人教版数学高二-人教A版选修4-5阶段质量检测(三) B卷
高中数学第一讲不等式和绝对值不等式1.1.2基本不等式练习(含解析)新人教A版选修4_5
2.基本不等式一、选择题1.若a,b,c都是正数,且a(a+b+c)+bc=4-2,则2a+b+c的最小值为( )A.-1B.+1C.2+2D.2-2解析:∵a(a+b+c)+bc=4-2,∴(a+b)(a+c)=4-2,∵a,b,c>0,∴(a+c)(a+b)≤,当且仅当a+c=a+b,即b=c时,等号成立.∴2a+b+c≥2=2(-1)=2-2.答案:D2.下列结论中不正确的是( )A.a>0时,a+≥2B.≥2C.a2+b2≥2abD.a2+b2≥解析:选项A、C显然正确;选项D中,2(a2+b2)-(a+b)2=a2+b2-2ab≥0,∴a2+b2≥成立;而选项B中,≥2不成立,因为若ab<0,则不满足基本不等式成立的条件.答案:B3.函数y=3x2+的最小值是( )A.3-3B.-3C.6D.6-3解析:y=3x2+=3x2+3+-3,∵3x2+3>0,>0,∴y≥2-3=6-3,当且仅当3x2+3=时,y取得最小值6-3.答案:D4.设x,y∈R,且x+y=5,则3x+3y的最小值是( )A.10B.6C.4D.18解析:3x+3y≥2=2=2=18.答案:D5.若x,y>0,且x+2y=3,则的最小值是( )A.2B.C.1+D.3+2解析:=1+,当且仅当时,等号成立,取得最小值1+.答案:C二、非选择题6.若a>3,则+a的最小值为.解析:由基本不等式,得+a=+a-3+3≥2+3=2+3=7,当且仅当=a-3,即a=5(a=1舍去)时,等号成立.答案:77.若正数a,b满足ab=a+b+3,则ab的取值范围是.解析:令=t(t>0),由ab=a+b+3≥2+3,得t2≥2t+3,∴t≥3或t≤-1(舍去).∴≥3.∴ab≥9,当a=b=3时,等号成立.答案:[9,+∞)8.函数y=log a(x+3)-1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则的最小值为.解析:函数y=log a(x+3)-1的图象恒过定点A(-2,-1),∵点A在直线mx+ny+1=0上,∴-2m-n+1=0,即2m+n=1,则×(2m+n)==2++4·+2≥4+2=4+4=8,当且仅当m=,n=时取等号.答案:89.求函数y=(x≥0)的最小值.解:原式变形,得y==x+2++1.因为x≥0,所以x+2>0.所以x+2+≥6,所以y≥7,当且仅当x=1时,等号成立.所以函数y=(x≥0)的最小值为7.10. 若a>0,b>0,且.(1)求a3+b3的最小值;(2)是否存在a,b,使得2a+3b=6?并说明理由.解:(1)由,得ab≥2,且当a=b=时等号成立.故a3+b3≥2≥4,且当a=b=时等号成立.所以a3+b3的最小值为4.(2)由(1)知,2a+3b≥2≥4.由于4>6,从而不存在a,b,使得2a+3b=6.11.如图,为处理含有某种杂质的污水,要制造一个底宽为2 m的无盖长方体沉淀箱,污水从A 孔流入,经沉淀后从B孔流出,设箱体的长度为a m,高度为b m,已知流出的水中该杂质的质量分数与a,b的乘积ab成反比,现有制箱材料60 m2,问当a,b各为多少时,沉淀后流出的水中该杂质的质量分数最小?(A,B孔的面积忽略不计)解:设y为流出的水中该杂质的质量分数,则y=,k>0,k为比例系数,依题意,即求a,b的值,使y最小.依题设,有4b+2ab+2a=60(a>0,b>0),所以b=(0<a<30).①于是y====≥=.当a+2=时,等号成立,y取最小值.这时a=6,a=-10(舍去),将a=6代入①,得b=3.故当a为6,b为3时,沉淀后流出的水中该杂质的质量分数最小.三、备选习题1.已知a>2,试判断log a(a-1)·log a(a+1)与1的大小关系.解:∵a>2,∴log a(a-1)>0,log a(a+1)>0,且log a(a-1)≠log a(a+1),∴log a(a-1)·log a(a+1)<==1,∴当a>2时,log a(a-1)·log a(a+1)<1.2.一艘船由甲地逆水匀速行驶到乙地,甲乙两地相距s(千米),水速为常量p(千米/时),船在静水中的最大速度为q(千米/时),且p<q.已知船每小时的燃料费用(元)与船在静水中速度v(千米/时)的平方成正比,比例系数为k.(1)把全程燃料费用y(元)表示为静水中的速度v(千米/时)的函数,并指出其定义域;(2)为了使全程燃料费用最小,船的实际前进速度应为多少?解:(1)由于船每小时航行的燃料费用是kv2,全程航行时间为,于是全程燃料费用y=kv2·,故所求函数是y=ks·(p<v≤q),定义域是(p,q].(2)y=ks·=ks=ks·≥ks=4ksp.其中取“=”的充要条件是v-p=,即v=2p.①当v=2p∈(p,q],即2p≤q时y min=f(2p)=4ksp.②当v=2p∉(p,q],即2p>q.任取v1,v2∈(p,q],且v1<v2,则y1-y2=ks=·[p2-(v1-p)(v2-p)],而p2-(v1-p)(v2-p)>p2-(q-p)(q-p)=q(2p-q)>0,∴y1-y2>0.故函数y在区间(p,q]内单调递减,此时y(v)≥y(q),即y min=y(q)=ks.此时,船的前进速度等于q-p.故为使全程燃料费用最小,当2p≤q时,船的实际前进速度应为2p-p=p(千米/时);当2p>q 时,船的实际前进速度为q-p(千米/时).。
人教A版高中数学选修4-5课件:第三讲 柯西不等式与排序不等式 阶段复习课(共56张PPT)
缺乏明确的目标,一生将庸庸碌碌。 能把在面前行走的机会抓住的人,十有八九都会成功。 大起大落谁都有拍拍灰尘继续走。 用最少的悔恨面对过去。 问候不一定要慎重其事,但一定要真诚感人。 觉得自己做得到和做不到,只在一念之间。 人生应该树立目标,否则你的精力会白白浪费。 你可以用爱得到全世界,你也可以用恨失去全世界。 过去不等于未来。 千万人的失败,都有是失败在做事不彻底,往往做到离成功只差一步就终止不做了。 生命的道路上永远没有捷径可言,只有脚踏实地走下去。
人教A版高中数学选修4-5绝对值不等式的解法
高中数学学习材料(灿若寒星 精心整理制作)高二年级(下)数学学案绝对值不等式的解法制作人:岳双珊 审核人:张艳芬 时间 2013.03一.基本解法与思想解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。
(一)、公式法:即利用a x >与a x <的解集求解。
主要知识:1.绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离。
2.a x >与a x <型的不等式的解法。
当0>a 时,不等式⇔>a x {}a x a x x -<>或,;不等式⇔<a x {}a x a x <<-; 当0<a 时,不等式⇔>a x {}R x x ∈;不等式⇔<a x ∅. 3.c b ax >+与c b ax <+型的不等式的解法。
把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。
4.关于绝对值不等式的常见类型有下列的同解变形 (1)()()()()();f x g x g x f x g x ≤⇔-≤≤ (2)()()()(),()()f x g x f x g x f x g x ≥⇔≤-≥或 (3)22()()()().f x g x f x g x ≤⇔≤(4)设0b a >>,则不等式()a f x b ≤<⇔()b f x a -<≤-或()a f x b ≤<(二)、定义法:即利用(0),0(0),(0).a a a a a a >⎧⎪==⎨⎪-<⎩去掉绝对值再解。
例如:解不等式22xxx x >++.(三)、平方法:解()()f x g x >型不等式。
例如:解不等式123x x ->-.二.分类讨论法(零点分段法):即通过合理分类去绝对值后再求解。
人教A版选修4-5 3.3排序不等式 作业
课后导练基础达标1若A=x 12+x 22+…+x n 2,B=x 1x 2+x 2x 3+…+x n-1x n +x n x 1, 其中x 1,x 2,…,x n 都是正数,则A 与B 的大小关系是( )A.A>BB.A<BC.A ≥BD.A ≤B解析:依序列{x n }的各项都是正数,不妨设x 1≤x 2≤…≤x n ,则x 2,x 3,…,x n ,x 1为序列{x n }的一个排列.依排序原理,得x 1x 1+x 2x 2+…+x n x n ≥x 1x 2+x 2x 3+…+x n x 1,即x 12+x 22+…+x n 2≥x 1x 2+x 2x 3+…+x n x 1. 答案:C2设a,b 都是正数,P=(b a )2+(a b )2,Q=b a +ab,则( ) A.P ≥Q B.P ≤Q C.P>Q D.P<Q 解析:∵a,b 都是正数,∴a b 、b a 22与b 1,a 1顺序相同.∴b a 2·b 1+a b 2·a 1≥b a 2·a 1+a b 2·b1. ∴(b a )2+(a b )2≥b a +ab,即P ≥Q. 答案:A3设a,b,c ∈R ,则cabb ca a bc ++____________a+b+c. 解析:设a ≥b ≥c ≥0,则bc ≤ca ≤ab,a 1≤b 1≤c1,∴c ab b ca a bc ++≥ac ·c 1+a ab +bbc =a+b+c. 答案:≥4若△ABC 的三内角为A,B,C,三边为a,b,c,则c b a cC bB aA ++++___________3π.解析:设a ≤b ≤c,A ≤B ≤C.作序列a,a,a,b,b,b,c,c,c,A,A,A,B,B,B,C,C,C. aA+aA+aA+bB+bB+bB+cC+cC+cC ≥(aA+aB+aC)+(bA+bB+bC)+(cA+cB+cC), ∴3(aA+bB+cC)≥(a+b+c)(A+B+C),即c b a cC bB aA ++++≥3C B A ++=3π.答案:≥5设a,b,c ∈R ,求证:a a b b c c ≥(abc)3c b a ++.证明:∵a,b,c ∈R ,∴lg(a a b b c c )=alga+blgb+clgc, lg(abc)3cb a ++=3cb a ++(lga+lgb+lgc). 设a ≤b ≤c,作序列a,a,a,b,b,b,c,c,c,lga,lga,lga,lgb,lgb,lgb,lgc,lgc,lgc. 3(alga+blgb+clgc)≥a(lga+lgb+lgc)+b(lga+lgb+lgc)+c(lga+lgb+lgc), 即alga+blgb+clgc ≥3cb a ++(lga+lgb+lgc), ∴a a b bc c ≥(abc)3c b a ++.综合运用6设a,b,c 是某三角形的三边长,证明a 2b(a-b)+b 2c(b-c)+c 2a(c-a)≥0,并问何时取等号? 证明:不妨设a ≥b ≥c,此时 a(b+c-a)≤b(c+a-b)≤c(a+b-c),于是由排序不等式可得c 1·a(b+c-a)+a 1·b(c+a-b)+b1·c(a+b-c)≤a 1·a(b+c-a)+b1·b ·(c+a-b)+c 1·c(a+b-c)=a+b+c,即c 1a(b-a)+a 1b(c-b)+b1c(a-c)≤0, a 2b(a-b)+b 2c(b-c)+c 2a(c-a)≥0, 上式当且仅当a 1=b 1=c1,或者a(b+c-a)=b(c+a-b)=c(a+b-c),即a=b=c 时取等号. 7已知a 1,a 2,…,a n 是n个两两互不相等的正整数,求证:a 1+n na a a n 1312113222322++++≥+++ΛΛ.证明 :注意到22221312111n≥≥≥≥Λ,所以2232232n a a a n +++Λ可以看作一个乱序和,将a 1,a 2,…,a n 排序后就可以利用排序原理.因为a 1,a 2,…,a n 是n 个两两互不相等的正整数,可将它们从小到大排列,不妨设b 1<b 2<…<b n ,从而b k ≥k(k 为正整数),由排序不等式可得2232232n a a a n +++Λ≥b 1+2232232nb b b n +++Λ nn n 13121133221222++++≥++++≥ΛΛ 8设x i ,y i 是实数(i=1,2,…,n),且x 1≥x 2≥…≥x n ,y 1≥y 2≥…≥y n ,又z 1,z 2,…,z n 是y 1,y 2,…,y n 的任一排列,证明2121)()(∑∑==-≤-ni i i ni i iz x y x.证明:由排序不等式,得∑∑==≥ni iini iizx y x 11,则∑∑==-≤-ni i i ni ii z x yx 1122.又∵∑∑∑∑====+=+ni i ni i ni i ni i z x y x 12121212,∴∑∑∑∑∑∑======+-≤+-ni i i n i i ni i n i ni i i i ni iz z x x y y x x121121121222,即2121)()(∑∑==-≤-ni i i ni i iz x y x.拓展探究9若α,β,γ均为锐角,且满足cos 2α+cos 2β+cos 2γ=1, 求证:cot 2α+cot 2β+cot 2γ≥23. 证明:∵cos 2α+cos 2β+cos 2γ=1, cos 2α=1-sin 2α, ∴sin 2α+sin 2β+sin γ=2. 又sin α2+cos 2α=1, ∴1+cot 2α=α2sin 1. ∴3+cot 2α+cot 2β+cot 2γ =γβα222sin 1sin 1sin 1++, (sin 2α+sin 2β+sin 2γ)(γβα222sin 1sin 1sin 1++) ≥[sin α·γγββαsin 1sin sin 1sin sin 1•+•+]2=9, 即2·(γβα222sin 1sin 1sin 1++)≥9(柯西不等式). ∴3+cot 2α+cot 2β+cot 2γ≥29.∴cot 2α+cot 2β+cot 2γ≥23. 备选习题10设a,b,c 是某三角形的三边长,证明a 2(b+c-a)+b 2(c+a-b)+c 2(a+b-c)≤3abc. 证明:不妨设a ≥b ≥c,容易验证a(b+c-a)≤b(c+a-b)≤c(a+b-c),由排序不等式可得a 2(b+c-a)+b 2(c+a-b)+c 2(a+b-c)≤ba(b+c-a)+cb(c+a-b)+ac(a+b-c),① 及a 2(b+c-a)+b 2(c+a-b)+c 2(a+b-c)≤ca(b+c-a)+ab(c+a-b)+bc(a+b-c),②①+②并化简即得a 2(b+c-a)+b 2(c+a-b)+c 2(a+b-c)≤3abc.11设a,b,c 均为正数,求证:a+b+c ≤abcc b a 444++.证明:不妨设a ≥b ≥c>0,则有a 2≥b 2≥c 2,ab ≥ac ≥bc,由排序不等式得a 2bc+ab 2c+abc 2≤a 3c+b 3a+c 3b.又a 3≥b 3≥c 3且a ≥b ≥c,再由排序不等式得a 3c+b 3a+c 3b ≤a 4+b 4+c 4. 从而a 2bc+ab 2c+abc 2≤a 4+b 4+c 4,两边同除以abc 即得所证不等式.12设a k 是两两互异的自然数(k=1,2,…),证明对任意自然数n,均有∑∑==≥nk nk k kk a 1121.证明:设b 1,b 2,…,b n 是a 1,a 2,…,a n 的一个排列,使b 1<b 2<…<b n ,则从条件知对每个1≤k≤n,b k ≥k,于是由排序不等式可得∑∑∑===≥≥nk n k k nk k kk b k a 112121.13已知x i ∈R (i=1,2,…,n;n ≥2)满足∑=ni i x 1||=1,∑=ni i x 1=0,求证:|∑=ni i i x 1≤21-n21.证明:设i 1,i 2,…,i s ,j 1,j 2,…,j t 是1,2,…,n 的一个排列,且使得t s j j j i i i x x x x x x ≥≥≥>≥≥≥≥ΛΛ21210.又设a=i i i i x x x +++Λ21,b=-(t j j j x x x +++Λ21),根据已知条件,有a-b=0,a+b=1,所以=b=21. 不妨设∑=ni i i x 1≥0,(否则,若∑=ni i i x1<0,取y i =-x i ,i=1,2,…,n,此时y 1,y 2,…,y n 仍满足∑=ni iy1||=1,∑=ni i y 1=0,且|∑=ni i i x 1|=∑=ni i iy1>0)由排序不等式,有 1·x 1+21·x 2+…+n 1·x n ≤1·1i x +21·2i x +…+s 1s i x +11+s ·1j x +21+s ·2j x +…+n1·t j x ≤(1i x +2i x +…+s i x )+n 1(1j x +2j x +…+t j x )=21-n21.从而|∑=ni i i x 1|≤21-n21.。
新课标人教A版高二数学练习题(选修2-2、4-1、4-5)
高二数学练习题一、选择题(每小题5分,共60分)1.设1z i =+(i 是虚数单位),则22z z+= ( ) A .1i -- B .1i -+ C .1i - D . 1i +2.曲线23-+=x x y 上一点0P 处的切线平行于直线41y x =+,则点0P 一个的坐标是 ( ) A .(0,-2) B. (1, 1) C. (-1, -4) D. (1, 4) 3.设y x ,为正数, 则)41)((yx y x ++的最小值为 ( )A. 6B.9C.12D.154.若函数f(x)的导数为f ′(x)=-sinx ,则函数图像在点(4,f (4))处的切线的 倾斜角为 ( ) A .90° B .0° C .锐角 D .钝角5.如图,用与底面成30︒角的平面截圆柱得一椭圆截线,则该椭圆的 离心率为 A .12B.3C.2D .非上述结论[]326y 2x 3x 12x 50,3=--+.函数在上的最大值与最小值分别是 ( )A.5 , -15B.5 , 4C.-4 , -15D.5 , -168、已知{}n b 为等比数列,52b =,则99212=⋅⋅⋅b b b 。
若{}n a为等差数列,第5题图52a =,则{}n a 的类似结论为( )A 99212=⋅⋅⋅a a aB 99212=+++a a a C 92921⨯=⋅⋅⋅a a a D 92921⨯=+++a a a 9.已知曲线3lnx 4xy 2-=的一条切线的斜率为21,则切点的横坐标为( )A. 3B. 2C. 1D. 1210.设R a ∈,若函数x e y ax3+=,R x ∈有大于零的极值点,则( )A .3->a B. 3-<a C. 31->a D. 31-<a()2111.f x ln(2)b 2x b x =-++∞若在(-1,+)上是减函数,则的取值范围是( )A.[-1,+∞]B.(-1,+∞)C.(]1,-∞- D.(-∞,-1)12.如右图,求阴影部分的面积是( ) A. 32 B. 329- C.332 D. 335二、填空题(每小题4分,共16分)121)3(z z i -12、若复数z =4+29i,z =6+9i,则复数的实部为 。
人教A版高中数学选修2-3全册同步练习及单元检测含答案
⼈教A版⾼中数学选修2-3全册同步练习及单元检测含答案⼈教版⾼中数学选修2~3 全册章节同步检测试题⽬录第1章《计数原理》同步练习 1.1测试1第1章《计数原理》同步练习 1.1测试2第1章《计数原理》同步练习 1.1测试3第1章《计数原理》同步练习 1.2排列与组合第1章《计数原理》同步练习 1.3⼆项式定理第1章《计数原理》测试(1)第1章《计数原理》测试(2)第2章同步练习 2.1离散型随机变量及其分布列第2章同步练习 2.2⼆项分布及其应⽤第2章测试(1)第2章测试(2)第2章测试(3)第3章练习 3.1回归分析的基本思想及其初步应⽤第3章练习 3.2独⽴性检验的基本思想及其初步应⽤第3章《统计案例》测试(1)第3章《统计案例》测试(2)第3章《统计案例》测试(3)1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题1.⼀件⼯作可以⽤2种⽅法完成,有3⼈会⽤第1种⽅法完成,另外5⼈会⽤第2种⽅法完成,从中选出1⼈来完成这件⼯作,不同选法的种数是()A.8 B.15C.16 D.30答案:A2.从甲地去⼄地有3班⽕车,从⼄地去丙地有2班轮船,则从甲地去丙地可选择的旅⾏⽅式有()A.5种B.6种C.7种D.8种答案:B3.如图所⽰为⼀电路图,从A 到B 共有()条不同的线路可通电()A.1 B.2 C.3 D.4答案:D4.由数字0,1,2,3,4可组成⽆重复数字的两位数的个数是()A.25 B.20 C.16 D.12答案:C5.李芳有4件不同颜⾊的衬⾐,3件不同花样的裙⼦,另有两套不同样式的连⾐裙.“五⼀”节需选择⼀套服装参加歌舞演出,则李芳有()种不同的选择⽅式()A.24 B.14 C.10 D.9答案:B 6.设A ,B 是两个⾮空集合,定义{}()A B a b a A b B *=∈∈,,|,若{}{}0121234P Q ==,,,,,,,则P *Q 中元素的个数是()A.4 B.7 C.12 D.16答案:C⼆、填空题7.商店⾥有15种上⾐,18种裤⼦,某⼈要买⼀件上⾐或⼀条裤⼦,共有种不同的选法;要买上⾐,裤⼦各⼀件,共有种不同的选法.答案:33,2708.⼗字路⼝来往的车辆,如果不允许回头,共有种⾏车路线.答案:129.已知{}{}0341278a b ∈∈,,,,,,,则⽅程22()()25x a y b -+-=表⽰不同的圆的个数是.答案:1210.多项式123124534()()()()a a a b b a a b b ++++++··展开后共有项.答案:1011.如图,从A →C ,有种不同⾛法.答案:612.将三封信投⼊4个邮箱,不同的投法有种.答案:34三、解答题 13.⼀个⼝袋内装有5个⼩球,另⼀个⼝袋内装有4个⼩球,所有这些⼩球的颜⾊互不相同.(1)从两个⼝袋内任取⼀个⼩球,有多少种不同的取法?(2)从两个⼝袋内各取⼀个⼩球,有多少种不同的取法?解:(1)549N =+=种;(2)5420N =?=种.14.某校学⽣会由⾼⼀年级5⼈,⾼⼆年级6⼈,⾼三年级4⼈组成.(1)选其中1⼈为学⽣会主席,有多少种不同的选法?(2)若每年级选1⼈为校学⽣会常委,有多少种不同的选法?(3)若要选出不同年级的两⼈参加市⾥组织的活动,有多少种不同的选法?解:(1)56415N =++=种;(2)564120N =??=种;(3)56644574N =?+?+?=种15.已知集合{}321012()M P a b =---,,,,,,,是平⾯上的点,a b M ∈,.(1)()P a b ,可表⽰平⾯上多少个不同的点?(2)()P a b ,可表⽰多少个坐标轴上的点?解:(1)完成这件事分为两个步骤:a 的取法有6种,b 的取法也有6种,∴P 点个数为N =6×6=36(个);(2)根据分类加法计数原理,分为三类:①x 轴上(不含原点)有5个点;②y 轴上(不含原点)有5个点;③既在x 轴,⼜在y 轴上的点,即原点也适合,∴共有N =5+5+1=11(个).1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题 1.从集合{ 0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a bi +,其中虚数有() A .30个 B .42个 C .36个 D .35个答案:C2.把10个苹果分成三堆,要求每堆⾄少1个,⾄多5个,则不同的分法共有() A .4种 B .5种 C .6种 D .7种答案:A3.如图,⽤4种不同的颜⾊涂⼊图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂⾊不同,则不同的涂法有() A .72种 B .48种 C .24种 D .12种答案:A4.教学⼤楼共有五层,每层均有两个楼梯,由⼀层到五层的⾛法有() A .10种 B .52种C.25种D.42种答案:D5.已知集合{}{}023A B x x ab a b A ===∈,,,,,|,则B 的⼦集的个数是()A.4 B.8 C.16 D.15答案:C6.三边长均为正整数,且最⼤边长为11的三⾓形的个数为()A.25 B.26 C.36 D.37答案:C⼆、填空题7.平⾯内有7个点,其中有5个点在⼀条直线上,此外⽆三点共线,经过这7个点可连成不同直线的条数是.答案:128.圆周上有2n 个等分点(1n >),以其中三个点为顶点的直⾓三⾓形的个数为.答案:2(1)n n -9.电⼦计算机的输⼊纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产⽣种不同的信息.答案:25610.椭圆221x y m n+=的焦点在y 轴上,且{}{}123451234567m n ∈∈,,,,,,,,,,,,则这样的椭圆的个数为.答案:20 11.已知集合{}123A ,,ü,且A 中⾄少有⼀个奇数,则满⾜条件的集合A 分别是.答案:{}{}{}{}{}13122313,,,,,,,12.整数630的正约数(包括1和630)共有个.答案:24三、解答题 13.⽤0,1,2,3,4,5六个数字组成⽆重复数字的四位数,⽐3410⼤的四位数有多少个?解:本题可以从⾼位到低位进⾏分类.(1)千位数字⽐3⼤.(2)千位数字为3:①百位数字⽐4⼤;②百位数字为4: 1°⼗位数字⽐1⼤;2°⼗位数字为1→个位数字⽐0⼤.所以⽐3410⼤的四位数共有2×5×4×3+4×3+2×3+2=140(个).14.有红、黄、蓝三种颜⾊旗⼦各(3)n n >⾯,任取其中三⾯,升上旗杆组成纵列信号,可以有多少种不同的信号?若所升旗⼦中不允许有三⾯相同颜⾊的旗⼦,可以有多少种不同的信号?若所升旗⼦颜⾊各不相同,有多少种不同的信号?解: 1N =3×3×3=27种; 227324N =-=种; 33216N =??= 种.15.某出版社的7名⼯⼈中,有3⼈只会排版,2⼈只会印刷,还有2⼈既会排版⼜会印刷,现从7⼈中安排2⼈排版,2⼈印刷,有⼏种不同的安排⽅法.解:⾸先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版⼜会印刷”中的⼀个作为分类的标准.下⾯选择“既会排版⼜会印刷”作为分类的标准,按照被选出的⼈数,可将问题分为三类:第⼀类:2⼈全不被选出,即从只会排版的3⼈中选2⼈,有3种选法;只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第⼆类:2⼈中被选出⼀⼈,有2种选法.若此⼈去排版,则再从会排版的3⼈中选1⼈,有3种选法,只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此⼈去印刷,则再从会印刷的2⼈中选1⼈,有2种选法,从会排版的3⼈中选2⼈,有3种选法,由分步计数原理知共有2×3×2=12种选法;再由分类计数原理知共有6+12=18种选法.第三类:2⼈全被选出,同理共有16种选法.所以共有3+18+16=37种选法.1. 1 分类加法计数原理与分步乘法计数原理综合卷⼀.选择题:1.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种2.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出语⽂、数学、英语各⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种3.某商业⼤厦有东南西3个⼤门,楼内东西两侧各有2个楼梯,从楼外到⼆楼的不同⾛法种数是()(A ) 5 (B )7 (C )10 (D )124.⽤1、2、3、4四个数字可以排成不含重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个5.⽤1、2、3、4四个数字可排成必须含有重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个6.3科⽼师都布置了作业,在同⼀时刻4名学⽣都做作业的可能情况有()(A )43种(B )34种(C )4×3×2种(D ) 1×2×3种7.把4张同样的参观券分给5个代表,每⼈最多分⼀张,参观券全部分完,则不同的分法共有()(A )120种(B )1024种(C )625种(D )5种8.已知集合M={l ,-2,3},N={-4,5,6,7},从两个集合中各取⼀个元素作为点的坐标,则这样的坐标在直⾓坐标系中可表⽰第⼀、⼆象限内不同的点的个数是()(A )18 (B )17 (C )16 (D )109.三边长均为整数,且最⼤边为11的三⾓形的个数为()(A )25 (B )36 (C )26 (D )3710.如图,某城市中,M 、N 两地有整齐的道路⽹,若规定只能向东或向北两个⽅向沿途中路线前进,则从M 到N 不同的⾛法共有()(A )25 (B )15 (C)13 (D )10 ⼆.填空题:11.某书店有不同年级的语⽂、数学、英语练习册各10本,买其中⼀种有种⽅法;买其中两种有种⽅法.12.⼤⼩不等的两个正⽅形玩具,分别在各⾯上标有数字1,2,3,4,5,6,则向上的⾯标着的两个数字之积不少于20的情形有种.13.从1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数和真数,可得到个不同的对数值.14.在连结正⼋边形的三个顶点组成的三⾓形中,与正⼋边形有公共边的有个.15.某班宣传⼩组要出⼀期向英雄学习的专刊,现有红、黄、⽩、绿、蓝五种颜⾊的粉笔供选⽤,要求在⿊板中A 、B 、C 、D 每⼀部分只写⼀种颜⾊,如图所⽰,相邻两块颜⾊不同,则不同颜⾊的书写⽅法共有种.三.解答题:16.现由某校⾼⼀年级四个班学⽣34⼈,其中⼀、⼆、三、四班分别为7⼈、8⼈、9⼈、10⼈,他们⾃愿组成数学课外⼩组.(1)选其中⼀⼈为负责⼈,有多少种不同的选法?(2)每班选⼀名组长,有多少种不同的选法?(3)推选⼆⼈做中⼼发⾔,这⼆⼈需来⾃不同的班级,有多少种不同的选法?17.4名同学分别报名参加⾜球队,蓝球队、乒乓球队,每⼈限报其中⼀个运动队,不同的报名⽅法有⼏种?[探究与提⾼]1.甲、⼄两个正整数的最⼤公约数为60,求甲、⼄两数的公约数共有多个?2.从{-3,-2,-1,0,l,2,3}中,任取3个不同的数作为抛物线⽅程y=ax2+bx+c(a≠0)的系数,如果抛物线过原点,且顶点在第⼀象限,这样的抛物线共有多少条?3.电视台在“欢乐今宵”节⽬中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的群众来信,甲信箱中有30封,⼄信箱中有20封.现由主持⼈抽奖确定幸运观众,若先确定⼀名幸运之星,再从两信箱中各确定⼀名幸运伙伴,有多少种不同的结果?综合卷1.A 2.B 3.D 4.D 5.B 6.B 7.D 8.B 9.B 10.B11.30;300 12.513.17 14.40 15.1801. 2排列与组合1、排列综合卷1.90×9l ×92×……×100=()(A )10100A (B )11100A (C )12100A (D )11101A 2.下列各式中与排列数mn A 相等的是()(A )!(1)!-+n n m (B )n(n -1)(n -2)……(n -m) (C )11m n nA n m --+ (D )111m n n A A --3.若 n ∈N 且 n<20,则(27-n )(28-n)……(34-n)等于()(A )827n A - (B )2734nn A -- (C )734n A - (D )834n A -4.若S=123100123100A A A A ++++,则S 的个位数字是()(A )0 (B )3 (C )5 (D )85.⽤1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有()(A )24个(B )30个(C )40个(D )60个6.从0,l ,3,5,7,9中任取两个数做除法,可得到不同的商共有()(A )20个(B )19个(C )25个(D )30个7.甲、⼄、丙、丁四种不同的种⼦,在三块不同⼟地上试种,其中种⼦甲必须试种,那么不同的试种⽅法共有()(A )12种(B )18种(C )24种(D )96种8.某天上午要排语⽂、数学、体育、计算机四节课,其中体育不排在第⼀节,那么这天上午课程表的不同排法共有()(A )6种(B )9种(C )18种(D )24种9.有四位司机、四个售票员组成四个⼩组,每组有⼀位司机和⼀位售票员,则不同的分组⽅案共有()(A )88A 种(B )48A 种(C )44A ·44A 种(D )44A 种10.有4位学⽣和3位⽼师站在⼀排拍照,任何两位⽼师不站在⼀起的不同排法共有()(A )(4!)2种(B )4!·3!种(C )34A ·4!种(D )3 5A ·4!种11.把5件不同的商品在货架上排成⼀排,其中a ,b 两种必须排在⼀起,⽽c ,d 两种不能排在⼀起,则不同排法共有()(A )12种(B )20种(C )24种(D )48种⼆.填空题::12.6个⼈站⼀排,甲不在排头,共有种不同排法.13.6个⼈站⼀排,甲不在排头,⼄不在排尾,共有种不同排法.14.五男⼆⼥排成⼀排,若男⽣甲必须排在排头或排尾,⼆⼥必须排在⼀起,不同的排法共有种.15.将红、黄、蓝、⽩、⿊5种颜⾊的⼩球,分别放⼊红、黄、蓝、⽩、⿊5种颜⾊的⼝袋中,但红⼝袋不能装⼊红球,则有种不同的放法.16.(1)有5本不同的书,从中选3本送给3名同学,每⼈各⼀本,共有种不同的送法;(2)有5种不同的书,要买3本送给3名同学,每⼈各⼀本,共有种不同的送法.三、解答题:17.⼀场晚会有5个唱歌节⽬和3个舞蹈节⽬,要求排出⼀个节⽬单(1)前4个节⽬中要有舞蹈,有多少种排法?(2)3个舞蹈节⽬要排在⼀起,有多少种排法?(3)3个舞蹈节⽬彼此要隔开,有多少种排法?18.三个⼥⽣和五个男⽣排成⼀排.(1)如果⼥⽣必须全排在⼀起,有多少种不同的排法?(2)如果⼥⽣必须全分开,有多少种不同的排法?(3)如果两端都不能排⼥⽣,有多少种不同的排法?(4)如果两端不能都排⼥⽣,有多少种不同的排法?(5)如果三个⼥⽣站在前排,五个男⽣站在后排,有多少种不同的排法?综合卷1.B 2.D 3.D 4.C 5.A 6.B 7.B 8.C 9.D 10.D 11.C12.600 13.504 14.480 15.9616.(1) 60;(2) 12517.(1) 37440;(2) 4320;(3) 1440018.(1) 4320;(2) 14400;(3) 14400;(4) 36000;(5) 7202、组合综合卷⼀、选择题:1.下列等式不正确的是()(A )!!()!mn n C m n m =- (B )11mm n n m C C n m++=- (C )1111m m n n m C C n +++=+ (D )11m m n n C C ++= 2.下列等式不正确的是()(A )m n m n n C C -= (B )11m m mm m m C C C -++=(C )123455555552C C C C C ++++= (D )11 111m m m m n n n n C C C C --+--=++3.⽅程2551616x x x C C --=的解共有()(A )1个(B )2个(C )3个(D )4个4.若372345n n n C A ---=,则n 的值是()(A )11 (B )12 (C )13 (D )145.已知7781n n n C C C +-=,那么n 的值是()(A )12 (B )13 (C )14 (D )15 6.从5名男⽣中挑选3⼈,4名⼥⽣中挑选2⼈,组成⼀个⼩组,不同的挑选⽅法共有()(A )3254C C 种(B ) 3254C C 55A 种(C ) 3254A A 种(D ) 3254A A 55A 种7.从4个男⽣,3个⼥⽣中挑选4⼈参加智⼒竞赛,要求⾄少有⼀个⼥⽣参加的选法共有()(A )12种(B )34种(C )35种(D )340种8.平⾯上有7个点,除某三点在⼀直线上外,再⽆其它三点共线,若过其中两点作⼀直线,则可作成不同的直线()(A )18条(B )19条(C )20条(D )21条9.在9件产品中,有⼀级品4件,⼆级品3件,三级品2件,现抽取4个检查,⾄少有两件⼀级品的抽法共有()(A )60种(B )81种(C )100种(D )126种10.某电⼦元件电路有⼀个由三节电阻串联组成的回路,共有6个焊点,若其中某⼀焊点脱落,电路就不通.现今回路不通,焊点脱落情况的可能有()(A )5种(B )6种(C )63种(D )64种⼆.填空题:11.若11m m n n C xC --=,则x= .12.三名教师教六个班的课,每⼈教两个班,分配⽅案共有种。
福建省泉州市(新版)2024高考数学人教版质量检测(评估卷)完整试卷
福建省泉州市(新版)2024高考数学人教版质量检测(评估卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知,,,则下列选项中是“”的一个充分不必要条件的是()A.B.C.D.第(2)题若的最大值和最小值分别为,,则()A.0B.1C.2D.4第(3)题已知数列满足,则下列说法正确的是()A.数列不可能为等差数列B.对任意正数t,是递增数列C.若,则D.若,数列的前n项和为,则第(4)题若,(),则()A.B.C.0D.第(5)题已知随机变量服从二项分布,则( )A.B.C.D.第(6)题记是公差不为0的等差数列的前项和,若,,则数列的公差为()A.B.C.2D.4第(7)题随着经济的发展和人民生活水平的提高,我国的旅游业也得到了极大的发展,据国家统计局网站数据显示,近十年我国国内游客人数(单位:百万)折线图如图所示,则下列结论不正确的是()A.近十年,城镇居民国内游客人数的平均数大于农村居民国内游客人数的平均数B.近十年,城镇居民国内游客人数的方差大于农村居民国内游客人数的方差C.近十年,农村居民国内游客人数的中位数为1240D.2012年到2019年,国内游客中城镇居民国内游客人数占比逐年增加第(8)题如图,在正方体中,,P是正方形ABCD内部(含边界)的一个动点,则()A.有且仅有一个点P,使得B.平面C .若,则三棱锥外接球的表面积为D.M为的中点,若MP与平面ABCD所成的角为,则点P的轨迹长为二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知双曲线:的一条渐近线过点,点F为双曲线C的右焦点,那么下列结论中正确的是()A.双曲线C的离心率为B.双曲线C的一条渐近线方程为C.若点F到双曲线C的渐近线的距离为,则双曲线C的方程为D.设O为坐标原点,若,则第(2)题给出下列命题,其中错误的命题为()A.若样本数据的方差为3,则数据的方差为6.B.具有相关关系的两个变量x,y的相关系数为r,那么越接近于0,x,y之间的线性相关程度越高;C.在一个列联表中,根据表中数据计算得到的观测值k,若k的值越大,则认为两个变量间有关的把握就越大;D.甲同学所在的某校高三共有5003人,先剔除3人,再按简单随机抽样的方法抽取容量为200的一个样本,则甲被抽到的概率为.第(3)题函数(其中)的图像如图所示,则下列说法正确的是()A.函数的最小正周期是B.C.为了得到的图像,只需将的图像向左平移个单位长度D.为了得到的图像,只需将的图像向左平移个单位长度三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知事件A和B独立,,则____________.第(2)题函数在区间上的最大值是________.第(3)题已知集合,,则________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知椭圆:的左、右顶点分别为,,点()在椭圆上,若点,分别在直线,上.(1)求的值;(2)连接并延长交椭圆于点,求证:,,三点共线.第(2)题已知各项均不为0的递增数列的前项和为,且(,且).(1)求数列的前项和;(2)定义首项为2且公比大于1的等比数列为“-数列”.证明:①对任意且,存在“-数列”,使得成立;②当且时,不存在“-数列”,使得对任意正整数成立.第(3)题设椭圆,椭圆的右焦点恰好是抛物线的焦点.椭圆的离心率为.(1)求椭圆E的标准方程;(2)设椭圆E的左、右顶点分别为A,B,过定点的直线与椭圆E交于C,D两点(与点A,B不重合),证明:直线AC,BD的交点的横坐标为定值.第(4)题选修4-4:坐标系与参数方程在极坐标中,直线的方程为,曲线的方程为.(1)求直线与极轴的交点到极点的距离;(2)若曲线上恰好有两个点到直线的距离为,求实数的取值范围.第(5)题在平面直角坐标系中,椭圆的离心率为,直线与椭圆相切.(1)求椭圆的方程;(2)已知M,N为椭圆C的上、下端点,点T的坐标为,且直线TM、TN分别与椭圆交于两点C,D(M,N,C,D四点互不相同),求点M到直线CD距离的取值范围.。
人教版2019版高中数学第三讲柯西不等式与排序不等式复习课学案新人教A版选修4_5
第三讲 柯西不等式与排序不等式复习课学习目标 1.梳理本专题主要知识,构建知识网络.2.进一步理解柯西不等式,熟练掌握柯西不等式的各种形式及应用技巧.3.理解排序不等式及应用.4.进一步体会柯西不等式与排序不等式所蕴含的数学思想及方法.1.二维形式的柯西不等式(1)二维形式的柯西不等式:若a ,b ,c ,d 都是实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2. (2)柯西不等式的向量形式:设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立.(3)二维形式的三角不等式:设x 1,y 1,x 2,y 2∈R ,那么x21+y21+x22+y22≥错误!. 2.一般形式的柯西不等式设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 2+…+a 2n )(b 21+b 2+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2.当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i=kb i (i =1,2,…,n )时,等号成立. 3.排序不等式设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n 为两组实数,c 1,c 2,…,c n 是b 1,b 2,…,b n 的任一排列,则a 1b n +a 2b n -1+…+a n b 1≤a 1c 1+a 2c 2+…+a n c n ≤a 1b 1+a 2b 2+…+a nb n .类型一 利用柯西不等式证明不等式例1 已知a ,b ,c ,d 为不全相等的正数,求证:1a2+1b2+1c2+1d2>1ab +1bc +1cd +1da .证明 由柯西不等式知,⎝ ⎛⎭⎪⎫1a2+1b2+1c2+1d2·⎝ ⎛⎭⎪⎫1b2+1c2+1d2+1a2≥⎝ ⎛⎭⎪⎫1ab +1bc +1cd +1da 2,于是1a2+1b2+1c2+1d2≥1ab +1bc +1cd +1da .①等号成立⇔1a 1b =1b 1c =1c 1d =1d1a⇔b a =c b =d c =ad⇔a =b =c =d . 又已知a ,b ,c ,d 不全相等,则①中等号不成立. 即1a2+1b2+1c2+1d2>1ab +1bc +1cd +1da . 反思与感悟 利用柯西不等式证题的技巧(1)柯西不等式的一般形式为(a 21+a 2+…+a 2n )·(b 21+b 2+…+b 2n )≥(a 1b 1+a 2b 2+…+a nb n )2(a i ,b i ∈R ,i =1,2,…,n ),形式简洁、美观、对称性强,灵活地运用柯西不等式,可以使一些较为困难的不等式的证明问题迎刃而解.(2)利用柯西不等式证明其他不等式的关键是构造两组数,并向着柯西不等式的形式进行转化,运用时要注意体会.跟踪训练1 若n 是不小于2的正整数,求证:47<1-12+13-14+…+12n -1-12n <22.证明 1-12+13-14+…+12n -1-12n=⎝ ⎛⎭⎪⎫1+12+13+...+12n -2⎝ ⎛⎭⎪⎫12+14+ (12)=1n +1+1n +2+…+12n, 所以求证式等价于47<1n +1+1n +2+…+12n <22.由柯西不等式,有⎝⎛⎭⎪⎫1n +1+1n +2+…+12n [(n +1)+(n +2)+…+2n ]>n 2,于是1n +1+1n +2+…+12n >错误!=2n 3n +1=23+1n ≥23+12=47,又由柯西不等式,有1n +1+1n +2+…+12n<错误! <n ⎝ ⎛⎭⎪⎫1n -12n =22.综上,47<1-12+13-14+…+12n -1-12n <22.类型二 利用排序不等式证明不等式例2 设A ,B ,C 表示△ABC 的三个内角弧度数,a ,b ,c 表示其对边,求证:aA +bB +cC a +b +c ≥π3. 证明 不妨设0<a ≤b ≤c ,于是A ≤B ≤C . 由排序不等式,得aA +bB +cC =aA +bB +cC , aA +bB +cC ≥bA +cB +aC , aA +bB +cC ≥cA +aB +bC .相加,得3(aA +bB +cC )≥(a +b +c )·(A +B +C ) =π(a +b +c ),得aA +bB +cC a +b +c ≥π3.引申探究若本例条件不变,求证:aA +bB +cC a +b +c <π2.证明 不妨设0<a ≤b ≤c ,于是A ≤B ≤C . 由0<b +c -a,0<a +b -c,0<a +c -b , 有0<A (b +c -a )+C (a +b -c )+B (a +c -b ) =a (B +C -A )+b (A +C -B )+c (A +B -C ) =a (π-2A )+b (π-2B )+c (π-2C ) =(a +b +c )π-2(aA +bB +cC ). 得aA +bB +cC a +b +c <π2.反思与感悟 利用排序不等式证明不等式的策略(1)在利用排序不等式证明不等式时,首先考虑构造出两个合适的有序数组,并能根据需要进行恰当地组合.这需要结合题目的已知条件及待证不等式的结构特点进行合理选择.(2)根据排序不等式的特点,与多变量间的大小顺序有关的不等式问题,利用排序不等式解决往往很简捷.跟踪训练2 设a ,b ,c 为正数,求证:a12bc +b12ca +c12ab ≥a 10+b 10+c 10.证明 由a ,b ,c 的对称性,不妨设a ≥b ≥c , 于是a 12≥b 12≥c 12,1bc ≥1ca ≥1ab .由排序不等式,得a12bc +b12ca +c12ab ≥a12ab +b12bc +c12ca =a11b +b11c +c11a .①又因为a 11≥b 11≥c 11,1a ≤1b ≤1c ,再次由排序不等式,得a11a +b11b +c11c ≤a11b +b11c +c11a . ②由①②得a12bc +b12ca +c12ab ≥a 10+b 10+c 10.类型三 利用柯西不等式或排序不等式求最值例3 (1)求实数x ,y 的值使得(y -1)2+(x +y -3)2+(2x +y -6)2达到最小值. (1)解 由柯西不等式,得(12+22+12)×[(y -1)2+(3-x -y )2+(2x +y -6)2] ≥[1×(y -1)+2×(3-x -y )+1×(2x +y -6)]2=1, 即(y -1)2+(x +y -3)2+(2x +y -6)2≥16,当且仅当y -11=3-x -y 2=2x +y -61,即x =52,y =56时,上式取等号.故x =52,y =56.(2)设a 1,a 2,a 3,a 4,a 5是互不相同的正整数,求M =a 1+a222+a332+a442+a552的最小值.解 设b 1,b 2,b 3,b 4,b 5是a 1,a 2,a 3,a 4,a 5的一个排列,且b 1<b 2<b 3<b 4<b 5. 因此b 1≥1,b 2≥2,b 3≥3,b 4≥4,b 5≥5. 又1≥122≥132≥142≥152.由排序不等式,得a 1+a222+a332+a442+a552≥b 1+b222+b332+b442+b552≥1×1+2×122+3×132+4×142+5×152=1+12+13+14+15=13760.即M 的最小值为13760.反思与感悟 利用柯西或排序不等式求最值的技巧(1)有关不等式问题往往要涉及对式子或量的范围的限定,其中含有多变量限制条件的最值问题往往难以处理.在这类题目中,利用柯西不等式或排序不等式处理往往比较容易. (2)在利用柯西不等式或排序不等式求最值时,要关注等号成立的条件,不能忽略. 跟踪训练3 已知正数x ,y ,z 满足x +y +z =xyz ,且不等式1x +y +1y +z +1z +x ≤λ恒成立,求λ的取值范围. 解1x +y +1y +z +1z +x ≤12xy +12yz +12zx=12⎝⎛⎭⎪⎫1×zx +y +z+1×xx +y +z+1×y x +y +z≤12错误!12=错误!. 故λ的取值范围是⎣⎢⎡⎭⎪⎫32,+∞.1.函数y =21-x +2x +1的最大值为( ) A. 3 B .- 3 C .-3 D .3答案 D解析 y 2=(2·2-2x +1·2x +1)2≤[(2)2+12][(2-2x)2+(2x +1)2] =3×3=9.∴y ≤3,y 的最大值为3.2.已知实数a ,b ,c ,d 满足a +b +c +d =3,a 2+2b 2+3c 2+6d 2=5,则a 的最大值是( )A .1B .2C .3D .4 答案 B解析 ∵(2b 2+3c 2+6d 2)⎝ ⎛⎭⎪⎫12+13+16≥(b +c +d )2,即2b 2+3c 2+6d 2≥(b +c +d )2. ∴5-a 2≥(3-a )2. 解得1≤a ≤2.验证:当a =2时,等号成立.3.已知2x +3y +4z =10,则x 2+y 2+z 2取到最小值时的x ,y ,z 的值为( ) A.53,109,56 B.2029,3029,4029C .1,12,13D .1,14,19答案 B解析 由柯西不等式得(22+32+42)(x 2+y 2+z 2)≥(2x +3y +4z )2, 即x 2+y 2+z 2≥10029.当且仅当x 2=y 3=z4时,等号成立,所以联立⎩⎪⎨⎪⎧x 2=y 3=z 4,2x +3y +4z =10,可得x =2029,y =3029,z =4029.4.设a ,b ,c 都是正数,求证:bc a +ca b +abc ≥a +b +c .证明 不妨设a ≥b ≥c >0, 则1a ≤1b ≤1c,ab ≥ac ≥bc , ∵bc a +ac b +ab c ≥bc c +ac a +abb =a +b +c , ∴bc a +ac b +abc≥a +b +c .1.对于柯西不等式要特别注意其向量形式的几何意义,从柯西不等式的几何意义出发就得到了三角形式的柯西不等式,柯西不等式的一般形式也可以写成向量形式. 2.参数配方法是由旧知识得到的新方法,注意体会此方法的数学思想.3.对于排序不等式要抓住它的本质含义:两实数序列同方向单调(同时增或同时减)时所得两两乘积之和最大,反方向单调(一增一减)时所得两两乘积之和最小,注意等号成立条件是其中一序列为常数序列.4.数学建模是数学学习中的一种新形式,它为学生提供了自己学习的空间,有助于学生了解数学在实际生活中的应用,体会数学与日常生活及其他学科的联系.一、选择题1.已知a ,b 是给定的正数,则4a2sin2α+b2cos2α的最小值为( )A .2a 2+b 2B .2abC .(2a +b )2D .4ab答案 C 解析4a2sin2α+b2cos2α=(sin 2α+cos 2α)⎝ ⎛⎭⎪⎫4a2sin2α+b2cos2α≥⎝⎛⎭⎪⎫sin α·2a sin α+cos α·b cos α2=(2a +b )2, 当且仅当sin α·b cos α=cos α·2asin α时,等号成立.故4a2sin2α+b2cos2α的最小值为(2a +b )2.2.已知a ,b ,c 为正数且a +b +c =32,则a2+b2+b2+c2+c2+a2的最小值为( )A .4B .42C .6D .6 2 答案 C解析 ∵a ,b ,c 为正数,∴2a2+b2=1+1a2+b2≥a +b .同理2b2+c2≥b +c ,2c2+a2≥c +a , 相加得2(a2+b2+b2+c2+c2+a2) ≥2(b +c +a )=62,即a2+b2+b2+c2+c2+a2≥6, 当且仅当a =b =c =2时取等号.3.已知(x -1)2+(y -2)2=4,则3x +4y 的最大值为( ) A .21 B .11 C .18 D .28答案 A解析 根据柯西不等式,得[(x -1)2+(y -2)2][32+42]≥[3(x -1)+4(y -2)]2=(3x +4y -11)2, ∴(3x +4y -11)2≤100. 可得3x +4y ≤21,当且仅当x -13=y -24=25时取等号. 4.已知x ,y ,z 是非负实数,若9x 2+12y 2+5z 2=9,则函数u =3x +6y +5z 的最大值是( )A .9B .10C .14D .15 答案 A解析 ∵(3x +6y +5z )2≤[12+(3)2+(5)2]·[(3x )2+(23y )2+(5z )2]=9(9x 2+12y 2+5z 2)=81,当且仅当3x =2y =z 时,等号成立. 故u =3x +6y +5z 的最大值为9.5.已知x ,y ,z ∈R +,且1x +2y +3z =1,则x +y 2+z3的最小值为( )A .5B .6C .8D .9 答案 D解析 由柯西不等式知,⎝ ⎛⎭⎪⎫1x +2y +3z ⎝ ⎛⎭⎪⎫x +y 2+z 3≥(1+1+1)2=9,因为1x +2y +3z =1,所以x +y 2+z3≥9.即x +y 2+z3的最小值为9.6.设c 1,c 2,…,c n 是a 1,a 2,…,a n 的某一排列(a 1,a 2,…,a n 均为正数),则a1c1+a2c2+…+ancn 的最小值是( ) A .n B.1n C.nD .2n答案 A解析 不妨设a 1≥a 2≥…≥a n >0, 则1a1≤1a2≤…≤1an , 由排序不等式知,a1c1+a2c2+…+an cn ≥a 1·1a1+a 2·1a2+…+a n ·1an =n . 二、填空题7.设a ,b ,c ,d ,m ,n ∈R +,P =ab +cd ,Q =am +nc ·b m +dn,则P ,Q 的大小关系为________. 答案 P ≤Q解析 由柯西不等式得P =am·b m +nc·dn ≤am +nc ·b m +dn=Q ,当且仅当am·dn =nc·bm时,等号成立,∴P ≤Q .8.设x ,y ,z ∈R ,若x 2+y 2+z 2=4,则x -2y +2z 的最小值为________. 答案 -6解析 由柯西不等式,得(x 2+y 2+z 2)[12+(-2)2+22]≥(x -2y +2z )2, 故(x -2y +2z )2≤4×9=36.当且仅当x 1=y -2=z 2=k ,k =±23时,上式取得等号,当k =-23时,x -2y +2z 取得最小值-6.9.已知点P 是边长为23的等边三角形内一点,它到三边的距离分别为x ,y ,z ,则x ,y ,z 所满足的关系式为________,x 2+y 2+z 2的最小值是________.答案 x +y +z =3 3解析 利用三角形面积相等,得 12×23(x +y +z )=34×(23)2, 即x +y +z =3.由(1+1+1)(x 2+y 2+z 2)≥(x +y +z )2=9, 得x 2+y 2+z 2≥3,当且仅当x =y =z =1时取等号.10.若a ,b ,c ∈R ,设x =a 3+b 3+c 3,y =a 2b +b 2c +c 2a ,则x ,y 的大小关系为________. 答案 x ≥y解析 取两组数a ,b ,c ;a 2,b 2,c 2.不管a ,b ,c 的大小顺序如何,a 3+b 3+c 3都是顺序和,a 2b +b 2c +c 2a 都是乱序和,a 3+b 3+c 3≥a 2b +b 2c +c 2a . 三、解答题11.(2018·江苏)若x ,y ,z 为实数,且x +2y +2z =6,求x 2+y 2+z 2的最小值. 解 由柯西不等式,得(x 2+y 2+z 2)(12+22+22)≥(x +2y +2z )2. 因为x +2y +2z =6,所以x 2+y 2+z 2≥4, 当且仅当x 1=y 2=z2时,不等式取等号,此时x =23,y =43,z =43,所以x 2+y 2+z 2的最小值为4.12.已知a ,b ,c 为正数,求证:b2c2+c2a2+a2b2a +b +c ≥abc .证明 考虑到正数a ,b ,c 的对称性,不妨设a ≥b ≥c >0, 则1a ≤1b ≤1c,bc ≤ca ≤ab , 由排序不等式知,顺序和≥乱序和, ∴bc a +ca b +ab c ≥ab b +bc c +ca a , 即b2c2+c2a2+a2b2abc≥a +b +c .∵a,b,c为正数,∴两边同乘以abca+b+c,得b2c2+c2a2+a2b2a+b+c≥abc.13.设a ,b ,c ,d ∈R +,令S =a a +d +b +b b +c +a +c c +d +b +d d +a +c,求证:1<S <2.证明 首先证明b a <b +m a +m(a >b >0,m >0). 因为b a -b +m a +m=错误! =错误!<0,所以S =a a +d +b +b b +c +a +c c +d +b +d d +a +c<错误!+错误!+错误!+错误!=错误!=2,所以S <2.又S >a a +b +d +c +b b +c +a +d +c c +d +b +a+ d d +a +c +b =a +b +c +d a +b +c +d=1, 所以1<S <2.四、探究与拓展14.已知5a 2+3b 2=158,则a 2+2ab +b 2的最大值为________. 答案 1解析 ∵⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫552+⎝ ⎛⎭⎪⎫332[(5a )2+(3b )2] ≥⎝ ⎛⎭⎪⎫55×5a +33×3b 2=(a +b )2=a 2+2ab +b 2, 当且仅当5a =3b ,即a =38,b =58时取等号. ∴815×(5a 2+3b 2)≥a 2+2ab +b 2. ∴a 2+2ab +b 2≤815×(5a 2+3b 2)=815×158=1. ∴a 2+2ab +b 2的最大值为1.15.已知a ,b ,c 均为实数,且a +b +c +2-2m =0,a 2+14b 2+19c 2+m -1=0.(1)求证:a 2+14b 2+19c 2≥错误!; (2)求实数m 的取值范围.(1)证明 由柯西不等式得⎣⎢⎡⎦⎥⎤a2+⎝ ⎛⎭⎪⎫12b 2+⎝ ⎛⎭⎪⎫13c 2·(12+22+32)≥(a +b +c )2,当且仅当a =14b =19c 时,等号成立, 即⎝⎛⎭⎪⎫a2+14b2+19c2×14≥(a +b +c )2, ∴a 2+14b 2+19c 2≥错误!. (2)解 由已知得a +b +c =2m -2,a 2+14b 2+19c 2=1-m ,∴由(1)可知,14(1-m )≥(2m -2)2,即2m 2+3m -5≤0,解得-52≤m ≤1. 又∵a 2+14b 2+19c 2=1-m ≥0,∴m ≤1, ∴-52≤m ≤1. 即实数m 的取值范围为⎣⎢⎡⎦⎥⎤-52,1.。
(部编本人教版)最新版高中数学 第三章 柯西不等式与排序不等式 3.3 排序不等式试题 新人教A版选修4-5【必
三排序不等式课后篇巩固探究A组1.顺序和S、反序和S'、乱序和S″的大小关系是()A.S≤S'≤S″B.S≥S'≥S″C.S≥S″≥S'D.S≤S″≤S'.2.设x,y,z均为正数,P=x3+y3+z3,Q=x2y+y2z+z2x,则P与Q的大小关系是()A.P≥QB.P>QC.P≤QD.P<Qx≥y≥z>0,则x2≥y2≥z2,则由排序不等式可得顺序和为P,乱序和为Q,则P≥Q.3.若a<b<c,x<y<z,则下列各式中值最大的一个是()A.ax+cy+bzB.bx+ay+czC.bx+cy+azD.ax+by+cza<b<c,x<y<z,由排序不等式得反序和≤乱序和≤顺序和,得顺序和ax+by+cz最大.故选D.4.若0<a1<a2,0<b1<b2,且a1+a2=b1+b2=1,则下列代数式中最大的是()A.a1b1+a2b2B.a1a2+b1b2C.a1b2+a2b1D.a1b1+a2b2+a1b2+a2b1=(a1+a2)(b1+b2)=1,a1b1+a2b2-a1b2-a2b1=(a1-a2)(b1-b2)>0,∴a1b1+a2b2>a1b2+a2b1.且a1b1+a2b2>>a1b2+a2b1.又1=a1+a2≥2,∴a1a2≤.∵0<a1<a2,∴a1a2<.同理b1b2<,∴a1a2+b1b2<.∴a1b1+a2b2>>a1a2+b1b2,∴a1b1+a2b2最大.5.已知a,b,c∈R+,则a2(a2-bc)+b2(b2-ac)+c2(c2-ab)()A.大于零B.大于或等于零C.小于零D.小于或等于零a≥b≥c>0,则a3≥b3≥c3,根据排序原理,得a3×a+b3×b+c3×c≥a3b+b3c+c3a.因为ab≥ac≥bc,a2≥b2≥c2,所以a3b+b3c+c3a≥a2bc+b2ca+c2ab.所以a4+b4+c4≥a2bc+b2ca+c2ab,即a2(a2-bc)+b2(b2-ac)+c2(c2-ab)≥0.6.设a1,a2,a3,a4是1,2,3,4的一个排序,则a1+2a2+3a3+4a4的取值范围是.2+22+32+42=30,最小值为反序和1×4+2×3+3×2+4×1=20.1+2a2+3a3+4a4的最大值为顺序和17.如图所示,在矩形OPAQ中,a1≤a2,b1≤b2,若阴影部分的面积为S1,空白部分的面积之和为S2,则S1与S2的大小关系是.,S1=a1b1+a2b2,而S2=a1b2+a2b1,根据顺序和≥反序和,得S1≥S2.S21≥8.若a,b,c为正数,求证a3+b3+c3≥3abc.a≥b≥c>0,则a2≥b2≥c2>0,由排序不等式,得a3+b3≥a2b+ab2,c3+b3≥c2b+cb2,a3+c3≥a2c+ac2,三式相加,得2(a3+b3+c3)≥a(b2+c2)+b(a2+c2)+c(a2+b2).因为a2+b2≥2ab,c2+b2≥2cb,a2+c2≥2ac,所以2(a3+b3+c3)≥6abc,即a3+b3+c3≥3abc(当且仅当a=b=c时,等号成立).9.设a,b均为正数,求证.a≥b>0,则a2≥b2>0,>0,由不等式性质,得>0.则由排序不等式,可得,即.10.设a,b,c都是正数,求证a+b+c≤.a≥b≥c>0.由不等式的性质,知a2≥b2≥c2,ab≥ac≥bc.根据排序原理,得a2bc+ab2c+abc2≤a3c+b3a+c3b.①又由不等式的性质,知a3≥b3≥c3,且a≥b≥c.再根据排序原理,得a3c+b3a+c3b≤a4+b4+c4.②由①②及不等式的传递性,得a2bc+ab2c+abc2≤a4+b4+c4.两边同除以abc,得a+b+c≤(当且仅当a=b=c时,等号成立).B组1.设a,b,c>0,则式子M=a5+b5+c5-a3bc-b3ac-c3ab与0的大小关系是()A.M≥0B.M≤0C.M与0的大小关系与a,b,c的大小有关D.不能确定a≥b≥c>0,则a3≥b3≥c3,且a4≥b4≥c4,则a5+b5+c5=a·a4+b·b4+c·c4≥a·c4+b·a4+c·b4.又a3≥b3≥c3,且ab≥ac≥bc,∴a4b+b4c+c4a=a3·ab+b3·bc+c3·ca≥a3bc+b3ac+c3ab.∴a5+b5+c5≥a3bc+b3ac+c3ab.∴M≥0.2.若0<α<β<γ<,F=sin αcos β+sin βcos γ+sin γcos α-(sin 2α+sin 2β+sin 2γ),则()A.F>0B.F≥0C.F≤0D.F<00<α<β<γ<,所以0<sin α<sin β<sin γ,0<cos γ<cos β<cos α,由排序不等式可知,sin αcos β+sin βcos γ+sin γcos α>sin αcos α+sin βcos β+sin γcos γ, 而F=sin αcos β+sin βcos γ+sin γcos α-(sin 2α+sin 2β+sin 2γ)=sin αcos β+sin βcos γ+sin γcos α-(sin αcos α+sin βcos β+sin γcos γ)>0.3.导学号26394057车间里有5台机床同时出了故障,从第1台到第5台的修复时间依次为4 min、8 min、6 min、10 min、5 min,每台机床停产1 min损失5元,经合理安排损失最少为()A.420元B.400元C.450元D.570元1台到第5台的修复时间依次为t1,t2,t3,t4,t5,若按照从第1台到第5台的顺序修复,则修复第一台需要t1分钟,则停产总时间为5t1,修复第2台需要t2分钟,则停产总时间为4t2,…,修复第5台需要t5分钟,则停产总时间为t5,因此修复5台机床一共需要停产的时间为5t1+4t2+3t3+2t4+t5,要使损失最小,应使停产时间最少,亦即使5t1+4t2+3t3+2t4+t5取最小值.由排序不等式可知,当t1<t2<t3<t4<t5时,5t1+4t2+3t3+2t4+t5取最小值,最小值为5×4+4×5+3×6+2×8+10=84分钟,故损失最小为84×5=420元.4.导学号26394058在△ABC中,∠A,∠B,∠C所对的边依次为a,b,c,试比较的大小关系.a≥b≥c,则有A≥B≥C.由排序不等式,可得aA+bB+cC≥aA+bC+cB,aA+bB+cC≥aB+bA+cC,aA+bB+cC≥aC+bB+cA.将以上三个式子两边分别相加,得3(aA+bB+cC)≥(a+b+c)(A+B+C)=(a+b+c)π.所以.5.导学号26394059设x>0,求证1+x+x2+…+x2n≥(2n+1)x n.x≥1时,因为1≤x≤x2≤…≤x n,所以由排序原理得1·1+x·x+x2·x2+…+x n·x n≥1·x n+x·x n-1+…+·x+x n·1,即1+x2+x4+…+≥(n+1)x n.①又x,x2,…,x n,1为序列1,x,x2,…,x n的一个排列,所以1·x+x·x2+…+x n-1x n+x n·1≥1·x n+x·x n-1+…+x n-1·x+x n·1,因此x+x3+…++x n≥(n+1)x n, ②①+②,得1+x+x2+…+≥(2n+1)x n.③当0<x<1时,1>x≥x2≥…≥x n,①②仍成立,故③也成立.综上,原不等式成立.。
人教版数学高二A版选修4-5第一讲等式和绝对值不等式单元检测(B)
第一讲等式和绝对值不等式单元检测(B)一、选择题(本大题共10小题,每小题5分,共50分)1.函数y =x 2+3x (x >0)的最小值是( ).A B .32 C D 2.设6<a <10,2a≤b ≤2a ,c =a +b ,那么c 的取值范围是( ).A .9<c <30B .0≤c ≤18C .0≤c ≤30D .15<c <303.若对任意x ∈R ,不等式|x |≥ax 恒成立,则实数a 的取值范围是( ).A .a <-1B .|a |≤1C .|a |<1D .a ≥14.下列四个命题:①若a >b ,c >1,则a lg c >b lg c;②若a >b ,c >0,则a lg c >b lg c ;③若a >b ,则a ·2c >b ·2c ;④若a <b <0,c >0,则>cca b .其中,正确命题的个数是( ).A .1B .2C .3D .45.函数2y 的最小值是( ).A .2B .4C .1D .6.若不等式|ax +2|<6的解集为(-1,2),则实数a 等于( ).A .8B .2C .-4D .-87.当π0<<2x 时,函数21cos28sin ()sin2x xf x x ++=的最小值为( ).A .2B .C .4D .8.若正实数a ,b 满足ab =a +b +3,则a +b 的取值范围是( ).A .[9,+∞)B .[6,+∞)C .(6,+∞)D .(9,+∞)9.不等式|x +3|-|x -1|≤a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为(). A .(-∞,-1]∪[4,+∞)B .(-∞,-2]∪[5,+∞)C .[1,2]D .(-∞,1]∪[2,+∞)10.设a >0,b >0是3a 与3b 的等比中项,则11a b +的最小值为( ).A .8B .4C .1D .14二、填空题(本大题共4小题,每小题5分,共20分)11.如果关于x 的不等式|x -3|-|x -4|<a 的解集不是空集,则实数a 的取值范围是__________.12.定义运算:x x y x y y x y ≤⎛⋅ >⎝,,=,,若|m -1|·m =|m -1|,则m 的取值范围是________. 13.函数422331x x y x ++=+的最小值为__________. 14.不等式|1|1|2|x x ≥++的解集为________. 三、解答题(本大题共4小题,15,16,17小题每小题12分,18小题14分,共50分)15.设a 1,a 2,a 3均为正数,且a 1+a 2+a 3=m ,求证:1231119a a a m≥++. 16.设a ≥b >0,求证:3a 3+2b 3≥3a 2b +2ab 2.17.已知m ∈R ,解关于x 的不等式:1-x ≤|x -m |≤1+x .18.已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.参考答案1. 答案:A解析:2233322y x x x x x ≥=+=++,当232x x=,即x 时,等号成立. 2. 答案:A解析:因为2a ≤b ≤2a ,所以32a ≤a +b ≤3a. 又因为6<a <10,所以32a >9,3a <30. 所以9<32a ≤a +b ≤3a <30,即9<c <30. 3. 答案:B解析:当x >0时,a ≤||x x =1,当x <0时,a ≥||x x=-1. 4. 答案:C解析:①正确,因为c>1,lg c>0;②不正确,因为0<c<1时,lg c<0;③正确,因为2c>0;④正确,因为由a<b<0,得110>>a b.5.答案:B解析:设tt≥,于是21 y tt++,因为当t≥时,函数1y tt=+单调递增,所以miny=.6.答案:C解析:由|ax+2|<6⇒-8<ax<4.当a>0时,84<<xa a-.∵解集是(-1,2),∴8142.aa⎧--⎪⎪⎨⎪⎪⎩=,=解得82aa⎧⎨⎩=,=,两值矛盾.当a<0时,48<<xa a-.由4182aa⎧--⎪⎪⎨⎪-⎪⎩=,=解得a=-4.7.答案:C解析:∵π0<<2x,∴tan x>0.∴2222cos8sin14tan1 ()4tan 42sin cos tan tanx x xf x xx x x x≥++===+,当且仅当14tantanxx=,即1tan2x=时,等号成立.8.答案:B解析:∵a>0,b>0,ab=a+b+3,∴a+b=ab-3≤232a b⎛⎫⎪⎝⎭+-,即(a +b )2-4(a +b )-12≥0.∴a +b ≥6,当且仅当a =b =3时,等号成立,∴a +b 的取值范围[6,+∞).9. 答案:A解析:因为-4≤|x +3|-|x -1|≤4,且|x +3|-|x -1|≤a 2-3a 对任意x 恒成立, 所以a 2-3a ≥4,即a 2-3a -4≥0,解得a ≥4,或a ≤-1.10. 答案:B解析:因为3a ·3b =3,所以a +b =1,1111()a b a b a b ⎛⎫ ⎪⎝⎭+=++2224b a baa b a b ≥⋅=+++=,当且仅当baa b =,即12a b ==时,“=”号成立.11. 答案:(-1,+∞)解析:∵||x -3|-|x -4||≤|x -3+4-x |=1,∴|x -3|-|x -4|的最小值是-1.∴a >-1.12. 答案:12m ≥解析:依题意,有|m -1|≤m ,∴-m ≤m -1≤m .∴12m ≥.13. 答案:3解析:42222223311111x x x x y x x ()()++++++==++=x 2+1+211x ++1≥2+1=3.当且仅当x 2+1=211x +,即x =0时,等号成立.14. 答案:322x x x ⎧⎫≤-≠-⎨⎬⎭⎩,且解析:|1|1|2|x x ≥++|1||2|20x x x ≥⎧⎨≠⎩+++22122x x x ⎧()≥()⎨≠-⎩++,322.x x ⎧≤-⎪⎨⎪≠-⎩,∴原不等式的解集为322x x x ⎧⎫≤-≠-⎨⎬⎭⎩,且 15. 证明:123111a a a ++ 1231231111()a a a m a a a ⎛⎫ ⎪⎝⎭=++++ 33122121323113a a a a a a m a a a a a a ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦=++++++ ≥1m (3+2+2+2)=9m, 当且仅当a 1=a 2=a 3=3m 时,等号成立. 16. 证明:3a 3+2b 3-(3a 2b +2ab 2)=3a 2(a -b )+2b 2(b -a )=(3a 2-2b 2)(a -b ). 因为a ≥b >0,所以a -b ≥0,3a 2-2b 2>0.从而(3a 2-2b 2)(a -b )≥0.即3a 3+2b 3≥3a 2b +2ab 2.17. 解:原不等式等价于11x m x x m x m x ≥⎧⎪≤⎨⎪≤⎩,--,-+或11x m x m x m x x <⎧⎪≤⎨⎪≤⎩,--,-+, 即121x m m x m ≥⎧⎪⎪≥⎨⎪≥-⎪⎩,+,①或121.x m m x m <⎧⎪⎪≥⎨⎪≥⎪⎩,-,② 由①得1m x <⎧⎨∈∅⎩,,或1112m m x -≤<⎧⎪⎨≥⎪⎩,+,或1.m x m ≥⎧⎨≥⎩, 由②得1m x <-⎧⎨∈∅⎩,,或11.2m m x m ≥⎧⎪⎨≤<⎪⎩,- 即1m x <-⎧⎨∈∅⎩,,或1112m m x -≤<⎧⎪⎨≥⎪⎩,+,或11.2m m x ≥⎧⎪⎨≥⎪⎩,- 综上所述,当m <-1时,解集为;当-1≤m<1时,解集为12m⎡⎫+∞⎪⎢⎣⎭+,;当m≥1时,解集为12m⎡⎫+∞⎪⎢⎣⎭-,.18.解法一:(1)由f(x)≤3,得|x-a|≤3,解得a-3≤x≤a+3.又已知不等式f(x)≤3的解集为{x|-1≤x≤5},所以3135aa-⎧⎨⎩-=,+=,解得a=2.(2)当a=2时,f(x)=|x-2|. 设g(x)=f(x)+f(x+5),于是g(x)=|x-2|+|x+3|=21,3, 5,32, 21, 2.x xxx x-<-⎧⎪-≤≤⎨⎪>⎩-+所以当x<-3时,g(x)>5;当-3≤x≤2时,g(x)=5;当x>2时,g(x)>5.综上可得,g(x)的最小值为5.从而,若f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,则m的取值范围为(-∞,5].解法二:(1)同解法一.(2)当a=2时,f(x)=|x-2|,设g(x)=f(x)+f(x+5),则g(x)=|x-2|+|x+3|.由|x-2|+|x+3|≥|(x-2)-(x+3)|=5(当且仅当-3≤x≤2时等号成立),得g(x)的最小值为5.从而,若f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,则m的取值范围为(-∞,5].。
2020版人教A版数学选修4-5同步配套___第一讲 不等式和绝对值不1.1.1
与
������-������ ������+������
的大小.
解:
������ 3 -������ 3 ������ 3 +������ 3
−
������-������ ������ +������
=(a-b)
������
2+������������ +������2 ������3+������ 3
剖析:(1)在应用传递性时,如果两个不等式中有一个带等号而另
一个不带等号,那么等号是传递不过去的.如a≤b,b<c⇒a<c.(2)在乘
法法则中,要特别注意乘数c,例如,当c≠0时,有a>b⇒ac2>bc2;若无
c≠0这个条件,则a>b⇒ac2>bc2就是错误结论(当c=0时,取
“=”).(3)a>b>0⇒an>bn>0成立的条件是“n为大于0的数”,如果去掉
重难聚焦
典例透析
题型一 题型二 题型三 题型四
题型四
易错辨析
易错点 同向不等式相加时,忽视前提条件致错
【例 4】
已知−
π2≤α<β≤π2
,
求
������+������ 2
,
������-������ 2
的取值范围.
错解:∵−
π2≤α<β≤π2,∴−
π 4
≤
������ 2
≤
π 4
,
−
π 4
≤
������ 2
目标导航
知识梳理
重难聚焦
典例透析
123
3.作差比较法
(1)理论依据:a-b>0⇔a>b;a-b=0⇔a=b;a-b<0⇔a<b.
人教版数学高二A数学选修2-3测试卷(五)
高中同步测试卷(五)单元检测 离散型随机变量及其分布列 (时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一个袋子中有质量相等的红,黄,绿,白四种小球各若干个,一次倒出三个小球,下列变量是离散型随机变量的是( )A .小球滚出的最大距离B .倒出小球所需的时间C .倒出的三个小球的质量之和D .倒出的三个小球的颜色的种数2.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则“ξ=5”表示的试验结果是( )A .第5次击中目标B .第5次未击中目标C .前4次未击中目标D .第4次击中目标3.设离散型随机变量ξ的分布列为A .P (ξ=1.5)=0B .P (ξ≥-1)=1C .P (ξ≤3)=1D .P (ξ<0)=04. 袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为X ,则表示事件“放回5个红球”的是( )A .X =4B .X =5C .X =6D .X ≤55.设随机变量X 等可能取值为1,2,3,…,n ,如果P (X <4)=0.3,那么( ) A .n =3 B .n =4 C .n =9 D .n =106.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( )A .0 B.12 C.13 D.237.设X 是一个离散型随机变量,其分布列为:则q 为( )A .1B .1±22 C .1+22 D .1-228.随机变量X 的分布列如下:其中a ,b ,c A.16 B.13 C.12 D.239.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机抽取一个检验,其级别为随机变量ξ,则P ⎝⎛⎭⎫13≤ξ≤53=( ) A.17 B.27 C.37 D.4710.设随机变量X 的概率分布列如下表所示:F (x )=P (X ≤x ),则当x ) A.13 B.16 C.12 D.5611.若P (X ≤x 2)=1-β,P (X ≥x 1)=1-α,其中x 1<x 2,则P (x 1≤X ≤x 2)等于( ) A .(1-α)(1-β) B .1-(α+β) C .1-α(1-β) D .1-β(1-α)12.设随机变量X 的概率分布列为P (X =k )=ak ,k =1,2,3,…,n ,则常数a 等于( ) A.110 B.1n C.1n 2 D.2n (n +1)13.在一次比赛中,需回答三个问题,比赛规则规定:每题回答正确得100分,回答不正确得-100分,则选手甲回答这三个问题的总得分ξ的所有可能取值是____________.14.某保险公司新开设了一项保险业务,若在一年内事件E 发生,该公司要赔偿a 元,设一年内E 发生的概率为p ,公司要求投保人交x 元,则公司收益X 的分布列是________.15.从4名男生和2名女生中选3人参加演讲比赛,则所选3人中女生人数不超过1人的概率是________.16.随机变量ξ的分布列为P (ξ=k )=ck (1+k ),k =1,2,3,其中c 为常数,则P (ξ≥2)等于________.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为ξ,(1)列表说明可能出现的结果与对应的ξ的值;(2)若规定抽取3个球中,每抽到一个白球加5分,抽到黑球不加分,且最后不管结果如何都加上6分,求最终得分η的可能取值,并判定η的随机变量类型.18.(本小题满分12分)某次演唱比赛,需要加试文化科学素质,每位参赛选手需回答3个问题,组委会为每位选手都备有10道不同的题目可供选择,其中有5道文史类题目,3道科技类题目,2道体育类题目.测试时,每位选手从给定的10道题中不放回地随机抽取3次,每次抽取一道题,回答完该题后,再抽取下一道题目作答.设某选手抽到科技类题目ξ道.(1)试求随机变量ξ的取值集合;(2){ξ=1}表示的事件是什么?可能出现多少种结果?19.(本小题满分12分)某种福利彩票每期的开奖方式是从1,2,…,20的基本号码中由电脑随机选出4个不同的幸运号码(不计顺序),凡购买彩票者,可自由选择1个,2个,3个或4个不同的基本号码组合成一注彩票,若彩票上所选的基本号码都为幸运号码就中奖.根据所选基本号码(幸运号码)的个数,中奖等级分为(2)设随机变量X表示一注彩票的获奖等级,X取值0,1,2,3,4(0表示未获奖),求随机变量X的分布列.20.(本小题满分12分)某批产品成箱包装,每箱5件.一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验.设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品.(1)用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列;(2)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝的概率.21.(本小题满分12分)口袋中有n (n ∈N *)个白球,3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X .若P (X =2)=730,求:(1)n 的值; (2)X 的分布列.22.(本小题满分12分)某校校庆,各届校友纷至沓来,某班共来了n 位校友(n >8且n ∈N *),其中女校友6位,组委会对这n 位校友登记制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友代表是一男一女,则称为“最佳组合”.(1)若随机选出的2位校友代表为“最佳组合”的概率不小于12,求n 的最大值;(2)当n =12时,设选出的2位校友代表中女校友人数为X ,求X 的分布列.参考答案与解析1.[导学号:21280030] 【解析】选D.小球颜色的种数是一个离散型随机变量. 2.【解析】选C.射击次数ξ=5,则说明前4次均未击中目标.3.【解析】选D.选项B 、C 中变量ξ可取到所有值,所以B 、C 是正确的;由于ξ不能取1.5,故选项A 也是正确的;对于D ,P (ξ<0)=P (ξ=-1)=110,故选项D 是错误的,故选D.4.[导学号:21280031] 【解析】选C.由条件知事件“放回5个红球”对应的X 为6. 5.【解析】选D.P (X <4)=P (X =1)+P (X =2)+P (X =3)=1n +1n +1n =3n =0.3,所以n =10.6.【解析】选C.由题意知X 服从两点分布,且P (X =0)+2P (X =0)=1,得P (X =0)=13.7.[导学号:21280032] 【解析】选D.由分布列性质知12+1-2q +q 2=1,解得q =1±22,又1-2q ≥0,所以q ≤12,所以q =1-22,故选D.8.【解析】选D.因为a ,b ,c 成等差数列,所以2b =a +c . 又a +b +c =1,所以b =13,所以P (|X |=1)=a +c =23.9.【解析】选D.设二级品有k 个,所以一级品有2k 个,三级品有k 2个,总数为72k 个.所以分布列为P ⎝⎛⎭⎫13≤ξ≤53=P (ξ=1)=47.10.[导学号:21280033] 【解析】选D.因为a +13+16=1,所以a =12.因为x ∈[1,2),所以F (x )=P (X ≤x )=12+13=56.11.【解析】选B.由分布列性质可有:P (x 1≤X ≤x 2)=P (X ≤x 2)+P (X ≥x 1)-1=(1-β)+(1-α)-1=1-(α+β).12.【解析】选D.因为a +2a +3a +…+na =1, 所以a =2n (n +1).13.[导学号:21280034] 【解析】可能回答全对,两对一错,两错一对,全错四种结果,相应得分为300分,100分,-100分,-300分.【答案】300分,100分,-100分,-300分 14.【解析】P (X =x -a )=p ,P (X =x )=1-p , 所以X 的分布列如下表:【答案】15.【解析】N =6,M =2,n =3,则P (X ≤1)=P (X =0)+P (X =1)=C 02C 34C 36+C 12C 24C 36=45.【答案】4516.【解析】ξ的分布列为由分布列的性质可知c 2+c 6+c 12=1,所以c =43,所以P (ξ≥2)=1-P (ξ=1)=1-12×43=1-23=13.【答案】1317.[导学号:21280035] 【解】(1)(2)由题意可得η所以η对应的值分别是:6,11,16,21.故η的可能取值为{6,11,16,21},显然η为离散型随机变量. 18.【解】(1)由题意得ξ的取值集合是{0,1,2,3}. (2){ξ=1}表示的事件是“恰抽到一道科技题”.考虑顺序,三类题目各抽取一道有5×3×2×A 33=180种结果.1道科技题,2道文史题有C 13·C 25·A 33=180种结果. 1道科技题,2道体育题有C 13·C 22·A 33=18种结果. 由分类加法计数原理知可能出现的结果为180+180+18=378种. 19.【解】(1)设A 表示事件“获得三等奖或四等奖”, 则P (A )=C 14C 120+C 24C 220=15+395=2295.(2)因为X 取值0,1,2,3,4.所以P (X =4)=C 14C 120=15,P (X =3)=C 24C 220=395,P (X =2)=C 34C 320=1285,P (X =1)=C 44C 420=14 845,P (X =0)=1-[P (X =1)+P (X =2)+P (X =3)+P (X =4)]=1317.所以随机变量X 的分布列为20.[P (ξ=0)=C 24C 25·C 23C 25=18100=950;P (ξ=1)=C 14C 25·C 23C 25+C 24C 25·C 13·C 12C 25=1225; P (ξ=2)=C 14C 25·C 13·C 12C 25+C 24C 25·C 22C 25=1550=310; P (ξ=3)=C 14C 25·C 22C 25=125.ξ的分布列为(2)所求的概率为P (ξ≥2)=P (ξ=2)+P (ξ=3)=310+125=1750. 21.【解】(1)由题意知P (X =2)=A 13·A 1nA 2n +3=3n (n +3)(n +2)=730,即7n 2-55n +42=0,即(7n -6)(n -7)=0. 因为n ∈N *,所以n =7.(2)由题意知,X 的可能取值为1,2,3,4,又P (X =1)=A 17A 110=710,P (X =2)=730,P (X =3)=A 23A 17A 310=7120,P (X =4)=1-710-730-7120=1120,所以,X 的分布列为:22.[导学号:21280037] 【解】(1)由题意可知,所选2人为“最佳组合”的概率为C 1n -6C 16C 2n=12(n -6)n (n -1),则12(n -6)n (n -1)≥12, 化简得n 2-25n +144≤0,解得9≤n ≤16, 故n 的最大值为16.(2)由题意得,X 的可能取值为0,1,2,则P (X =0)=C 26C 212=522,P (X =1)=C 16C 16C 212=611,P (X =2)=C 26C 212=522,X 的分布列为。
人教A版人教版高二数学选修4-5同步练习:1-1不等式选讲练习1,2(无答案).docx
高中数学学习材料唐玲出品不等式选讲练习1一、选择题1.不等式x2-|x|-2<0(x∈R)的解集是()A.{x|-2<x<2} B.{x|x<-2或x>2}C.{x|-1<x<1} D.{x|x<-1或x>1}2.在下列四个函数中,满足性质:“对于区间(1,2)上的任意x1,x2(x1≠x2),||f(x1)-f(x2)<||x2-x1恒成立”的只有()A.f(x)=1x B.f(x)=|x|C.f(x)=2x D.f(x)=x23.(2013·淮安模拟)设集合A={x||x-a|<1,x∈R},B={x||x-b|>2,x∈R}.若A ⊆B,则实数a,b必满足()A.|a+b|≤3 B.|a+b|≥3C.|a-b|≤3 D.|a-b|≥34.(2013·江门模拟)设函数f(x)=|x-a|+3x,其中a>0.若不等式f(x)≤0的解集为{x|x≤-1},则a的值为()A.-2 B.2C.-1 D.15.(2013·许昌模拟)对于任意实数a、b,若|a-b|≤1,|2a-1|≤1,则|4a-3b+2|的最大值为()A.3 B.4C.5 D.66.若|a-c|<b,则下列不等式不成立的是()A.|a|<|b|+|c| B.|c|<|a|+|b|C.b>|c|-|a| D.b<|a|-|c|二、填空题7.已知a和b是任意非零实数,则|2a+b|+|2a-b||a|的最小值为____________.8.(2013·黄冈中学训练题)已知不等式|x-3|≤x+a2(a∈R)的解集为A,若A≠∅,则a 的取值范围是____________.9.如果关于x 的不等式|x -3|-|x -4|<a 的解集不是空集,则实数a 的取值范围是________.10.(2013·天津模拟)已知集合A ={x ∈R ||x +3|+|x -4|≤9},B ={x ∈R |x =4t +1t-6,t ∈(0,+∞)},则集合A ∩B =____________.三、解答题11. 已知f (x )=|x +a |+|x -2|.(1)当a =-1时,解关于x 的不等式f (x )>5;(2)已知关于x 的不等式f (x )+a <2 014(a 是常数)的解集是非空集合,求实数a的取值范围.12.函数f (x )=ax +b ,当|x |≤1时,都有|f (x )|≤1,求证:|b |≤1,|a |≤1.13.(2013·郑州模拟)设f (x )=2|x |-|x +3|.(1)画出函数y =f (x )的图象,并求不等式f (x )≤7的解集S ;(2)若关于x 不等式f (x )+|2t -3|≤0有解,求参数t 的取值范围.不等式选讲练习21.(2013·鸡西模拟)若实数x 、y 满足1x 2+1y 2=1,则x 2+2y 2有( ) A .最大值3+2 2 B .最小值3+2 2C .最大值6D .最小值62.设M =1210+1210+1+1210+2+…+1211-1,则( ) A .M =1 B .M <1C .M >1D .M 与1大小关系不定3.(2013·广东调研)已知a ,b 为实数,且a >0,b >0.则⎝⎛⎭⎫a +b +1a ⎝⎛⎭⎫a 2+1b +1a 2的最小值为( ) A .7 B .8C .9D .104.设a >b >c ,n ∈N ,且1a -b +1b -c ≥n a -c恒成立,则n 的最大值( ) A .2 B .3C .4D .6 5.设a 、b 、c 均为正数,且a +b +c =1,若M =(1a -1)(·1b -1)(1c-1) 则必有( )A .0≤M <18 B.18≤M <1 C .1≤M <8 D .M ≥86.(2014·黄冈模拟)若不等式t t 2+9≤a ≤t +2t 2在t ∈(0,2]上恒成立,则a 的取值范围是( ) A.⎣⎡⎦⎤16,1 B.⎣⎡⎦⎤213,1 C.⎣⎡⎦⎤16,413 D.⎣⎡⎦⎤16,22 二、填空题7 .若0<α<β<π4,sin α+cos α=a ,sin β+cos β=b ,则a 与b 的大小关系是________.8.若P =x 1+x +y 1+y +z 1+z(x >0,y >0,z >0),则P 与3的大小关系为________. 9.已知两正数x ,y 满足x +y =1,则z =⎝⎛⎭⎫x +1x ⎝⎛⎭⎫y +1y 的最小值为________.10.已知a >0,b >0,a +b =1,则a +1+b +1的最大值为________.三、解答题11.(2014·茂名质检)若实数x 、y 、m 满足|x -m |>|y -m |,则称x 比y 远离m .(1) 若x 2-1比1远离0,求x 的取值范围;(2)对任意两个不相等的正数a ,b ,证明:a 3+b 3比a 2b +ab 2远离2ab ab .12. 已知a ,b 为实数,且a >0,b >0,c >0.证明:a 2+b 2+c 2+2111()a b c++≥63,并确定a ,b ,c 为何值时,等号成立.13.(2013·南昌调研)已知x +y >0,且xy ≠0.(1)求证:x 3+y 3≥x 2y +y 2x ;(2)如果x y 2+y x 2≥m 211()x y+恒成立,试求实数m 的取值范围或值.。
高中数学 第1讲 不等式和绝对值不等式本讲达标测试 新人教A版选修4-5-新人教A版高二选修4-5数
第一讲不等式和绝对值不等式(本卷满分150分,考试时间120分钟)一、选择题(每小题5分,共60分)1.下面四个条件中,使a>b成立的充分而不必要的条件是A.a>b+1B.a>b-1C.a2>b2D.a3>b3解析A项:若a>b+1,则必有a>b,反之,当a=2,b=1时,满足a>b,但不能推出a>b+1,故a>b+1是a>b成立的充分而不必要条件;B项:当a=b=1时,满足a>b-1,反之,由a>b-1不能推出a>b;C项:当a=-2,b=1时,满足a2>b2,但a>b 不成立;D项:a>b是a3>b3的充要条件,综上所述答案选A.答案A2.若a>b,x>y,则下列不等式不正确的是A.a+x>b+yB.y-a<x-bC.|a|x>|a|yD.(a-b)x>(a-b)y答案C3.不等式|x-5|+|x+3|≥10的解集是A.[-5,7]B.[-4,6]C.(-∞,-5]∪[7,+∞)D.(-∞,-4]∪[6,+∞)解析解法一当x≤-3时,不等式化为5-x-x-3≥10,即x≤-4;当-3<x<5时,不等式化为5-x+x+3≥10,即8≥10,故x∈∅;当x≥5时,不等式化为x-5+x+3≥10,即x≥6.综上,原不等式的解集为(-∞,-4]∪[6,+∞),故选D.解法二利用绝对值的几何意义,即在数轴上的点x到5和-3的距离之和不小于10,所以x≤-4或x≥6,故选D.答案D4.若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为 A.(0,+∞) B.(-1,0)∪(2,+∞) C.(2,+∞)D.(-1,0)解析f ′(x )=2x -2-4x =2(x 2-x -2)x,则f ′(x )>0,也就是2(x 2-x -2)x>0,得-1<x <0或x >2,又f (x )的定义域为(0,+∞), ∴f ′(x )>0的解集为{x |x >2},故选C. 答案C5.若实数x ,y 满足1x 2+1y2=1,则x 2+2y 2有A.最大值3+2 2B.最小值3+2 2C.最大值6D.最小值6解析 由题意知,x 2+2y 2=(x 2+2y 2)·⎝ ⎛⎭⎪⎫1x 2+1y 2=3+2y 2x 2+x 2y 2≥3+22,当且仅当x 2y 2=2y 2x2时,等号成立,故选B.答案B6.函数y =3x +12x2(x >0)的最小值是A.6B.66C.9D.12解析y =3x +12x 2=3x 2+3x 2+12x 2≥ 333x 2·3x 2·12x2=9⎝ ⎛⎭⎪⎫当且仅当3x 2=12x 2,即x =2时,等号成立. 答案C7.设x >0,则y =3-3x -1x的最大值是A.3B.3-3 2C.3-2 3D.-1 解析y =3-3x -1x=3-⎝ ⎛⎭⎪⎫3x +1x ≤3-23x ·1x=3-2 3.当且仅当3x =1x ,即x =33时,等号成立.答案C8.若a 、b ∈R,且ab >0,则下列不等式中,恒成立的是 A.a 2+b 2>2abB.a +b ≥2abC.1a +1b>2abD.b a +ab≥2解析 对A :当a =b =1时满足ab >0,但a 2+b 2=2ab ,所以A 错;对B 、C :当a =b =-1时满足ab >0,但a +b <0,1a +1b<0,而2ab >0,2ab>0,显然B 、C 不对;对D :当ab >0时,由均值定理b a +ab ≥2b a ·ab=2,故选D. 答案D9.某人要买房,随着楼层的升高,上、下楼耗费的体力增多,因此不满意度升高,设住第n 层楼,上下楼造成的不满意度为n ;但高处空气清新,嘈杂音较小,环境较为安静,因此随楼层升高,环境不满意度降低,设住第n 层楼时,环境不满意程度为9n,则此人应选A.1楼B.2楼C.3楼D.4楼解析 设第n 层总的不满意度为f (n ), 则f (n )=n +9n ≥29=6,当且仅当n =9n,即n =3时等号成立. 答案C10.已知f (x )是奇函数,且在(-∞,0)上是增函数, f (2)=0,则不等式xf (x )<0的解集是A.{x |-2<x <0,或x >2}B.{x |x <-2,或0<x <2}C.{x |x <-2,或x >2}D.{x |-2<x <0,或0<x <2} 解析 画出草图,(图略)则当0<x <2或x <-2时,f (x )<0; 当x >2或-2<x <0时,f (x )>0.所以x ·f (x )<0⇔⎩⎪⎨⎪⎧f (x )<0x >0或⎩⎪⎨⎪⎧f (x )>0x <0,即为0<x <2或-2<x <0. 答案D11.若0<x <12,则x 2(1-2x )有A.最小值127B.最大值127C.最小值13D.最大值13答案B12.设0<x <1,a ,b 都为大于零的常数,若a 2x +b 21-x≥m 恒成立,则m 的最大值是A.(a -b )2B.(a +b )2C.a 2b 2D.a 2解析a 2x +b 21-x =⎝ ⎛⎭⎪⎫a 2x +b 21-x [x +(1-x )]=a 2+b 2+a 2(1-x )x +b 2x 1-x≥a 2+b 2+2ab =(a +b )2,当且仅当x 1-x =ab时取等号. 由a 2x +b 21-x≥m 恒成立,可知m ≤(a +b )2. 故m 的最大值是(a +b )2. 答案B二、填空题(每小题5分,共20分)13.不等式|x +1|-|x -3|≥0的解集是________. 解析 由题意得|x +1|≥|x -3|, ∴(x +1)2≥(x -3)2,即8x ≥8,∴x ≥1. 答案 [1,+∞)14.已知不等式|2x -t |+t -1<0的解集为⎝ ⎛⎭⎪⎫-12,12,则t 的值为________. 解析 |2x -t |<1-t ,t -1<2x -t <1-t ,2t -1<2x <1,t -12<x <12.∴t =0.答案 015.设x ,y 为实数.若4x 2+y 2+xy =1,则2x +y 的最大值是________. 解析 依题意有(2x +y )2=1+3xy =1+32×2x ×y ≤1+32·⎝ ⎛⎭⎪⎫2x +y 22,得58(2x +y )2≤1,即|2x +y |≤2105. 当且仅当2x =y =105时,2x +y 达到最大值2105. 答案210516.下面四个命题:①若a >b ,c >1,则a lg c >b lg c ; ②若a >b ,c >0,则a lg c >b lg c ; ③若a >b ,则2c a >2cb ; ④若a <b <0,c >0,则c a >c b. 其中正确命题的个数为________.解析 ①正确,∵c >1,lg c >0,∴a lg c >b lg c ;②不正确,由于当0<c <1时,lg c <0,a lg c <b lg c ;③正确,∵2c >0,∴2c a >2c b ;④正确,∵a <b <0,∴0>1a >1b ,又c >0,∴c a >c b.答案 3三、解答题(共70分)17.(10分)设不等式|x -2|<a (a ∈N *)的解集为A ,且32∈A ,12∉A .(1)求a 的值;(2)求函数f (x )=|x +a |+|x -2|的最小值.解析 (1)因为32∈A ,且12∉A ,所以⎪⎪⎪⎪⎪⎪32-2<a ,且⎪⎪⎪⎪⎪⎪12-2≥a ,解得12<a ≤32.又a ∈N *,所以a =1.(2)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当(x +1)(x -2)≤0,即-1≤x ≤2时取到等号,所以f (x )的最小值为3. 18.(12分)设函数f (x )=|x -a |+3x ,其中a >0. (1)当a =1时,求不等式f (x )≥3x +2的解集; (2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值.解析 (1)当a =1时,f (x )≥3x +2可化为|x -1|≥2. 由此可得x ≥3或x ≤-1.故不等式f (x )≥3x +2的解集为{x |x ≥3或x ≤-1}. (2)由f (x )≤0得|x -a |+3x ≤0. 此不等式化为不等式组⎩⎪⎨⎪⎧x ≥a ,x -a +3x ≤0或⎩⎪⎨⎪⎧x ≤a ,a -x +3x ≤0. 即⎩⎪⎨⎪⎧x ≥a ,x ≤a 4或⎩⎪⎨⎪⎧x ≤a ,x ≤-a 2.因为a >0,所以不等式组的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-a 2.由题设可得-a2=-1,则a =2.故a 的值为2.19.(12分)设函数f (x )=2|x -1|+x -1,g (x )=16x 2-8x +1.记f (x )≤1的解集为M ,g (x )≤4的解集为N .(1)求M ;(2)当x ∈M ∩N 时,证明:x 2f (x )+x [f (x )]2≤14.解析f (x )=⎩⎪⎨⎪⎧3x -3,x ∈[1,+∞),1-x ,x ∈(-∞,1),当x ≥1时,由f (x )=3x -3≤1得x ≤43,故1≤x ≤43;当x <1时,由f (x )=1-x ≤1得x ≥0,故0≤x <1.所以f (x )≤1的解集为M =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0≤x ≤43. (2)由g (x )=16x 2-8x +1≤4, 得16⎝ ⎛⎭⎪⎫x -142≤4,解得-14≤x ≤34. 因此N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-14≤x ≤34. 故M ∩N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0≤x ≤34.当x ∈M ∩N 时,f (x )=1-x ,于是x 2f (x )+x [f (x )]2=xf (x )[x +f (x )]=xf (x )=x (1-x )=14-⎝ ⎛⎭⎪⎫x -122≤14.20.(12分)(2018·全国卷Ⅲ)设函数f (x )=5-|x +a |-|x -2|. (1)当a =1时,求不等式f (x )≥0的解集; (2)若f (x )≤1,求a 的取值X 围.解析 (1)当a =1时,f (x )=⎩⎪⎨⎪⎧2x +4,x ≤-1,2,-1<x ≤2,-2x +6,x >2.可得f (x )≥0的解集为{x |-2≤x ≤3}. (2)f (x )≤1等价于|x +a |+|x -2|≥4.而|x +a |+|x -2|≥|a +2|,且当x =2时等号成立. 故f (x )≤1等价于|a +2|≥4. 由|a +2|≥4可得a ≤-6或a ≥2.所以a 的取值X 围是(-∞,-6]∪[2,+∞).21.(12分)设a ,b ,c ,d 均为正数,且a +b =c +d ,求证: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件. 证明 (1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd ,由题设a +b =c +d ,ab >cd 得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2, 即(a +b )2-4ab <(c +d )2-4cd . 因为a +b =c +d ,所以ab >cd . 由(1)得a +b >c +d .②若a +b >c +d ,则(a +b )2>(c +d )2, 即a +b +2ab >c +d +2cd . 因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a+b>c+d是|a-b|<|c-d|的充要条件.22.(12分)(2019·全国卷Ⅱ)已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值X围.解析(1)当a=1时,f(x)=|x-1|x+|x-2|(x-1).当x<1时,f(x)=-2(x-1)2<0;当x≥1时,f(x)≥0.所以,不等式f(x)<0的解集为(-∞,1).(2)因为f(a)=0,所以a≥1.当a≥1,x∈(-∞,1)时,f(x)=(a-x)x+(2-x)(x-a)=2(a-x)(x-1)<0. 所以,a的取值X围是[1,+∞).。
吉林省长春市(新版)2024高考数学人教版质量检测(综合卷)完整试卷
吉林省长春市(新版)2024高考数学人教版质量检测(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题若,则( )A.B.C.D.第(2)题已知复数在复平面内对应点的坐标为,则( )A.B.C.D.第(3)题在△ABC 中,已知,,,D 为垂足,,则( )A.B.C.D.第(4)题已知是定义在上的奇函数,对任意正数,,都有,且,当时,,则不等式的解集为( )A.B.C.D.第(5)题某地区有10000名考生参加了高三模拟调研考试.经过数据分析,数学成绩近似服从正态分布,则数学成绩位于的人数约为( )参考数据:,A .455B .1359C .3346D .1045第(6)题已知F 为双曲线的左焦点,过点F 的直线与圆于A ,B 两点(A 在F ,B 之间),与双曲线E 在第一象限的交点为P ,O 为坐标原点,若,则双曲线的离心率为( )A.B.C.D.第(7)题椭圆的上顶点为是的一个焦点,点在上,若,则的离心率为( )A.B.C.D.第(8)题在如图所示的程序框图中,若输入的a ,b ,c 分别为,,,执行该程序框图,输出的结果用原来数据表示为()A.b,a,c B.a,b,c C.c,b,a D.c,a,b二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知圆上的三个点分别为,,,直线的方程为,则下列说法正确的是()A.圆的方程为B.过作直线与线段相交,则直线的斜率的取值范围为C.若直线被圆截得的弦长为2,则的方程为或D.当点到直线的距离最大时,过上的点作圆的两条切线,切点分别为,,则四边形面积的最小值为第(2)题下列命题中,正确的有()A.最小值是4B.“”是的充分不必要条件C.若,则D .若a,,且,则的最小值为9第(3)题已知函数,若存在三个实数,使得,则()A.的取值范围为B.的取值范围为C.的取值范围为D.的取值范围为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题由正整数组成的一组数据x1,x2,x3,x4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)第(2)题定义在上的奇函数,,且当时,(为常数),则的值为__________.第(3)题设变量y与x的回归模型A、模型B、模型C相应的相关系数r的值分别为0.28、0.35、0.3,则拟合效果最好的是模型______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题甲、乙两个不透明的袋中各装有6个大小质地完全相同的球,其中甲袋中有3个红球、3个黄球,乙袋中有1个红球、5个黄球.(1)若从两袋中各随机地取出1个球,求这2个球颜色相同的概率;(2)若先从甲袋中随机地取出2个球放入乙袋中,再从乙袋中随机地取出2个球,记从乙袋中取出的红球个数为,求的分布列与期望.第(2)题设是等差数列,是等比数列.已知,,.(1)求和的通项公式;(2)数列和的项从小到大依次排列(相等项计两项)得到新数列,求的前50项的和.第(3)题设矩阵的一个特征值对应的特征向量为,求与的值.第(4)题选修4—4:极坐标与参数方程在直角坐标平面内,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知点、的极坐标分别为、,曲线的参数方程为为参数).(Ⅰ)求直线的直角坐标方程;(Ⅱ)若直线和曲线C只有一个交点,求的值.第(5)题已知函数.(1)解不等式;(2)若恒成立,求实数的取值范围.。
高中数学 第一讲 不等式和绝对值不等式评估验收卷(一)(含解析)新人教A版选修4-5-新人教A版高二
评估验收卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式|x-2|<3的解集为()A.{x|x>5或x<-1}B.{x|-1<x<5}C.{x|x<-1} D.{x|x>5}解析:由|x-2|<3得-3<x-2<3,解得-1<x<5,故原不等式的解集为{x|-1<x<5}.答案:B2.不等式1<|x+1|<3的解集为()A.(0,2) B.(-2,0)∪(2,4)C.(-4,0) D.(-4,-2)∪(0,2)解析:1<|x+1|<3⇔-3<x+1<-1或1<x+1<3⇔-4<x<-2或0<x<2.答案:D3.设x∈R,则“1<x<2”是“|x-2|<1”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:由|x-2|<1解得1<x<3.因为“1<x<2”能推出“1<x<3”,“1<x<3”推不出“1<x<2”,所以“1<x<2”是“|x-2|<1”的充分而不必要条件.答案:A4.不等式|x+log3x|<|x|+|log3x|的解集为()A.(-∞,+∞) B.(1,+∞)C.(0,+∞) D.(0,1)解析:在|a+b|≤|a|+|b|中,当ab>0或至少有一者为零时取等号,所以当|a+b|<|a|+|b|时,ab<0,所以x·log3x<0,因为x>0,所以log3x<0,故0<x<1.答案:D5.不等式|2x-log2x|<|2x|+|log2x|的解为( )A.1<x<2 B.0<x<1C .x >1D .x >2解析:由题意知⎩⎪⎨⎪⎧2x ·log 2x >0,x >0, 所以log 2x >0,解得x >1.答案:C6.不等式|x |>2x -1的解集为( ) A .{x |x >2或x <-1} B .{x |-1<x <2}C .{x |x <1或x >2}D .{x |1<x <2} 解析:|x |>2x -1⇒⎩⎪⎨⎪⎧x >2x -1,x ≥0或⎩⎪⎨⎪⎧x <21-x ,x <0,解得x <1或x >2.答案:C7.已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( )A .3B .4 C.92D.112 解析:因为2xy =x ·(2y )≤⎝⎛⎭⎪⎫x +2y 22, 所以上式可化为(x +2y )2+4(x +2y )-32≥0.又因为x >0,y >0,所以x +2y ≥4.当x =2,y =1时取等号,故选B.答案:B8.若实数x ,y 满足1x 2+1y 2=1,则x 2+2y 2有( ) A .最大值3+2 2B .最小值3+2 2C .最大值6D .最小值6 解析:由题意知,x 2+2y 2=(x 2+2y 2)·⎝ ⎛⎭⎪⎫1x 2+1y 2=3+2y 2x 2+x 2y 2≥3+22,当且仅当x 2y 2=2y 2x 2时,等号成立,故选B.答案:B9.关于x 的不等式|x -1|+|x -2|≤a 2+a +1的解集是空集,则a 的取值X 围是( )A .(0,1)B .(-1,0)C .(1,2)D .(-∞,-1) 解析:|x -1|+|x -2|的最小值为1,故只需a 2+a +1<1,所以-1<a <0.答案:B 10.若不等式⎪⎪⎪⎪⎪⎪x +1x >|a -5|+1对一切非零实数x 均成立,则实数a 的取值X 围是( )A .RB .a >5C .4<a <6D .4≤a ≤5解析:因为⎪⎪⎪⎪⎪⎪x +1x =|x |+⎪⎪⎪⎪⎪⎪1x ≥2 |x |·1|x |=2, 所以|a -5|+1<2,即|a -5|<1,所以4<a <6.答案:C11.不等式|sin x +tan x |<a 的解集为N ,不等式|sin x |+|tan x |<a 的解集为M ,则解集M 与N 的关系是()A .N ⊆MB .M ⊆NC .M =ND .M N解析:|sin x +tan x |≤|sin x |+|tan x |,则M ⊆N (当a ≤0时,M =N =∅).答案:B12.若关于x 的不等式|x -1|+|x +m |>3的解集为R ,则实数m 的取值X 围是()A .(-∞,-4)∪(2,+∞)B .(-∞,-4)∪(1,+∞)C .(-4,2)D .[-4,1]解析:|x -1|+|x +m |表示数轴上x 对应的点到1和-m 对应的点的距离之和,它的最小值等于|1+m |.由题意可得|1+m |>3,解得m >2或m <-4,故实数m 的取值X 围为(-∞,-4)∪(2,+∞).答案:A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.不等式|x -4|+|x -3|≤a 有实数解的充要条件是________.解析:a ≥|x -4|+|x -3|有解⇔a ≥(|x -4|+|x -3|)min =1.答案:a ≥114.定义运算x ⊗y =⎩⎪⎨⎪⎧x ,x ≤y ,y ,x >y ,若|m -1|⊗m =|m -1|,则m 的取值X 围是________. 解析:依题意,有|m -1|≤m ,所以-m ≤m -1≤m ,所以m ≥12. 答案:⎣⎢⎡⎭⎪⎫12,+∞15.已知∀x ∈R ,都有不等式log 2(4-a )+3≤|x +3|+|x -1|恒成立,则实数a 的取值X 围是________.解析:因为∀x ∈R ,都有不等式log 2(4-a )+3≤|x +3|+|x -1|恒成立,所以log 2(4-a )+3≤(|x +3|+|x -1|)min ,易知|x +3|+|x -1|≥4,所以log 2(4-a )≤1,所以⎩⎪⎨⎪⎧4-a >0,4-a ≤2,故实数a 的取值X 围是[2,4). 答案:[2,4)16.已知函数f (x )=|x -2|,g (x )=-|x +3|+m .若函数f (x )的图象恒在函数g (x )图象的上方,则m 的取值X 围是________.解析:f (x )的图象恒在函数g (x )图象的上方,即为|x -2|>-|x +3|+m 对任意实数x 恒成立,即|x -2|+|x +3|>m 恒成立.又对任意实数x 恒有|x -2|+|x +3|≥|(x -2)-(x +3)|=5,于是得m <5,即m 的取值X 围是(-∞,5).答案:(-∞,5)三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知a ,b ∈R ,且|a +b +1|≤1,|a +2b +4|≤4.求|a |+|b |的最大值.解:|a +b |=|(a +b +1)-1|≤|a +b +1|+|1|≤2,|a -b |=|3(a +b +1)-2(a +2b +4)+5|≤3|a +b +1|+2|a +2b +4|+5≤3+2×4+5=16.①若ab ≥0,则|a |+|b |=|a +b |≤2;②若ab <0,则|a |+|b |=|a -b |≤16.当⎩⎪⎨⎪⎧a +b +1=1,a +2b +4=-4,即a =8,b =-8时,|a |+|b |取得最大值,且|a |+|b |=|a -b |=16.18.(2018·某某卷)(本小题满分12分)若x ,y ,z 为实数,且x +2y +2z =6,求x 2+y 2+z 2的最小值.解:由柯西不等式,得(x 2+y 2+z 2)(12+22+22)≥(x +2y +2z )2.因为x +2y +2z =6,所以x 2+y 2+z 2≥4,当且仅当x 1=y 2=z 2时,不等式取等号,此时x =23,y =43,z =43, 所以x 2+y 2+z 2的最小值为4.19.(本小题满分12分)已知f (x )=|x +1|+|x -1|,不等式f (x )<4的解集为M .(1)求M ;(2)当a ,b ∈M 时,证明:2|a +b |<|4+ab |.(1)解:由|x +1|+|x -1|<4,得⎩⎪⎨⎪⎧x ≥1,2x <4或⎩⎪⎨⎪⎧-1≤x <1,2<4或⎩⎪⎨⎪⎧x <-1,-2x <4, 解得-2<x <2,所以M =(-2,2).(2)证明:要证2|a +b |<|4+ab |,只需证4(a 2+2ab +b 2)<a 2b 2+8ab +16,只需证a 2b 2-4a 2-4b 2+16>0,即证(a 2-4)(b 2-4)>0.因为a ,b ∈(-2,2),所以a 2<4,b 2<4,所以a 2-4<0,b 2-4<0,所以(a 2-4)(b 2-4)>0,所以原不等式成立.20.(2018·全国卷Ⅰ)(本小题满分12分)已知f (x )=|x +1|-|ax -1|.(1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值X 围.解:(1)当a =1时,f (x )=|x +1|-|x -1|,即f (x )=⎩⎪⎨⎪⎧-2,x ≤-1,2x ,-1<x <1.2,x ≥1.故不等式f (x )>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >12. (2)当x ∈(0,1)时,|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立. 若a ≤0,则当x ∈(0,1)时|ax -1|≥1;若a >0,则|ax -1|<1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x <2a , 所以2a≥1,故0<a ≤2. 综上,a 的取值X 围为(0,2].21.(2018·全国卷Ⅲ)(本小题满分12分)设函数f (x )=|2x +1|+|x -1|.(1)画出y =f (x )的图象;(2)当x ∈[0,+∞)时,f (x )≤ax +b ,求a +b 的最小值.解:(1)f (x )=⎩⎪⎨⎪⎧-3x ,x <-12,x +2,-12≤x <1,3x ,x ≥1.y =f (x )的图象如图所示.(2)由(1)知,y =f (x )的图象与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a ≥3且b ≥2时,f (x )≤ax +b 在[0,+∞)成立,因此a +b 的最小值为5.22.(本小题满分12分)已知函数f (x )=|2x +1|-|x -4|.(1)解关于x 的不等式f (x )>2;(2)若不等式f (x )≥ax +a 2-112恒成立,某某数a 的取值X 围. 解:(1)f (x )=⎩⎪⎨⎪⎧x +5,x ≥4,3x -3,-12<x <4,-x -5,x ≤-12.当x ≥4时,由x +5>2,得x >-3,则x ≥4;当-12<x <4时,由3x -3>2,得x >53,则53<x <4; 当x ≤-12时,由-x -5>2,得x <-7,则x <-7. 综上,不等式f (x )>2的解集为⎩⎨⎧⎭⎬⎫x |x <-7或x >53.(2)因为f (x )=⎩⎪⎨⎪⎧x +5,x ≥4,3x -3,-12<x <4,-x -5,x ≤-12,画出函数y =f (x )的图象,如图所示,令y =ax +a 2-112,则y +112=a ⎝ ⎛⎭⎪⎫x +12的图象过定点P ⎝ ⎛⎭⎪⎫-12,-112.由于函数y =f (x )的最小值为-92,不等式f (x )≥ax +a 2-112恒成立,所以y =ax +a 2-112的图象恒在y =f (x )的图象的下方,所以-1≤a ≤1.。
人教版高中数学高二选修4-5课时作业模块测试题
模块测试题本检测题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a >b >0,则下列不等式中一定成立的是( ) A .a +1b >b +1a B.b a >b +1a +1C .a -1b >b -1a D.2a +b a +2b >a ba >b >0⇒1b >1a >0,∴a +1b >b +1a . 故应选A. A2.已知a ,b ,c ,d ∈R ,且ab >0,-c a <-db ,则下列各式恒成立的是( )A .bc <adB .bc >adC. a c >b dD. a c <b d对-c a <-db 两边同乘以-ab ,由-ab <0,得bc >ad . B3.若a ,b ,x ,y ∈R ,则⎩⎪⎨⎪⎧ x +y >a +b ,(x -a )(y -b )>0是⎩⎪⎨⎪⎧x >a ,y >b ,成立的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件若⎩⎨⎧x +y >a +b , ①(x -a )(y -b )>0. ②由②知x -a 与y -b 同号;又由式①得 (x -a )+(y -b )>0.∴x -a >0,y -b >0,即x >a 且y >b . 故充分性成立.若⎩⎨⎧x >a ,y >b ,则⎩⎨⎧x -a >0,y -b >0,∴⎩⎨⎧x +y >a +b ,(x -a )(y -b )>0.故必要性亦成立.综合(1)(2)知,应选C. C4.已知a >b >0且ab =1,设c =2a +b ,P =logc a ,N =log c b ,M =log c ab ,则( )A .P <M <NB .M <P <NC .N <P <MD .P <N <M 方法一:因为a >b >0且a ·b =1,所以a >1,0<b <1,a +b >2ab =2,c =2a +b <1.所以log c a <log c ab <log c b ,即P <M <N .故选A. 方法二(特值法):令a =2,b =12,所以c =22+12=45.A5.使不等式|x -4|+|3-x |<a 有解的条件是( ) A .0<a <110 B .0<a ≤1C.110<a <1 D .a >1 要使不等式成立,需 a >(|x -4|+|3-x |)min .由|x -4|+|3-x |的几何意义,知数轴上动点x 到定点(4,3)的距离和的最小值为1,所以a >1.故应选D. D6.给出三个条件:①ac 2>bc 2;②a c >bc ;③a 2>b 2.其中能成为a >b 的充分条件的个数为( )A .0B .1C .2D .3 ①ac 2>bc 2⇒a >b ,而a >b ⇒/ac 2>bc 2,故ac 2>bc 2是a >b 的充分条件;②a c >bc ⇒/a >b ,故不合题意;③a 2>b 2⇒/a >b ,也不合题意,综上所述只有①适合题意,故选B.B 7.已知a1-a>0,且x >1,则下列不等式成立的是( ) A .a x <x 1a <log a x B .log a x <a x <x 1aC .log 1a x <x 1a <a xD .a x <log a x <x 1a由a 1-a >0,x >1得0<a <1,且log a x <0<a x<1<x 1a . B8.若a ,b ,c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值为( )A.3-1B.3+1 C .23+2 D .23-2 由a (a +b +c )+bc =4-23, 得(a +b )(a +c )=4-2 3. ∵a ,b ,c >0,∴(a +c )(a +b )≤(2a +b +c2)2(当且仅当a +c =b +a ,即b =c 时取“=”号).∴2a +b +c ≥24-23=2(3-1)=23-2.故应选D. D9.如果实数x ,y 满足|tan x |+|tan y |>|tan x +tan y |,且y ∈(π,3π2),则|tan x -tan y |等于( )A .tan x -tan yB .tan y -tan xC .tan x +tan yD .|tan y |-|tan x |由|tan x |+|tan y |>|tan x +tan y |,得tan x 和tan y 异号;且y ∈(π,3π2),得tan y >0. 所以|tan x -tan y |=tan y -tan x . 故应选B. B10.设a 1,a 2,…,a 5都是正数,b 1,b 2,…,b 5是a 1,a 2,…,a 5的任一排列,则a 1b -11+a 2b -12+…+a 5b -15的最小值是( )A .1B .5C .25D .无法确定设a 1≥a 2≥…≥a 5>0.可知a -15≥a -14≥…≥a -11,由排序原理,得a 1b -11+a 2b -12+…+a 5b -15≥a 1a -11+a 2a -12+…+a 5a -15≥5. 故应选B. B11.若k 棱柱有f (k )个对角面,则k +1棱柱有对角面的个数为( )A.2f(k) B.k-1+f(k)C.f(k)+k D.f(k)+2由n=k到n=k+1时增加的对角面的个数与底面上由n=k 到n=k+1时增加的对角线一样,设底面为a1a2…a k,n=k+1时底面为a1a2a3…a k a k+1,增加的对角线为a2a k+1,a3a k+1,a4a k+1,…,a k-1a k+1,a1a k,共有k-1条,因此,对角面也增加了k-1个.B12.记满足下列条件的函数f(x)的集合为M,当|x1|≤1,|x2|≤1时,|f(x1)-f(x2)|≤4|x1-x2|,又令g(x)=x2+2x-1,则g(x)与M的关系是()A.g(x)M B.g(x)∈MC.g(x)∉M D.不能确定g(x1)-g(x2)=x21+2x1-x22-2x2=(x1-x2)(x1+x2+2),|g(x1)-g(x2)|=|x1-x2|·|x1+x2+2|≤|x1-x2|(|x1|+|x2|+2)≤4|x1-x2|,所以g(x)∈M.故应选B.B第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.若x≥1,y≥1,z≥1,xyz=10,且x lg x·y lg y·z lg z≥10,则x+y +z =__________.lg(x lg x ·y lg y ·z lg z )≥1⇒lg 2x +lg 2y +lg 2z ≥1,而lg 2x +lg 2y +lg 2z =(lg x +lg y +lg z )2-2(lg x lg y +lg y lg z +lg z lg x )=[lg(xyz )]2-2(lg x lg y +lg y lg z +lg z lg x ) =1-2(lg x lg y +lg y lg z +lg z lg x )≥1, 即lg x lg y +lg y lg z +lg z lg x ≤0, 而lg x ,lg y ,lg z 均不小于0, ∴lg x lg y +lg y lg z +lg z lg x =0.此时,lg x =lg y =0,或lg y =lg z =0,或lg z =lg x =0. ∴x =y =1,z =10或y =z =1,x =10,或x =z =1,y =10, ∴x +y +z =12. 1214.要挖一个面积为432 m 2的矩形鱼池,周围两侧分别留出宽分别为 3 m,4m 的堤堰,要想使占地总面积最小,此时鱼池的长为__________,宽为__________.设长为x ,宽为432x ,占地面积为S ,则S =(8+x )(432x +6),用基本不等式求解.24 m 18 m15.已知0<α<π2,0<β<π2,M =1cos 2α+1sin 2α·sin 2β·cos 2β,则M 的取值范围是__________.M ≥916.下列四个命题:①a +b ≥2ab ;②sin 2x +4sin 2x≥4;③设x ,y 都是正数,若1x +9y =1,则x +y 的最小值是12;④若|x -2|<ε,|y -2|<ε,则|x -y |<2ε.其中所有真命题的序号是__________.①不正确,a ,b 符号不定;②不正确,sin 2x ∈(0,1],利用函数y =x +4x 的单调性可求得sin 2x +4sin 2x ≥5;③不正确,(x +y )(1x +9y )=10+y x +9xy ≥10+6=16;④正确,|x -y |=|x -2+2-y |≤|x -2|+|2-y |<ε+ε=2ε.④三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分10分)已知a 、b 、c ∈R +,求证:b +c -a a +c +a -b b +b +a -cc ≥3. ∵a 、b 、c ∈R +,b +c -a a +c +a -b b +b +a -c c =b a +c a -1+c b +a b -1+b c +a c -1≥2·3-3=3, 当且仅当a =b =c 时等号成立. 18.(本小题满分12分) 设函数f (x )=|2x +1|-|x -5|. (1)解不等式f (x )>2; (2)求函数y =f (x )的最小值.(1)令y =|2x +1|-|x -5|,则y =⎩⎪⎨⎪⎧-x -6,x ≤-12,3x -4,-12<x <5,x +6,x ≥5.作出函数y =|2x +1|-|x -5|的图象,它与直线y =2的交点为(-8,2)和(2,2).所以|2x +1|-|x -5|>2的解集为(-∞,-8)∪(2,+∞). (2)由函数y =|2x +1|-|x -5|的图象可知, 当x =-12时,y =|2x +1|-|x -5|取得最小值-112.19.(本小题满分12分)设a 、b ∈(0,+∞)且1a +1b =1,求证:对于任何n ∈N +,有(a +b )n -a n -b n ≥22n -2n +1成立.①n =1时,原不等式显然成立; ②设n =k 时原不等式成立,即(a +b )k -a k -b k ≥22k -2k +1, 则n =k +1时, (a +b )k +1-a k +1-b k +1=(a +b )[(a +b )k -a k -b k ]+ab k +a k b ≥(a +b )(22k -2k +1)+ab k +a k b , 由1=1a +1b ≥2ab,可得ab ≥4,a +b ≥2ab ≥4. ∴ab k +a k b ≥2a k +1b k +1≥2(4)k +12=2k +2.∴(a +b )k +1-a k +1-b k +1 ≥(a +b )(22k -2k +1)+ab k +a k b ≥4(22k -2k +1)+2k +2 =22(k +1)-2(k +1)+1,即n =k +1时原不等式成立.由①②可知,对于任何n ∈N +原不等式成立. 20.(本小题满分12分)某自来水厂要制作容积为500 m 3的无盖长方体水箱,现有三种不同规格的长方形金属制箱材料(单位:m):①19×19;②30×10;③25×12.请你选择其中的一种规格材料,并设计出相应的制作方案(要求:①用料最省;②简便易行).设无盖长方体水箱的长、宽、高分别为a、b、c.由题意,可得abc=500,长方体水箱的表面积为S=2bc+2ac+ab.由平均值不等式,知S=2bc+2ac+ab≥332bc·2ac·ab=334×5002=300,当且仅当2bc=2ca=ab,即a=b=10,c=5时,S=2bc+2ca+ab=300为最小,这表明将无盖长方体的尺寸设计为10×10×5(即2∶2∶1)时,其用料最省.如何选择材料并设计制作方案?就要研究三种供选择的材料,哪一种更易制作成长方体水箱的平面展开图.逆向思维,先将无盖长方体展开成平面图:图(1)进一步剪拼成图(2)的长30 m,宽10 m(长∶宽=3∶1)的长方形.因此,应选择规格30×10的制作材料,制作方案如图(3).(1)(2)(3)可以看出,图(3)这种“先割后补”的方案不但可使用料最省,而且简便易行.21.(本小题满分12分)设x 1,x 2,x 3,…,x n 都是正实数,且x 1+x 2+x 3+…+x n =S .求证:x 21S -x 1+x 22S -x 2+…+x 2nS -x n ≥S n -1.方法1:根据柯西不等式,得 左边=x 21S -x 1+x 22S -x 2+…+x 2n S -x n=[(S -x 1)+(S -x 2)+…+(S -x n )]×1(n -1)S (x 21S -x 1+x 22S -x 2+…+x 2n S -x n) =1(n -1)S[(S -x 1)2+(S -x 2)2+…+(S -x n )2]×[(x 1S -x 1)2+(x 2S -x 2)2+…+(x nS -x n )2]≥1(n -1)S [(S -x 1×x 1S -x 1)+(S -x 2×x 2S -x 2)+…+(S -x n×x n S -x n)]2=1(n -1)S (x 1+x 2+…+x n )2=1(n -1)S ×S 2=Sn -1=右边.∴原不等式成立.方法2:∵a ∈R +,则a +1a ≥2,∴a ≥2-1a .∴x 2iS -x i =x i n -1×(n -1)x i S -x i ≥x i n -1×[2-S -x i (n -1)x i ]=2x i n -1-S -x i (n -1)2. n 个式子相加,有x 21S -x 1+x 22S -x 2+…+x 2nS -x n ≥2x 1n -1+2x 2n -1+…+2x n n -1-[S -x 1(n -1)2+S -x 2(n -1)2+…+S -x n(n -1)2] =2S n -1-nS -S (n -1)2=S n -1. ∴原不等式成立.方法3:x 2iS -x i +1(n -1)2(S -x i ) ≥2x 2iS -x i ·1(n -1)2(S -x i )=2x i n -1.∴x 2iS -x i ≥2x i n -1-S -x i (n -1)2, ∴∑ni =1 x 2iS -x i ≥∑n i =1 2x i n -1-∑n i =1 S -x i (n -1)2=2S n -1-(n -1)S (n -1)2=S n -1. ∴原不等式成立. 22.(本小题满分12分)已知数列{a n }的各项都是正数,且满足:a 0=1,a n +1=12a n (4-a n ),n ∈N.(1)求证:a n <a n +1<2,n ∈N ; (2)求数列{a n }的通项公式a n . (1)证法1:用数学归纳法证明: ①当n =0时,a 0=1,a 1=12a 0(4-a 0)=32,∴a 0<a 1<2,命题正确.②假设n =k (k ∈N +)时,有a k -1<a k <2,则n =k +1时,a k -a k +1=12a k -1(4-a k -1)-12a k (4-a k )=2(a k -1-a k )-12(a k -1-a k )(a k -1+a k )=12(a k -1-a k )(4-a k -1-a k ). 而a k -1-a k <0,4-a k -1-a k >0, ∴a k -a k +1<0.又a k +1=12a k (4-a k )=12[4-(a k -2)2]<2,∴n =k +1时命题正确.由①和②可知,对一切n ∈N 时都有a n <a n +1<2. 证法2:用数学归纳法证明:①当n =0时,a 0=1,a 1=12a 0(4-a 0)=32,∴0<a 0<a 1<2;②假设n =k (k ∈N +)时,有a k -1<a k <2成立,令f (x )=12x (4-x ),由f (x )在[0,2]上单调递增,所以由假设有f (a k -1)<f (a k )<f (2),即12a k-1(4-a k -1)<12a k (4-a k )<12×2×(4-2),也即当n =k +1时,a k <a k+1<2成立.所以对一切n ∈N ,有a n <a n +1<2.(2)a n +1=12a n (4-a n )=12[-(a n -2)2+4],所以2(a n +1-2)=-(a n -2)2, 令b n =a n -2,则b n =-12b 2n -1=-12(-12b 2n -2)2=-12·(12)2b 22n -2=…=-(12)1+2+…+2n -1b 22n,又b 0=-1,所以b n =-(12)2n-1即a n =2+b n =2-(12)2n-1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阶段质量检测(三) B 卷(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设M =a 2+b 2+c 2+d 2,N =ab +bc +cd +da ,则M 与N 的大小关系是( ) A .M ≥N B .M >N C .M ≤ND .M <N解析:选A 取两组数a ,b ,c ,d ;b ,c ,d ,a ,则由柯西不等式有 (a 2+b 2+c 2+d 2)(b 2+c 2+d 2+a 2)≥(ab +bc +cd +da )2, 即(a 2+b 2+c 2+d 2)2≥(ab +bc +cd +da )2, ∵a 2+b 2+c 2+d 2≥0,∴a 2+b 2+c 2+d 2≥ab +bc +cd +da .∴M ≥N .2.若a ,b ,c 均为正数且a +b +c =6,则ab c +bc a +acb 的最小值为( ) A .3 B .5 C .6D .12解析:选C 不妨设a <b <c ,则ab <ac <bc ,1c <1b <1a 由排序不等式得abc +ac b +bc a ≥ab b +ac a +bcc =a +c +b =6.3.若5x 1+6x 2-7x 3+4x 4=1,则3x 21+2x 22+5x 23+x 24的最小值是( )A.78215B.15782 C .3 D.253解析:选B ∵⎝⎛⎭⎫253+18+495+16[3x 21+2x 22+5(-x 3)2+x 24]≥(5x 1+6x 2-7x 3+4x 4)2=1, 即3x 21+2x 22+5x 23+x 24≥15782. 4.设x 1,x 2,x 3取不同的正整数,则m =x 11+x 24+x 39的最小值是( )A .1B .2 C.116D.4936解析:选C 设a 1,a 2,a 3是x 1,x 2,x 3的一个排列且满足 a 1<a 2<a 3.∴a 1≥1,a 2≥2,a 3≥3, 又∵1>122>132,∴x 1+x 24+x 39≥1+12+13=116.5.已知(x -1)2+(y -2)2=4.则3x +4y 的最大值为( ) A .1B .10C .11D .21解析:选D ∵[(x -1)2+(y -2)2](32+42)≥[3(x -1)+4(y -2)]2, 即(3x +4y -11)2≤100. ∴3x +4y -11≤10,3x +4y ≤21. 当且仅当x -13=y -24=25时取等号.6.已知α,β为锐角,且cos 2αsin 2β+sin 2αcos 2β=1,则α+β等于( )A.π2B.3π4C.π4D.5π12 解析:选A∵(sin 2β+cos 2β)⎝⎛⎭⎫cos 2αsin 2β+sin 2αcos 2β≥sin 2α+cos 2α=1,当且仅当sin α=cos β,cos α=sin β时等号成立,即α=β=π4,∴α+β=π2.7.已知x +3y +5z =6,则x 2+y 2+z 2的最小值是( ) A.65 B.635 C.3635D .6解析:选C 由柯西不等式,得x 2+y 2+z 2=(12+32+52)·(x 2+y 2+z 2)·112+32+52≥(1×x+3×y +5×z )2×135=62×135=3635. 8.已知3x 2+2y 2≤2,则3x +2y 的取值范围是( ) A .[0,5]B .[-5,0]C .[-10,10]D .[-5,5]解析:选C |3x +2y |≤3x 2+2y 2·(3)2+(2)2≤10, ∴-10≤3x +2y ≤10.9.(湖南高考)设a ,b ,c ,x ,y ,z 是正数,且a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax +by +cz =20,则a +b +cx +y +z=( )A.14B.13C.12D.34解析:选C 由柯西不等式得,(a 2+b 2+c 2)(x 2+y 2+z 2)≥(ax +by +cz )2=400,当且仅当a x =b y =c z =12时取等号,因此有a +b +c x +y +z =12.10.已知a ,b ,c ∈R +,设P =2(a 3+b 3+c 3),Q =a 2(b +c )+b 2(c +a )+c 2(a +b ),则( )A .P ≤QB .P <QC .P ≥QD .P >Q解析:选C 取两组数a ,b ,c ;a 2,b 2,c 2.不管a ,b ,c 的大小顺序如何,a 3+b 3+c 3都是顺序和;a 2b +b 2c +c 2a 及a 2c +b 2a +c 2b 都是乱序和,故有a 3+b 3+c 3≥a 2b +b 2c +c 2a , a 3+b 3+c 3≥a 2c +b 2a +c 2b ,∴2(a 3+b 3+c 3)≥a 2(b +c )+b 2(a +c )+c 2(a +b ). ∴P ≥Q .二、填空题(本大题共4小题,每小题5分,共20分.把正确答案填写在题中的横线上)11.已知a 21+a 22+…+a 2n =1,x 21+x 22+…+x 2n =1,则a 1x 1+a 2x 2+…+a n x n 的最大值为________.解析:(a 1x 1+a 2x 2+…+a n x n )2≤(a 21+a 22+…+a 2n )(x 21+x 22+…+x 2n )=1.答案:112.若x +y +z +t =4,则x 2+y 2+z 2+t 2的最小值为________.解析:比较已知条件、待求式子,发现把待求式子乘以一个常量后,可满足四维柯西不等式条件并同时用到已知条件,得(x 2+y 2+z 2+t 2)(12+12+12+12)≥(x +y +z +t )2, 当且仅当x =y =z =t =1时,取最小值4. 答案:413.已知a ,b ,x ,y ∈R +,且1a >1b ,x >y ,则x x +a 与y y +b 的大小关系是________.解析:∵1a >1b , ∴b >a >0.又x >y >0, 由排序不等式知,bx >ay . 又x x +a -yy +b =bx -ay (x +a )(y +b )>0, ∴x x +a >y y +b . 答案:x x +a >y y +b14.设a ,b ,c 均为实数,则a +b -ca 2+2b 2+3c 2的最大值为________.解析:∵a +b -c =a +22×2b -33×3c , 由柯西不等式得 (a +b -c )2=(a +22×2b -33×3c )2 ≤[12+(22)2+(-33)2](a 2+2b 2+3c 2), ∴a +b -c ≤666a 2+2b 2+3c 2. ∴a +b -ca 2+2b 2+3c 2≤666. 故所求的最大值为666. 答案:666三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)设a ,b ,c 为正数且a +b +c =1,求证:⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2+⎝⎛⎭⎫c +1c 2≥1003. 证明:∵左=13(12+12+12)[(a +1a )2+(b +1b )2+(c +1c )2]≥13[1×(a +1a )+1×(b +1b )+1×(c +1c )]2 =13[1+(1a +1b +1c )]2=13[1+(a +b +c )(1a +1b +1c )]2≥13(1+9)2=1003. ∴原结论成立.16.(本小题满分12分)设a ,b ,c 为正数.求证:2⎝⎛⎭⎫a 2b +c +b 2c +a +c 2a +b ≥b 2+c 2b +c +c 2+a 2c +a+a 2+b 2a +b.证明:由对称性,不妨设a ≥b ≥c >0. 于是a +b ≥a +c ≥b +c ,a 2≥b 2≥c 2. 故1b +c ≥1c +a ≥1a +b.由排序原理知: a 2b +c +b 2c +a +c 2a +b ≥c 2b +c +a 2c +a +b 2a +b , a 2b +c +b 2c +a +c 2a +b ≥b 2b +c +c 2c +a +a 2a +b , 将上面两个同向不等式相加,得2(a 2b +c +b 2c +a +c 2a +b )≥b 2+c 2b +c +c 2+a 2c +a +a 2+b 2a +b. 17.(本小题满分12分)已知a 1,a 2,…a n 为实数,且a 1+a 2+a 3+…a n =10,求a 21+a 22+a 23+…+a 2n 的最小值.解:由n (a 21+a 22+…+a 2n) =(1+1+…+1)(a 21+a 22+…+a 2n )≥(a 1+a 2+…+a n )2,∴a 21+a 22+…+a 2n ≥100n. ∴a 21+a 22+…+a 2n 的最小值为100n .18.(本小题满分14分)设a ,b ,c 为正数,a +b +4c 2=1,求a +b + 2 c 的最大值. 解:因为a ,b ,c 为正数,所以a +b +4c 2=(a )2+(b )2+(2c )2, 于是(a +b +4c 2)⎣⎡⎦⎤12+12+⎝⎛⎭⎫122 =[(a )2+(b )2+(2c )2]⎣⎡⎦⎤12+12+⎝⎛⎭⎫122 ≥(a +b +2c )2,故(a +b +2c )2≤1×52=52,∴a +b +2c ≤102.等号成立⇔a =b =22c .解方程组⎩⎪⎨⎪⎧a +b +4c 2=1,a =b =22c .∴⎩⎪⎨⎪⎧a =25,b =25,c =2020.∴a +b +2c 的最大值为102.。