多项式与多项式相乘

合集下载

多项式与多项式的乘法

多项式与多项式的乘法
(a+b)(m+n)=am+an+bm+bn
实质上是转化为单项式×多项式 的运算
不要漏乘;正确确定各符号;结 果要最简
(x-1)2在一般情况下不等于x2-12.
[义务教育教科书]( R J ) 八 上 数 学 课 件
第十四章 整式的乘法与因式分解
14.1.4 整式的乘法
第3课时 整式的除法
导入新课
例2 已知am=12,an=2,a=3,求am-n-1的值. 解:∵am=12,an=2,a=3, ∴am-n-1=am÷an÷a=12÷2÷3=2.
方法总结:解此题的关键是逆用同底数幂的除法, 对am-n-1进行变形,再代入数值进行计算.
解:去括号,得40x-8x2=34-8x2+6x, 移项,得40x-6x=34, 合并同类项,得34x=34, 解得 x=1.
拓展提升
8.某同学在计算一个多项式乘以-3x2时,算成了加
上-3x2,得到的答案是x2-2x+1,那么正确
的计算结果是多少? 解:设这个多项式为A,则
A+(-3x2)=x2-2x+1, ∴A=4x2-2x+1.
am ÷an=am-n
验证:因为am-n ·an=am-n+n=am,所以am ÷an=am-n.
知识要点 同底数幂的除法
一般地,我们有
am ÷an=am-n (a ≠0,m,n都是正整数,且m>n)
即 同底数幂相除,底数不变,指数相减.
想一想:am÷am=? (a≠0) 答:am÷am=1,根据同底数幂的除法法则可得am÷am=a0.
3.如果(x+a)(x+b)的结果中不含x的一次项,那么a、b
满足( C )

《多项式与多项式相乘》

《多项式与多项式相乘》

相同项合并
总结词
在两个多项式相乘的结果中,对于两个多项式中相同 的项,将其系数合并。
详细描述
例如,假设有两个多项式A(a1x^n + a2x^(n-1) + ... + an)和B(b1x^n + b2x^(n-1) + ... + bm),其中 an=bm,那么在它们相乘的结果中,这一项的系数就 是两个多项式相应项系数的乘积再加上余项的系数。 例如,如果an=bm=5,那么这一项的系数就是 5*5+1=26。
排列的计算
多项式相乘可以用于计算排列数,即将n 个不同元素全部排列在一起,共有多少种 排列方式。
VS
组合的计算
多项式相乘也可以用于计算组合数,即将 n个不同元素中取出m个元素进行组合, 共有多少种组合方式。
05
多项式相乘的例子
两个二次三项式的相乘
例子1
$多项式A:2x^2+3x+1$,$多项式 B:x^2+2x+3$,相乘结果为: $2x^4+7x^3+9x^2+6x+3$。
展开平方差公式
利用平方差公式可以将多 项式中的某些项进行展开 ,简化多项式的形式。
微积分中的近似计算
泰勒级数展开
利用多项式相乘可以将一个函数展开成泰勒级数,从而近似计算函数的值。
近似计算
在进行微积分中的近似计算时,可以利用多项式相乘来近似表达一个函数, 提高计算的精度。
组合数学中的排列与组合计算
03
多项式相乘的步骤
确定多项式的项数和次数
确定第一个多项式的项数和次 数。
确定第二个多项式的项数和次 数。
计算两个多项式的项数和次数 的乘积,得到相乘后的多项式

多项式与多项式相乘

多项式与多项式相乘
多项式与多项式相乘
xx年xx月xx日
contents
目录
• 多项式与多项式相乘概述 • 多项式相乘的原理 • 多项式相乘的算法实现 • 多项式相乘的应用实例 • 多项式相乘的注意事项与总结
01
多项式与多项式相乘概述
多项式的定义与表示方法
多项式的定义
多项式是由若干个单项式组成的数学表达式。每个单项式由 系数和字母组成,且每个单项式的次数不超过给定的多项式 的次数。
多项式的表示方法
多项式通常用括号括起来的表达式表示,例如:$f(x) = 3x^2 + 2x + 1$。其中,$x^2$表示$x$的平方,$x$表示 $x$的一次方,常数项表示没有字母的项。
多项式相乘的定义与计算方法
多项式相乘的定义
两个多项式相乘,即是将两个多项式的每一项分别相乘 ,再合并同类项得到一个新的多项式。
高次多项式相乘的例子
总结词
这是一个较为复杂的多项式相乘的例子,通过这个例 子,我们可以了解如何处理高次多项式的相乘和需要 注意的问题。
详细描述
假设我们有两个高次多项式 $f(x)=x^4+2x^3+3x^2+4x+5$和 $g(x)=x^3+x^2+x+2$,那么它们的乘积可以表示 为$f(x) \times g(x)$。通过这个例子,我们可以看到 处理高次多项式相乘的基本步骤和需要注意的问题, 例如如何合并同类项、如何处理符号以及如何进行项 的排列等。
确定多项式的各项数
首先需要确定两个多项式的各项数,即每个多项式有多少个系数不同的项。
对应项相乘
将两个多项式的对应项相乘,得到一个新的多项式。例如,第一个多项式的第一项与第二个多项式的第一项相乘,第二个 多项式的第二项与第一个多项式的第二项相乘,以此类推。

多项式与多项式相乘说课课件

多项式与多项式相乘说课课件
引导学生进一步探索多项式与多项式相乘的性质 和应用,例如在数学分析、物理和工程等领域中 的应用。
自主学习
鼓励学生自主探索和学习多项式与多项式相乘的 相关知识,培养自主学习和解决问题的能力。
3
实践应用
通过实际问题和项目,让学生将所学知识应用于 实际情境中,提高解决实际问题的能力。
感谢您的观看
THANKS
多项式的性质
总结词
多项式具有交换律、结合律和分配律等基本性质。
详细描述
多项式具有交换律,即多项式的加法或减法满足交换律,即顺序可以任意调换。多项式还具有结合律,即加法或 减法的结合顺序可以任意改变。此外,多项式还具有分配律,即多项式与单项式相乘时,可以将单项式分别与多 项式的各个单项式相乘。
03
多项式与多项式相乘说 课ppt课件
目录 CONTENT
• 引言 • 多项式的定义与性质 • 多项式相乘的规则与步骤 • 多项式相乘的应用与实例 • 教学方法与建议 • 总结与展望
01
引言
课程背景
数学是基础学科,多项式相乘 是数学中的基本运算之一。
多项式相乘在实际问题中有着 广泛的应用,如物理、工程、 经济等领域。
逐项相乘
将两个多项式的每一项分 别相乘,得到新的项。
合并同类项
将相同字母和相同字母的 指数相同的项进行合并。
举例说明多项式相乘的过程
举例1
$(2x + 3y) times (x - y)$
举例2
$(x^2 + 2x + 1) times (x + 1)$
举例3
$(x^2 - 2x + 1) times (x - 1)$
04
多项式相乘的应用与实例

多项式与多项式相乘

多项式与多项式相乘
对于多项式的乘法运算,需要先确定 运算的顺序和每一步的运算结果,再 将这些结果合并起来得到最终结果。
熟悉乘法运算的技巧
多项式的乘法运算中,可以使用分配 律、结合律等技巧简化运算,提高运 算速度和准确度。
多练习
多项式相乘是中学数学中的一个重要 知识点,需要多做一些练习题,熟悉 各种情况下的运算方法和技巧。
02
系数
多项式中各项的数字因数叫做系数。
03
次数
多项式中次数最高项的次数叫做多项 式的次数。
多项式的表示方法
一般形式
$f(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$
特殊形式
$f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 ... + a_nx^n$
多项式相乘的复杂例子
高次多项式的乘积
$(x^3+2x^2+3x)(x^4+x^3+x^2+x+1) = x^7+3x^6+5x^5+7x^4+9x^3+10x^2+11x$
多项式与常数的乘积
$(x^2-4)(5) = 5x^2-20$
多项式相乘在解决实际问题中的应用
解方程
将方程左侧的多项式与右侧的多项式相乘,可以求解方程的根。
THANKS
VS
多项式相乘的运算规则
对于两个多项式,它们的乘积的每一项都 是由两个多项式的各项对应相乘得到。例 如,$(x^2 + 3x)(x^3 + 2x^2 + 5x + 6) = x^5 + 5x^4 + 11x^3 + 11x^2 + 15x + 18$。

第3课时 多项式与多项式相乘

第3课时 多项式与多项式相乘

第3课时多项式与多项式相乘【教学目标】理解和掌握多项式与多项式相乘的法则,并能熟练运用法则进行计算.【教学重点】多项式与多项式相乘的法则及应用.【教学难点】准确计算出多项式与多项式相乘的结果.教学过程一、组织教学,复习提问1.复习单项式乘以单项式的运算法则.2.复习单项式乘以多项式的运算法则.二、创设情境,引入新课问题1:一块长方形的菜地,长为a,宽为m,现将它的长增加b,宽增加n,求扩大后菜地的面积.师生共同画出图形:师:根据题意,结合图形,请同学们求出面积.你有几种求法?说出你是怎样考虑的.生1:整体来求这块菜地的面积(a+b)(m+n).生2:这块菜地可以看成是4块小矩形的面积之和am+bm+an+bn.师:这两位同学回答得非常好.于是就有:(a+b)(m+n)=am+bm+an+bn.上面的等式我们能否用语言表达出来?请同学们思考.(学生交流、讨论)师生共同总结得出多项式乘以多项式的法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.三、例题分析师:同学们,下面我们一起来做几个例题,巩固一下刚才学习的新知识.【例1】计算:(1)(-2x-1)(3x-2)(2)(ax+b)(cx+d)指名板演,教师评价.解:(1)(-2x-1)(3x-2)=(-2x)·3x+(-2x)·(-2)+(-1)·3x+(-1)×(-2)=-6x2+4x-3x+2=-6x2+x+2(2)(ax+b)(cx+d)=ax·cx+ax·d+b·cx+b·d=acx2+adx+bcx+bd【例2】(1)(a+b)(a2-ab+b2)(2)(y2+y+1)(y+2)指名板演,其余学生在练习本上完成,教师巡视,对有困难的学生予以帮助.解:(1)(a+b)(a2-ab+b2)=a·a2-a·ab+a·b2+b·a2-b·ab+b·b2=a3+b3(2)(y2+y+1)(y+2)=y3+2y2+y2+2y+y+2=y3+3y2+3y+2四、巩固练习1.计算:(1)(3x-y)(3x+y)解:原式=9x2-y2(2)(2x-y)(4x2+2xy+y2)解:原式=8x3-y3(3)(a-b)2解:原式=a2-2ab+b22.解方程:(x-3)(x+8)=(x+4)(x-7)+2(x+5).解:x=1指名板演,其余学生在练习本上完成.五、提升练习1.化简并求值:(x-y)(x-2y)-(3x-2y)(x-2y),其中x=4,y=-1.解:原式=-542.解方程:(3x-2)(2x-3)=(6x+5)(x-1).解:x=11 12指名板演,教师评价.六、课堂小结1.用一个多项式的每一项乘另一个多项式的每一项,不要漏乘.2.计算结果中如果有同类项,一定要合并.。

多项式与多项式相乘及同底数幂的除法

多项式与多项式相乘及同底数幂的除法

同底数幂的除法
想一想
107 104 107 104
( 10) ( 10) ( 10)(10 )( 10)(10)(10 ) ( 10) (10 ) (10 )(10 )
103
同底数幂的除法法则:
一般地,设m、n为正整数,m>n,a 0,有
am an amn
= (4abc) +( 1 b2 ) + (2b)

4abc


1
b2
7
2b
7
在计算单项式除以单项式时,要注意什么?
先定商的符号(同号得正,异号得负);
注意添括号;
计算
⑴ (12a3-6a2+3a)÷3a; 解:=12a3÷3a-6a2÷3a+3a÷3a
=4a2-2a+1
(2)[(x+y)2-y(2x+y)-8x]÷2x. 解: =(x2+2xy+y2-2xy-y2-8x)÷2x
(5) (x+y)(2x–y)(3x+2y).
(5) 原式=(2x2-xy+2xy-y2)(3x+2y ) = (2x2+xy-y2)(3x+2y) = 6x3+4x2y+3x2y+2xy2-3xy2-2y3 =6x3 + 7x2y-xy2-2y3
1、计算:
(1)(m+4)(m+5); (2)(n +5)(n−3) ; (3)(x+2a) (x+4a) ; (4)(x-25)(x-4) .
(3) (a-b)6÷(b-a)3 = (b-a)6÷(b-a)3 = (b-a)6–3 =(b-a)3

多项式与多项式相乘说课稿

多项式与多项式相乘说课稿

14。

1.4整式的乘法《多项式与多项式相乘》说课稿尊敬的各位评委老师,大家好!今天我说课的内容是人教版第十章第一节第四部分第三课时多项式乘多项式,我将会从以下六个方面进行说课.一、教材分析(一)教材的地位和作用第14章“整式的乘除”是继“整式的加减”之后,初中阶段对整式的第二次的研究。

是进一步学习因式分解、分式方程等知识的基础,同时它在实际生活中有着广泛的应用。

“多项式与多项式相乘"是本章重点内容之一,是单项式的乘法、同底数幂相乘、幂的乘方等运算法则的综合运用。

本课学习多项式与多项式相乘的法则,是学生初中阶段学习必备的基础知识与基本技能、在解决实际问题中起到基础作用,在提高学生的运算能力方面有重要的作用。

同时,对后续教学内容起到奠基作用。

(二)、三维目标知识与技能:(1)理解和掌握多项式乘以多项式的法则及其推导过程;(2)能熟练运用多项式乘以多项式的法则进行多项式乘法的运算。

过程与方法:经历探索乘法法则的过程,发展观察、归纳的能力,体会乘法分配律的作用与转化思想。

情感态度与价值观:充分调动学生学习的积极性、主动性及与他人沟通交往的能力。

培养学生的创新精神与能力。

(三)教学重点:多项式与多项式相乘的运算法则的探索教学难点:灵活运用法则进行计算和化简二、学情分析从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。

但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

三、教法、学法分析本节课采用以复旧孕新的引课方式,提高学生的学习兴趣和学习积极性。

充分遵循学生的认知规律,坚持启发式.以启发引导法为主,进行讲解及练习,使学生能顺利地掌握重点、突破难点,逐步提高观察、分析、抽象的能力。

多项式与多项式相乘法则

多项式与多项式相乘法则

多项式与多项式相乘法则哎呀,今天咱们聊聊多项式和多项式相乘这件事。

听起来有点儿复杂,对吧?别担心,咱们用轻松的方式来搞定它。

想象一下,你有两个好朋友,分别叫做A和B,他们各自的性格特点就像多项式里的不同项。

A喜欢做长长的数学题,而B则热爱小巧玲珑的算式。

他们俩一旦碰到一起,那可真是热闹非凡,简直就是一场数学派对!说到相乘,首先你得明白,每个项都要跟对方的每个项都打个招呼。

就像你去参加聚会,得和每个朋友握手,才能把关系搞得融洽。

比如说,A有个项是3x,B有个项是2y。

那么这俩一结合,嘿,3x和2y就变成了6xy,咱们这就把握住了他们俩的合作精神。

你还得继续看看A的其他项,比如说A还有一个5,B呢有个x,嘿,5和x相乘就成了5x。

简单吧?咱们就继续往下推。

假如A还有个项是4y,B有个项是3x,那就会产生12xy。

这么一来,你的多项式就丰富多彩起来了。

真是如鱼得水,乐在其中。

你瞧,这样的相乘过程,就像一场精彩的双人舞,每个步伐都是精心设计的,最后的成果自然让人眼前一亮。

别忘了,乘法是有顺序的哦!你不能跳过任何一步,就像做饭时得把调料都加齐,不然出来的菜可就没味了。

每次相乘的时候,必须逐一核对,确保每一项都被考虑到。

想象一下,假如你在聚会中漏掉了一个朋友,那可就尴尬了,大家都在聊而你不知道他们的热闹,岂不是错过了精彩?然后,最有意思的是,所有的项最后都得汇聚在一起,就像大家在聚会中分享彼此的故事。

你会看到,各种各样的项,正好拼凑成一个全新的多项式。

就像是大家各显神通,最后的成果是个无与伦比的大聚会。

每个项的存在都有其独特的意义,这就像生活中的每一个小细节,缺一不可。

别忘了,很多时候,多项式的乘法可以让我们看到意想不到的美。

每个项之间的联系就像人际关系的交织,让我们在数学的世界里找到乐趣。

就算是再复杂的多项式,只要慢慢来,仔细分析,总能迎刃而解。

咱们生活中也是这样,有时候一件事情看起来很复杂,实际上只要我们耐心去理解,就能找到解决的办法。

《多项式与多项式相乘》专项练习

《多项式与多项式相乘》专项练习

《多项式与多项式相乘》专项练习要点感知1多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.即(a+b)(m+n)=__________.预习练习1-1计算:(a+1)(b+1)=__________.要点感知2两个多项式相乘的结果若有同类项,应__________,使结果化为最简形式.预习练习2-1计算:(x-2y)(2x+y)=__________.知识点多项式乘以多项式1.计算(x+2)(x-3)的结果是( )A.x2+5x-6B.x2-5x-6C.x2+x-6D.x2-x-62.若(x+3)(x-5)=x2+mx-15,则m的值为( )A.-5B.-2C.5D.23.下列计算正确的是( )A.(a+5)(a-5)=a2-5B.(x+2)(x-3)=x2-6C.(x+1)(x-2)=x2-x-2D.(x-1)(x+3)=x2-3x-34.若(x+m)(x-5)的积中不含x的一次项,则m的值为( )A.0B.5C.-5D.5或-55.下列各式中,结果错误的是( )A.(x+2)(x-3)=x2-x-6B.(x-4)(x+4)=x2-16C.(2x+3)(2x-6)=2x2-3x-18D.(2x-1)(2x+2)=4x2+2x-26.已知a+b=2,ab=1,化简(a-2)(b-2)的结果为( )A.1B.2C.-1D.-27.设M=(x-3)(x-7),N=(x-2)(x-8),则M与N的关系为( )A.M<NB.M>NC.M=ND.不能确定8.化简(x+3)(x-4)-(x+6)(x-1)的结果为__________.9.若a2+a+2 013=2 014,则(5-a)(6+a)=__________.10.若(x+a)(x+2)=x2-5x+b,则a=__________,b=__________.11.如图,长方形ABCD的面积为__________(用含x的化简后的结果表示).12.计算:(1)(3a+b)(a-2b);(2)(x+5)(x-1);(3)(x+y)(x2-xy+y2);(4)(0.1m-0.2n)(0.3m+0.4n);(5)(12x+2)(4x-12).13.先化简,再求值:(x-4)(x-2)-(x-1)(x+3),其中x=-5 2 .14.方程(x-3)(x+4)=(x+5)(x-6)的解是( )A.x=9B.x=-9C.x=6D.x=-615.若6x2-19x+15=(ax+b)(cx+d),则ac+bd等于( )A.36B.15C.19D.2116.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________.17.一个长方形的长为2x cm,宽比长少4 cm,若将长和宽都增加3 cm,则面积增大了__________cm2,若x=3,则增加的面积为__________cm2.18.观察下列各式:(x-1)(x+1)=x2-1,(x-1)(x2+x+1)=x3-1,(x-1)(x3+x2+x+1)=x4-1,…请你猜想(x-1)(x n+x n-1+…+x2+x+1)=__________.(n为正整数)19.计算:(1) (a+3)(a-1)+a(a-2);(2)(-4x-3y2)(3y2-4x);(3)(2x+5y)(3x-2y)-2x(x-3y);(4)5x2-(x-2)(3x+1)-2(x+1)(x-5).20.对于任意自然数n,多项式n(n+5)-(n-3)(n+2)的值能否被6整除.21.如图,学校的课外生物小组的实验园地是一块长35米,宽26米的长方形,为了行走方便和便于管理,现要在中间修建同样宽的道路,路宽均为a米,余下的作为种植面积,求种植面积是多少?22.已知|2a+3b-7|+(a-9b+7)2=0,试求(14a2-12ab+b2)(12a+b)的值.23.小青和小芳分别计算同一道整式乘法题:(2x+a)(3x+b),小青由于抄错了第一个多项式中a的符号,得到的结果为6x2-13x+6,小芳由于抄错了第二个多项式中x的系数,得到的结果为2x2-x-6,则这道题的正确结果是__________.24.计算下列各式,然后回答问题.(a+2)(a+3)=__________;(a+2)(a-3)=__________;(a-2)(a+3)=__________;(a-2)(a-3)=__________.(1)从上面的计算中总结规律,写出下式结果:(x+a)(x+b)=__________;(2)运用上述规律,直接写出下列各题结果.①(x+2 013)(x-2 012)=__________;②(x-2 013)(x-2 012)=__________.参考答案要点感知1am+an+bm+bn预习练习1-1ab+a+b+1要点感知2 合并预习练习2-12x2-3xy-2y21.D2.B3.C4.B5.C6.A7.B8.-6x-69.29 10.-7-1411.x2+5x+612.(1)原式=3a2-6ab+ab-2b2=3a2-5ab-2b2.(2)原式=x2-x+5x-5=x2+4x-5.(3)原式=x3-x2y+xy2+x2y-xy2+y3=x3+y3.(4)原式=0.03m2+0.04mn-0.06mn-0.08n2=0.03m2-0.02mn-0.08n2.(5)原式=2x2-14x+8x-1=2x2+314x-1.13.(x-4)(x-2)-(x-1)(x+3)=x2-6x+8-(x2+2x-3)=-8x+11.把x=-52代入原式,得原式=-8x+11=-8×(-52)+11=31.14.B 15.D 16.1 17.12x-3 33 18.x n+1-119.(1)原式=a2-a+3a-3+a2-2a=2a2-3.(2)原式=-4x·3y2-4x·(-4x)-3y2·3y2-3y2·(-4x)=(-4x)2-(3y2)2=16x2-9y4.(3)原式=6x2+11xy-10y2-2x2+6xy=4x2+17xy-10y2.(4)原式=5x2-(3x2-5x-2)-2(x2-4x-5)=5x2-3x2+5x+2-2x2+8x+10=13x+12.20.因为n(n+5)-(n-3)(n+2)=n2+5n-(n2-n-6)=n2+5n-n2+n+6=6n+6=6(n+1),所以,对于任意自然数n,多项式n(n+5)-(n-3)(n+2)的值都能被6整除.21.利用平移将横向的道路都平移到BC上,纵向的道路都平移到CD上,则不难发现剩余部分恰好是一个长为(35-a)米,宽为(26-a)米的长方形,所以种植面积为:(35-a)(26-a)=910-61a+a2(平方米).22.原式=18a3+14a2b-14a2b-12ab2+12ab2+b3=18a3+b3.依题意,得2370,970.a ba b+-=-+=⎧⎨⎩解得2,1.ab==⎧⎨⎩所以原式=18×23+13=2.23.6x2+5x-624.a2+5a+6 a2-a-6 a2+a-6 a2-5a+6(1)x2+(a+b)x+ab(2)①x2+x-4 050 156②x2-4 025x+4 050 156。

《多项式与多项式相乘》

《多项式与多项式相乘》

多项式的运算规则
加法
多项式相加是指相同字母的系数相加,相同字母的次数不变。例如,$(3x^{2} + 4x) + (2x^{2} - x) = 5x^{2} + 3x$。
减法
多项式相减是指相同字母的系数相减,相同字母的次数不变。例如,$(3x^{2} + 4x) (2x^{2} - x) = x^{2} + 5x$。
04
多项式相乘的应用
代数方程的求解
01
02
03
提取公因式
将多项式中的公因式提取 出来,便于进一步化简或 求解。
合并同类项
将多项式中相同的项合并 起来,使多项式更加简洁 ,便于操作。
因式分解
将多项式分解成若干个因 式之积,从而可以直接求 解代数方程。
函数的分析与求解
函数的零点
通过多项式相乘可以求出 函数的零点,即函数值为0 的点。
《数学年刊》
该期刊发表了一些重要的数学研究成果,包 括多项式相乘的某些特殊情况和性质的研究 。
感谢您的观看
THANKS
级数展开
通过多项式相乘可以将函数展开成 无穷级数,从而可以更好地分析函 数的性质。
05
多项式相乘的注意事项
符号问题
保持符号的一致性
在多项式相乘时,要注意保持各项符号的一致性。例如, $(x^2 + 2x) \times (x^2 - 4)$中,$x^2$的系数是正数, $2x$的系数是负数,相乘时要注意各项符号的一致性。
函数的极值
通过多项式相乘可以判断 函数的极值点,即函数值 发生变化的点。
函数的单调性
通过多项式相乘可以判断 函数的单调性,即函数值 增大或减小的趋势。

14.1.4 多项式与多项式相乘

14.1.4 多项式与多项式相乘

第 14 单元课题名称14.1整式的乘法14.1.4 多项式乘多项式总课时数 5 第(5)课时教材及学情分析1.教材分析:多项式与多项式相乘是在前面同底数幂相乘,幂的乘方,积的乘方乘法法则的基础理论上的一个综合使用,学生已经具备了做单项式与单项式的乘法能力2.学情分析习惯表现:认真积极,自觉性强;能力表现:数学思维能力,语言表达能力有待于进一步加强.教学目标1.探究并掌握多项式与多项式的乘法运算法则.2.能够灵活运用多项式与多项式的乘法运算法则进行计算.教学重点探究并掌握多项式与多项式的乘法运算法则.教学难点能够灵活运用多项式与多项式的乘法运算法则进行计算教法学法教法:讲练结合法、讨论法、观察法、多媒体电化教学法学法:自主探索与合作交流相结合教学资源课前准备PPT、多媒体教学环节教学过程设计二次备课一、复习巩固1.口述单项式乘以单项式、单项式乘以多项式的乘法法则.2.计算2x(3x2+1),正确的结果是( )A.5x3+2x B.6x3+1 C.6x3+2x D.6x2+2x3.计算:(1)-x(2x+3x2-2)=___________;(2)-2ab(a b-3ab2-1)=____________.二、新知探究探究点1:多项式乘以多项式问题1:某地区在退耕还林期间,有一块原长m米,宽为a米的长方形林区,长增加了n米,宽增加了b米,请你计算这块林区现在的面积?你能用不同的形式表示所拼图的面积吗?方法一:_________________________________;方法二:_________________________________;方法三:_________________________________.根据以上式子,你能得出哪些等式?想一想:如何计算多项式乘以多项式?1.计算(m+n)X=___________________;2.若X=a+b,则(m+n)X=(m+n)(a+b)=____________+____________=_____________________.议一议:根据以上计算,讨论多项式乘以多项式的乘法法则.要点归纳:多项式与多项式相乘,先用一个多项式的每一项分别________另一个多项式的每一项,再把所得的积________.典例精析例1:先化简,再求值:(a-2b)(a2+2ab+4b2)-a(a-5b)(a+3b),其中a=-1,b=1.方法总结:在进行多项式乘以多项式的计算时,需要注意的三个问题:(1)漏乘;(2)符号问题;(3)最后结果应化成最简形式.例2:已知ax2+bx+1(a≠0)与3x-2的积不含x2项,也不含x项,求系数a、b 的值.方法总结:解决此类问题首先要利用多项式乘法法则计算出展开式,合并同类项后,再根据不含某一项,可得这一项系数等于零,再列出方程解答.练一练:计算(1)(x+2)(x+3)=__________;(2)(x-4)(x+1)=__________;(3)(y+4)(y-2)=__________;(4)(y-5)(y-3)=__________.由上面计算的结果找规律,观察填空:(x+p)(x+q)=___2+______x+_______.典例精析例3:已知等式(x+a)(x+b)= x2+mx+28,其中a、b、m均为正整数,你认为m可取哪些值?它与a、b的取值有关吗?请你写出所有满足题意的m的值.针对训练1.下列多项式相乘的结果为x 2+3x -18的是( )A .(x -2)(x +9)B .(x +2)(x -9)C .(x +3)(x -6)D .(x -3)(x +6)2.当x 取任意实数时,等式(x+2)(x-1)=x 2+mx+n 恒成立,则m+n 的值为( )A .1B .-2C .-1 D.23.李老师做了个长方形教具,其中一边长为2a+b ,另一边长为a-b ,则该长方形的面积为( )A .6a+bB .2a 2-ab-b 2C .3aD .10a-b4.计算:(1)(m +1)(2m -1); (2)(2a -3b)(3a +2b);(3)(y +1)2; (4)a(a -3)+(2-a)(2+a).5.先化简,再求值:(x -5)(x +2)-(x +1)(x -2),其中x =-4.三、课堂小结1.多项式乘以多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项分别________另一个多项式的每一项,再把所得的积________.2.注意事项:(1)漏乘;(2)符号问题;(3)最后结果应化成最简形式.四、当堂检测1.计算(x-1)(x-2)的结果为( )A .x 2+3x-2B .x 2-3x-2C .x 2+3x+2D .x 2-3x+22.下列多项式相乘,结果为x 2-4x-12的是( )A .(x-4)(x+3) B.(x-6)(x+2)C .(x-4)(x-3) D.(x+6)(x-2)3.如果(x+a)(x+b)的结果中不含x 的一次项,那么a 、b 满足( )A .a=bB .a=0C .a=-bD .b=04.判别下列解法是否正确,若错,请说出理由. 21(23)(2)(1);x x x ----() 22(23)(2)(1);x x x ----()2246(1)(1)x x x x =-+--- )1(6342222--+--=x x x x22246(21)x x x x =-+--+ 167222+-+-=x x x2224621x x x x =-+-+- 277.x x =-+225;x x =-+5.计算:(1)(x −3y)(x+7y); (2)(2x + 5y)(3x −2y).。

《多项式与多项式相乘》说课稿

《多项式与多项式相乘》说课稿

《多项式与多项式相乘》说课稿一、教材的地位和作用《多项式与多项式相乘》是选自人教版初二上册第十五章第一节的内容。

这部分内容之前已经学习了幂的乘方,积的乘方,单项式与单项式相乘,单项式与多项式相乘,这些是本节课的基础。

多项式与多项式相乘的主要内容是其相乘法则,即用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

这也为后面学习平方差与完全平方公式的应用以及杨辉三角等内容奠定了基础。

二、教学目标根据对教材内容的分析,以及在新课改理念的指导下,制定了如下三维目标:1.知识与技能目标:理解并掌握多项式乘以多项式的法则,能够按步骤进行简单的多项式乘法的运算。

2.过程与方法目标:通过对创设情景中问题的探索,体验数学是一个充满观察、归纳的过程;通过整体处理,再利用分配律的结果与几何图形面积的结果进行比较,培养学生从不同的角度思考数学的意识;3.情感、态度与价值观目标:体验数学活动的探究性和创造性,感受数学的严谨性及数学结论的确定性。

三、教学重难点通过以上对教材内容及教学目标的分析,以及学生已有的知识水平,本节课的重难点如下:教学重点:多项式乘与多项式相乘法则的理解和应用;教学难点:将多项式与多项式的乘法转化为单项式与多项式的乘法,防止漏乘、重复乘和看错符号。

四、说学情为了达到更好的教学效果,我对学生的情况做了如下的分析:初中生的抽象思维开始有了一定的发展,但还需一定的感性材料作支撑,所以教学过程中我会注重直观材料的运用,并引导学生自主思考,以激发学生的学习兴趣,调动学生的积极性和主动性。

五、说教法基于以上对教材,学情的分析,以及新课改的要求,我在本课中采用的教法有:讲授法,对比法,引导归纳法,这样可突出教师的主导作用,并为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习。

六、说学法新课改的理念告诉我们,学生不仅要学到具体的知识,更重要的是要学会怎样去学习,所以本节课中我将用到的学法有:合作交流和自主探究归纳。

多项式乘多项式(解析版)

多项式乘多项式(解析版)

9.3多项式乘多项式题型一:多项式乘以多项式计算【例题1】(2021·广西)计算:()()36x x -+. 【答案】x 2+3x -18【分析】根据多项式乘以多项式的计算方法进行计算即可. 【详解】解:(x -3)(x +6)=x 2+6x -3x -18 =x 2+3x -18.【点睛】本题考查多项式乘以多项式的计算方法,掌握多项式乘以多项式的计算法则,是解决问题的关键. 变式训练【变式1-1】(2021·陕西)计算:()()()241221x x x x +---. 【答案】92x -【分析】先根据多项式与多项式乘法及单项式与多项式的乘法法则计算,再去括号合并同类项即可. 【详解】解:()()()241221x x x x +--- =4x 2-x +8x -2-(4x 2-2x ) =4x 2-x +8x -2-4x 2+2x =92x -.【点睛】本题考查了整式的混合运算,熟练掌握运算顺序是解答本题的关键.混合运算的顺序是先算乘方,知识点管理 归类探究再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序. 【变式1-2】(2021·江西南昌·八年级期末)计算:(1)()()211x x x -++;(2)()()()321x x x x +---. 【答案】(1)31x -;(2)26x -【分析】根据多项式乘以多项式,单项式乘以多项式的法则计算即可. 【详解】(1)解:原式3221x x x x x =++---31x =-.(2)解:原式22236x x x x x =-+--+26x =-.【点睛】本题考查了整式的乘法,熟练掌握单项式乘以多项式,多项式乘以多项式法则是解题的关键. 【变式1-3】(2021·湖南七年级期中)计算: (1)222(35)a a b - (2)(53)(32)x y x y +-.【答案】(1)42610a a b -;(2)22156x xy y --【分析】(1)根据单项式乘多项式的计算方法及同底数幂的乘法运算直接计算; (2)根据多项式乘多项式的计算方法及同底数幂的乘法运算,合并同类项直接计算. 【详解】解:(1)22422(35)610a a b a a b -=-, (2)22(53)(32)151096x y x y x xy xy y +-=-+- 22156x xy y =--.【点睛】本题考查了单项式乘多项式、多项式乘多项式,解题的关键是掌握基本的运算法则. 题型二:(x+a)(x+b)型多项式相乘【例题2】(2021·福建省宁化县教师进修学校七年级月考)(Ⅰ)计算,将结果直接填在横线上: (1)(2)x x ++=______.(1)(2)x x --=______. (1)(2)x x -+=______.(1)(2)x x +-=______.(Ⅰ)认真观察(Ⅰ)中的算式与计算结果的特征,总结其中运算规律,用公式来表示这种运算规律(用a ,b 表示常数,).【答案】(1)x 2+3x +2,x 2−3x +2,x 2+x −2,x 2−x −2;(2)(x +a )(x +b )=x 2+(a +b )x +ab 【分析】(1)根据多项式乘法的法则逐一计算即可,多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.(2)根据(1)计算的结果,式子的一般形式是(x +a )(x +b )=x 2+(a +b )x +ab . 【详解】解:(1)(x +1)(x +2)=x 2+3x +2, (x −1)(x −2)=x 2−3x +2, (x −1)(x +2)=x 2+x −2, (x +1)(x −2)=x 2−x −2.故答案是:x 2+3x +2,x 2−3x +2,x 2+x −2,x 2−x −2;(2)可以发现题(1)中,左右两边式子符合(x +a )(x +b )=x 2+(a +b )x +ab 结构. 【点睛】本题考查了多项式乘多项式法则,熟练掌握运算法则是解题的关键. 变式训练【变式2-1】(2019·全国七年级单元测试)若(x +a )(x +2)=x 2-5x +b ,求a +b 的值. 【答案】-21.【分析】先根据多项式乘多项式法则把多项式的左边展开,合并同类项后再根据多项式两边相同字母的系数相等,列出方程,求出a ,b 的值即可.【详解】解:()()222225x a x x ax x a x x b ++=+++=-+,则252a a b +=-=,, 解得714.a b =-=-, 则21.a b +=-【点睛】考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键. 【变式2-2】(2021·福建)阅读理解: (1)计算()()21232x x x x ++=++,()()12x x --=____________________, ()()12x x -+=_______________,()()12x x +-=___________________,()()()2x a x b x x ++=++_____________;( 2)应用已知a 、b 、m 均为整数,且()()212x a x b x mx ++=++,则m 的可能取值有_____________个.【答案】(1)232x x -+,22x x +-,22x x --;a b +,ab ;(2)6【分析】(1)根据多项式乘法的法则逐一计算即可,多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.(2)根据(1)计算的结果,式子的一般形式是2()()()x p x q x p q x pq ++=+++,121122634(1)(12)(2)(6)(3)(4)=⨯=⨯=⨯=-⨯-=-⨯-=-⨯-,故m 的取值6个.【详解】解:(1)2(1)(2)32x x x x ++=++, 2(1)(2)32x x x x --=-+,2(1)(2)2x x x x -+=+-,2(1)(2)2x x x x +-=--;()()()2x a x b x a b x ab ++=+++(2)可以发现题(1)中,左右两边式子符合2()()()x p x q x p q x pq ++=+++结构,因为12可以分解以下6组数,112a b ⨯=⨯,26⨯,34⨯,(1)(12)-⨯-,(2)(6)-⨯-(3)(4)-⨯-,所以m a b =+应有6个值.【点睛】本题考查了多项式乘多项式法则,熟练掌握运算法则是解题的关键.【变式2-3】(2020·厦门外国语学校海沧附属学校八年级期中)已知(x+a)(x+b)=x 2+mx+n (1)若a=1,b=2,则m=______,n=_______ (2)若a=6,b=-3,求2m+2n 的值 【答案】(1)m=3,n=2;(2)-28【分析】把已知式子展开,得出m ,n 和a ,b 的关系式,带入求解即可;【详解】Ⅰ()()()22x a x b x a b x ab x mx n ++=+++=++,Ⅰa b m +=,ab n =, (1)Ⅰa =1,b =2,Ⅰ123m =+=,122n =⨯=, 故答案是:3,2. (2)Ⅰa =6,b =-3,Ⅰ()633m =+-=,()6318n =⨯-=-,Ⅰ()322221883628m n +=+⨯-=-=-.【点睛】本题主要考查了代数式求值,准确利用整式乘法展开计算是解题的关键. 题型三:多项式乘以多项式化简求值【例题3】(2021·江苏鼓楼·七年级期中)先化简,再求值:(1)(2)3(3)2(2)(1)x x x x x x ---+++-,其中12x =. 【答案】102x --; 7-【分析】多项式乘以多项式,单项式乘以多项式展开,合并同类项对整式进行化简,然后再代值求解即可. 【详解】解:(1)(2)3(3)2(2)(1)x x x x x x ---+++-()2223239222x x x x x x x =-+--++--,222122224x x x x =--+++-, 102x =--,当12x =时,原式110272=-⨯-=-. 【点睛】本题主要考查整式的乘法运算,多项式乘以多项式,单项式乘以多项式展开,合并同类项代入求值,熟练掌握整式的乘法运算法则是解题的关键. 变式训练【变式3-1】(2021·江苏省江阴市第一中学七年级阶段练习)先化简,再求值:(3)(4)2(1)(5)y y y y +---+,其中2y =-【答案】292y y ---;12.【分析】利用多项式乘以多项式法则计算,去括号合并得到最简结果,把y 的值代入计算即可求出值. 【详解】解:(3)(4)2(1)(5)y y y y +---+22(12)2(45)y y y y =---+- 22122810y y y y =----+ 292y y =---,当2y =-时,原式()()22922=---⨯--12=.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则,准确计算是解本题的关键.【变式3-2】(2021·浙江七年级期中)先化简,再求值:()222242(()3)m m m m m -++--,其中2m =-【答案】368m m -+-,12-【分析】先分别根据多项式乘多项式、单项式乘单项式计算,再合并同类项,最后代入2m =-即可求解. 【详解】解:原式322382++44622m m m m m m m ---+-=33826m m m -=-+368m m =-+-,当2m =-时,原式()()32628=--+⨯--8128=--12=-【点睛】本题考查整式的化简求值,解题的关键是熟练掌握多项式乘多项式、单项式乘单项式计算法则. 【变式3-3】(2020·江苏省盐城中学新洋分校七年级期中)先化简,再求值:(x+2)(x -1)-2x (x+3),其中x=-1.【答案】252x x ---,2.【分析】原式利用多项式乘以多项式、单项式乘以多项式法则计算,去括号合并得到最简结果,把x 的值代入计算即可求出值.【详解】解:原式=222226x x x x x -+---, =252x x ---, 当x=-1时, 原式=-1+5-2=2.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键. 题型四:已知多项式乘积不含某项求字母的值【例题4】(2017·江苏·兴化市海河学校七年级阶段练习)若(x 2+ax +8)(x 2﹣3x +b )的乘积中不含x 2和x 3项,求a ,b 的值. 【答案】a =3,b =1【分析】直接利用多项式乘以多项式运算法则,进而利用合并同类项法则得出x 2和x 3项的系数为零进而得出答案.【详解】解:(x 2+ax +8)(x 2-3x +b ) =x 4-3x 3+bx 2+ax 3-3ax 2+abx +8x 2-24x +8b=x 4+(-3+a )x 3+(b -3a +8)x 2+(ab -24)x +8b , Ⅰ(x 2+ax +8)(x 2-3x +b )的乘积中不含x 2和x 3项, Ⅰ-3+a =0,b -3a +8=0, 解得:a =3,b =1.【点睛】此题主要考查了多项式乘以多项式,正确掌握运算法则是解题关键. 变式训练【变式4-1】(2021·江苏·常熟市第一中学七年级阶段练习)若关于x 的多项式()2(3)x x m mx +-⋅-的展开式中不含2x 项,求4(1)(2)(25)(3)m m m m +--+-的值. 【答案】16【分析】将多项式展开,合并同类项,根据不含2x 项得到m 值,再代入计算.【详解】解:原式()2(3)x x m mx =+-⋅-3222333mx x mx x m x m =-+--+()322(3)33mx m x m x m =+--++由题意得30m -=, Ⅰ3m =,Ⅰ原式4(31)(32)(235)(33)16=⨯+⨯--⨯+⨯-=.【点睛】本题考查了整式的混合运算和求值,多项式的应用,解此题的关键是能根据整式的运算法则进行化简,难度不是很大.【变式4-2】(2021·江苏·昆山市第二中学七年级阶段练习)若()2(2)x x ax b -++的积中不含x 的二次项和一次项,求2(32)2a b ab -+的值. 【答案】20【分析】原式利用多项式乘多项式法则计算,由积中不含x 的二次项和一次项,求出a 与b 的值,再把a 、b 的值代入计算可得.【详解】解:(x -2)(x 2+ax +b )=x 3+ax 2+bx -2x 2-2ax -2b =x 3+(a -2)x 2+(b -2a )x -2b , Ⅰ(x -2)(x 2+ax +b )的积中不含x 的二次项和一次项, Ⅰa -2=0且b -2a =0, 解得:a =2、b =4,将a =2、b =4代入2(32)2a b ab -+=2(3224)224⨯-⨯+⨯⨯ =4+16 =20.【点睛】本题主要考查整式的化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则. 【变式4-3】(2021·江苏省江阴市第一中学七年级阶段练习)若()2133x p x x q ⎛⎫+-+ ⎪⎝⎭的积中不含x 项与2x 项(1)求p 、q 的值; (2)求代数式20192020p q 的值 【答案】(1)13p =,3q =;(2)3 【分析】(1)先用多项式乘以多项式的运算法则展开求它们的积,并且把p 、q 看作常数合并关于x 的同类项,令x 2及x 的系数为0,分别求出p 、q 的值. (2)把p 、q 的值代入求解即可. 【详解】解:(1)21(3)()3x p x x q +-+=2321333x x qx px px pq -++-+=23131)(3+3()x p x q p x pq -+-+又Ⅰ式子展开式中不含x 2项和x 项, Ⅰ310p -=,13=03q p -解得,13p =,3q = (2)当13p =,3q =时,20192019201920201=()(3)31333p p q q q =⨯⨯=⨯= 【点睛】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.题型五:多项式乘以多项式面积问题【例题5】(2020·江苏·泰兴市实验初级中学七年级期中)如图是火箭模型截面图,上面是三角形,中间是长方形,下面是梯形.(1)用含有a 、b 的代数式表示该截面的面积S ;(需化简) (2)当a =8cm ,b =5cm 时,求这个截面图的面积.【答案】(1)S=2a 2+2ab ;(2)208【分析】(1)先算出上面三角形的面积,中间长方形的面积,下面梯形的面积,即可表示出横截面的面积; (2)把a ,b 代入(1)式中求解即可;【详解】(1)上面三角形的面积为12ab ,中间长方形的面积为22a ,下面梯形的面积为()13222a b b ab +=,则该截面的面积为221322222S ab a ab a ab =++=+; (2)当a =8cm ,b =5cm 时,22226428512880208S a ab =+=⨯+⨯⨯=+=.【点睛】本题主要考查了代数式求值,准确计算是解题的关键. 变式训练【变式5-1】(2021·江苏淮安·七年级期末)如图,某市有一块长(3)a b +米,宽为(2)a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间空白处将修建一座雕像.(1)求绿化的面积是多少平方米. (2)当2,1a b ==时求绿化面积. 【答案】(1)5a 2+3ab ;(2)26平方米【分析】(1)绿化面积=长方形的面积-正方形的面积; (2)把a =2,b =1代入(1)求出绿化面积.【详解】解:(1)S 绿化面积=(3a +b )(2a +b )-(a +b )2 =6a 2+5ab +b 2-a 2-2ab -b 2=5a 2+3ab ;答:绿化的面积是(5a 2+3ab )平方米; (2)当a =2,b =1时,绿化面积=5×22+3×2×1 =20+6 =26.答:当a =2,b =1时,绿化面积为26平方米.【点睛】本题考查了多项式乘多项式及代数式求值,看懂题图掌握多项式乘多项式法则是解决本题的关键. 【变式5-2】(2021·江苏滨湖·七年级期中)如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解决下列问题.(1)在图4中,黑色瓷砖有 块,白色瓷砖有 块;(2)已知正方形白色瓷砖边长为1米,长方形黑色瓷砖长为1米,宽为0.5米.现准备按照此图案进行装修,瓷砖无需切割,恰好能完成铺设.已知白色瓷砖每块100元,黑色瓷砖每块50元,贴瓷砖的费用每平方米15元.请回答下列问题: Ⅰ铺设图2需要的总费用为 元;Ⅰ铺设图n 需要的总费用为多少元?(用含n 的代数式表示) 【答案】(1)20;20;(2)Ⅰ1380; Ⅰ2115345230n n ++.【分析】(1)通过观察发现规律得出,第n 个图形中,黑色瓷砖的块数可以表示为4(1)n +,白瓷砖的块数可以表示为(1)n n +,将4n =代入即可求解;(2)Ⅰ求得图2的白瓷砖的块数和黑色瓷砖的块数,然后再求得占用的面积,根据费用求解即可;Ⅰ求得图n 的白瓷砖的块数和黑色瓷砖的块数,然后再求得占用的面积,根据费用求解即可; 【详解】解:(1)通过观察图形可知,1n =时,黑色瓷砖的块数为8,白色瓷砖的块数为22n =时,黑色瓷砖的块数为12,白色瓷砖的块数为6 3n =时,黑色瓷砖的块数为16,白色瓷砖的块数为12则第n 个图形中,黑色瓷砖的块数可以表示为4(1)n +,白瓷砖的块数可以表示为(1)n n +当4n =时,黑色瓷砖的块数为20,白瓷砖的块数为20故答案为20,20(2)Ⅰ图2,黑色瓷砖的块数为12,白色瓷砖的块数为6,所占用的面积为1210.561112⨯⨯+⨯⨯=(平方米)所需的费用为1250610012151380⨯+⨯+⨯=(元)故答案为1380Ⅰ第n 个图形中,黑色瓷砖的块数可以表示为4(1)n +,白瓷砖的块数可以表示为(1)n n +占用的面积为4(1)10.5(1)112(1)(1)(1)(2)n n n n n n n n +⨯⨯++⨯⨯=+++=++所需的费用为24(1)50(1)10015(1)(2)115345230n n n n n n n +⨯++⨯+⨯++=++故答案为2115345230n n ++【点睛】此题考查了图形类规律的探索问题,涉及了列代数式,整式的乘法等运算,解题的关键是根据前面图形,找到规律.【变式5-3】(2021·江苏徐州·七年级期中)(1)探究:我们小学时学过乘法分配律a (b +c )=ab +ac . 下面我们用等积法证明乘法分配律:如图,方法一:长方形ABCD 的一边长为a ,另一边长为(b +c ),所以长方形ABCD 的面积为a (b +c );方法二,长方形ABFE 的面积为ab ,长方形CDEF 的面积为ac ,所以长方形ABCD 的面积为(ab +ac ),所以a (b +c )=ab +ac .我们把这种用两种不同的方式表示同一图形面积的方法称为等积法.(2)应用请你用等积法,画出图形,并仿照上面的说理方法证明:(a +b )(c +d )=ac +ad +bc +bd ;(3)拓展请直接写出(a +b )(c +d +e )= .【答案】(2)证明见解析;(3)ac ad ae bc bd be +++++【分析】(2)画出图形,并仿照(1)的说理方法证明即可;(3)根据(1)的方法画出图形,进行计算即可.【详解】(2)如图,方法一:长方形ABCD 的一边长为()a b +,另一边长为()c d +,所以长方形ABCD 的面积为()()a b c d ++; 方法二,长方形AGOE 的面积为ac ,长方形EODH 的面积为ad ,长方形GOFB 的面积为bc ,长方形OFCH 的面积为bd ,所以长方形ABCD 的面积为(ac ad bc bd +++),所以()()a b c d ac ad bc bd ++=+++.(3)如图,同理可得:方法一可得长方形ABCD 的面积为()()a b c d e +++,方法二可得长方形ABCD 的面积为ac ad ae bc bd be +++++∴()()a b c d e ac ad ae bc bd be +++=+++++故答案为:ac ad ae bc bd be +++++【点睛】本题考查了多项式乘法与图形面积的关系,数形结合是解题的关键.题型六:多项式乘以多项式规律问题【例题6】(2021·常熟市第一中学七年级月考)观察下列各式:223324(1)(1)1(1)(1)1(1)(1)1x x x x x x x x x x x x -+=--++=--+++=-(1)根据以上的规律得:123(1)(1)_______m m m x x x x x ----+++++=(m 为正整数)(2) 请你利用上面的结论,完成下面两题的计算:Ⅰ23468691222222+++++++Ⅰ(﹣2)50+(﹣2)49+(﹣2)48+…+(﹣2)+1【答案】(1)x m -1;(2)Ⅰ7021-;Ⅰ51213+ 【分析】(1)归纳出一般规律可得;(2)Ⅰ原式乘(2-1),用规律即可得出结论;Ⅰ将原式变形为()()()()()5049481121222213++⎦⎡⎤-⨯---+--⋯+-+⎣,再依照所得规律计算即可. 【详解】解:(1)(x -1)(x m -1+x m -2+…+x +1)═x m -1(m 为正整数);(2)Ⅰ23468691222222+++++++ =()()2346869212222221+++++++- =7021-;Ⅰ()()()()50494822221---⋯++-+++ =()()()()()5049481121222213++⎦⎡⎤-⨯---+--⋯+-+⎣ =()511123⎡⎤--⨯-⎣⎦ =51213+ 【点睛】本题考查找规律解题,仔细观察,找出规律是求解本题的关键.变式训练【变式6-1】(2021·利辛县第四中学七年级期中)(1)计算:(1)(1)______a a -+=;2(1)(1)____a a a -++=;......猜想:9998972(1)(......1)_____a a a a a a -++++++=;(2)请你利用上式的结论,求199198212+2++2+2+1的值;(3)请直接写出202020192018213+3+3+3+3+1+的值.【答案】(1)231;1;a a --1001a -;(2)20021-;(3)20211(31)2⋅-. 【分析】(1)根据多项式乘多项式可进行求解;(2)由2-1=1及(1)中结论可直接进行求解;(3)根据(1)中结论可进行求解.【详解】解:(1)由题意得:2(1)(1)1a a a -+=-,23223(1)(1)11a a a a a a a a a -++=++---=-,……猜想:9998972100(1)(......1)1a a a a a a a -++++++=-;故答案为231,1,a a --1001a -;(2)由(1)可得:原式=()()19919819720021222......2121-+++++=- (3)由(1)的结论可得:原式=()()2020201928201210211)3+3+3131(31221+3+3+-+=⨯⨯⋅-. 【点睛】本题主要考查多项式乘多项式的应用,熟练掌握多项式乘多项式是解题的关键.【变式6-2】(2021·辽宁)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图所示)就是一例.这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方(左右)两数之和.事实上,这个三角形给出了(a +b )n (n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1、2、1,恰好对应(a +b )2=a 2+2ab +b 2展开式中各项的系数;第四行的四个数1、3、3、1,恰好对应着(a +b )3=a 3+3a 2b +3ab 2+b 3展开式中各项的系数等等.(1)根据上面的规律,(a +b )4展开式的各项系数中最大的数为 ;(2)求出25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5的值;(3)若(x ﹣1)2020=a 1x 2020+a 2x 2019+a 3x 2018+……+a 2019x 2+a 2020x +a 2021,求出a 1+a 2+a 3+……+a 2019+a 2020的值.【答案】(1)6;(2)﹣1;(3)﹣1【分析】(1)由“杨辉三角”构造方法判断即可确定出(a+b )4的展开式中各项系数最大的数;(2)将原式写成“杨辉三角”的展开式形式,即可的结果;(3)当x =0时,a 2021=1,当x =1时,得到a 1+a 2+a 3+……+a 2019+a 2020+a 2021=0,即可得到结论.【详解】解:(1)第五行即为1、 4、 6、 4 、1对应(a +b )4展开式中各项的系数,Ⅰ(a +b )4展开式的各项系数中最大的数为6,故答案为6;(2)Ⅰ(a +b )2=a 2+2ab +b 2,(a +b )3=a 3+3a 2b +3ab 2+b 3,......根据展式中的2最大指数是5,首项a =2,末项b =-3,Ⅰ25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5=[2+(﹣3)]5=(2﹣3)5=﹣1;(3)Ⅰ(x ﹣1)2020=a 1x 2020+a 2x 2019+a 3x 2018+……+a 2019x 2+a 2020x +a 2021,Ⅰ当x =1时,(1﹣1)2020=a 1×12020+a 2×12019+a 3×12018+……+a 201912+a 2020×1+a 2021,即a 1+a 2+a 3+……+a 2019+a 2020+a 2021=0,当x =0时,(0﹣1)2020=a 1×02020+a 2×02019+a 3×02018+……+a 2019×02+a 2020×0+a 2021,即a 2021=1,Ⅰa 1+a 2+a 3+……+a 2019+a 2020= a 1+a 2+a 3+……+a 2019+a 2020+a 2021- a 2021=0﹣1=﹣1.【点睛】本题考查完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应a b n +()中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高. 【变式6-3】(2021·河南省淮滨县第一中学)好学的小东同学,在学习多项式乘以多项式时发现:14(25)(36)2x x x ⎛⎫++- ⎪⎝⎭的结果是一个多项式,并且最高次项为:312332x x x x ⋅⋅=,常数项为:45(6)120⨯⨯-=-,那么一次项是多少呢?要解决这个问题,就是要确定该一次项的系数.根据尝试和总结他发现:一次项系数就是:15(6)2(6)434532⨯⨯-+⨯-⨯+⨯⨯=-,即一次项为3x -. 请你认真领会小东同学解决问题的思路,方法,仔细分析上面等式的结构特征.结合自己对多项式乘法法则的理解,解决以下问题.(1)计算()()()23153x x x ++-所得多项式的一次项系数为______.(2)若计算()()2213(21)x x x x a x ++-+-所得多项式不含一次项,求a 的值;(3)若202120212020201901220202021(1)x a x a x a x a x a +=+++⋯++,则2020a =______.【答案】(1)-11;(2)3a =-;(3)2021.【分析】根据题意可得出结论多项式和多项式相乘所得结果的一次项系数是每个多项式的一次项系数分别乘以其他多项式的常数项后相加所得.(1)(2)(31)(53)x x x ++-中每个多项式的一次项系数分别是1、3、5,常数项分别是2、1、-3,再根据结论即可求出(2)(31)(53)x x x ++-所得多项式的一次项系数.(2)22(1)(3)(21)x x x x a x ++-+-中每个多项式的一次项系数分别是1、-3、2,常数项分别是1、a 、-1,再根据22(1)(3)(21)x x x x a x ++-+-所得多项式的一次项系数为0,结合结论即可列关于a 的一元一次方程,从而求出a .(3)2021(1)x +中每个多项式一次项系数为1,常数项系数也为1,2020a 为2021(1)x +所得多项式的一次项系数.所以根据结论2020a 为2121个11⨯相加,即可得出结果.【详解】(1)根据题意可知(2)(31)(53)x x x ++-的一次项系数为:()()11333252111⨯⨯-+⨯-⨯+⨯⨯=-.故答案为-11.(2)根据题意可知22(1)(3)(21)x x x x a x ++-+-的一次项系数为:()()()11311213a a a ⨯⨯-+-⨯⨯-+⨯⨯=+Ⅰ该多项式不含一次项,即一次项系数为0,Ⅰ30a +=解得3a =-.(3)根据题意可知2020a 即为2021(1)x +所得多项式的一次项系数.Ⅰ20202021(11111111)2021a =⨯+⨯+⨯++⨯=故答案为2021【点睛】本题考查多项式乘多项式以及对多项式中一次项系数的理解,根据题意找出多项式乘多项式所得结果的一次项系数与多项式乘多项式中每个多项式的一次项系数和常数项关系规律是解题关键.【真题1】(2019·江苏南京·中考真题)计算22()()x y x xy y +-+.【答案】33x y +【分析】根据多项式乘以多项式的法则,可表示为(a +b )(m +n )=am +an +bm +bn ,计算即可.【详解】解:()()22x y x xy y +-+322223x x y xy x y xy y =-++-+33x y =+.【点睛】本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.【真题2】(2013·江苏南京·中考真题)计算11111111111111111111234523456234562345⎛⎫⎛⎫⎛⎫⎛⎫----++++------+++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的结果是_______. 【答案】16【详解】设11112345x +++=, 则原式()111166x x x x ⎛⎫⎛⎫-+--- ⎪ ⎪⎝⎭⎝⎭= 22115666x x x x x +---+= 16= 【真题3】(2015·江苏连云港·中考真题)已知m +n =mn ,则(m -1)(n -1)=_______.【答案】1【详解】试题分析:根据乘法公式多项式乘以多项式,用第一个多项式的每一项乘以第二个多项式的每一项,可求(1)(1)m n --=mn -m -n+1=mn -(m+n )+1,直接代入m+n=mn 可求得(1)(1)m n --=1.考点:整体代入法【真题4】(2019·台湾·中考真题)计算()()2334xx +﹣的结果,与下列哪一个式子相同?( ) A .74x -+B .712x --C .2612x -D .2612x x --【答案】D【分析】由多项式乘法运算法则:两多项式相乘时,用一个多项式的各项去乘另一个多项式的每一项,再链接中考把所得的积相加,合并同类项后所得的式子就是它们的积.【详解】解:由多项式乘法运算法则得()()22233468912612x x x x x x x-+=+---=-.故选D.【点睛】本题考查多项式乘法运算法则,牢记法则,不要漏项是解答本题的关键.【拓展1】(2021·江苏阜宁·七年级期中)如图,长方形的长为a,宽为b,横向阴影部分为长方形,另一阴影部分为平行四边形,它们的宽都为c,则空白部分的面积是___.【答案】2ab ac bc c--+【分析】先把阴影的为平行四边形的面积化为长方形的面积,然后经过平移得到空白部分的为长方形,长为a-c,宽为b-c,根据长方形面积公式列式计算即可求解即可求解.【详解】解:原图形可化为图1,将阴影部分平移得到图2,所以空白部分的面积为:()()2=a cbc ab ac bc c----+.故答案为:2ab ac bc c--+满分冲刺【点睛】本题考查了列代数式,平移,多项式乘以多项式等知识,根据题意,将平行四边形的面积转化为长方形的面积,进而进行平移,将空白部分面积转化为长方形的面积是解题关键.【拓展2】(2020·江苏徐州·七年级期中)阅读以下材料:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-; ()324(1)11x x x x x -+++=-(1)根据以上规律,()123(1)1n n n x x x x x ----+++++= ;(2)利用(1)的结论,求2345201820192000155555555+++++++++的值 【答案】(1)1nx -;(2)2021514- 【分析】(1)仔细观察上式就可以发现得数中x 的指数是式子中x 的最高指数减1,根据此规律就可求出本题.(2)不难看出所求式子是材料中等号左边式子的一个因式,将所求式子转化成()123(1)1n n n x x x x x ----+++++形式,即可利用(1)的结论进行求解.【详解】(1)()123(1)1n n n x xx x x ----+++++中最高次项为1n n x x x -•=, 所以()123(1)1n n n x x x x x ----+++++=n x -1;(2)2345201820192000155555555+++++++++ =14(5-1)(2345201820192000155555555+++++++++) =2021514- 【点睛】仔细观察式子,总结出运算规律,是解决此类题的关键.【拓展3】(2020·江苏·南通市八一中学八年级期中)阅读材料小明遇到这样一个问题:求计算()()()22334x x x +++所得多项式的一次项系数.小明想通过计算()()()22334x x x +++所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找()()223x x ++所得多项式中的一次项系数,通过观察发现:也就是说,只需用2x +中的一次项系数1乘以23x +中的常数项3,再用2x +中的常数项2乘以23x +中的一次项系数2,两个积相加13227⨯+⨯=,即可得到一次项系数.延续上面的方法,求计算()()()22334x x x +++所得多项式的一次项系数,可以先用2x +的一次项系数1,23x +的常数项3,34+x 的常数项4,相乘得到12;再用23x +的一次项系数2,2x +的常数项2,34+x 的常数项4,相乘得到16;然后用34+x 的一次项系数3,2x +的常数项223x +的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:(1)计算()()443x x ++所得多项式的一次项系数为____________________.(2)计算()()()13225x x x +-+所得多项式的一次项系数为_____________.(3)若231x x -+是422x ax bx +++的一个因式,求a 、b 的值.【答案】(1)19;(2)1;(3) a= -6,b= -3.【分析】(1)根据两多项式常数项与一次项系数乘积的和即为所得多项式一次项系数可得;(2)根据三个多项式中两个多项式的常数项与另一个多项式一次项系数的乘积即为所求可得;(3)由x 4+ax 2+bx+2中4次项系数为1、常数项为2可设另一个因式为x 2+mx+2,根据三次项系数为0、二次项系数为a 、一次项系数为b 列出方程组求出a 、b 的值,可得答案.【详解】解:(1)(x+4)(4x+3)所得多项式的一次项系数为1×3+4×4=19,故答案为19;(2)()()()13225x x x +-+所得多项式的一次项系数为1×(-2)×5+1×3×5+1×(-2)×2=1,故答案为1;(3)由x 4+ax 2+bx+2中4次项系数为1、常数项为2可设另一个因式为x 2+mx+2,则(x 2-3x+1)(x 2+mx+2)=x 4+ax 2+bx+2,13101211(3)321m m a m b ⨯-⨯=⎧⎪∴⨯+⨯+-⨯=⎨⎪-⨯+⨯=⎩解得: 363m a b =⎧⎪=-⎨⎪=-⎩故答案为a= -6,b= -3.【点睛】本题考查多项式乘多项式,解题关键是熟练掌握多项式乘多项式的运算法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.。

多项式与多项式相乘说课稿

多项式与多项式相乘说课稿

多项式与多项式相乘说课稿多项式与多项式相乘说课稿一、教材分析1、本节课的内容和地位课标要求:理解多项式与多项式相乘的法则,并运用法则进行准确运算。

选用教材:选自华东师范大学出版社出版的《数学》八年级上册第十三章第3节。

课题是《多项式与多项式相乘》,课时为1课时。

主要内容:多项式与多项式相乘法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加教材地位:本课学习多项式与多项式相乘的法则,对学生初中阶段学好必备的基础知识与基本技能、解决实际问题起到基础作用,在提高学生的运算能力方面有重要的作用。

同时,对平方差与完全平方公式的应用以及杨辉三角等后续教学内容起到奠基作用。

2、教学目标知识与技能目标:理解并掌握多项式乘以多项式的法则,能够按步骤进行简单的多项式乘法的运算。

过程与方法目标:1、通过创设情景中的问题的探索,体验数学是一个充满观察、归纳的过程;2、通过整体处理,再利用分配律的结果与几何图形面积的结果进行比较,培养学生从不同的角度思考数学的意识;3、通过为学生提供自主练习的活动空间,提高学生的运算能力;4、借助具体到一般的认知规律,培养学生探索问题的能力和创新的品质。

情感、态度与价值观目标:学生通过主动参与探索法则和拓展探索等的学习活动,领悟转化思想,体会数学与生活的联系,感受数学的应用价值,从而激发学习数学的兴趣。

3、教学重点:多项式乘以多项式法则的理解和应用;4、教学难点:将多项式与多项式的乘法转化为单项式与多项式的乘法,防止漏乘、重复乘和看错符号。

二、教学对象分析本节课是在学习了“单项式与多项式相乘”的基础上进行的,学生已经掌握了“单项式与多项式相乘”的运算法则,因此没有把时间过多地放在复习旧知上,而是让学生亲身参加探索发现,从而获取新知。

在法则的得出过程中,让学生在探索的过程中自己发现总结规律,提高了学生的积极性。

在法则的应用这一环节选配一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。

多项式与多项式相乘计算题

多项式与多项式相乘计算题

多项式与多项式相乘计算题
多项式与多项式的相乘是数学中一个非常重要的概念,它可以让我们在计算中得到更多的结果。

下面给出一个多项式相乘的计算题。

A(x) = x3 + 2x2 + x
B(x) = 2x4 + 5x3 + 4x2 - 1
那么A(x) 与 B(x) 相乘的结果就是:
2x7 +7x6 +14x5 +7x4 +11x3 +2x2 -x
多项式的相乘的计算都是基于分解的理论,也就是把问题分解为几个小的计算部分,再将
它们汇总起来从而得出最后的结果。

因此,想要解决上面的这个问题,我们首先要将两个
多项式分解开来,将它们分别表示成多项式的乘积,这样它们就可以结合在一起,最后得出结果。

A(x) = x3 + 2x2 + x =x(x2 + 2x + 1)
B(x) = 2x4 + 5x3 + 4x2 - 1 =2x(x3 + 5x2 + 4x - 1/2)
有了以上分解的结果,我们就可以把A(x) 与 B(x) 这两个多项式相乘了,可以得出:A(x)
× B(x) = 2x(x5 + 7x4 + 7x3 + 14x2 + 11x + 2),再把分母内2移到系数中即可得出最终答案:2x7+7x6 +14x5 +7x4 +11x3 +2x2 -x
以上就是多项式相乘的计算的过程,我们可以看到,通过分解,结合多项式的乘积,我们
就可以得出我们需要的最终结果,而且这个过程也展现出了多项式的运用的有效性。

所以,多项式的相乘运算在数学中非常重要,学习和运用它一定可以让你在数学运算中获益良多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运用了整体、转化和数形结合的数学思想。
【例1】计算:
(1)(x+2)(x−3), (2)(3x -1)(2x+1)。 例题解析
解: (1) (x+2)(x−3) =x ﹒ x = x2

3x 2x -2×3
注意 ☾ 两项相乘时,
-x-6
(2) (3x -1)(2x+1)
先定符号。 所得积的符号由这 两项的符号来确定: 负负得正 一正一负得负。

回顾 & 思考
回顾与思考 如何进行单项式与多项式乘法的运算?
① 将单项式分别乘以多项式的各项,

② 再把所得的积相加。

进行单项式与多项式乘法运算时,要注意什么?
① 不能漏乘: 即单项式要乘遍多项式的每一项 ② 去括号时注意符号的确定.
4 (2)( 4 x x 1) (9 x) 9
师生小结:
注意:
1、必须做到不重复,不遗漏. 2、注意确定积中每一项的符号.
3、结果应化为最简式 {合并同类项}.
比一比: (1) (x+5)(x–7) (2) (3) (4) (2a+3b) (2a+3b) (x+5y)(x–7y) (2m+3n)(2m–3n)
【例3】计算:
2 8a a 2 3 a 1 2 a 1 a 5
= 3x•2x +3x• 1-1•2 x — 1 = 6x2 +3x -2 x 1 = 6x2 +x1.
最后的结果要 合并同类项.
【例2】计算:
(1)(x−3y)(x+7y), (2)(2x + 5y)(3x−2y)。
解: (1) (x−3y)(x+7y) =x2 7xy 3yx - 21y2 = x2 +4xy-21y2;
2
(1) 2 x(1 x)
2、 计算:
(3) 3x x(4x x) 3( x 1)
2


以下有四种不同形状的长方形 卡片,请你选取其中的两张, 用它们拼成更大的长方形,尽 可能采用多种拼法。
n
( 1)
m
a
(2)
m
n
(3)
b
a (4) b
n a
n a b
m
m (a+n )= ma+mn
练一练:
2 1、 5x x +2x+1 - 2x+3 x-5
2、 3x 1 2x 3 x+3 x-4


【例4】化简求值:
ቤተ መጻሕፍቲ ባይዱ
y-2 y2+2y+4 -y y2-2y-1 ,
2
观察上面四个等式,你能发现什么规律? 你能根据这个规律解决下面的问题吗?
ab a b) x _____ ( x a)(x b) x (_____
2
方法与规 律
课后作业

完成《创优作业》本课时的习题

其中y=-1
【例5】:解方程与不等式:
1、 2、
2x+3 x 4 x 2 x 3 x 3x+4 3x 4 9 x 2 x 3
2
6
挑战极限: 如果(x2+bx+8)(x2 – 3x+c)的乘 积中不含x2和x3的项,求b、c的值。
(2) (2x +5 y)(3x−2y) = 2x•3x −2x• 2y +5 y• 3x 5y•2y = 6x2 −4xy + 15xy 10y2 = 6x2 +11xy10y2.
随堂练习
随堂练习
㈠计算: (1)
(2) (3)
(4)
(m+2n)(m−2n); (2n +5)(n−3) ; 2 (x+2y) ; (ax+b)(cx+d ) .
n m n
b (a+n) = ba+bn
a
m
a
b
b
n (m+b) = mn+bn
a (m+b) = am+ab
n
n
a
m
b
从代数运算的角度验证: (m+b)(a+n) = m(a+n) + b (a+n)(把a+n看作一个整体) = ma+mn+ ba+bn
(转化为单项式乘以单项式)
多项式与多项式相乘的法则 多项式与多项式相乘,先用一个多项 式的每一项分别乘以另一个多项式的 每一项,再把所得的积相加 在进行多项式乘法运算的推导过程 中运用了哪些数学思想方法?与同伴交 流。
解:原式=
x4 – 3x3 + c x2 +bx3 2 2 – 3bx +bcx+8 x – 24x+8c
X2项系数为:c –3b+8 = 0 X3项系数为:b – 3 = 0 ∴ b=3 , c=1
活动& 探索
2 填空: ( x 2)(x 3) x __ 5 x __ 6

( x 2)(x 3) x __ 1 x __ (-6) 2 ( x 2)(x 3) x (-1) __ x __ (-6) 2 ( x 2)(x 3) x (-5) __ x __ 6
相关文档
最新文档