运算放大器的理解

合集下载

含电容的运算放大器电路的计算

含电容的运算放大器电路的计算

电容的运算放大器电路是一种常见的电子电路,它可以实现电压放大和滤波功能,广泛应用于许多电子系统中。

本文将从基本概念、电路结构、工作原理和计算方法等方面对含电容的运算放大器电路进行详细介绍,帮助读者更好地理解和应用这一电路。

一、基本概念1. 运算放大器(Operational Amplifier,简称Op-Amp)是一种集成电路,具有高增益、高输入阻抗、低输出阻抗等特点,广泛应用于电子电路中。

2. 电容是一种存储电荷的元件,具有阻抗与频率成反比的特性,可以用于滤波和信号处理。

二、电路结构含电容的运算放大器电路通常由运算放大器、电容和其它元件组成,其中电容可以用来实现滤波、积分、微分等功能。

三、工作原理1. 电容的作用:电容在运算放大器电路中可以用来滤波、积分、微分等。

在滤波电路中,电容可以与电阻配合,实现低通滤波、高通滤波、带通滤波等功能。

2. 电容的阻抗特性:电容的阻抗与频率成反比,即Zc=1/(jωC),其中Zc为电容的阻抗,ω为角频率,C为电容的电容值。

3. 运算放大器的特性:运算放大器具有高输入阻抗、低输出阻抗、无限大的开环增益等特点,在实际应用中可以近似认为是理想运算放大器。

四、计算方法1. 低通滤波电路的计算:对于低通滤波电路,可以通过电容和电阻的组合来实现。

其传递函数为H(jω)=1/(1+jωR1C1),其中R1和C1分别为电阻和电容的取值。

通过调整R1和C1的取值,可以实现不同的频率特性。

2. 高通滤波电路的计算:高通滤波电路同样可以通过电容和电阻的组合来实现。

其传递函数为H(jω)=jωR2C2/(1+jωR2C2),其中R2和C2分别为电阻和电容的取值。

通过调整R2和C2的取值,可以实现不同的频率特性。

3. 带通滤波电路的计算:带通滤波电路通常采用多级滤波电路进行实现,可以组合低通滤波和高通滤波电路来实现。

可以通过串联或并联的方式组合低通和高通滤波电路,来实现不同的频率特性。

运算放大器的原理

运算放大器的原理

运算放大器的原理、特点及简单应用10021187 何堃熙一、运算放大器简介:运算放大器(简称“运放”)是具有很高放大倍数的电路单元。

在实际电路中,通常结合反馈网络共同组成某种功能模块。

由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”。

运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。

随着半导体技术的发展,大部分的运放是以单芯片的形式存在。

运放的种类繁多,广泛应用于电子行业当中。

二、运算放大器的原理运放如图有两个输入端a(反相输入端),b(同相输入端)和一个输出端o。

也分别被称为倒向输入端非倒向输入端和输出端。

当电压U-加在a端和公共端(公共端是电压为零的点,它相当于电路中的参考结点。

)之间,且其实际方向从a 端高于公共端时,输出电压U 实际方向则自公共端指向o端,即两者的方向正好相反。

当输入电压U+加在b端和公共端之间,U与U+两者的实际方向相对公共端恰好相同。

为了区别起见,a端和b 端分别用"-"和"+"号标出,但不要将它们误认为电压参考方向的正负极性。

电压的正负极性应另外标出或用箭头表示。

反转放大器和非反转放大器如下图:一般可将运放简单地视为:具有一个信号输出端口(Out)和同相、反相两个高阻抗输入端的高增益直接耦合电压放大单元,因此可采用运放制作同相、反相及差分放大器。

运放的供电方式分双电源供电与单电源供电两种。

对于双电源供电运放,其输出可在零电压两侧变化,在差动输入电压为零时输出也可置零。

采用单电源供电的运放,输出在电源与地之间的某一范围变化。

运放的输入电位通常要求高于负电源某一数值,而低于正电源某一数值。

经过特殊设计的运放可以允许输入电位在从负电源到正电源的整个区间变化,甚至稍微高于正电源或稍微低于负电源也被允许。

这种运放称为轨到轨(rail-to-rail)输入运算放大器。

运算放大器的输出信号与两个输入端的信号电压差成正比,在音频段有:输出电压=A0(E1-E2),其中,A0 是运放的低频开环增益(如100dB,即100000 倍),E1 是同相端的输入信号电压,E2 是反相端的输入信号电压。

运放的原理

运放的原理

运放的原理1. 什么是运放运放是指运算放大器,是一种电子设备,它具有高增益、差分输入和单端输出的特点。

运放的原理是利用电流或电压输入,经过放大和处理后,输出一个放大过的电流或电压信号。

运放的原理基于放大器、反馈电路和稳定性控制等方面,下面将详细探讨。

2. 运放的特点和结构运放的输入和输出特性使之能够工作在不同的电路应用中。

运放一般具有以下几个特点: - 高增益:运放的增益非常大,通常可以达到几千倍甚至几百万倍。

- 差分输入:运放具有两个输入端,允许差分输入信号,可以实现更精确的放大和处理。

- 单端输出:运放的输出通常是单端的,可以方便地连接到其他电路。

运放的基本结构包括: - 差分放大器:利用差分输入特性实现输入信号的放大。

- 频率补偿电路:用于提高运放的频率响应和稳定性。

- 输出级和电流源:用于提供输出电流和放大功能。

3. 运放的工作原理运放的工作原理可以分为放大器、反馈电路和稳定性控制三个方面。

3.1 放大器放大器是运放的基本功能,利用差分放大器实现输入信号的放大。

在运放内部,差分放大器通过放大输入信号的微小差异,使得输出信号得以放大。

3.2 反馈电路反馈电路在运放中起着重要的作用,它将输出信号的一部分经过反馈回输入端,使得运放的输出可以根据需要进行调节。

反馈电路可以分为正反馈和负反馈两种形式。

•正反馈:正反馈会使放大器产生振荡,一般不在运放中使用。

•负反馈:负反馈通过将一部分输出信号反馈到输入端,可以减小放大器的非线性失真、增加稳定性和增益等。

3.3 稳定性控制稳定性是运放的一个重要指标,主要通过电流源和频率补偿电路实现。

电流源提供运放的工作电流,频率补偿电路则用于提高运放的频率响应和防止振荡。

4. 运放的应用运放在电路设计中有广泛的应用,以下是几个常见的应用领域:4.1 模拟信号处理运放可以对模拟信号进行放大、滤波和增益控制等处理,常用于音频放大器、滤波器和调节电路等。

4.2 模拟计算运放在模拟计算器中起着重要作用,可以实现加法器、乘法器和积分器等功能。

运算放大器的基本原理

运算放大器的基本原理

运算放大器的基本原理
运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。

一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。

最基本的运算放大器如图1-1。

一个运算放大器模组一般包括一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。

 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。

原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。

但是这并不代表运算放大器不能连接成正回馈(positive feedback),相反地,在很多需要产生震荡讯号的系统中,正回馈组态的运算放大器是很常见的组成元件。

 开环回路运算放大器如图1-2。

当一个理想运算放大器采用开回路的方式工作时,其输出与输入电压的关系式如下:
 Vout = ( V+ -V-) * Aog。

集成电路运算放大器的定义

集成电路运算放大器的定义

集成电路运算放大器的定义1. 引言集成电路运算放大器是当今电子电路中最重要的基本器件之一。

它是一种高增益、差分放大器,广泛应用于模拟电路、信号处理、自动控制等领域。

本文将介绍集成电路运算放大器的定义、基本原理、特性以及应用。

2. 定义集成电路运算放大器,简称运放(Op-Amp, Operational Amplifier),是一种差分放大器,它能够将输入信号放大到较高的增益水平。

运放通常由差动输入级、差动放大级、输出级和电源级组成。

它的输入有两个端口:非反馈输入端(inverting input)和反馈输入端(non-inverting input),输出端则以电压方式输出。

3. 基本原理3.1 差分放大器运放的核心是差分放大器,它是由两个晶体管组成的差分对(differential pair)。

差分放大器具有高增益、高输入阻抗和低输出阻抗等特点。

当在非反馈输入端和反馈输入端施加电压时,差分放大器将两个输入信号进行差分放大,并输出差分放大的结果。

3.2 负反馈运放的一个重要特点是负反馈(negative feedback)。

负反馈通过将输出信号的一部分反馈到输入端,使得运放的输出与输入之间达到稳定的关系。

负反馈降低了运放的增益,但提高了稳定性和线性度。

4.1 增益运放具有非常高的开环增益,通常在105到106范围内。

通过负反馈可以调节运放的增益,使其适应不同的应用需求。

4.2 输入阻抗和输出阻抗运放的输入阻抗非常高,通常在105到1012欧姆之间,使其能够接受较小的输入信号。

输出阻抗通常比输入阻抗小得多,可以提供较低的输出阻抗。

4.3 带宽运放的带宽指的是它能够工作的最大频率范围。

通常,在低频时运放的增益较高,而在高频时增益会逐渐降低。

带宽取决于运放的内部结构和电容等元件。

运放的工作温度和环境温度对其性能有一定影响。

温度变化会引起运放增益的变化,这种现象称为温漂。

通过合适的补偿电路和工艺可以减小温漂的影响。

运算放大器的基础知识

运算放大器的基础知识
运算放大器是一种重要的电子器件,具有多种功能和应用。其基本原理是利用反馈网络进行配置,以便对输入信号进行各种“运算”。这些运算包括正/负增益、滤波、非线性传递函数、比较、求和、减法、基准电压缓冲、差分放大、积分、差分等,是模拟设计的基本构建模块。运算放大器具有一些理想特性,如无限差分增益、零共模增益、零偏移电压和零偏置电流等,这使得它在电路设计中具有广泛的应用。在实际应用中,运算放大器通常使用负反馈来调整输出信号,直至输入差值变为0。这种负反馈机制确保了运算放大器的稳定性和精确性。此外,运算放大器还具有高输入阻抗、低偏置电流等特性,能够响应差分模式电压并忽略共模电压。运算放大器的输出具有低源阻抗,这使得它能够有效地驱动后续电路。总的多种“运算”,以及在实际电路设计中使用负反馈来调整输出信号,确保稳定性和精确性。

电路基础原理理解与应用运算放大器的工作原理

电路基础原理理解与应用运算放大器的工作原理

电路基础原理理解与应用运算放大器的工作原理电路基础原理理解与应用:运算放大器的工作原理在电子领域中,电路基础原理是理解和应用各种电路设计的关键。

而运算放大器作为电子电路中的重要组成部分,在各种电路中广泛应用。

本文将为读者介绍运算放大器的工作原理,并解释其在电路设计中的应用。

一、运算放大器的定义与构成运算放大器,简称OpAmp,是一种差分放大器电路。

它具有非常高的电压放大倍数和低的输出阻抗,能够对输入信号进行放大,并进行数学运算。

一般情况下,运算放大器有一个反馈回路,通过这个回路可以调整输出电压。

运算放大器主要由以下部分组成:1. 输人端:运算放大器有两个输入端,分别为非反相输入端(+)和反相输入端(-)。

2. 输出端:运算放大器的输出端提供放大后的信号。

3. 电源端:运算放大器需要外部电源来为其提供工作电压。

4. 反馈网络:通过反馈网络,将一部分输出信号反馈至输入端,起到调整输出电压的作用。

二、运算放大器的工作原理运算放大器的工作原理基于电子器件中的放大功能。

信号输入到运算放大器的非反相输入端和反相输入端,通过差模放大电路将输入信号放大一定倍数,并输出至输出端。

运算放大器的工作原理可以表示为以下公式:Vout = A(V+ - V-)其中,Vout是输出电压,V+是非反相输入端的电压,V- 是反相输入端的电压,A是放大倍数。

运算放大器的放大倍数非常高,通常可达到几万倍以上。

这是因为它采用了高增益的差动放大电路,能够将微弱的输入信号放大成较大的输出信号。

三、运算放大器的应用运算放大器在电子电路设计中有广泛的应用。

以下是一些常见的应用领域:1. 比较器:运算放大器可以将输入信号与参考信号进行比较,输出高低电平,用于判断输入信号的状态。

2. 滤波器:通过添加电容和/或电感等元件,可以将运算放大器构建成低通滤波器、高通滤波器、带通滤波器等,用于信号处理和滤波。

3. 放大器:通过控制反馈网络,将运算放大器构建成放大电路,用于信号放大。

运算放大器的原理及特性

运算放大器的原理及特性

运算放大器的原理及特性
运算放大器(Operational Amplifier,简称Op Amp)是一种电子器件,通常用于放大电压信号或处理模拟电路中的信号。

它具有高增益、高输入阻抗、低输出阻抗、大共模抑制比和无穷大的带宽等特性,被广泛应用于模拟电路中。

运算放大器的基本原理是利用内部的共尺极放大器和外部的反馈电路,将输入信号放大到所需的幅度,并输出给后续电路。

运算放大器一般由差分输入级、差分放大器、输出级和电源供电电路组成。

运算放大器的主要特性如下:
1. 高增益:运算放大器具有非常高的电压增益,一般在几千到几百万之间。

这样可以放大微弱的信号到可用的幅度。

2. 高输入阻抗:运算放大器的输入端具有非常高的阻抗,使得输入信号源不会受到损耗。

3. 低输出阻抗:运算放大器的输出端具有非常低的输出阻抗,可以给后续电路提供较大的输出电流。

4. 大共模抑制比:共模抑制比是指运算放大器对共模信号的抑制能力。

运算放大器具有较高的共模抑制比,可以有效抑制共模信号的干扰。

5. 无穷大的带宽:运算放大器的带宽足够大,可以处理宽频带的信号。

6. 可调节增益:通过调整反馈电阻,可以调节运算放大器的增益。

运算放大器常常用于放大电压信号、求和运算、积分运算、微分运算等,广泛应用于滤波器、放大器、比较器、多路选择器等电路中。

运算放大器通俗易懂的讲解

运算放大器通俗易懂的讲解

运算放大器通俗易懂的讲解《运算放大器,你了解吗?》(针对中小学生)小朋友们,今天咱们来认识一个神奇的东西,叫做运算放大器。

想象一下,你有一个超级大力士,它能把很小很小的力量变得超级大,这就是运算放大器的本领。

比如说,你轻轻推一下它,它就能给你推出很大很大的力量。

就像你用很小的声音说话,经过运算放大器,就能变成很大很大的声音。

再比如,你手上有一个小小的电压,运算放大器就能把这个小电压放大好多好多倍,变得很强很强。

在我们的生活中,运算放大器也有很多用处呢。

像音响里,它能让声音变得更响亮更清楚。

还有一些测量仪器里,它能让小小的信号变得容易被我们发现和测量。

小朋友们,是不是觉得运算放大器很神奇呀?《带你走进运算放大器的世界》(针对非专业的成年人)朋友们,咱们今天来聊聊运算放大器。

不知道您有没有这样的经历,有时候您想让一个小小的东西变得很大很强,但是自己又没办法做到。

这时候,运算放大器就来帮忙啦!比如说,您在做一个小实验,有一个特别小的电流,小到您几乎都感觉不到。

但是通过运算放大器,这个小电流就能一下子变成大电流,让您的实验能够顺利进行。

再比如说,您家里的收音机声音太小了,这可能就是因为里面的信号太弱。

这时候运算放大器就能把这个弱信号放大,让收音机的声音变得响亮清晰。

运算放大器就像是一个神奇的魔法盒子,能把小的东西变大,弱的东西变强。

《轻松理解运算放大器》(针对电子爱好者初学者)嗨,各位电子爱好者们!今天咱们一起来搞懂运算放大器。

咱们先想象一下,您有一个小玩具车,跑得特别慢。

但是如果给它加上一个强大的发动机,它是不是就能跑得飞快啦?运算放大器就像是这个强大的发动机。

比如说,您在测量温度的时候,传感器给出的电压特别小。

这时候,运算放大器就能把这个小电压放大,让您能清楚地知道温度的变化。

还有啊,如果您想做一个声音放大的电路,运算放大器就能派上用场。

它能把麦克风收到的微弱声音信号放大,让您的音响发出响亮的声音。

运算放大器同相输入端二分之一电压

运算放大器同相输入端二分之一电压

运算放大器同相输入端二分之一电压文章题目:深度探讨运算放大器同相输入端二分之一电压在电子电路中,运算放大器是一种非常重要的电路元件,它在许多电路中发挥着至关重要的作用。

其中,同相输入端二分之一电压是运算放大器中的一个重要概念,对运算放大器的工作原理和应用有着深远的影响。

本文将深度探讨运算放大器同相输入端二分之一电压的相关知识,并结合个人观点和理解,帮助读者更好地理解和应用这一概念。

一、运算放大器的基本原理1.1 运算放大器的概念运算放大器是一种差分输入、差分输出的电路元件,它具有高增益、高输入阻抗、低输出阻抗等特点,可用于放大微弱信号、实现滤波、积分、微分等运算。

运算放大器通常具有两个输入端和一个输出端,其中一个输入端为非反相输入端,另一个输入端为反相输入端。

1.2 运算放大器的工作原理运算放大器基于反馈电路的原理工作,利用反馈电路可以调节放大倍数、频率特性等参数。

在运算放大器的反馈电路中,同相输入端二分之一电压起着至关重要的作用,对放大器的稳定性、增益等性能有着重要影响。

二、同相输入端二分之一电压的概念2.1 同相输入端二分之一电压的定义同相输入端二分之一电压是指当运算放大器处于理想工作状态时,同相输入端的电压等于非反相输入端电压与反相输入端电压的一半。

在实际电路中,通过合适的反馈电路设计,可以使运算放大器的同相输入端实现二分之一电压。

2.2 同相输入端二分之一电压的意义同相输入端二分之一电压是运算放大器反馈电路设计中的重要参数,它可以使得运算放大器在闭环状态下具有良好的稳定性和线性特性。

通过控制同相输入端二分之一电压,可以实现对运算放大器增益的精确控制,从而满足不同应用场合对放大器性能的要求。

三、深度探讨同相输入端二分之一电压的影响3.1 同相输入端二分之一电压对放大倍数的影响在反馈电路设计中,同相输入端二分之一电压的改变会直接影响运算放大器的增益。

通过调节反馈电路中的元件参数,可以实现对同相输入端二分之一电压的精确控制,从而实现对放大倍数的调节。

运算放大器基本知识

运算放大器基本知识

运算放大器基本知识运算放大器基本知识一、引言在现代电子技术领域,运算放大器是一种广泛应用的重要电路元件。

它具有高输入阻抗、低输出阻抗、可变增益和线性放大等特点,在信号处理、自动控制、仪器仪表以及通信等领域都扮演着举足轻重的角色。

本文将从运算放大器的分类、基本原理和应用等方面进行介绍,希望读者可以对运算放大器有一个全面的了解。

二、运算放大器的类别根据运算放大器的基本结构和性质,可以将其分为两大类别:开环运算放大器和闭环运算放大器。

1. 开环运算放大器开环运算放大器是指将输入信号直接送入放大器的输入端口,而输出信号则从放大器的输出端口取出的一种极简化模型。

在此模型中,放大器没有任何反馈电路,因此其输入阻抗较高,输出阻抗较低,增益较大。

只是由于放大器的增益不稳定,无法满足一些实际应用的要求,因此常常需要通过反馈电路来稳定其增益。

2. 闭环运算放大器闭环运算放大器是在开环运算放大器基础上加入了反馈电路,并将输出信号的一部分反馈给输入端口的一种信号放大器。

闭环运算放大器利用反馈电路来精确控制其增益和频率响应,因此具有更好的稳定性和线性特性。

其应用范围较广泛,是我们日常生活中常见的放大器类型。

三、运算放大器的基本原理运算放大器的基本原理是通过差分输入信号对输入信号进行放大和处理。

它由两个输入端口(非反相端口和反相端口)、一个输出端口和一个电源端口组成。

1. 差分输入差分输入是指在运算放大器的非反相输入端口和反相输入端口之间所提供的输入信号。

当在非反相端口输入正电压信号,反相端口输入负电压信号时,差分输入就产生了。

差分输入是运算放大器放大和处理信号的关键所在,差分输入的大小和极性决定着输出信号的变化。

2. 开环增益开环增益是指运算放大器在没有反馈电路作用下的增益。

根据运算放大器的特性,其开环增益一般较大,通常可达几千至几百万倍。

3. 反馈反馈是指将部分输出信号送回至输入端口,以调节放大器的增益和稳定其性能的一种电路。

电子电路中的放大器有哪些常见类型

电子电路中的放大器有哪些常见类型

电子电路中的放大器有哪些常见类型在电子电路中,放大器是一种用于增加电压、电流或功率的设备。

放大器广泛应用于各种电子设备中,例如音频放大器、功放、射频放大器等。

本文将介绍电子电路中常见的放大器类型。

一、运算放大器(Operational Amplifier,简称Op-Amp)运算放大器是一种差分输入的直流耦合放大器,具有极高的开环增益和输入阻抗,常用于模拟电路和某些数字电路中。

运算放大器的输出与输入之间存在线性关系,可以通过外部电路元件调整增益和频率响应。

它通常具有多个引脚,包括正输入端、负输入端和输出端。

二、晶体管放大器(Transistor Amplifier)晶体管放大器是一种使用晶体管作为放大元件的放大器。

它可以分为两种类型:BJT(双极性结型晶体管)放大器和MOSFET(金属氧化物半导体场效应晶体管)放大器。

1. BJT放大器BJT放大器是基于双极结型晶体管的放大器,根据放大器的连接方式和电路配置不同,可以分为共射极放大器、共基极放大器和共集极放大器等。

共射极放大器是应用最为广泛的一种类型,具有较高的电压增益和较低的输入阻抗。

2. MOSFET放大器MOSFET放大器是基于金属氧化物半导体场效应晶体管的放大器,也可以根据电路连接方式分为共源极放大器、共栅极放大器和共漏极放大器等。

MOSFET放大器具有高输入阻抗和低输出阻抗的特点,适用于高频率放大应用。

三、运算式放大器(Integrated Operational Amplifier)运算式放大器是一种集成的运算放大器,在单片集成电路中内建了多个运算放大器。

它的引脚布局和功能与独立运算放大器相似,但集成度更高,能够在小体积的芯片上实现多个放大器。

四、差动放大器(Differential Amplifier)差动放大器是一种特殊的放大器,具有两个输入端和一个输出端。

它能够放大两个输入信号之间的差异,常用于抑制共模干扰和增强信号传输质量。

差动放大器通常用于模拟信号处理和通信系统中。

理想运算放大器的基本概念

理想运算放大器的基本概念

理想运算放大器的基本概念理想运算放大器(Ideal Operational Amplifier,简称Op Amp)是电子工程中一种非常有用的基本电路元件。

它可以在电路中完成多种信号处理和放大的功能,并且可以应用于各种不同的电路中。

在本篇文章中,将讨论运算放大器的基本概念,包括其定义、结构、特性以及应用。

1. 定义:理想运算放大器是一种有无限大的增益、无限大输入阻抗和零输出阻抗的电路。

在理想情况下,运算放大器的电压增益A可以看做是无限大,输入阻抗Zin无限大,输出阻抗Zout为零。

同时,在理想情况下,使用运算放大器时,无需外接电源。

这意味着,它可以通过对输入信号进行简单的代数计算来产生一个输出信号(电压、电流或电荷分布等)。

2. 结构:理想运算放大器由五个基本部分组成:两个输入端口,一个输出端口,一个差动放大器、一个电压控制电流源。

图1. 理想运算放大器电路模型图1展示了理想运算放大器的电路模型。

其中,输入端口V1和V2是通过两个终端接入信号源的地方。

输出端口是放大器输出的地方。

差动放大器是一个用于增益放大和信号调节的基本电路。

电压控制电流源通常用于控制运放输出电压。

这些部分通过电源电路连接到一起,以便形成一个系统。

3. 特性:理想运算放大器具有很多特性。

其中最重要的是输入阻抗、输出阻抗、增益和带宽等。

(1)输入阻抗:输入阻抗是指输入端口的电阻值。

理想运算放大器的输入阻抗为无限大,因此,它不会在任何程度上影响信号源的性能。

输入阻抗为无限大的运算放大器可以用于提供高增益放大度或使用被动组件(如电阻和电容)的滤波器电路。

(2)输出阻抗:输出阻抗是指输出端口处的电阻值。

理想运算放大器的输出阻抗为零,这意味着终端处的电压仅取决于外部负载的特性,并且与放大器的特性无关。

这样的输出阻抗可以通过信号放大和放大电压进行精密控制应用于高增益电路,例如,用作缓冲器,在成本低于其他自限制放大器时实现高性能。

(3)增益:理想运算放大器的增益为无限大。

最简单讲解运算放大器的工作原理

最简单讲解运算放大器的工作原理

最简单讲解运算放大器的工作原理运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。

一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。

最基本的运算放大器如图1-1。

一个运算放大器模组一般包括一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。

通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。

原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。

但是这并不代表运算放大器不能连接成正回馈(positive feedback),相反地,在很多需要产生震荡讯号的系统中,正回馈组态的运算放大器是很常见的组成元件。

开环回路运算放大器如图1-2。

当一个理想运算放大器采用开回路的方式工作时,其输出与输入电压的关系式如下:Vout = ( V+ -V-) * Aog其中Aog代表运算放大器的开环回路差动增益(open-loop differential gai由于运算放大器的开环回路增益非常高,因此就算输入端的差动讯号很小,仍然会让输出讯号「饱和」(saturation),导致非线性的失真出现。

因此运算放大器很少以开环回路出现在电路系统中,少数的例外是用运算放大器做比较器(comparator),比较器的输出通常为逻辑准位元的「0」与「1」。

闭环负反馈将运算放大器的反向输入端与输出端连接起来,放大器电路就处在负反馈组态的状况,此时通常可以将电路简单地称为闭环放大器。

运算放大器 积分器原理

运算放大器 积分器原理

运算放大器积分器原理运算放大器是一种电子设备,它具有放大输入信号的功能。

而积分器则是运算放大器的一种应用,它可以对输入信号进行积分运算。

本文将介绍运算放大器和积分器的原理及其应用。

一、运算放大器的原理运算放大器是一种具有高放大倍数和宽带宽的放大器。

它通常由一个差分放大器和一个输出级组成。

差分放大器负责放大输入信号,输出级将差分放大器的输出信号进行放大,并输出到负载上。

运算放大器的输入端通常有两个输入端子,分别为非反相输入端和反相输入端。

通过对这两个输入端的电压进行调节,可以控制运算放大器的放大倍数和相位。

二、积分器的原理积分器是一种对输入信号进行积分运算的电路。

在积分器电路中,运算放大器的反相输入端接地,非反相输入端与输出端相连。

通过这种连接方式,输入信号经过运算放大器放大后,又经过电容器的积分作用,形成输出信号。

积分器的输出信号是输入信号的积分值,通过调节输入信号的频率和振幅,可以实现对输出信号的控制。

三、积分器的应用积分器在实际应用中具有广泛的用途。

以下是一些常见的应用场景:1. 信号处理:积分器可以对输入信号进行积分运算,实现对信号的平滑处理和去噪处理。

例如,在音频信号处理中,积分器可以对音频信号进行去除低频噪声的处理,提高音频信号的质量。

2. 电压控制:积分器可以通过调节输入信号的频率和振幅,实现对输出电压的控制。

例如,在电压控制振荡器中,积分器可以对输入电压进行积分运算,实现对振荡频率的调节。

3. 电流控制:积分器可以通过对输入电流进行积分运算,实现对输出电流的控制。

例如,在电流控制驱动器中,积分器可以对输入电流进行积分运算,实现对电机的速度和位置的控制。

4. 信号发生器:积分器可以用作信号发生器,通过调节输入信号的频率和振幅,可以产生各种不同的输出信号。

例如,在频率合成器中,积分器可以产生高精度的频率合成信号。

总结:运算放大器是一种具有高放大倍数和宽带宽的放大器,积分器则是运算放大器的一种应用,可以对输入信号进行积分运算。

电路中的运算放大器

电路中的运算放大器

电路中的运算放大器电路中的运算放大器是一种重要的电子设备,它具有放大电压信号和进行基本算术运算的功能。

在现代电子技术中,运算放大器常被广泛应用于各种电路中,从而实现对信号的处理和控制。

一、运算放大器的基本原理运算放大器是一种特殊的放大器,它具有多个输入端和一个输出端。

在操作上,运算放大器可以将两个或多个输入信号进行加法、减法乃至乘法、除法等基本算术运算,从而产生一个输出信号。

运算放大器的基本原理是通过差分放大电路和反馈电路的结合实现的。

差分放大电路是运算放大器的核心组成部分,它由一对互补的晶体管、电阻器以及电源构成。

这对晶体管中的一个承担输入信号的放大,另一个负责对放大后的信号进行反相放大。

通过这种差分放大电路,运算放大器能够对输入信号进行放大,同时抵消噪声和共模信号的干扰。

反馈电路是运算放大器实现基本算术运算的关键。

通过将一部分输出信号反馈到输入端,可以实现加法、减法、乘法等运算。

不同的反馈方式会产生不同的运算功能。

例如,正反馈可以实现振荡器,负反馈可以实现比例放大器。

二、运算放大器的应用由于运算放大器具有灵活的运算功能和高增益特性,它在电子领域有着广泛的应用。

1. 模拟运算电路:运算放大器可以用来设计滤波器、积分器、微分器等模拟运算电路。

通过对电压信号的放大和运算,可以实现对信号的处理与控制,例如音频放大器、运算放大器比较器等。

2. 传感器信号处理:运算放大器常被用于传感器信号的处理。

传感器将物理量转化为电信号,而运算放大器可以对这些信号进行放大和运算,以满足不同的应用需求。

例如,温度传感器、加速度传感器等的信号处理。

3. 比较器:基于运算放大器的比较器可以用于比较两个输入信号的大小。

这在电压检测、开关控制等应用中很常见。

4. 模数转换器:通过结合运算放大器和其他模拟电路,可以实现模拟信号到数字信号的转换。

这在数据采集、信号处理等领域有着重要的应用。

5. 电路控制系统:运算放大器可以作为电路控制系统的核心元件,实现对电路的控制和调节。

最简单讲解运算放大器的工作原理

最简单讲解运算放大器的工作原理

最简单讲解运算放大器的工作原理运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。

一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。

最基本的运算放大器如图1-1。

一个运算放大器模组一般包括一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。

通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。

原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。

但是这并不代表运算放大器不能连接成正回馈(positive feedback),相反地,在很多需要产生震荡讯号的系统中,正回馈组态的运算放大器是很常见的组成元件。

开环回路运算放大器如图1-2。

当一个理想运算放大器采用开回路的方式工作时,其输出与输入电压的关系式如下:Vout = ( V+ -V-) * Aog其中Aog代表运算放大器的开环回路差动增益(open-loop differential gai由于运算放大器的开环回路增益非常高,因此就算输入端的差动讯号很小,仍然会让输出讯号「饱和」(saturation),导致非线性的失真出现。

因此运算放大器很少以开环回路出现在电路系统中,少数的例外是用运算放大器做比较器(comparator),比较器的输出通常为逻辑准位元的「0」与「1」。

闭环负反馈将运算放大器的反向输入端与输出端连接起来,放大器电路就处在负反馈组态的状况,此时通常可以将电路简单地称为闭环放大器。

运算放大器作用通俗讲解

运算放大器作用通俗讲解

运算放大器作用通俗讲解
运算放大器(简称“运放”)是一种具有很高放大倍数的电路单元。

在实际电路中,通常结合反馈网络共同组成某种功能模块。

它是一种带有特殊耦合电路及反馈的放大器,其输出信号可以是输入信号加、减或微分、积分等数学运算的结果。

由于早期应用于模拟计算机中用以实现数学运算,因而得名“运算放大器”。

通俗来说,运算放大器就像一个“转换器”或者“处理器”,能够把输入的信号按照一定的规则和算法进行放大、缩小、相加、相减等处理,并将结果输出。

它广泛应用于各种电子设备中,例如音响设备、通信设备、传感器等等。

通过使用运算放大器,人们可以更好地控制和调节电子设备的性能和参数,使其满足各种不同的需求。

具体来说,运算放大器的作用有很多种,例如:
1.放大信号:运算放大器可以将输入的微弱信号放大成较大的
信号,使其能够满足后续电路的需求。

2.比较信号:将两个信号进行比较,输出一个二进制信号(例
如高电平或低电平),类似于一个比较器。

3.积分和微分:运算放大器可以对输入的信号进行积分和微分
运算,输出一个与输入信号成比例的时间函数。

4.滤波:通过对输入信号进行滤波处理,可以滤除不必要的噪
声和干扰,提取出有用的信号成分。

5.振荡和调制:运算放大器可以用于产生振荡信号和调制信号,
用于各种频率合成和调制解调的应用。

总之,运算放大器是一种非常重要的电子元件,在各种电子设备和系统中得到了广泛的应用。

通过了解和掌握运算放大器的原理和作用,人们可以更好地设计和应用各种电子系统,提高其性能和稳定性。

运算放大器的特点及在实际应用中应注意的问题

运算放大器的特点及在实际应用中应注意的问题

运算放大器的特点及在实际应用中应注意的问题运算放大器的特点及在实际应用中应注意的问题1. 什么是运算放大器?运算放大器(Operational Amplifier,简称Op-Amp)是一种集成电路,用于增强电压信号。

它具有高增益、高输入阻抗、低输出阻抗、大共模抑制比、宽带宽等特点。

运算放大器的符号一般为一个三角形,表示正极性输入端,一个倒三角形,表示负极性输入端,还有一个输出端。

2. 运算放大器的特点运算放大器具有许多特点,使其成为电子电路中常用的元件之一。

运算放大器的增益非常高,可以达到几十到几百倍,因此可以放大微弱的信号。

运算放大器具有高输入阻抗,低输出阻抗,这表明它对外部电路几乎没有负载效应。

运算放大器的共模抑制比很大,能够有效抑制共模信号对差分信号的干扰。

运算放大器还具有很宽的带宽,能够处理各种频率的信号。

3. 在实际应用中应注意的问题在实际应用中,运算放大器有一些需要注意的问题。

运算放大器需要供电,因此对于电源的稳定性要求较高。

运算放大器在设计电路时需要考虑电路的稳定性和可靠性,尽量避免引入负反馈使其超调或者发生不稳定。

温度的变化也会影响运算放大器的性能,因此需要在设计时考虑环境温度对电路性能的影响。

对于高精度的应用,还需要考虑运算放大器的漂移和噪声等问题,采取合适的措施进行补偿和滤波。

4. 个人观点和理解在我看来,运算放大器是一种非常重要的电子元件,它在电子电路中有着广泛的应用。

然而,在实际应用中,我们需要充分了解它的特点,并注意电源、稳定性、温度、漂移和噪声等问题,以保证电路的性能和可靠性。

总结回顾:通过本文的一系列讨论,我们详细分析了运算放大器的特点及在实际应用中应注意的问题。

我们介绍了运算放大器的基本特点,包括高增益、高输入阻抗、低输出阻抗、大共模抑制比、宽带宽等。

我们讨论了在实际应用中需要注意的问题,包括电源稳定性、电路稳定性、温度影响、漂移和噪声等。

我们共享了个人观点和理解。

什么是运算放大器它在电子电路中的作用是什么

什么是运算放大器它在电子电路中的作用是什么

什么是运算放大器它在电子电路中的作用是什么运算放大器(Operational Amplifier,简称OP-AMP)是一种集成电路芯片,广泛应用于电子电路中。

它以高增益和宽带宽特性而著称,可以在信号处理、信号放大、滤波和数学运算等方面起到重要的作用。

运算放大器的基本结构包括差分输入级、电压放大级和输出级。

差分输入级负责对输入信号进行差分放大,电压放大级负责对差分放大后的信号进行进一步放大,输出级负责将放大后的信号驱动至负载端。

运算放大器的作用主要体现在以下几个方面:1. 信号放大:运算放大器以其高增益特性,可以对微弱的输入信号进行放大,使其达到可以被后续电路处理的水平。

这在信号传输和处理中非常重要,在各类电子设备中广泛应用。

2. 数学运算:运算放大器可以通过反馈电路实现各种数学运算,如加法、减法、乘法、除法等。

通过合理的电路设计和连接方式,可以将运算放大器构成运算器、积分器、微分器等基本数学模块,方便实现各种复杂的信号处理算法。

3. 滤波器:运算放大器可以与电容、电感和电阻等元件组成电路,实现各种滤波功能。

根据不同的电路连接方式和参数设置,可以设计出低通滤波器、高通滤波器、带通滤波器等不同类型滤波器,对不同频率的信号进行筛选和处理。

4. 线性调节器:运算放大器通常具有高输入和高输出阻抗,可以将输入信号以较低的输出阻抗驱动至后续电路。

这对于电压和电流的线性调节非常有帮助,能够提高信号传输的质量和稳定性。

除了以上几个基本作用,运算放大器还可以用于比较器、振荡器、模数转换器等应用中。

通过改变反馈电路的连接方式和参数设置,可以使运算放大器具备不同的功能,满足不同的电路设计需求。

综上所述,运算放大器作为一种重要的电子元件,具有信号放大、数学运算、滤波和线性调节等多种作用。

它在电子电路中的应用非常广泛,为各类电子设备的正常运行和优化性能提供了有效的支持。

通过合理的使用和设计,可以充分发挥运算放大器的特性,实现更加精确和高效的信号处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图8 由虚短知 Vቤተ መጻሕፍቲ ባይዱ = V1 ……a
Vy = V2 ……b 由虚断知,运放输入端没有电流流过,则 R1、R2、R3 可 视为串联,通过每一个电阻的电流是相同的, 电流 I=(Vx-Vy)/R2 ……c 则: Vo1-Vo2=I*(R1+R2+R3) = (Vx-Vy)(R1+R2+R3)/R2 ……d 由虚断知,流过 R6 与流过 R7 的电流相等,若 R6=R7, 则 Vw = Vo2/2 ……e 同理若 R4=R5,则 Vout – Vu = Vu – Vo1,故 Vu = (Vout+Vo1)/2 ……f 由虚短知,Vu = Vw ……g 由 efg 得 Vout = Vo2 – Vo1 ……h 由 dh 得 Vout = (Vy –Vx)(R1+R2+R3)/R2 上式中 (R1+R2+R3)/R2 是定值,此值确定了差值(Vy –Vx)的放 大倍数。 这个电路就是传说中的差分放大电路了。 9)电流检测: (差分输入加放大)
同理
(V3 – V2)/R5 =
V 2/R4
… …b
由虚短知
V1 = V2
… …c
如果 R2=R6,R4=R5,则由 abc 式得 V3-V4=Vi
上式说明 R7 两端的电压和输入电压 Vi 相等,则通过 R7
的电流 I=Vi/R7,如果负载 RL<<100KΩ,则通过 Rl 和通
过 R7 的电流基本相同。
从虚断,虚短分析基本运放电路
运算放大器组成的电路五花八门,令人眼花瞭乱,是模 拟电路中学习的重点。在分析它的工作原理时倘没有抓 住核心,往往令人头大。为此本人特搜罗天下运放电路 之应用,来个“庖丁解牛”,希望各位看完后有所斩获 。
遍观所有模拟电子技朮的书籍和课程 ,在 介绍运算放大器电路的时候 ,无非是先给电路来个定性 , 比如这是一个同向放大器,然后去推导它的输出与输入 的关系,然后得出 Vo=(1+Rf)Vi,那是一个反向放大器, 然后得出 Vo=-Rf*Vi……最后学生往往得出这样一个印 象:记住公式就可以了 !如果我们将电路稍稍变换一下 , 他们就找不着北了!
上式输出电压 V5 是 Rx 的函数我们再看线电阻的影响。 Pt100 最下端线电阻上产生的电压降经过中间的线电阻、 Z2、R22,加至 U8C 的第 10 脚,
由虚断知, V5=V8=V9=2*R0/(R15+Rx+2R0) ……a
(V6-V10)/R25=V10/R26 ……b
由虚短知, V10=V5 ……c
故 (V1 – V+)/R1 = (V+ - V2)/R2 ……a
(Vout – V-)/R3 = V-/R4 ……b
由虚短知: V+ = V- ……c 如果 R1=R2,R3=R4,则 由以上式子可以推导出 V+ = (V1 + V2)/2 V- = Vout/2 故 Vout = V1 + V2 也是一个加法器,呵呵!
由于运放的差模输入电阻很大 ,一般通用 型运算放大器的输入电阻都在 1MΩ以上。因此流入运放 输入端的电流往往不足 1uA,远小于输入端外电路的电 流。故 通常可把运放的两输入端视为开路,且输入电阻 越大,两输入端越接近开路。 “虚断”是指在分析运放 处于线性状态时,可以把两输入端视为等效开路,这一 特性 称为虚假开路,简称虚断。显然不能将两输入端真 正断路。
电流可以转换成电压,电压也可以转换成电
流。图十就是这样一个电路。上图的负反馈没有通过电
阻直接反馈,而是串联了三极管 Q1 的发射结,大家可不
要以为是一个比较器就是了。只要是放大电路,虚短虚
断的规律仍然是符合的!
由虚断知,运放输入端没有电流流过,

(Vi – V1)/R2 =
(V1 – V4)/R6 ……a
好了,让我们抓过两把 “板 斧”- -----“虚短 ”和“虚断”,开始“庖丁解牛”了。
1)反向放大器:
图1 图一运放的同向端接地 = 0V,反向端和同向端虚短,所以 也是 0V,反向输入端输入电阻很高,虚断,几乎没有电 流注入和流出,那么 R1 和 R2 相当于是串联的,流过一 个串联电路中的每一只组件的电流是相同的,即流过 R1 的电流和流过 R2 的电流是相同的。 流过 R1 的电流:I1 = (Vi - V-)/R1 ………a 流过 R2 的电流:I2 = (V- - Vout)/R2 ……b


abc

V6=(102.2/2.2)V5=204.4R0/[2.2(1000+Rx+2R0)] ……h
由式 gh 组成的方程组知,如果测出 V5、V6的值,就可算 出 Rx 及 R0,知道 Rx,查 pt100分度表就知道温度的大小 了。放大的概念: 放大的目的是将微弱的变化信号放大成较大的信号。 放大的实质: 用小 能量的 信号通 过三极 管的电 流控制 作用, 将放大 电 路中直流电源的能量转化成交流能量输出。 对放大电路的基本要求: 1.要有足够的放大倍数 (电压、电流、功率)。 2.尽可能小的波形失真。 另外还有输入电阻、输出电阻、通频带等其它技术指标。 本章主要讨论电压放大电路,同时介绍功率放大电路。
1 1)传感器检测:
如果 R3=R2,R4=R5,则由 e-a 得 Vout = -(0.4~2)R4/R2 ……f
图九中 R4/R2=22k/10k=2.2,则 f 式 Vout = - (0.88~4.4)V,
即是说,将 4~20mA 电流转换成了-0.88 ~ -4.4V 电压, 此电压可以送 ADC 去处理。
1 0)电压电流转换检测:
图 10
图 11
来 一个 复 杂的 , 呵呵 ! 图十 一 是一 个 三线 制 PT100 前置放大电路。PT100 传感器引出三根材质、线径、 长度完全相同的线,接法如图所示。有 2V 的电压加在由 R14、R20、R15、Z1、PT100 及其线电阻组成的桥电路上。 Z1、Z2、Z3、D11、D12、D83 及各电容在电路中起滤波和 保护作用,静态分析时可不予理会,Z1、Z2、Z3 可视为 短路,D11、D12、D83 及各电容可视为开路。由电阻分压 知, V3=2*R20/(R14+20)=200/1100=2/11 ……a
由虚短知,U8A 第 3 脚和第 2 脚电压相等, V1=V2 ……f
由 abcdef 得 , (V5-V7)/100=(V7-V3)/2.2 化 简 得
V 5=(102.2*V7-100V3) /2.2

V5=204.4(Rx+2R0)/(1000+Rx+2R0) – 200/11 ……g
2.1.2基本放大电路各元件作用 晶体管 T--放大元件,iC=βiB。要保证集电结反偏,发射 结正偏,使晶体管工作在放大区 。 基极电源 EB 与基极电阻 RB - -使发射结处于正偏,并提供大小适当的基极电流。 集电极电源 EC--为电路提供能量。并保证集电结反偏。 集电极电阻 RC--将变化的电流转变为变化的电压。 耦合电容 C1、C2 - -隔离输入、输出与放大电路直流的联系,同时使信号 顺利输入、输出。
图4 请看 图四。 因为虚 断,运 放同向 端没有 电流流 过,则 流 过 R1 和 R2 的电流相等,同理流过 R4 和 R3 的电流也相 等。
图6 图六电路中,由虚短知,反向输入端的电压与同向端相 等, 由虚断知,通过 R1 的电流与通过 C1 的电流相等。 通过 R1 的电流 i=V1/R1 通过 C1 的电流 i=C*dUc/dt=-C*dVout/dt 所以 Vout=((-1/(R1*C1))∫V1dt 输出电压与输入电压 对时间的积分成正比, 这就是传说中的积分电路了。 若 V1 为恒定电压 U,则上式变换为 Vout = -U*t/(R1*C1) t 是时间,则 Vout 输出电压是一条从 0 至负电源电压按 时间变化的直线。 7)微分电路:
图9
分析一个大家接触得较多的电路 。很多 控制器接受来自各种检测仪表的 0~20mA 或 4~20mA 电流, 电路将此电流转换成电压后再送 ADC 转换成数字信号, 图九就是这样一个典型电路。如图 4~20mA 电流流过采样 100Ω电阻 R1,在 R1 上会产生 0.4~2V 的电压差。由虚断 知,运放输入端没有电流流过,则流过 R3 和 R5 的电流 相等,流过 R2 和 R4 的电流相等。故:
今天,教各位战无不胜的两招,这两招在 所有运放电路的教材里都写得明白,就是 “虚短”和 “虚断”,不过要把它运用得出神入化,就要有较深厚 的功底了。 虚短和虚断的概念
由于运放的电压放大倍数很大 ,一般通用 型运算放大器的开环电压放大倍数都在 80 dB 以上。而 运放的输出电压是有限的,一般在 10 V~14 V。因此运 放的差模输入电压不足 1 mV,两输入端近似等电位,相 当于 “短路”。开环电压放大倍数越大,两输入端的电 位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把 两输入端视为等电位,这一特性称为虚假短路,简称虚 短。显然不能将两输入端真正短路。
图 5 Vout=V2-V1 图五由虚断知,通过 R1 的电流等于通过 R2 的电流,同 理通过 R4 的电流等于 R3 的电流,故有 (V2 – V+)/R1 = V+/R2 ……a
(V1 – V-)/R4 = (V- - Vout)/R3 ……b 如果 R1=R2, 则 V+ = V2/2 ……c 如果 R3=R4, 则 V- = (Vout + V1)/2 ……d 由虚短知 V+ = V- ……e 所以 Vout=V2-V1 这就是传说中的减法 器了。 6)积分电路:
在分析运放电路工作原理时 ,首先请各位暂 时忘掉什么同向放大、反向放大,什么加法器、减法器, 什么差动输入… …暂时忘掉那些输入输出关系的公 式… …这些东东只会干扰你,让你更糊涂﹔也请各位暂 时不要理会输入偏置电流、共模抑制比、失调电压等电 路参数,这是设计者要考虑的事情。我们理解的就是理 想放大器(其实在维修中和大多数设计过程中,把实际 放大器当做理想放大器来分析也不会有问题)。
相关文档
最新文档