第5章抽样及参数估计-7样本容量的确定

合集下载

第5章--抽样分布与参数估计教案资料

第5章--抽样分布与参数估计教案资料

(5)
(5.5)
(6)
(6.5)
(7)
(7.5)
(8)
(8.5)
(9)
9
9,1
9,2
9,3
9,4
9,5
9,6
9,7
9,8
9,9
9,10
(5)
(5.5)
(6)
(6.5)
(7)
(7.5)
(8)
(8.5)
(9)
(9.5)
10
10,1
10,2
10,3
10,4
10,5
10,6
10,7
10,8
10,9
10,10
数是 ,标准差是 ,从这个总体中抽出一 个容量是 n 的样本,则样本平均数 X 也服从 正态分布,其平均数 E( X ) 仍为 ,其标准
差为 。 X 5-19
从正态分布的再生定理可以看出,只要总体 变量服从正态分布,则从中抽取的样本,不管n 是多少,样本平均数都服从正态分布。但是在 客观实际中,总体并非都是正态分布。对于从 非正态分布的总体中抽取的样本平均数的分布 问题,需要由中心极限定理来解决。
第5章--抽样分布与参数估计
第一节 抽样的基本概念与数学原理
一、有关抽样的基本概念 二、大数定理与中心极限定理
5-2
一、有关抽样的基本概念
(一)样本容量与样本个数 1.样本容量。样本是从总体中抽出的部分
单位的集合,这个集合的大小称为样本容量, 一般用n表示,它表明一个样本中所包含的单 位数。
lim
n
1 n
p
n
i 1
X
i
1
(5.5)
5-17
大数定理表明:尽管个别现象受偶然因 素影响,有各自不同的表现。但是,对总体 的大量观察后进行平均,就能使偶然因素的 影响相互抵消,消除由个别偶然因素引起的 极端性影响,从而使总体平均数稳定下来, 反映出事物变化的一般规律。

(抽样检验)抽样与参数估计最全版

(抽样检验)抽样与参数估计最全版

(抽样检验)抽样与参数估计抽样和参数估计推断统计:利用样本统计量对总体某些性质或数量特征进行推断。

从数据得到对现实世界的结论的过程就叫做统计推断(statisticalinference)。

这个调查例子是估计总体参数(某种意见的比例)的壹个过程。

估计(estimation)是统计推断的重要内容之壹。

统计推断的另壹个主要内容是本章第二节要介绍的假设检验(hypothesistesting)。

因此本节内容就是由样本数据对总体参数进行估计,即:学习目标:了解抽样和抽样分布的基本概念理解抽样分布和总体分布的关系了解点估计的概念和估计量的优良标准掌握总体均值、总体比例和总体方差的区间估计第一节抽样和抽样分布回顾相关概念:总体、个体和样本抽样推断:从所研究的总体全部元素(单位)中抽取壹部分元素(单位)进行调查,且根据样本数据所提供的信息来推断总体的数量特征。

总体(Population):调查研究的事物或现象的全体参数个体(Itemunit):组成总体的每个元素样本(Sample):从总体中所抽取的部分个体统计量样本容量(Samplesize):样本中所含个体的数量壹般将样本单位数不少于三十个的样本称为大样本,样本单位数不到三十个的样本称为小样本。

壹、抽样方法及抽样分布1、抽样方法(1)、概率抽样:根据已知的概率选取样本①、简单随机抽样:完全随机地抽选样本,使得每壹个样本都有相同的机会(概率)被抽中。

注意:在有限总体的简单随机抽样中,由抽样是否具有可重复性,又可分为重复抽样和不重复抽样。

而且,根据抽样中是否排序,所能抽到的样本个数往往不同。

②、分层抽样:总体分成不同的“层”(类),然后在每壹层内进行抽样③、整群抽样:将壹组被调查者(群)作为壹个抽样单位④、等距抽样:在样本框中每隔壹定距离抽选壹个被调查者(2)非概率抽样:不是完全按随机原则选取样本①、非随机抽样:由调查人员自由选取被调查者②、判断抽样:通过某些条件过滤来选择被调查者(3)、配额抽样:选择壹群特定数目、满足特定条件的被调查者2、抽样分布壹般地,样本统计量的所有可能取值及其取值概率所形成的概率分布,统计上称为抽样分布(samplingdistribution)。

第五章 抽样:样本容量的确定(市场调研-北京大学,胡健颖)

第五章  抽样:样本容量的确定(市场调研-北京大学,胡健颖)

9
第五章 抽样:样本容量的确定
3) 均值或比例的标准误差(standard error) ,或抽 样平均误差,公式为: 均值 比例
x

n
P
P(1 P) n
2014-2-6
北京大学光华管理学院 胡健颖
10
第五章 抽样:样本容量的确定
4) 通常总体标准差 σ 是未知的,在这种情况下,可以通过 下面的公式从样本中估计总体的标准差: 均值 比例
思考题: ① 迪斯尼世界的调查表明,有 60%的老顾客喜欢玩滑行铁道。 若要求误差不超过 2%, 置信度为 90% (Z 值查参考书 552 页) , 求所需的样本容量。 ② 客户要求置信度为 99%,允许抽样误差为 2%,按此计算出 需要样本容量为 500,调查费用是 20,000 美元,但他只有 17,000 美元的预算,问有没有其他方案可供选择? ③ 在具有什么条件下,进行调查前就可以将样本容量确定下 来?
在确定估计比例所需的样本容量时有一个优势:如果缺乏估计 P 的依据,可以对 P 值做最糟糕的假设。给定 Z 值和 E 值,P 值 为多大时要求的样本容量最大呢?当 P=0.05 时, “P(1-P)”有极大 值 0.25 存在。
2014-2-6
北京大学光华管理学院 胡健颖
30
第五章 抽样:样本容量的确定
2014-2-6
北京大学光华管理学院 胡健颖
25
第五章 抽样:样本容量的确定
表 5-1 1000 个样本平均数的概率分析:最近 30 天内吃快餐的平均次数 次数分组 2.6-3.5 3.6-4.5 4.6-5.5 5.6-6.5 6.6-7.5 7.6-8.5 8.6-9.5 9.6-10.5 10.6-11.5

第五章 参数估计

第五章 参数估计
(总体方差未知时,以样本方差代替)
1
X 2 t n1 n2 2
2
2 Sp
n1
n2
X
1
X 2 z
2
2 S12 S 2 n1 n2
2 Sp
2 2 n1 1S1 n2 1S 2
n1 n2 2
20
例题:

分别在城市1和城市2中随机抽取n1=400, n2=500的职工进行调查,经计算两城市职工的 平均月收入及标准差分别为X1=1650元,
22
思考题:

一个研究机构做了一项调查,以确定稳定的吸 烟者每周在香烟上的消费额。他们抽取49位固 定的吸烟者,发现均值为20元,标准差5元。
1.总体均值的点估计是多少?
2.总体均值μ的95%置信区间是什么?
23
思考题解答:
1.总体均值的点估计是20元。
2.总体均值μ的95%置信区间: 随机变量X表示每周香烟消费额,由题意可知,X=20, S=5,1-α=0.95,α=0.05;n=49 属于大样本,σ 未知以S估计。总体均值μ的95%置信区间为
P z Z z 1 2 2
P L U 1
X P z z 1 2 2 n
Step3:将上面等式进行等价变换即可。
P L U 1
第五章 参数估计
第五章 参数估计

利用样本数据对总体特征进行推断,通常在以下 两种情况下进行:

当总体分布类型已知(如:正态),根据样本数据对 总体分布的未知参数进行估计或检验。参数估 计或参数检验。(如:μ或σ为何?) 当总体分布类型未知或知道很少,根据样本数据 对总体的未知分布的形状或特征进行推断。非参 数检验。(如:是否正态分布?是否随机?)

第5章__抽样推断

第5章__抽样推断

抽样误差的影响因素
(1)总体各单位标志变异程度。 (2)样本容量的大小。 (3)抽样方法。 (4)抽样的组织形式。
四、抽样极限误差
含义:
抽样极限误差指在进行抽样估计时,根据研究对象的变 异程度和分析任务的要求所确定的样本指标与总体指标 之间可允许的最大误差范围。
计算方法:
它等于样本指标可允许变动的上限或下限与总体指标 之差的绝对值。
则:
x
n
10 1(公斤) 100
即:当根据样本学生的平均体重估计全部学生的平均 体重时,抽样平均误差为1公斤。
例题二解 已知: N 2000, n 400, x 4800, 300
则:
x
n
300 15(小时) 400
x
2 1 n
3002 1
400
13.42(小时)
n N
-20
400
-15
225
-5
25
0
0
-15
225
-10
100
0
0
5
25
-5
25
0
0
10
100
15
225
0
0
5
25
15
225
20
400
0
2000
样本平均数的平均数( x )
x
样本可能数目
960 16
60元
所以 (x) X
样抽样平均误差x

x (x)2
样本可能数目
2000 11.18元 16
四个工人工资分别为40、50、70、80元
抽样平均误差 x
n
15.81 11.18元 2

第五章 抽样法

第五章 抽样法

抽样的作用

抽样调查能够解决全面调查无法或难以解决的问
题。

抽样调查可以补充和订正全面调查的结果。
抽样调查方法可以用于生产过程中产品质量的检
查和控制。 抽样调查方法可以用于对总体的某种假设进行检 验,以判断这种假设的真伪,决定行动的取舍。

抽样中的几个基本术语
总体(Population):调查研究的事物或现象的全体 个体(Item unit):组成总体的每个元素
一、抽样的概念、特点、作用 二、抽样中的基本术语 (一)总体和样本 (二)参数和统计量 (三)样本容量和样本个数 (四)重复抽样和不重复抽样 (五)概率抽样与非概率抽样 (六)抽样框 三、抽样误差
抽样的概念 特点
(一)概念 抽样调查是按照随机原则从全部研究对象中抽取 一部分单位进行观察,并依据获得的数据对全部研 究对象的数量特征做出具有一定可靠性的估计和判 断.达到对现象总体认识的一种方法. (二)特点 它是按照随机原则从总体中抽取样本。 它是由部分推算整体的一种方法。 它是运用概率估计的方法。 抽样误差可事先计算并加以控制。
抽样中的几个基本术语
X
i 1 N
总体均值
X
i
N

X F
i 1 K i
K
i
F
i 1
i
标准差

X
N i 1
i
X
2
N

X
K i 1
i K
X Fi
i
2
F
i 1
抽样中的几个基本术语
总体方差
2
( X i X )2
i 1
N
N

( X i X ) 2 Fi

第五章抽样方法

第五章抽样方法

第三章抽样与抽样调查3.1抽样调查的涵义及原理抽样与抽样调查·抽样的术语(抽样单位、总体、样本、抽样、抽样框、随机原则、总体参数和样本统计量、抽样误差、置信度和置信区间)·大数规律3.2概率抽样概率抽样的地位·简单随机抽样·系统抽样·分层抽样·整群抽样·多段抽样3.3 抽样设计抽样设计的一般程序·样本的产生·样本的大小3.4 非概率抽样偶遇抽样·判断抽样·配额抽样·滚雪球抽样3.5 抽样调查误差及其控制误差及其分类·非抽样误差及其控制·抽样误差及其控制3.6 抽样调查举例“网民知多少?——中国互联网络信息中心全国调查抽样方案设计”一、单项选择题1、分层抽样主要解决的是()A 总体异质性程度较高的问题B 总体同质性程度较高的问题C 总体内所含个体单位数量过大问题D 总体内所含个体单位数量不足问题2、概率抽样中效果最好的抽样方式是( )A 简单随机抽样B 等距抽样C 分层抽样D 整群抽样3、我们日常生活经常使用的简单随机抽样的方法有( )A 自荐B 抽签C 领导点将 D群众推选4、与概率抽样相比较,非概率抽样的缺点是( )A 无法保证样本的代表性 B抽样费时费力 C缺乏目的性 D调查不明确、不深入5、在下列抽样方法中,属于非概率抽样的是( )A 滚雪球抽样B 分层抽样C 整群抽样D 多阶段抽样6、研究者在实际抽样(特别是概率抽样)时,经常是先找到一份近似涵盖所有总体元素的名单,然后从中抽取部分元素,这份名单被称为()A 抽样单元B 总体C 抽样框D 样本7、在定额抽样中确定各层子样本,应采取()A随机抽取 B主观判断C非随机抽取D分层抽样8、总体中某一变量的综合描述叫()A 平均数B 标准差C 参数值D 统计值9、我国对小型工业企业采用的调查方法是()A 全面调查 B抽样调查 C 典型调查 D 重点调查10、从总体中按一定方式抽取出的一部分个体的集合叫()A 抽样框B 样本C 抽样单位D 样本规模11、根据总体的结构比例来分配样本量,由调查员来挑选样本单元这种方法是属于( )A简单随机抽样 B系统抽样 C判断抽样 D配额抽样12、抽样误差是指()A 抽样调查中所存在的误差B 由于抽样的不同方法而产生的误差C 抽样调查中的工作误差D 样本统计值与总体参数值之间存在的误差13、对于概率抽样,下面说法正确的是( )A 样本的结构一定要与总体的结构相一致B 总体中每个单元被抽中的概率一定是相等的C 总体中每个单元被抽中的概率是未知的D总体中每个单元被抽中的概率是已知的14、为提高分层抽样的效率,要求( )A 层内各单元的差异尽可能大B 层内各单元的差异尽可能小C 层内各单元的差异与总体相一致 D各层的差异尽可能相同15、根据正态分布的性质,随机变量落在平均数两侧2个标准差范围内的概率为( )A 68.3%B 90%16、对黑客进行研究,一般先找到几个黑客,然后通过他们的介绍找到新的黑客,这种抽样方法是( )A方便抽样 B配额抽样 C滚雪球抽样 D 判断抽样17、不完全涵盖是指抽样框中( )A 包含了不属于目标总体的单元B 不包含目标总体的某些单元C 时间比较充足,但调查经费较少D 包含了空白的单元18、某省抽选200个村对养羊情况进行整群调查,村内调查对象是( )A成群的羊 B圈养的羊 C 所有住户 D 部分住户19、简单随机抽样是指总体单位( )A 不加任何处理任意抽取样本B 按其某种特征分为若干类型抽取样本C 按一定标志编序按间隔抽取样本D 分为若干群以群体为单位抽取样本20、研究者严格按照随机原则来抽取样本,排除任何事先设定的模式,每一个对象的抽取都是相互独立的,这属于( )A简单随机抽样 B系统抽样 C分层抽样D多段整群抽样21、当需要研究新生事物时,最恰当的调查方法是()A 全面调查B 典型调查C 重点调查D 抽样调查22、当抽样框存在不完全涵盖时,目标总体与调查总体的关系是( )A 目标总体大于调查总体 B目标总体小于调查总体C目标总体等于调查总体 D目标总体、调查总体与抽样框无关23、某大学估计学生的上网人数比例,先用随机的方法抽取10个系,再在每个系中随机抽取20个学生,用这些抽中学生的上网比例来进行估计,这种抽样方法属于( )A 简单随机抽样 B整群抽样 C多阶抽样 D分层抽样24、若欲调查估计某个街区的男女人口比例,采用的方法是按户口册随机抽取200个家庭做样本,用这个样本的比例来推断总体,这种抽样方法属于( )A简单随机抽样 B整群抽样 C多阶抽样 D分层抽样25、抽样框在调查中的作用主要是( )A 确定要调查的范围 B规定各个单元的抽选概率C 避免目标总体的遗漏 D用来代表总体,从中抽选样本26、PPS抽样是一种( )A等概率抽样 B不等概率抽样 C主观概率抽样 D非概率抽样27、由于被调查者拒绝回答而造成的误差属于( )A抽样误差 B 计量误差 C无回答误差 D推断偏差28、以下抽样方法可用于对总体进行推断的是( )A配额抽样 B滚雪球抽样 C判断抽样 D简单随机抽样29、为提高整群抽样的效率,通常要求( )A群内各单元的差异大 B群内各单元的差异小C群内各单元的差异适中 D群内各单元没有差异30、用样本估计值对总体参数进行点估计的理论基础是( )A大数定律 B中心极限定理 C正态分布的原理 D无偏估计的原理31、样本中某一变量的综合描述叫()A 平均数B 标准差C 参数值D 统计值32、由专家有目的地抽选他认为有代表性的样本进行调查,这种方法是属于( )A判断抽样 B滚雪球抽样 C就近抽样 D简单随机抽样33、将总体中所有分子排列并编以序号,然后按计算好的抽样距离依次等距抽样,被称之为()A 分层抽样B 整群抽样C 系统抽样D 多阶段抽样34、下列哪种调查可以较好地推论总体()A 全面调查B 典型调查C 抽样调查D 重点调查35、如果统计量的抽样分布的均值恰好等于被估计的参数之值,那么这一估计便可以认为是()估计。

第5章 市场调查的抽样技术

第5章 市场调查的抽样技术
其大小受四个因素影响:总体标准差、抽取样本量、抽样方式、抽样方法 非抽样误差:由于其他多种原因引起的估计值与总体参数之间的差异。 其误差来源:抽样框误差、无回答误差、计量误差
二、抽样调查的特点
抽样调查数据之所以能用来代表和推算总体,主要是因 为抽样调查本身具有其他非全面调查所不具备的特点, 主要是: (1)调查样本是按随机的原则抽取的,在总体中每一个 单位被抽取的机会是均等的,因此,能够保证被抽中的 单位在总体中的均匀分布,不致出现倾向性误差,代表 性强。 (2)是以抽取的全部样本单位作为一个“代表团”,用 整个“代表团”来代表总体,而不是用随意挑选的个别 单位代表总体。
二、系统抽样技术
系统抽样又称机械抽样或等距抽样,是指先将总 体各个单位按某一标志值的大小排列,再分成若 干个组,每个组的样本数基本相等,依照时间或 空间上相等的间隔来抽取调查单位。
抽样间隔(样本距离) =总体单位数/样本单位 数
系统抽样的步骤: 第一步:将总体中每一个个体按顺序排列并加以编号 第二步:计算抽样距离 第三步:抽取第一个样本 第四步:抽取所有的样本 系统抽样优缺点 优点:
即应包括全部总体单位。 例如:名单抽样框、区域抽样框、时间表抽样框 抽样单元:构成抽样框的基本元素。 抽样单元可以分级:初级单元、二级单元、三级单元等。 例如:抽取学校、抽取班级、抽取学生 (五)抽样误差和非抽样误差
抽样误差:指在遵守随机原则条件下,样本指标与总体指标之间的差异,是抽样 调查中不可避免的误差。
域之内
(3)群内差异大,而群间差异小
五、几种概率抽样方案的选择和比较
抽样技术
优点
缺点
简单随机抽样
易理解;结果可投影,可推广 到总体
抽样框难于构制;费用高; 精度低;不一定能保证代表

第5章抽样调查及参数估计(练习题)

第5章抽样调查及参数估计(练习题)

第五章抽样调查及参数估计5.1 抽样与抽样分布5.2 参数估计的基本方法5.3 总体均值的区间估计5.4 总体比例的区间估计5.5 样本容量的确定一、简答题1.什么是抽样推断?用样本指标估计总体指标应该满足哪三个标准才能被认为是优良的估计?2.什么是抽样误差,影响抽样误差的主要因素有哪些?3.简述概率抽样的五种方式二、填空题1.抽样推断是在随机抽样的基础上,利用样本资料计算样本指标,并据以推算总体数量特征的一种统计分析方法。

2.从全部总体单位中随机抽选样本单位的方法有两种,即重复抽样和不重复抽样。

3.常用的抽样组织形式有简单随机抽样、类型抽样、等距抽样、整群抽样等四种。

4.影响抽样误差大小的因素有总体各单位标志值的差异程度、抽样单位数的多少、抽样方法和抽样调查的组织形式。

5.总体参数区间估计必须具备估计值、概率保证程度或概率度、抽样极限误差等三个要素。

6.从总体单位数为N的总体中抽取容量为n的样本,在重复抽样和不重复抽样条件下,可能的样本个数分别是______________和_____________。

7.简单随机_抽样是最基本的抽样组织方式,也是其他复杂抽样设计的基础。

8.影响样本容量的主要因素包括总体各单位标志变异程度_、__允许的极限误差Δ的大小、_抽样方法_、抽样方式、抽样推断的可靠程度F(t)的大小等。

三、选择题1.抽样调查需要遵守的基本原则是( B )。

A.准确性原则 B.随机性原则 C.代表性原则 D.可靠性原则2.抽样调查的主要目的是( A )。

A.用样本指标推断总体指标 B.用总体指标推断样本指标C.弥补普查资料的不足 D.节约经费开支3.抽样平均误差反映了样本指标与总体指标之间的( B )。

A.实际误差 B.实际误差的平均数C.可能的误差范围 D.实际的误差范围4.对某种连续生产的产品进行质量检验,要求每隔一小时抽出10分钟的产品进行检验,这种抽查方式是( D )。

A.简单随机抽样 B.类型抽样 C.等距抽样 D.整群抽样5.在其他情况一定的情况下,样本单位数与抽样误差之间的关系是( B )。

随机抽样中样本容量的确定

随机抽样中样本容量的确定

X ~ N ( , 2 ) ,对于给定的显著性水平 ,当假定原假设H0:μ=μ0成立时,因 T X 0 ~ t (n 1) ,选择临界值 t (n 1) ,使得 P T t ( n 1) , S n X 0 P t (n 1) 1 n
从上面的式子(2)、(4)我们可以看到,对总体平均数进行参数估计或假 设检验时必要样本容量具有以下三个特点: (1)总体方差 2 或样本方差 S 2 越大,必要样本的容量n就越大; (2)最大允许误差△越小,必要样本的容量n就越大; (3)置信水平 1 越高,必要样本的容量n就越大。
参考文献:
Z n 2
2
(2)
2. 在 2 未知条件下的必要样本容量 在 2 未知条件下,我们可以得到总体平均数μ在 1 置信水平下的置信区 间为 ( x
S n t (n 1), x S n t (n 1) ,而在对总体平均数进行假设检验时,由于

(3)
(3)式同样回答了两个问题:当原假设H0:μ=μ0成立时,给出了H0的否定 域;二是在μ未知时,给出了总体平均数μ在置信水平 1 时的区间估计
(x S n t (n 1), x S n t (n 1)
同样可以看到,在 2 未知条件下,不论是对总体平均数进行参数估计还是 假设检验,均得到了一个相同的置信区间 ( x
[1]李贤平,沈崇圣,陈子毅.概率论与数理统计[M].复旦大学出版社,2005. [2]邵志芳.心理与教育统计学[M].上海科学普及出版社,2004. [3]耿修林.均值估计时样本容量的确定[J].统计与决策,2007,(10). [4]刘爱芹.随机抽样中样本容量确定的影响因素分析[J].山东财政学院学 报,2006,(05). [5]陈克明,宁震霖.市场调查中样本容量的确定[J].中国统计,2005,(03).

第5章抽样估计和假设检验

第5章抽样估计和假设检验

第5章 抽样估计和假设检验
• §5.1.1 • 2.总体和样本 • 总体也称全及总体,指所要认识研究对象的全体。
它是由所研究范围内具有某种共同性质的全体单 位所组成的集合体。总体的单位数通常是很大的, 甚至是无限的,一般用N表示总体的单位数。 • 样本又称子样,它是从全及总体中随机抽取出来 的们作为代表这一总体的哪部分单位组成的集合 体,样本的单位数是有限的,相对值或标志属性 决定的。
• 1. 抽样平均误差的计算方法
• 样本平均数的抽样平均误差
• ⑴ 重复抽样: • ⑵ 不重复抽样:
x
2
nn
x
2 N n
n N 1 n
1 n N
第5章 抽样估计和假设检验
• 2. 样本比例的抽样平均误差
• ⑴ 重复抽样:
p
P
n
P(1 P) n
• ⑵ 不重复抽样: p
• §5.2.1 抽样分布 • 3. 样本方差的分布
• 当总体服从正态分布 N , 2 时,
n 1S 2 2
• 服从 2 分布(将在下一节中介绍),其中
样本方差为
s2 1 n n 1 i1
2
xi x
第5章 抽样估计和假设检验
• §5.2.1 抽样分布
• 4. 样本比例的分布
• 总体中具有某种属性的单位数与总体全部单位数 之比称为总体的比例,记作。而样本中具有某种 属性的单位数与样本总数之比称为样本比例,记 作。
第5章 抽样估计和假设检验
• §5.2.1 抽样分布
• 2. 样本均值的抽样分布
• 若 则从总总体服体从中均抽值取为出的,样方本差均为值仍2的然正服态从分正布,
态分布,即。
X

样本容量的确定

样本容量的确定

样本容量的确定分类:Statistics在参数区间估计的讨论中,估计值和总体的参数之间存在着一定的差异,这种差异是由样本的随机性产生的。

在样本容量不变的情况下,若要增加估计的可靠度,置信区间就会扩大,估计的精度就降低了。

若要在不降低可靠性的前提下,增加估计的精确度,就只有扩大样本容量。

当然,增大样本容量要受到人力、物力和时间等条件的限制,所以需要在满足一定精确度的条件下,尽可能恰当地确定样本容量。

一、影响样本容量的因素(一)总体的变异程度(总体方差)在其它条件相同的情况下,有较大方差的总体,样本的容量应该大一些,反之则应该小一些。

例如:在正态总体均值的估计中,抽样平均误差为它反映了样本均值相对于总体均值的离散程度。

所以,当总体方差较大时,样本的容量也相应要大,这样才会使较小,以保证估计的精确度。

(二)允许误差的大小允许误差指允许的抽样误差,记为,例如,样本均值与总体均值之间的允许误差可以表示为,允许误差以绝对值的形式表现了抽样误差的可能范围,所以又称为误差。

允许误差说明了估计的精度,所以,在其他条件不变的情况下,如果要求估计的精度高,允许误差就小,那么样本容量就要大一些;如要求的精确度不高,允许误差可以大些,则样本容量可以小一些。

(三)概率保证度1-α的大小概率保证度说明了估计的可靠程度。

所以,在其他条件不变的情况下,如果要求较高的可靠度,就要增大样本容量;反之,可以相应减少样本容量。

(四)抽样方法不同在相同的条件下,重复抽样的抽样平均误差比不重复抽样的抽样平均误差大,所需要的样本容量也就不同。

重复抽样需要更大的样本容量,而不重复抽样的样本容量则可小一些。

此外,必要的抽样数目还要受抽样组织方式的影响,这也是因为不同的抽样组织方式有不同的抽样平均误差。

二、样本容量的确定(一) 估计总体均值的样本容量在总体均值的区间估计里,置信区间是由下式确定的:例如,对于正态总体以及非正态总体大样本时,都是以它为置信区间。

第五章 抽样估计

第五章  抽样估计
3.题型:(1)已知 ,求F(t)(2)已知F(t),求区间(实值求 )
步骤: 步骤:
例题1.(题型一)
某乡水道总面积2000亩,从中随机抽取40亩(重复抽样),每亩产量资料如下:
每亩产量(斤)
亩数
x
xf
(x- ) f
400—450
450—500
500—550
550—600
600—650
650—700
1)常用的参数和统计量(指标:平均指标和变异指标)
对于数量标志,计算平均指标和变异指标( )
对于品质标志,计算成数指标(结构相对指标)来表示某种性质的单位数在总体全部单位数中所占的比重。即p=(n1/n),则总体中不具有某种性质的单位数在总体中所占的比重为:q=1-p
如果进行对品质标志是非标志进行赋值,即:定义为“1”和“0”,则有:
(五)抽样估计的置信度
前面我们学习了两种误差,即平均误差和极限误差,这两种误差有着不同的含义。
抽样平均误差反映抽样误差一般水平,是样本资料和总体之间所有离差值的一个平均数。极限误差指进行抽样在统计工作前设立的一个误差最大值。二者的关系是 ( )用抽样误差概率度来表示的。
我们客观地承认,只要进行抽样调查,必然存在误差,并且根据经验或工作要求,我们可以设置一个误差最大值,但要使抽样调查结果一定符合误差在极限误差范围内,却并非能够实现。所以要保证误差不超过一定范围的,只能给一定程度的概率保证程度。抽样估计置信度就是表明抽样指标和总体指标的误差不超过一定范围的概率保证程度。
如:t=1 F(t)=P=68.27%查《正态分布概率分t=2 F(t)=F(2)=P=95.45%布表》
t=3 F(t)=F(3)=P=99.73%
t=1.64 F(t)=90%

样本容量的确定

样本容量的确定

精品文档样本容量的确定分类:Statistics在参数区间估计的讨论中,估计值和总体的参数之间存在着一定的差异,这种差异是由样本的随机性产生的。

在样本容量不变的情况下,若要增加估计的可靠度,置信区间就会扩大,估计的精度就降低了。

若要在不降低可靠性的前提下,增加估计的精确度,就只有扩大样本容量。

当然,增大样本容量要受到人力、物力和时间等条件的限制,所以需要在满足一定精确度的条件下,尽可能恰当地确定样本容量。

一、影响样本容量的因素(一)总体的变异程度 ( 总体方差)在其它条件相同的情况下,有较大方差的总体,样本的容量应该大一些,反之则应该小一些。

例如:在正态总体均值的估计中,抽样平均误差为它反映了样本均值相对于总体均值的离散程度。

所以,当总体方差较大时,样本的容量也相应要大,这样才会使较小,以保证估计的精确度。

(二)允许误差的大小允许误差指允许的抽样误差,记为,例如,样本均值与总体均值之间的允许误差可以表示为,允许误差以绝对值的形式表现了抽样误差的可能范围,所以又称为误差。

允许误差说明了估计的精度,所以,在其他条件不变的情况下,如果要求估计的精度高,允许误差就小,那么样本容量就要大一些;如要求的精确度不高,允许误差可以大些,则样本容量可以小一些。

(三)概率保证度1-α的大小概率保证度说明了估计的可靠程度。

所以,在其他条件不变的情况下,如果要求较高的可靠度,就要增大样本容量;反之,可以相应减少样本容量。

(四)抽样方法不同在相同的条件下,重复抽样的抽样平均误差比不重复抽样的抽样平均误差大,所需要的样本容量也就不同。

重复抽样需要更大的样本容量,而不重复抽样的样本容量则可小一些。

精品文档此外,必要的抽样数目还要受抽样组织方式的影响,这也是因为不同的抽样组织方式有不同的抽样平均误差。

二、样本容量的确定( 一)估计总体均值的样本容量在总体均值的区间估计里,置信区间是由下式确定的:例如,对于正态总体以及非正态总体大样本时,都是以它为置信区间。

抽样设计和样本量的确定讲义

抽样设计和样本量的确定讲义
• 可分为单阶段整群抽样与二阶段整群抽样;
• 与分层抽样的关键差别在于,在整群抽样中,只有一个 子总体的样本被选出,而在分层抽样中,为了进一步的 抽样,所有的子总体都被选出来了;
• 整群抽样的目的是通过降低成本来增加抽样效率,分层 抽样的目的是增加精确度。
• 在每个群中的个体,应尽可能的异质性,但各群本身应 尽可能的同质。
• 可以确定样本估计值的精确度; • 可以根据个体抽样对整群抽样、相等单位概率对不等概率、非
分层抽样对分层抽样、随机选择对系统选择、单阶段技术对多 阶段技术,这5个方面所有的可能组和分成32种不同的抽样技 术。
便利抽样
抽样技术抽样的技术分类
非概率抽样
概率抽样
判断抽样
配额抽样
滚雪球抽样
简单随机抽样
系统抽样
由一份或一组用于识别目标总体的指示说明组成
• 电话本、公司名的协会目录、邮寄名单、姓名地址录或 者地图
• 可能造成抽样框架误差。 • 有三种办法处理抽样框架误差:
• 根据抽样框架重新定义总体; • 通过数据收集阶段的筛选被访者来考虑抽样框架误差; • 通过加权的方案来调整所收集的数据,弥补抽样框架误差。
• 将成本作为确定样本成容本量基的基础础法
• 对于成本基础法的区别很大; • 通常会忽视调查结果对管理决策的价值; • 确定样本容量一个好的办法是考虑成本与调研对于经历
的价值之间的关系;
• 一些统计分析方法对统最计小分样本析容法量有要求
• 如果要讨论分类变量的影响,那么每一分类变量的样本 数应符合统计分析数的需要
• 要将每一类样本或子集看成一个总体
• 运用差异性置信区间置、信样区本分间布法以及平均数标准
误差或百分比标准误差等概念来创建一个由小样 本

抽样区间估计与样本容量计算释疑

抽样区间估计与样本容量计算释疑

抽样区间估计与样本容量计算释疑抽样推断是统计学的基本方法之一,也是统计学原理的重点学习内容之一。

抽样调查特点、抽样平均误差影响因素、抽样参数估计、抽样样本容量确定等构成了这一章的重点内容,而其中的参数估计与样本容量确定则是计算的重点。

本文拟通过案例与初学者谈谈如何进行抽样估计,如何确定样本容量。

[例1]某市统计部门为了解全市居民年消费支出情况,从全市20万户居民中随机抽取1000户居民进行调查,经计算平均每户年生活费支出为1.8万元,标准差0.9万元。

要求:⑴以95.45%(t=2)的概率保证程度估计户均生活费支出的区间。

⑵估计全市居民消费总支出区间。

[解题过程]已知户均年支出区间:[1.8-0.056,1.8+0.056]万元=[1.744,1.856]万元 全市居民消费总支出区间:20万户×[1.744,1.856]万元=[3.488,3.712]亿元[几点说明](1)一般而言,抽样区间估计的基本步骤是:点估计、平均误差、极限误差、置信区间。

本例就是标准的均值参数区间估计题型。

由于样本均值与标准差是已知的,所以无需计算点估计值。

(2)本题计算时,必须注意“方差”与“标准差”的区别,不要将标准差当作方差来使用。

(3)社会经济问题抽样调查一般都是采用不重复抽样的,只有当总体单位总数N 未知或n/N 的比重很低时,才可以采用重复抽样平均误差公式来计算平均误差。

(4)估计总量指标时,可直接将样本均值的区间乘上全及总体单位总数N 即可。

[例2]某企业为了解本市居民对某类保健品的看法,采用简单随机抽样方式,从全市居民户中随机抽取500人进行调查结果如下:要求:以95%的可靠性估计全市居民中“喜欢”该产品的比率(t=1.96)。

1000,200000,2,9.0,8.1=====n N t x σ万元平均误差028.0%)5.01(100081.0)1(2=-=-=N n n x σμ万元极限误差056.0028.02=⨯==∆x x t μ[解题过程]已知喜欢该类保健品者的比率置信区间为:[64%-4.21%,64%+4.21%]=[59.79%,68.21%][几点说明](1)本例是标准的成数区间估计题型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5-2
统计学
STATISTICS
样本容量确定的准则
在对精度有要求时,寻求能够 保证精度要求的费用最省的样本 量; 由于费用通常是关于样本量的 正向线性函数,故使费用最省的 样本量也就是使精度得到保证的 最小样本量; 在费用有预算限制的时候,寻 求费用预算范围内使精度达到最 高的样本量。
5-3
应抽取139个产品作为样本。
5 - 10
统计学
STATISTICS
本节结束,谢谢!
5 - 11
5-9
不重复抽样 n
N ( z 2 )2 ( 1 )
统计学 估计总体比例时样本容量的确定 STATISTICS (例题分析)
【例】根据以往 解 : 已 知 p=90% , 1-=95% , Z/2=1.96, d =5% 的生产统计,某 种产品的合格率 应抽取的样本容量为: ( z 2 )2 p( 1 p ) 约 为 90% , 现 要 n 2 求允许误差为5% d , 在 求 95% 的 置 ( 1.96 )2 0.9 ( 1 0.9 ) 信区间时,应抽 0.052 取多少个产品作 138.3 139 为样本?
统计学
STATISTICS
估计总体均值时样本容量的确定
5-4
统计学
STATISTICS
估计总体均值时样本容量的确定
1. 估计总体均值时样本容量n为: 重复抽样 ( z 2 )2 2 n 2 d 不重复抽样 N ( z 2 )2 2 n ( N 1 )d 2 ( z 2 )2 2
统计学
CS
5.7 样本容量的确定
5-1
统计学
STATISTICS
样本容量确定的两难
样本容量取得较大,收集的信息 就相对多,从而估计精度较高,但 进行观测所投入的费用、人力及时 间就比较多; 样本容量取得较小,则投入的费 用、人力及时间就相对节约,但收 集的信息也较少,从而估计精度较 低; 所以,精度和费用对样本量的影 响和要求是矛盾的,不存在既使精 度最高又使费用最省的样本量 。
其中: d Z n 2
2. 样本容量n与总体方差成正比,与绝对误差成 反比,与概率度成正比。
5-5
统计学 估计总体均值时样本容量的确定 STATISTICS (例题分析)
【例】拥有工商管理学士学位的大学毕业生年 薪的标准差大约为2000元,假定想要估计年薪 95%的置信区间,希望允许误差为400元,应抽 取多大的样本容量?
5-6
统计学 估计总体均值时样本容量的确定 STATISTICS (例题分析)
解: 已知=2000,d=400, 1-=95%, z/2=1.96 置信度为95%的置信区间为:
n
( z 2 )
2 2
2
d 96.04 97
( 1.96 ) 2000 2 400
2
2
即应抽取97人作为样本。
5-7
统计学
STATISTICS
估计总体比例时样本容量的确定
5-8
统计学
STATISTICS
估计总体比例时样本容量的确定
( z 2 )2 ( 1 ) d
2
1. 根据比例区间估计公式可得样本容量n为:
重复抽样
n
( N 1 )d 2 ( z 2 )2 ( 1 ) p( 1 p ) 其中: d z 2 n 2. d的取值一般小于0.1 3. π 未知,以样本比例p替代 4. π 或p都未知时,可取0.5,这是一种谨慎估计
相关文档
最新文档