-2k)=6,解得k=34,故选B.4.B 5.B 解析:正整数解为:1241x xy y==⎧⎧⎨⎨==⎩⎩6.C 解析:由方程组消去m,得到一个关于x,y的方程,化简这个方程即可.7.C 解析:根据两个非负数互为相反数,判断两个非负数必定都是0,所以有122 2301 x y xx y y+-==⎧⎧⎨⎨+-==-⎩⎩解得8.C 解析:把x=-2,y=1代入原方程组得213 275a b ab a b-+==-⎧⎧⎨⎨-+==-⎩⎩解得,∴(a+b)(a-b)=-16.二、填空题9.-2,-1 解析:根据二元一次方程的定义可得x,y的指数都是1,•2512a b a-==-⎧⎧10.24 解析:把a=1,b=-2代入原方程可得x+y 的值,把a=1,b=-2代入ax+ay -b=•7得x+y=5,因为x 2+2xy+y 2-1=(x+y )2-1,所以原式=24.11.2024x y x y +=⎧⎨-=-⎩(答案不唯一).12.278 解析:由a -b=2,a -c=12可得b -c=-32, 再代入(b -c )3-3(b -c )+94=278. 13.2 1 解析:本题既考查了二元一次方程的解的概念又考查了二元一次方程组的解法.分别将两组解法代入二元一次方程, 可得37221171a b a a b b +==⎧⎧⎨⎨-+==⎩⎩解这个方程组得. 14.-2 解析:本题涉及同类项的概念:所含字母相同,相同字母的指数也相同,•由此可得5a=1-2b ;b+4=2a ,将两式联立组成方程组,解出a ,b 的值,分别为a=1,b=-2,•故b a =-2.15.≠116. 24434342s t s t s t +⎧=⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩解析:解方程组即可. 三、解答题17.解:(1)257320x y x y -=⎧⎨-=⎩ 3得,6x -3y=15 ③ ②-③,得x=5.将x=5代入①,得y=5,所以原方程组的解为55x y =⎧⎨=⎩. (2)原方程组变为51565104x y x y +=⎧⎨-=-⎩ ①-②,得y=25.将y=25代入①,得5x+15×5=6,x=0, 所以原方程组的解为025x y =⎧⎪⎨=⎪⎩. 18.解:因为y=3xy+x ,所以x -y=-3xy .当x -y=-3xy 时,2322()32(3)332()2325x xy y x y xy xy xy x xy y x y xy xy xy +--+-+===------. 解析:首先根据已知条件得到x -y=-3xy ,再把要求的代数式化简成含有x -y 的式子,然后整体代入,使代数式中只含有xy ,约分后得解.19.解:因为两个方程组的解相同,所以解方程组25623562x y x x y y +=-=⎧⎧⎨⎨-==-⎩⎩解得 代入另两个方程得2143a b a a b b +=-=⎧⎧⎨⎨-+=-=-⎩⎩解得,∴原式=(2×1-3)2004=1. 20.解:将x=1,y=1分别代入方程得512(1)3(13)2(1)23a a b b a b ⎧=⎪-=-⎧⎪⎨⎨-=-⎩⎪=⎪⎩解方程组得 所以原式=53x 2+23x -3.当x=-3时,• 5221.解:把31x y =-⎧⎨=-⎩代入方程②,得4×(-3)=b ·(-1)-2, 解得b=10.把54x y =⎧⎨=⎩ 代入方程①,得5a+5×4=15,解得a=-1,所以a 2006+20072006200710()(1)()1010b -=-+-=1+(-1)=0. 22.解:设该电器每台的进价为x 元,定价为y 元.由题意得48,162,6(0.9)9(30)210.y x x y x y x y -==⎧⎧⎨⎨-=--=⎩⎩解得. 答:•该电器每台的进价是162元,定价是210元.解析:打九折是按定价的90%销售,利润=售价-进价.23.解:设用xm 3木料做桌面,ym 3木料做桌腿.由题意,得106,450300 4.x y x x y y +==⎧⎧⎨⎨⨯==⎩⎩解得 (2)6×50=300(张).答:用6m 3木料做桌面,4m 3木料做桌腿恰好能配成方桌,能配成300张方桌.解析:问题中有两个条件:①做桌面用的木料+做桌腿用的木料=10;②4×桌面个数=桌腿个数.24.解:设A 、B 两地相距xkm ,乙每小时走ykm ,则甲每小时走(y+2)km .根据题意,•得2(2)361084(2)3617y y x x y y x y ++=-=⎧⎧⎨⎨++=+=⎩⎩解这个方程组得.答:略. 25.解:(1)设参加春游的学生共x 人,原计划租用45座客车y 辆.根据题意,得451524060(1)5y x x y x y +==⎧⎧⎨⎨-==⎩⎩解这个方程组,得 . 答:春游学生共240人,原计划租45座客车5辆.(2)租45座客车:240÷45≈5.3,所以需租6辆,租金为220×6=1320(元);租60•座客车:240÷60=4,所以需租4辆,租金为300×4=1200(元).所以租用4辆60座客车更合算.解析:租车时最后一辆不管几个人都要用一辆,所以在计算车的辆数时用“收尾法”,而不是“四舍五入”.。
二元一次方程组测试
13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.
14.二元一次方程x+y=5的正整数解有______________.
15.以 为解的一个二元一次方程是_________.
16.已知 的解,则m=_______,n=______.
4.方程组 消去y后所得的方程是…………………………………………( )
A.3x-4x-10=8B.3x-4x+5=8 C.3x-4x-5=8D.3x-4x+10=8
5.已知 ,则2xy的值是…………………………………………………………( )
A.4B.2 C.-2D.-4
6.用加减法解方程组 时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形的结果:
27已知某铁路桥长800米,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用45秒,整列火车完全在桥上的时间是35秒,求火车的速度和长度。(6分)
28.现有新版100元和20元人民币33张,总面额为1620元,问其中100元和20元人民币各多少张?(6分)
二元一次方程组测试3
一、选择题:
1.下列方程中,是二元一次方程的是()
① ② ③ ④
其中变形正确的是………………………………………………………………()
A.①②B.③④C.①③D.②④
7.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排…………………………()
A.4辆B.5辆C.6辆D.7辆
11.在等式 中,当 时, ;当 时, ,那么 的值分别是 ( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组测试题
5
6
7
8
9
10.
11.
12.
13.
14.
15.据统计资料,茄子、西红柿的单位面积产量的比是1:2.把一块长为20m,宽为10m的长方形土地分为两块小长方形土地,分别种植茄子和西红柿.怎样划分这块土地,•才能使茄子、西红柿的总产量的比是3:4?
16. 如图所示,长青化工厂与A、B两地有公路、铁
路相连,这家化工厂从A地购买一批每吨1000元的
原料运回工厂,制成每吨8000元的产品运到B地.
已知公路运价为1.5元/(吨•千米),铁路运价为1.2
元/(吨•千米),且这两次运输共支出公路运费15000
元,铁路运费97200元.
(1)这家化工厂购进原料多少吨?制成成品多少
吨?
(2)这批产品的销售款比原料费与运输费的和多多
少元?
17.甲菜农要分别运蔬菜给A市场10吨,B市场8吨,但现在仅有12吨蔬菜,
还需从乙菜农处调6吨,经了解,从甲菜农处运1吨蔬菜到A、B市场的运费分
别为250元和150元,从乙菜农处运1吨蔬菜到A、B市场的运费分别为400
元和200元,要求总运费为4200元,问如何进行调运?
18.
19.
某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:
甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生
人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组
团共需花费10 800元,若两校联合组团只需花赞18 000元.
(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?
(2)两所学校报名参加旅游的学生各有多少人?。