【初二】初二数学第16章综合测试A卷

合集下载

初二数学十六章试卷

初二数学十六章试卷

考试时间:90分钟满分:100分一、选择题(每题2分,共20分)1. 下列各数中,有理数是()。

A. $\sqrt{3}$B. $\pi$C. $-2\sqrt{2}$D. $\frac{1}{2}$2. 下列各数中,无理数是()。

A. $\sqrt{9}$B. $\sqrt{16}$C. $\sqrt{2}$D. $\sqrt{25}$3. 已知$a$是方程$2x^2 - 4x + 3 = 0$的根,则$a^2 - 2a + 1$的值为()。

A. 1B. 0C. 2D. 34. 若$3x + 2 = 2x - 1$,则$x$的值为()。

A. -1B. 1C. 0D. -35. 若$a > 0$,$b < 0$,则下列不等式中正确的是()。

A. $a + b > 0$B. $a - b > 0$C. $a \cdot b > 0$D. $a \div b > 0$6. 若$2a + 3b = 0$,且$a \neq 0$,$b \neq 0$,则下列结论正确的是()。

A. $a = 0$B. $b = 0$C. $a = -\frac{3}{2}b$D. $b = -\frac{2}{3}a$7. 若$x^2 - 3x + 2 = 0$,则$x$的值为()。

A. 1B. 2C. 1或2D. 无法确定8. 若$a^2 = 4$,则$a$的值为()。

A. 2B. -2C. 2或-2D. 无法确定9. 若$|x| = 3$,则$x$的值为()。

A. 3B. -3C. 3或-3D. 无法确定10. 若$3x^2 - 6x + 4 = 0$,则$x$的值为()。

A. 1B. 2C. 1或2D. 无法确定二、填空题(每题2分,共20分)11. 若$a^2 = 9$,则$a$的值为__________。

12. 若$|x| = 5$,则$x$的值为__________。

13. 若$3x - 2 = 0$,则$x$的值为__________。

冀教版八年级数学上册第十六章达标测试卷附答案

冀教版八年级数学上册第十六章达标测试卷附答案

冀教版八年级数学上册第十六章达标测试卷一、选择题(每小题2分,共28分)1.教育部门高度重视校园安全教育,要求各级各类学校从认识安全标志入手开展安全教育.下列图标不是轴对称图形的是()2.下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是()3.下列说法中,正确的是()A.关于某条直线对称的两个三角形一定全等B.两个全等三角形一定关于某条直线对称C.面积相等的两个三角形一定关于某条直线对称D.周长相等的两个三角形一定关于某条直线对称4.如图,C,E是直线l两侧的点,以点C为圆心,CE长为半径画弧交直线l于A,B两点,又分别以A,B为圆心,大于12AB的长为半径画弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是()A.CD⊥直线l B.点A,B关于直线CD对称C.点C,D关于直线l对称D.CD平分∠ACB(第4题)(第5题)5.如图,等腰三角形ABC的周长为21,BC=5,AB的垂直平分线DE交AB 于点D,交AC于点E,则三角形BEC的周长为()A.13 B.14 C.15 D.166.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A.点M B.点N C.点P D.点Q(第6题)(第7题)7.如图,△A′B′C′是由△ABC经过平移得到的,△A′B′C′还可以看成是△ABC经过怎样的图形变化得到的?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中正确结论的序号是()A.①④B.②③C.②④D.③④8.如图,DE是线段AC的垂直平分线,下列结论一定成立的是() A.DE=BD B.∠BCD=∠AC.∠B>2∠A D.2∠BAC=180°-2∠ADE(第8题)(第9题)9.如图,BD是∠ABC的平分线,DE⊥AB于点E,△ABC的面积是15 cm2,AB=9 cm,BC=6 cm,则DE的长为()A.1 cm B.2 cmC.3 cm D.4 cm10.如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有()A.1个B.2个C.3个D.4个(第10题)(第11题)11.如图,直线a,b互相垂直相交于点O,曲线C关于点O成中心对称,点A 的对称点是点A′,AB⊥a于点B,A′D⊥b于点D.若OB=3,OD=2,则阴影部分的面积之和为()A.3 B.4C.5 D.612.如图,以图①(点O为圆心,半径为1的半圆形)作为“基本图形”,分别经历如下变换,不能得到图②的是()A.绕着OB的中点旋转180°B.向右平移1个单位C.先以直线AB为对称轴进行翻折,再向右平移1个单位D.先绕着点O旋转180°,再向右平移1个单位(第12题)(第13题)13.如图,在△ABC中,∠B=90°,点O是∠CAB,∠ACB的平分线的交点,且AB=3 cm,BC=4 cm,AC=5 cm,则点O到边AB的距离为()A.1 cm B.2 cmC.3 cm D.4 cm14.如图,将一个正方形纸片按图①、图②依次对折后,再按图③打出一个心形小孔,则展开铺平后的图案是()(第14题)二、填空题(每小题3分,共12分)15.在下面的数学符号:※,≌,≈,⊥,+,-,÷,∵,∴中,是中心对称图形的是____________.16.如图,在锐角三角形ABC中,O为三条边的垂直平分线的交点,I为三个角的平分线的交点,若∠BOC的度数为150°,则∠B I C的度数为________.(第16题)(第17题)17.如图,已知三角形纸片ABC,∠BCA=90°,在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,若CE=3,AB=10,则△BDE的面积为________.18.如图,在△ABC中,∠BCA=90°,∠CBA=80°,作点B关于∠ACB的平分线CB1的对称点A1,点A1恰好落在AC上,则∠A1B1A=________°,作点B1关于∠AA1B1的平分线A1B2的对称点A2,点A2也恰好落在AC上,…,恰好与点A重合,则n=________.继续作下去,作n次对称,点B n-1(第18题)三、解答题(19小题9分,20~23小题各10分,24小题11分,共60分) 19.如图,四边形CDEF是一个长方形台球面,有A、B两球分别位于图中所示位置,试问怎样撞击球A,才能使球A先碰到边FC后再反弹击中球B?在图中画出球A的运动路线.(第19题)20.如图①,阴影部分是由5个大小完全相同的小正方形组成的,现移动其中一个小正方形,请在图②,图③,图④中分别画出满足以下各要求的图形.(用阴影表示)(1)使图形既是轴对称图形,又是中心对称图形;(2)使图形是轴对称图形,而不是中心对称图形;(3)使图形是中心对称图形,而不是轴对称图形.(第20题)21.如图,AB=AD,BC=DC,E是AC上的点,求证:BE=DE.(第21题)22.如图,△ABO与△CDO关于O点成中心对称,点E,F在线段AC上,且AF=CE.求证:FD=BE.(第22题)23.如图,在△ABC中,C,C′关于直线DE对称,判断∠1,∠2,∠C′的关系并证明.(第23题)24.如图,DE,MN分别垂直平分AB,AC.(1)若△ADM的周长是10,求BC的长;(2)若∠BAC=135°,猜想AD与AM的位置关系,并证明你的猜想.(第24题)答案一、1.D 2.A 3.A 4.C 5.A 6.A 7.D 8.D 【点拨】∵DE 是线段AC 的垂直平分线,∴∠BAC =∠DCA , ∴2∠BAC =180°-∠ADC . 由题易证∠ADE =∠CDE , ∴2∠BAC =180°-2∠ADE .9.B 【点拨】如图,过D 作DF ⊥BC ,DF 交BC 的延长线于点F .(第9题)∵BD 是∠ABC 的平分线,DE ⊥AB 于点E , ∴DE =DF .∵△ABC 的面积是15 cm 2,AB =9 cm ,BC =6 cm , ∴S △ABD +S △DCB =12×AB ×DE +12×BC ×DF =15 cm 2, ∴9DE +6DE =30 cm 2, 解得DE =2 cm ,故选B.10.C 【点拨】如图所示,符合题意的有3个三角形.(第10题)11.D 12.B 13.A 14.B 二、15.※,≈,+,-,÷16.127.5°17.1518.70;8【点拨】∵点B关于∠ACB的平分线CB1的对称点为A1,∴CB=CA1,B1B=B1A1.∵CB1=CB1,∴△CB1B≌△CB1A1,∴∠CA1B1=∠CBB1=80°.∵∠A=180°-∠BCA-∠CBA=10°,∠CA1B1=∠A1B1A+∠A,∴∠A1B1A=70°,同理可得,∠A2B2A=60°,…,B n-1A=80°-10°×(n-1),∠A n-1当∠A nB n-1A=∠A时,点B n-1与点A重合,-1∴80°-10°×(n-1)=10°,解得n=8.三、19.解:如图所示,运动路线是A→P→B.(第19题)20.解:(1)如图所示.[第20(1)题](2)如图所示.(答案不唯一)[第20(2)题](3)如图所示.[第20(3)题]21.证明:∵AB =AD ,∴点A 在线段BD 的垂直平分线上. ∵BC =DC ,∴点C 也在线段BD 的垂直平分线上. ∴AC 是线段BD 的垂直平分线. ∵E 是AC 上的点, ∴BE =DE .22.证明:∵△ABO 与△CDO 关于O 点成中心对称,∴BO =DO ,AO =CO . ∵AF =CE ,∴FO =EO .在△FOD 和△EOB 中,⎩⎨⎧FO =EO ,∠FOD =∠EOB ,DO =BO ,∴△FOD ≌△EOB . ∴FD =BE .23.解:2∠C ′=∠1+∠2.证明:∵∠CDE +∠C ′DE +∠C +∠C ′+∠CED +∠C ′ED =360°, ∠CDE +∠EDC ′+∠1+∠CED +∠C ′ED +∠2=360°, ∴∠1+∠2=∠C +∠C ′.∵在△ABC 中,C ,C ′关于直线DE 对称, ∴∠C =∠C ′, ∴2∠C ′=∠1+∠2.24.解:(1)∵DE ,MN 分别垂直平分AB ,AC ,∴DA =DB ,MA =MC .∵△ADM 的周长是10,即AD +AM +DM =10, ∴BD +MC +DM =10,即BC =10.(2)AD⊥AM.证明:∵∠BAC=135°,∴∠B+∠C=45°.∵DE垂直平分AB,∴DB=AD,∴∠B=∠BAD.同理可得∠CAM=∠C.∴∠DAM=∠BAC-(∠BAD+∠CAM)=∠BAC-(∠B+∠C)=135°-45°=90°.∴AD⊥AM.八年级数学上册期中达标测试卷一、选择题(1~10小题各3分,11~16小题各2分,共42分)1.4的算术平方根是()A.±2 B. 2 C.±2 D.22.下列分式的值不可能为0的是()A.4x-2B.x-2x+1C.4x-9x-2D.2x+1x3.如图,若△ABC≌△CDA,则下列结论错误的是()A.∠2=∠1 B.∠3=∠4C.∠B=∠D D.BC=DC(第3题)(第5题)4.小亮用天平称得一个鸡蛋的质量为50.47 g,用四舍五入法将50.47精确到0.1为()A.50 B.50.0C.50.4 D.50.55.如图,已知∠1=∠2,AC=AE,添加下列一个条件后仍无法确定△ABC≌△ADE的是()A.∠C=∠E B.BC=DEC.AB=AD D.∠B=∠D6.如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE =10,AC=7,则AD的长为()A.5.5 B.4 C.4.5 D.3(第6题)(第8题)7.化简x2x-1+11-x的结果是()A.x+1 B.1x+1C.x-1 D.xx-18.如图,数轴上有A,B,C,D四点,根据图中各点的位置,所表示的数与5-11最接近的点是()A.A B.B C.C D.D9.某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x件电子产品,则可列方程为()A.300x=200x+30B.300x-30=200xC.300x+30=200x D.300x=200x-3010.如图,这是一个数值转换器,当输入的x为-512时,输出的y是()(第10题)A.-32 B.32 C.-2 D.211.如图,从①BC=EC;②AC=DC;③AB=DE;④∠ACD=∠BCE中任取三个为条件,余下一个为结论,则可以构成的正确说法的个数是()A.1 B.2 C.3 D.4(第11题) (第12题)12.如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ ,已知PQ =5,NQ =9,则MH 的长为( ) A .3B .4C .5D .613.若△÷a 2-1a =1a -1,则“△”是( )A.a +1aB.a a -1C.a a +1D.a -1a14.以下命题的逆命题为真命题的是( )A .对顶角相等B .同位角相等,两直线平行C .若a =b ,则a 2=b 2D .若a >0,b >0,则a 2+b 2>015.x 2+x x 2-1÷x 2x 2-2x +1的值可以是下列选项中的( ) A .2B .1C .0D .-116.定义:对任意实数x ,[x ]表示不超过x 的最大整数,如[3.14]=3,[1]=1,[-1.2]=-2.对65进行如下运算:①[65]=8;②[8]=2;③[2]=1,这样对65运算3次后的结果就为1.像这样,一个正整数总可以经过若干次运算后使结果为1.要使255经过运算后的结果为1,则需要运算的次数是( ) A .3B .4C .5D .6二、填空题(17小题3分,18,19小题每空2分,共11分)17.如图,要测量河两岸相对的两点A ,B 间的距离,先在AB 的垂线BF 上取两点C ,D ,使BC =CD ,再作出BF 的垂线DE ,使点A ,C ,E 在同一条直线上,可以证明△ABC ≌△EDC ,从而得到AB =DE ,因此测得DE 的长就是AB 的长,判定△ABC ≌△EDC ,最恰当的理由是____________.(第17题)18.已知:7.2≈2.683,则720≈______,0.000 72≈__________.19.一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行120 km所用的时间与以最大航速逆流航行60 km所用的时间相同,如果设江水的流速为x km/h,根据题意可列方程为________________,江水的流速为________km/h.三、解答题(20小题8分,21~23小题各9分,24,25小题各10分,26小题12分,共67分)20.解分式方程.(1)3x-2=2-xx-2;(2)21+2x-31-2x=64x2-1.21.已知(3x+2y-14)2+2x+3y-6=0.求:(1)x+y的平方根;(2)y-x的立方根.22.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x的值,其中x=2 020.”甲同学把“x=2 020”错抄成“x=2 021”,但他的计算结果也是正确的.你说说这是怎么回事?23.如图,AB∥CD,AB=CD,AD,BC相交于点O,BE∥CF,BE,CF分别交AD于点E,F.求证:(1)△ABO≌△DCO;(2)BE=CF.(第23题)24.观察下列算式:①2×4×6×8+16=(2×8)2+16=16+4=20;②4×6×8×10+16=(4×10)2+16=40+4=44;③6×8×10×12+16=(6×12)2+16=72+4=76;④8×10×12×14+16=(8×14)2+16=112+4=116;….(1)根据以上规律计算: 2 016×2 018×2 020×2 022+16;(2)请你猜想2n(2n+2)(2n+4)(2n+6)+16(n为正整数)的结果(用含n的式子表示).25.下面是学习分式方程的应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题:(1)冰冰同学所列方程中的x表示______________________________________,庆庆同学所列方程中的y表示_____________________________________;(2)从两个方程中任选一个,写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.26.如图①,AB=7 cm,AC⊥AB,BD⊥AB,垂足分别为A,B,AC=5 cm.点P在线段AB上以2 cm/s的速度由点A向点B运动,同时,点Q在射线BD 上运动.它们运动的时间为t s(当点P运动至点B时停止运动,同时点Q停止运动).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等?并判断此时线段PC和线段PQ的位置关系,请分别说明理由.(2)如图②,若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,点Q的运动速度为x cm/s,其他条件不变,当点P,Q运动到某处时,有△ACP与△BPQ 全等,求出相应的x,t的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.B 6.D 【点拨】∵AB ∥EF ,∴∠A =∠E .又AB =EF ,∠B =∠F , ∴△ABC ≌△EFD (ASA). ∴AC =DE =7.∴AD =AE -DE =10-7=3. 7.A 8.D 9.C 10.A 11.B 12.B 13.A 【点拨】∵△÷a 2-1a =1a -1,∴△=1a -1·a 2-1a =a +1a .14.B 15.D 16.A二、17.ASA 18.26.83;0.026 83 19.12030+x =6030-x;10 【点拨】根据题意可得 12030+x =6030-x,解得x =10, 经检验,x =10是原方程的解, 所以江水的流速为10 km/h.三、20.解:(1)去分母,得3=2(x -2)-x .去括号,得3=2x -4-x . 移项、合并同类项,得x =7. 经检验,x =7是原方程的解.(2)去分母,得2(1-2x )-3(1+2x )=-6. 去括号,得2-4x -3-6x =-6, 移项、合并同类项,得-10x =-5. 解得x =12.经检验,x =12是原方程的增根, ∴原分式方程无解.21.解:∵(3x +2y -14)2+2x +3y -6=0,(3x +2y -14)2≥0,2x +3y -6≥0,∴3x +2y -14=0,2x +3y -6=0. 解⎩⎨⎧3x +2y -14=0,2x +3y -6=0,得⎩⎨⎧x =6,y =-2. (1)x +y =6+(-2)=4, ∴x +y 的平方根为±4=±2.(2)y -x =-8,∴y -x 的立方根为3-8=-2.22.解:∵x 2-2x +1x 2-1÷x -1x 2+x -x =(x -1)2(x +1)(x -1)·x (x +1)x -1-x =x -x =0,∴该式的结果与x 的值无关,∴把x 的值抄错,计算的结果也是正确的. 23.证明:(1)∵AB ∥CD ,∴∠A =∠D ,∠ABO =∠DCO . 在△ABO 和△DCO 中,⎩⎨⎧∠A =∠D ,AB =CD ,∠ABO =∠DCO ,∴△ABO ≌△DCO (ASA). (2)∵△ABO ≌△DCO , ∴BO =CO . ∵BE ∥CF ,∴∠OBE =∠OCF ,∠OEB =∠OFC . 在△OBE 和△OCF 中,⎩⎨⎧∠OBE =∠OCF ,∠OEB =∠OFC ,OB =OC ,∴△OBE ≌△OCF (AAS),∴BE =CF .24.解:(1) 2 016×2 018×2 020×2 022+16 =(2 016×2 022)2+16=4 076 352+4=4 076 356. (2)2n (2n +2)(2n +4)(2n +6)+16=2n (2n +6)+4=4n 2+12n +4.25.解:(1)小红步行的速度;小红步行的时间(2)冰冰用的等量关系:小红乘公共汽车的时间+小红步行的时间=小红上学路上的时间.庆庆用的等量关系:公共汽车的速度=9×小红步行的速度.(上述等量关系,任选一个就可以)(3)选冰冰的方程:38-29x +2x =1,去分母,得36+18=9x ,解得x =6,经检验,x =6是原分式方程的解.答:小红步行的速度是6 km/h ;选庆庆的方程:38-21-y=9×2y , 去分母,得36y =18(1-y ),解得y =13,经检验,y =13是原分式方程的解, ∴小红步行的速度是2÷13=6(km/h).答:小红步行的速度是6 km/h.(对应(2)中所选方程解答问题即可)26.解:(1)△ACP ≌△BPQ ,PC ⊥PQ .理由如下:∵AC ⊥AB ,BD ⊥AB ,∴∠A =∠B =90°.由题意知AP =BQ =2 cm ,∵AB =7 cm ,∴BP =5 cm ,∴BP =AC .在△ACP 和△BPQ 中,∵⎩⎨⎧AP =BQ ,∠A =∠B ,AC =BP ,∴△ACP ≌△BPQ .∴∠C =∠BPQ .易知∠C +∠APC =90°,∴∠APC +∠BPQ =90°,∴∠CPQ =90°,∴PC ⊥PQ .(2)由题意可知AP =2t cm ,BP =(7-2t )cm ,BQ =xt cm. ①若△ACP ≌△BPQ ,则AC =BP ,AP =BQ ,∴5=7-2t ,2t =xt ,解得x =2,t =1;②若△ACP ≌△BQP ,则AC =BQ ,AP =BP ,∴5=xt ,2t =7-2t ,解得x =207,t =74.综上,当△ACP 与△BPQ 全等时,x =2,t =1或x =207,t =74.。

冀教版八年级数学上册第十六章达标测试卷附答案

冀教版八年级数学上册第十六章达标测试卷附答案

冀教版八年级数学上册第十六章达标测试卷一、选择题(每小题2分,共28分)1.教育部门高度重视校园安全教育,要求各级各类学校从认识安全标志入手开展安全教育.下列图标不是轴对称图形的是()2.下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是()3.下列说法中,正确的是()A.关于某条直线对称的两个三角形一定全等B.两个全等三角形一定关于某条直线对称C.面积相等的两个三角形一定关于某条直线对称D.周长相等的两个三角形一定关于某条直线对称4.如图,C,E是直线l两侧的点,以点C为圆心,CE长为半径画弧交直线l于A,B两点,又分别以A,B为圆心,大于12AB的长为半径画弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是()A.CD⊥直线l B.点A,B关于直线CD对称C.点C,D关于直线l对称D.CD平分∠ACB(第4题)(第5题)5.如图,等腰三角形ABC的周长为21,BC=5,AB的垂直平分线DE交AB 于点D,交AC于点E,则三角形BEC的周长为()A.13 B.14 C.15 D.166.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A.点M B.点N C.点P D.点Q(第6题)(第7题)7.如图,△A′B′C′是由△ABC经过平移得到的,△A′B′C′还可以看成是△ABC经过怎样的图形变化得到的?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中正确结论的序号是()A.①④B.②③C.②④D.③④8.如图,DE是线段AC的垂直平分线,下列结论一定成立的是() A.DE=BD B.∠BCD=∠AC.∠B>2∠A D.2∠BAC=180°-2∠ADE(第8题)(第9题)9.如图,BD是∠ABC的平分线,DE⊥AB于点E,△ABC的面积是15 cm2,AB=9 cm,BC=6 cm,则DE的长为()A.1 cm B.2 cmC.3 cm D.4 cm10.如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有()A.1个B.2个C.3个D.4个(第10题)(第11题)11.如图,直线a,b互相垂直相交于点O,曲线C关于点O成中心对称,点A 的对称点是点A′,AB⊥a于点B,A′D⊥b于点D.若OB=3,OD=2,则阴影部分的面积之和为()A.3 B.4C.5 D.612.如图,以图①(点O为圆心,半径为1的半圆形)作为“基本图形”,分别经历如下变换,不能得到图②的是()A.绕着OB的中点旋转180°B.向右平移1个单位C.先以直线AB为对称轴进行翻折,再向右平移1个单位D.先绕着点O旋转180°,再向右平移1个单位(第12题)(第13题)13.如图,在△ABC中,∠B=90°,点O是∠CAB,∠ACB的平分线的交点,且AB=3 cm,BC=4 cm,AC=5 cm,则点O到边AB的距离为()A.1 cm B.2 cmC.3 cm D.4 cm14.如图,将一个正方形纸片按图①、图②依次对折后,再按图③打出一个心形小孔,则展开铺平后的图案是()(第14题)二、填空题(每小题3分,共12分)15.在下面的数学符号:※,≌,≈,⊥,+,-,÷,∵,∴中,是中心对称图形的是____________.16.如图,在锐角三角形ABC中,O为三条边的垂直平分线的交点,I为三个角的平分线的交点,若∠BOC的度数为150°,则∠B I C的度数为________.(第16题)(第17题)17.如图,已知三角形纸片ABC,∠BCA=90°,在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,若CE=3,AB=10,则△BDE的面积为________.18.如图,在△ABC中,∠BCA=90°,∠CBA=80°,作点B关于∠ACB的平分线CB1的对称点A1,点A1恰好落在AC上,则∠A1B1A=________°,作点B1关于∠AA1B1的平分线A1B2的对称点A2,点A2也恰好落在AC上,…,恰好与点A重合,则n=________.继续作下去,作n次对称,点B n-1(第18题)三、解答题(19小题9分,20~23小题各10分,24小题11分,共60分) 19.如图,四边形CDEF是一个长方形台球面,有A、B两球分别位于图中所示位置,试问怎样撞击球A,才能使球A先碰到边FC后再反弹击中球B?在图中画出球A的运动路线.(第19题)20.如图①,阴影部分是由5个大小完全相同的小正方形组成的,现移动其中一个小正方形,请在图②,图③,图④中分别画出满足以下各要求的图形.(用阴影表示)(1)使图形既是轴对称图形,又是中心对称图形;(2)使图形是轴对称图形,而不是中心对称图形;(3)使图形是中心对称图形,而不是轴对称图形.(第20题)21.如图,AB=AD,BC=DC,E是AC上的点,求证:BE=DE.(第21题)22.如图,△ABO与△CDO关于O点成中心对称,点E,F在线段AC上,且AF=CE.求证:FD=BE.(第22题)23.如图,在△ABC中,C,C′关于直线DE对称,判断∠1,∠2,∠C′的关系并证明.(第23题)24.如图,DE,MN分别垂直平分AB,AC.(1)若△ADM的周长是10,求BC的长;(2)若∠BAC=135°,猜想AD与AM的位置关系,并证明你的猜想.(第24题)答案一、1.D 2.A 3.A 4.C 5.A 6.A 7.D 8.D 【点拨】∵DE 是线段AC 的垂直平分线,∴∠BAC =∠DCA , ∴2∠BAC =180°-∠ADC . 由题易证∠ADE =∠CDE , ∴2∠BAC =180°-2∠ADE .9.B 【点拨】如图,过D 作DF ⊥BC ,DF 交BC 的延长线于点F .(第9题)∵BD 是∠ABC 的平分线,DE ⊥AB 于点E , ∴DE =DF .∵△ABC 的面积是15 cm 2,AB =9 cm ,BC =6 cm , ∴S △ABD +S △DCB =12×AB ×DE +12×BC ×DF =15 cm 2, ∴9DE +6DE =30 cm 2, 解得DE =2 cm ,故选B.10.C 【点拨】如图所示,符合题意的有3个三角形.(第10题)11.D 12.B 13.A 14.B 二、15.※,≈,+,-,÷16.127.5°17.1518.70;8【点拨】∵点B关于∠ACB的平分线CB1的对称点为A1,∴CB=CA1,B1B=B1A1.∵CB1=CB1,∴△CB1B≌△CB1A1,∴∠CA1B1=∠CBB1=80°.∵∠A=180°-∠BCA-∠CBA=10°,∠CA1B1=∠A1B1A+∠A,∴∠A1B1A=70°,同理可得,∠A2B2A=60°,…,B n-1A=80°-10°×(n-1),∠A n-1当∠A nB n-1A=∠A时,点B n-1与点A重合,-1∴80°-10°×(n-1)=10°,解得n=8.三、19.解:如图所示,运动路线是A→P→B.(第19题)20.解:(1)如图所示.[第20(1)题](2)如图所示.(答案不唯一)[第20(2)题](3)如图所示.[第20(3)题]21.证明:∵AB =AD ,∴点A 在线段BD 的垂直平分线上. ∵BC =DC ,∴点C 也在线段BD 的垂直平分线上. ∴AC 是线段BD 的垂直平分线. ∵E 是AC 上的点, ∴BE =DE .22.证明:∵△ABO 与△CDO 关于O 点成中心对称,∴BO =DO ,AO =CO . ∵AF =CE ,∴FO =EO .在△FOD 和△EOB 中,⎩⎨⎧FO =EO ,∠FOD =∠EOB ,DO =BO ,∴△FOD ≌△EOB . ∴FD =BE .23.解:2∠C ′=∠1+∠2.证明:∵∠CDE +∠C ′DE +∠C +∠C ′+∠CED +∠C ′ED =360°, ∠CDE +∠EDC ′+∠1+∠CED +∠C ′ED +∠2=360°, ∴∠1+∠2=∠C +∠C ′.∵在△ABC 中,C ,C ′关于直线DE 对称, ∴∠C =∠C ′, ∴2∠C ′=∠1+∠2.24.解:(1)∵DE ,MN 分别垂直平分AB ,AC ,∴DA =DB ,MA =MC .∵△ADM 的周长是10,即AD +AM +DM =10, ∴BD +MC +DM =10,即BC =10.(2)AD⊥AM.证明:∵∠BAC=135°,∴∠B+∠C=45°.∵DE垂直平分AB,∴DB=AD,∴∠B=∠BAD.同理可得∠CAM=∠C.∴∠DAM=∠BAC-(∠BAD+∠CAM)=∠BAC-(∠B+∠C)=135°-45°=90°.∴AD⊥AM.。

八年级数学第16章分式综合检测题1.pdf

八年级数学第16章分式综合检测题1.pdf

数学:第16章分式综合检测题A (人教新课标八年级下)一、选择题(每小题3分 ,共30分)1.代数式-,23x ,1,87,1,,42ax y x y x −++−π中是分式的有( ) A.1个 B.2个 C.3个 D.4个2.使分式2−x x 有意义的是( ) A.2≠x B. 2−≠x C. 2±≠x D. 2≠x 或2−≠x 3.如果把分式n m 2中的字母m 扩大为原来的2倍,而n 缩小原来的一半,则分式的值( )A.不变B.是原来的2倍C.是原来的4倍D.是原来的一半4. 不改变分式2323523x x x x −+−+−的值,使分子、分母最高次项的系数为正数,正确的是(• ) A .2332523x x x x +++− B .2332523x x x x −++− C .2332523x x x x +−−+ D .2332523x x x x −−−+ 5.一项工程,甲单独干,完成需要a 天,乙单独干,完成需要b 天,若甲、乙合作,完成这项工程所需的天数是( ) A.b a ab + B.ba 11+ C.abb a + D.)(b a ab + 6.如果,0432≠==z y x 那么z y x z y x −+++的值是( ) A.7 B.8 C.9 D.107. 下列各式中,可能取值为零的是( )A .2211m m +−B .211m m −+C .211m m +− D .211m m ++ 8. 分式434y x a +,2411x x −−,22x xy y x y−++,2222a ab ab b +−中是最简分式的有( ) A .1个 B .2个 C .3个 D .4个9. 分式31x a x +−中,当x=-a 时,下列结论正确的是( ) A .分式的值为零; B .分式无意义C .若a ≠-13时,分式的值为零;D .若a ≠13时,分式的值为零 10.如果把分式yx y x ++2中的y x ,都扩大2倍,则分式的值( ) A.扩大2倍 B.缩小2倍 C.是原来的32 D.不变 二、填空题(每小题3分 ,共30分)11. (2008襄樊市)当m = 时,关于x 的分式方程213x m x +=−−无解 12.当x 时,分式33+−x x 的值为0.13.在下列各式中,),(32,,1,2,2,1222b a x x y x b a a −++π分式有 . 14. 不改变分式的值,使分式115101139x y x y −+的各项系数化为整数,分子、分母应乘以 15. 计算222a ab a b +−= . 16.)(22y x y x y x −=+−. 17. 李丽从家到学校的路程为s ,无风时她以平均a 米/•秒的速度骑车,便能按时到达,当风速为b 米/秒时,她若顶风按时到校,请用代数式表示她必须提前 出发.18. 当m = 时,分式2(1)(3)32m m m m −−−+的值为零. 19.已知2+,,15441544,833833,32232222 ⨯=+⨯=+⨯=若10+b a b a b a ,(102⨯=为正整数)则=a ,=b .20.若,21=−x x 则221x x +的值是 . 三、解答题(每大题8分,共24分)21. 约分:(1)22699x x x ++−; (2)2232m m m m−+−. 22. 通分:(1)26x ab ,29y a bc ; (2)2121a a a −++,261a −.23.若,532−==z y x 求xz y x 232++的值. 24. 已知1x -1y=3,求5352x xy y x xy y +−−−的值. 25.先能明白(1)小题的解答过程,再解答第(2)小题,(1)已知,0132=+−a a 求221a a +的值, 解,由0132=+−a a 知,0≠a 31,013=+=+−∴aa a a 即 ∴72)1(1222=−+=+a a a a ; (2)已知:,0132=−+y y 求13484+−y y y 的值. 26. 已知a 2-4a+9b 2+6b+5=0,求1a -1b的值. 答案:一、1.B ,提示:根据分式的概念判断,π是常数而不是字母,所以有2个;2.C ,提示:分式有意义则02≠−x ,则2±≠x ,故选C ;3.C ,提示:按题意,分式变成,2212n m ••化简后是nm 2,此式显然是原来分式的4倍,故选C ;4.C ,提示:先将分子和分母按降幂排列然后在分子和分母同乘以(-1)得到C 的答案;5.A ,提示:工程问题把总工作量看成“1”,甲的工作效率为,1a 乙的工作效率为,1b 则工作时间为b a ab abb a b a +=+=+1111,故选A ; 6. 设,4,3,2,432k z k y k x k z y x ======z y x z y x −+++99432432==−+++=k k k k k k k k 故选C ;7.B ,提示:分子为零且分母不为零即01,012≠+=−m m 且,所以,1=m 故选B ;8.C ,提示:最简分式是指分子、分母都没有公因式也就是不能约分,故选C ; 9.C ,提示:把x=-a 代入31x a x +−即为13−−+−a a a ,从而判断,故选C ;10.D ,提示:按题意,分式变成y x y x 2242++,化简后是y x y x ++2,此式显然不变,故选D ;二、11. 答案:-612.3,提示:分式的值为零就是分子等于零且分母不等于零即0303≠+=−x x 且,故3=x ; 13.,,2,12xx b a a +提示:根据分式的概念判断,π是常数而不是字母,代数式x x 2,只符合分式的特征不需要化简,所以它是分式;14.90, 提示:根据分式的基本性质都乘以90即寻找分子、分母的最小公倍数为90. 15. a a b−,提示:先将分子、分母分解因式变成))(()(b a b a b a a −++然后约分化成最简分式; 16.222y xy x +−,提示:分子、分母所乘的数是同一个,变形后是(,)2y x −应写成222y xy x +−;17. (s a b −-s a)秒 提示:顶风时风速为)(b a −米/秒,所用时间为b a s −秒,也就是费时间减去无风时的时间即为提前的时间;18.3.提示:分式的值为零就是分子等于零且分母不等于零即为023.0)3)(1(2≠+−=−−m m m m 且,解得3=m ;19.10,99,提示:从前面的式子得到规律:分子是加号前面的数,分母是分子的平方减1,故99110,102=−==b a ;20.6,提示:,21=−x x 两边同时平方得,,42122=−+x x ∴221xx += 6; 三、21. (1)22699x x x ++−==−++)3)(3()3(2x x x 33x x +− (2)2232m m m m −+−==−−−)1()2)(1(m m m m 2m m− 22. (1)22318acx a b c ,22218by a b c(2)22(1)(1)(1)a a a −+−,26(1)(1)(1)a a a ++− 23.设,2,3,5,235232233(5)222824x y z k x k y k z k x y z k k x kk k======−−++⨯++⨯−=⨯−==−则所以24.解:由1x -1y =3得,xy y x xy yx 3,3=+∴=+,原式=5352x xy yx xy y +−−−=623332)(3)(5=−+=−−+−xy xy xyxy xy y x xy y x25.解:由,0132=−+y y 知,0≠y ∴,31,013=−=−+y y y y 即 ∴(,111,921)122222=+=−+=−y y y y y y 即 ∴(,121)1222=+y y ∴,119144=+y y 由116131344448=+−=+−y y y y y , ∴13484+−y y y =1161 26. 解:a 2-4a+9b 2+6b+5=0得,01694422=++++−b b a a ,则(,0)13()222=++−b a 则31,2−==b a ,代入得312.。

【参考答案】八年级数学下第16-20章单元测试期中期末试卷答案

【参考答案】八年级数学下第16-20章单元测试期中期末试卷答案

1.填空题1.x=5,m=1 2.3.4.5.A=1,B=1 6.7.8.9.x=2 10.11.x=12.24 13.24 14.52.选择题15.D 16.A 17.A 18.D3.解答题19.(1)。

(2)20.,(取值要求:)21.略22.(1)。

(2)23.(1)·。

(2)成立。

(3)24.略25.9圆26.12个月27.2圆/吨28.(1)100天。

(2)x=14,y=658年级数学(下)第1单圆自主学习达标检测(B卷)1.填空题1. ,2 2.3.4.5.6.x≥-且x≠,x≠37.-2 8.9.-3 10.2y2-13y-20=0 11.x+y 12.或26(x+5)-30x=15 13.14.2.选择题15.B 16.A 17.D 18.D3.解答题19.(1)≠。

(2)<2 20.(1)。

(2)21.(1)。

(2)22.,(≠)23.不可能,原式等于时,,此时分式无意义24.(1)。

(2)无解25.(1)60天。

(2)24天26.甲每分钟输入22名,乙每分钟输入11名27.(1)移项,方程两边分别通分,方程两边同除以,分式值相等,分子相等,则分母相等。

(2)有错误.从第③步出现错误,原因:可能为零。

(3)28.王老师步行的速度是5千米/时,骑自行车的速度是15千米/时8年级数学(下)第2单圆自主学习达标检测(A卷)1.填空题1.2.3.4.5.6.<-2或>0 7.<<3 8.反比例, 9.(答案不唯1)10.2 11.12.> 13.m=5 14.<,>2.选择题15.D 16.C 17.C 18.D3.解答题19.(1)。

(2)图象略20.21., 22.(1)。

(2)C。

(3)23.(1)。

(2)=20 24.(1)y=2x-6。

(2)C(3,0),D(0,-6)。

(3)S△AOC:S△BOD=1:1 25.(1),。

(2)或26.(1)A(-2,0).B(0,2).D(2,0)。

人教版初中数学八年级下册第十六章综合测试试卷-含答案01

人教版初中数学八年级下册第十六章综合测试试卷-含答案01

第十六章综合测试一、选择题(每小题4分,共32分)1在实数范围内有意义,则x 的取值范围是( ) A .3x <B .3x ≤C .3x >D .3x ≥2.下列式子中,是最简二次根式的是( )ABCD3.若0a < )A .B .-C .D .-4.下列运算正确的是( )A 5±B .1=CD 5.下列计算结果正确的是( )AB .7-=CD6 )A .B .C .D .7()230x ++=,则x y -的值为( ) A .4B .4-C .7D .7-83a =-的正整数a 的值有( )A .1个B .2个C .3个D .4个二、填空题(每小题4分,共24分)9.如果2a +=成立,那么实数a 的取值范围是________.10.已知x 是整数,则x 的最小值是________.11.已知|1|0a -=,则=b a ________.12.已知1m =+1n =-13-+=________.14.计算-的结果是________.三、解答题(共44分)15.化简.(每小题4分,共8分)(1;(2)(3x -.16.计算.(每小题5分,共20分)(1)0a b >0,>;(2)(;(3-;(4⎛÷- ⎝.17.先化简,再求值.(每小题5分,共10分)(1)若()1401a aa +=<<的值;(2)已知x =,y =,求x y y x +的值.18.(6分)已知一个直角三角形两直角边长分别为a =,b =,求这个直角三角形的面积.第十六章综合测试答案解析一、 1.【答案】D在实数范围内有意义,则需30x -≥,所以x 的取值范围是3x ≥.答案选D . 2.【答案】A||a b =最简二次根式的条件.故选A . 3.【答案】B()()0,||0,a a a a a ⎧⎪==⎨-⎪⎩≥<所以当0a <=-B .4.【答案】D,故A项不正确;=-=故B,故C,故D 项正确. 5.【答案】C【解析】A 选项,被开方数不相同,不能合并;B选项,=;C;DA ,B ,D 选项均错误,C 选项正确. 6.【答案】A 【解析】=+=-=-+=,故选A . 7.【答案】B【解析】由二次根式和平方的非负性,得1030y x -=⎧⎨+=⎩,,所以13y x =⎧⎨=-⎩,,所以314x y -=--=-.8.【答案】C3a =-,所以30a -≤.所以3a ≤.所以正整数a 的值可以为1,2,3,共3个.二、9.【答案】2a≤【解析】因为2a +=2a =-.所以20a -≤.所以2a ≤.10.【答案】3是整数,x 是正整数,当12x=,不是整数,当3x =6=,所以x 的最小值是3. 11.【答案】1【解析】因为|1|0a-≥0,|1|0a -=,所以|1|=0a -,即10a -=,80b -=.所以1a =,8b =.所以811b a ==. 12.【答案】3【解析】因为(11m n -=+-=,((111mn =+=-,所以3====.三、13.【答案】0【解析】原式0-=.14.【答案】3【解析】原式(=3==.15.【答案】(1. (2)由二次根式有意义的条件及分母不为0,得30x ->,即30x -<.所以((33x x -=--=. 16.【答案】(1)原式==. (2)原式(=-6=-(3)原式126⨯-=22 +=.(4)原式⎛÷-⎝553⎛-⎝==-=17.【答案】(1)因为14aa+=,所以122aa+-=.所以2222+-=,即22=.因为01a<<,所以11a>.=(2)因为12x==,12y==+,所以x yy x+=+12+=.18.【答案】)211cm22S ab==⨯==.答:这个直角三角形的面积是2.答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

初二数学第16章综合测试A卷

初二数学第16章综合测试A卷

第16章综合测试A卷一、选择题1.数3.14, 2 ,π,0.323232…,17,9 中,无理数的个数为()A.2个B.3个C.4个D.5个2.下列说法正确的是( )A.81 的平方根是±9 B.64 的立方根的平方根是±2 C.x为任意实数都有3x3=x D.16的四次方根是23.若实数-1<x<0且y=3x ,则( )A.x>y B.x<y C.x≤y D.x与y的大小不确定4.若实数a满足a2+a=0,则有( )A.a>0 B.a≥0 C.a<0 D.a≤05.下列命题中,正确的一个是()A.若a>b,则 a > b B.若 a >a,则a>0C.若|a|=( b )2,则a=b D.若a2=b,则a是b的平方根6.以下说法中,正确的是()①任何数的平方根都是正数,②-2 是-2的一个平方根,③8.1的负的平方根是-8.1 =-0.9,④(-2)-1没有平方根A.0个B.1个C.2个D.3个7.使x +1x-2有意义的x的取值范围是()A.x≥0 B.x≠2 C.x>2 D.x≥0且x≠2 8.下列说法错误的是()A.负数不能开偶次方B.有理数和无理数统称实数C.无限小数是无理数D.数轴上的点和实数一一对应9.若x是实数,下列各式中一定是二次根式的是()A.1x2B.-x2+2x-2 C.x2+2x+1 D.x2-110.若a>0,则-4ab可化简为()A.2b-2b B.2b-ab C.-2b ab D.-2b-ab11.若|1-x|-x2-8x+16 =2x-5,则x的取值范围是()A.x>1 B.x<4 C.1≤x ≤4 D.以上都不对12.下列各式正确的是( ) A. 2 + 3 = 5 B.(210 - 5 )÷5=2 2 -1 C.(-4)(-9) =-4 ·-9 =(-2) ·(-3)=6D .-3 2 =-33×2 =-1813.二次根式23 ,150 ,12 98 ,48 中与18 是同类二次根式的有( ) A.1个 B .2个 C.3个 D .4个 14.如果a<b ,那么-(x+a)3·(x+b) 等于( ) A.(x+a)-(x+a)·(x+b) B.(x+a) (x+a)·(x+b) C.-(x+a) -(x+a)·(x+b) D.-(x+a) (x+a)·(x+b)15.当-1≤x ≤1时,在实数范围内有意义的式子是( )A.x-2 B.12-x C.(1+x)(1-x) D.1-x 1+x 二.填空题1.若(x -1)2 有意义,则x 的取值范围是 . 2.比较大小:1- 2 0, 3 1.732 3.-27的立方根与81 的平方根的和是 .4.若a 2 =|3a |,则a = .5.最简二次根式3a-b 4a+3b 与2a -b+6 是同类二次根式,则a = ,b= . 6.化简(7-4 3 )2004·(-7-4 3 )2005= .7.已知-12 ≤x ≤1,则|x -1|+|x -3|+4x 2+4x+1 = .8.不改变根式的大小将根号外的因式移到根号内:(a -b) 1b -a= . 9.( 5 - 3 + 2 )( 5 + 3 - 2 )= .10.式子-3a 3-a =-3a 3-a成立的条件是 . 三.解答题1.计算: (1)32 +0.5 -3127 -218 +75(2)x 21x -(9y -3y 1y +x 3 )(3)2b ab 5 ·(-32 a 3b )÷13 b a(4)( 2 +1)0-|32 -1|-(3+12 )-1+(-1)20052.已知(x+9)2=169,(y -1)3=-0.125,求x -8xy -32y -7x 的值.3.已知0<x<1且x 2-2+1x 2 -(1x - 12 )=0,求x +32 +1x 的平方根.4.已知一个正方体的体积是16cm 3,另一正方体的体积是这个正方体体积的4被,求另一个正方体的表面积.5.实数m ,n 在数轴上的位置如图所示.化简m 2n 2 +|m -n |-|m |.6.已知x 2+y 2-4x -2y +5=0,求(x -y)+4xy x+xy的值.7.已知y =2-x +x -2 +3,求y x -y +y x+y .沁园春·雪 <毛泽东>北国风光,千里冰封,万里雪飘。

冀教版数学八年级上册16章专项训练试题及答案

冀教版数学八年级上册16章专项训练试题及答案

专训图形的变换——平移、对称、旋转在几何证明中的巧用名师点金:在进行与图形变换有关的计算或证明时,往往需要在图形中添加一些辅助线,添加辅助线后能使题目中的分散条件集中,较容易找到一些量之间的关系,使数学问题较轻松地解决.常见的辅助线作法有平移法、旋转法、翻折法等.翻折法1.如图,在△ABC中,BE是∠ABC的平分线,AD⊥BE,垂足为D.求证:∠2=∠1+∠C.(第1题)平移法2.如图,在△ABC中,E,F分别为AB,AC上的点,且BE=CF,请判断EF与BC 的大小关系,并说明理由.(第2题)旋转法3.如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作60°角,角的两边分别交AB,AC于点M,N,连接MN,试探究BM,MN,NC之间的关系,并加以证明.【导学号:42282061】(第3题)4.如图所示,在△ABC中,M是BC的中点,E,F分别在AC,AB上,且ME⊥MF,求证:EF<BF+CE.【导学号:42282062】(第4题)答案(第1题)1.证明:如图,延长AD 交BC 于点F.(相当于将AB 边向下翻折,与BC 边重合,A 点落在点F 处,折痕为BE)∵BE 平分∠ABC , ∴∠ABE =∠CBE. ∵BD ⊥AD ,∴∠ADB =∠FDB =90°. 在△ABD 和△FBD 中, ⎩⎪⎨⎪⎧∠ABD =∠FBD ,BD =BD ,∠ADB =∠FDB , ∴△ABD ≌△FBD(ASA ). ∴∠2=∠DFB.又∵∠DFB =∠1+∠C , ∴∠2=∠1+∠C.2.解:EF<BC.理由:如图,将EF 平移到BM ,连接MF ,则MF 可看成由BE 平移得到,所以CF =BE =MF ,考虑到MF 与CF 的对称关系,作∠MFC 的平分线交BC 于点D ,连接DM ,易得DM =DC.∵BD +DM>BM ,∴BD +CD >BM ,∴BC>EF ,即EF<BC.点拨:本题从平移的角度来思考问题,降低了求解的难度.(第2题)(第3题)3.解:MN =BM +NC.证明如下:如图,延长NC 到点E ,使CE =BM ,连接DE(相当于将△DBM 绕点D 旋转至△DCE). ∵△ABC 是等边三角形,△BDC 是顶角∠BDC =120°的等腰三角形,∴∠ABC =∠ACB =60°,∠DBC =∠DCB =180°-120°2=30°.∴∠DBM =∠DCE =90°. 又∵DB =DC ,BM =CE , ∴△DBM ≌△DCE.∴DM =DE ,∠BDM =∠CDE. 已知∠MDN =60°.∴∠EDN =∠CDN +∠CDE =∠CDN +∠BDM =∠BDC -∠MDN =120°-60°=60°,即∠EDN =∠MDN.∵DM =DE ,∠MDN =∠EDN , DN =DN , ∴△DMN ≌△DEN. ∴MN =EN.∴MN =EN =CE +NC =BM +NC. 4.证明:由题意可知BM =MC ,∴可将△BFM 绕点M 旋转180°得到△CNM ,如图所示.(第4题)∴BF =CN ,FM =MN. 连接EN ,又∵ME ⊥MF , ∴EN =EF.又∵在△ENC 中,EN<NC +CE , ∴EF<BF +CE.专训1轴对称与轴对称图形的应用名师点金:轴对称图形是指一个图形....的位置关系......在某种情况....,成轴对称是指两个图形下,二者可以相互转换.利用轴对称的性质解决几何图形中的问题.轴对称的作图1.如图,已知△ABC和直线MN,求作△A′B′C′,使△A′B′C′和△ABC关于直线MN 对称.(不要求写作法,只保留作图痕迹)(第1题)轴对称图形的折叠与展开的关系2.如图,将一个正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去一个三角形和一个形如“”的图形,将纸片展开,得到的图形是()(第2题)轴对称与轴对称图形的面积3.如图,正方形的边长为2 cm,则图中阴影部分的面积为________cm2.(第3题)平面成像与轴对称4.小亮在不同时刻看到身后墙上的时钟在镜子中的像如图所示,你认为实际时间最接近8:00的是()(第4题)轴对称的实际运用5.如图,要在燃气管道l上修建一个泵站,分别向A,B两镇供气,则泵站修建在管道的什么地方,可使所用的管线最短?(第5题)轴对称与折叠6.把一张长方形纸片ABCD按图中的方式折叠,使点A与点E重合,点C与点F重合(E,F两点均在BD上),折痕分别为BH,DG.求证:△BHE≌△DGF.(第6题)答案1.解:如图所示.(第1题)2.D 3.24.D 点拨:根据轴对称的性质,一个图形与它在平面镜中的像具有下列特点:①在沿对称轴的方向上,图形的方向与其像的方向一致;②在与对称轴垂直的方向上,图形的方向与其像的方向左右对调.5.解:如图,作点B 关于直线l 的对称点B′,连接AB′,与直线l 交于点C ,则点C 即为泵站的位置.(第5题)6.证明:由折叠可知∠ABH =∠EBH =12∠ABD ,∠CDG =∠GDF =12∠CDB ,∠HEB=∠A =∠GFD =∠C =90°,AB =BE ,CD =FD.∵AB ∥CD ,∴∠ABD =∠CDB.∴∠EBH =∠GDF.∵AB =CD ,∴BE =DF.在△BHE 和△DGF 中, ⎩⎪⎨⎪⎧∠EBH =∠FDG ,BE =DF ,∠HEB =∠GFD , ∴△BHE ≌△DGF(ASA ).点拨:用轴对称的性质解决折叠问题,解决这类问题的关键是折叠前后重合的部分全等,所以对应角相等、对应线段相等.专训2线段垂直平分线的四种应用名师点金:线段的垂直平分线与线段的两种关系:位置关系——垂直,数量关系——平分,利用垂直平分线的这些性质可以求线段的长度、角的度数等,还可以解决实际生活中的选址等问题.线段垂直平分线的性质在求线段中的应用(第1题)1.如图,在△ABC中,AB,AC的垂直平分线分别交BC于点D,E,垂足分别为F,G,已知△ADE的周长为12 cm,则BC=________.2.如图,AB比AC长3 cm,BC的垂直平分线交AB于D,交BC于E,△ACD的周长是14 cm,求AB和AC的长.(第2题)线段垂直平分线的性质在求角中的应用3.【中考·乐山】如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE =40°,则∠DBC=________°.(第3题)4.如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点D,交AB 于点E,连接AD,AD将∠CAB分成两个角,且∠1∶∠2=2∶5,求∠ADC的度数.(第4题)线段垂直平分线的性质在实际中的应用5.如图,某城市规划局为了方便居民的生活,计划在三个住宅小区A,B,C之间修建一个购物中心,试问:该购物中心应建于何处,才能使它到三个小区的距离相等?(第5题)线段垂直平分线的性质在判定两线位置关系中的应用6.如图,OE,OF分别是△ABC中AB,AC边的中垂线(即垂直平分线),∠OBC,∠OCB 的平分线相交于点I,试判定OI与BC的位置关系,并给出证明.【导学号:42282049】(第6题)答案1.12 cm2.解:∵△ACD 的周长是14 cm ,∴AD +DC +AC =14 cm .又∵DE 是BC 的垂直平分线,∴BD =DC.∴AD +DC =AD +BD =AB.∴AB +AC =14 cm .∵AB 比AC 长3 cm ,∴AB -AC =3 cm .∴AB =8.5 cm ,AC =5.5 cm .3.15 点拨:在Rt △AED 中,∠ADE =40°,所以∠A =50°.因为AB =AC ,所以∠ABC =180°-50°2=65°. 因为DE 垂直平分AB ,所以DA =DB ,所以∠DBE =∠A =50°.所以∠DBC =65°-50°=15°.4.解:∵∠1∶∠2=2∶5,∴设∠1=2x ,则∠2=5x.∵DE 是线段AB 的垂直平分线,∴AD =BD.∴∠B =∠2=5x.∴∠ADC =∠2+∠B =10x.∵在△ADC 中,2x +10x =90°,解得x =7.5°,∴∠ADC =10x =75°.5.解:如图,连接AB ,BC ,分别作AB ,BC 的垂直平分线DE ,GF ,两直线交于点M ,则点M 就是所要确定的购物中心的位置.(第5题)点拨:解决作图选点性问题,若要找到某两个点的距离相等的点,一般在这两点所连线段的垂直平分线上去找.6.解:OI ⊥BC.证明如下:连接AO ,延长OI 交BC 于点M.∵OE ,OF 分别为AB ,AC 的中垂线,∴OA=OB ,OA =OC ,∴OB =OC.又∵BI ,CI 分别为∠OBC ,∠OCB 的平分线,∴点I 必在∠BOC 的平分线上,∴∠BOI =∠COI.在△BOM 和△COM 中,⎩⎪⎨⎪⎧OB =OC ,∠BOM =∠COM ,OM =OM ,∴△BOM ≌△COM(SAS ).∴∠BMO =∠CMO.又∵∠BMO +∠CMO =180°,∴∠BMO =∠CMO =90°,∴OI ⊥BC.专训 角平分线中常用作辅助线的方法名师点金:因为角的平分线已经具备了全等三角形的两个条件(角相等和公共边),所以在处理角的平分线的问题时,常作出全等三角形的第三个条件,截两边相等(SAS )或向两边作垂线段(AAS )或延长线段等来构造全等三角形.作一边的垂线段1.如图,已知△ABC 的周长是20 cm ,BO ,CO 分别平分∠ABC 和∠ACB ,OD ⊥BC 于点D ,且OD =3 cm ,求△ABC 的面积.(第1题)作两边的垂线段2.如图,已知∠AOB=90°,OM是∠AOB的平分线,将三角尺的直角顶点P在射线OM上滑动,两直角边分别与OA,OB交于点C,D,求证:PC=PD.(第2题)延长作对称图形法3.如图,在△AOB中,AO=OB,∠AOB=90°,BD平分∠ABO,AE⊥BD,求证:BD=2AE.(第3题)截取作对称图形法4.如图,AD为△ABC的中线,DE,DF分别是△ADB和△ADC的角平分线,求证:BE+CF>EF.(第4题)答案1.解:连接OA ,过点O 作OE ⊥AB ,OF ⊥AC ,垂足分别为E ,F.∵BO 是∠ABC 的平分线,且OD ⊥BC ,OE ⊥AB ,∴OE =OD =3 cm .同理OF =OD =3 cm .∴S △ABC =S △BOC +S △ABO +S △ACO =12BC·OD +12AB·OE +12AC·OF =12(BC +AB +AC)·OD =12×20×3=30(cm 2). 2.证明:如图,过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点F ,∴∠PEC =∠PFD =90°.∵OM 是∠AOB 的平分线,∴PE =PF.∵∠AOB =90°,∠CPD =90°,∴∠PCE +∠PDO =360°-90°-90°=180°.而∠PDO +∠PDF =180°,∴∠PCE =∠PDF.(第2题)在△PCE 和△PDF 中,⎩⎪⎨⎪⎧∠PCE =∠PDF ,∠PEC =∠PFD ,PE =PF ,∴△PCE ≌△PDF(AAS ).∴PC =PD.3.证明:如图,延长AE 交BO 的延长线于点F.∵AE ⊥BE ,∴∠AEB =∠FEB =90°.∵BD 平分∠ABO ,∴∠ABE =∠FBE.又∵BE =BE ,∴△ABE ≌△FBE.∴AE =FE.∴AF =2AE.∵∠AEB =∠AOB =90°,∴∠OAF +∠AFO =90°,∠OBD +∠AFO =90°.∴∠OAF =∠OBD.又∵OA =OB ,∠AOF =∠BOD =90°,∴△AOF ≌△BOD(ASA ).∴AF =BD.∴BD =2AE.(第3题)4.证明:在AD 上截取DH =BD ,连接EH ,FH.∵AD 是BC 边上的中线, ∴BD =CD =DH.∵DE 平分∠ADB ,∴∠BDE =∠HDE.又∵DE =DE ,∴△BDE ≌△HDE(SAS ).∴BE=HE.同理△CDF≌△HDF(SAS).∴CF=HF.在△HEF中,∵HE+HF>EF,∴BE+CF>EF.。

初中八年级数学下册16-20章综合测试卷共5套02答案

初中八年级数学下册16-20章综合测试卷共5套02答案

是( ) A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等边三角形
二、填空题(每小题 3 分,共 18 分) 11.当 a __________时, 3a 2 无意义。
12.计算:当 2 8 18 __________.
13.等腰三角形两边长为 3 2 和 4 5 ,则此等腰三角形的周长为__________. 14.若 | a | 3, b 2 , a b<0 则 a b __________.
回答下列问题:
(1)观察上面的解题过程,请直接写出结果:
1
__________;
n n 1
(2)利用上面提供的信息化简:
1 1 1 1
2 1 3 2 4 3
10 9
24.(8 分)一天,蚊子落在狮子的身上对它说:“狮子,别看你高大威猛,而实际上我们俩的体重相同!” 狮子不屑一顾地对蚊子说:“别瞎说了,那怎么可能!”蚊子不慌不忙地说:“不信,我给你证明一下……” 说着,蚊子便在地上写出了证明过程: 证明:设蚊子重 m 克,狮子重 n 克。又设 m n 2a ,则有 m a a n . 两边平方,(m a)2 (a n)2 . ∵ (a n)2 (n a)2
C.8
D.10
3.下列说法正确的是( )
A.真命题的逆命题是真命题
B.原命题是假命题,则它的逆命题也是假命题
C.定理一定有逆定理
D.命题一定有逆命题
4. Rt△ABC 的两直角边长分别是 3 和 4,若一个正方形的边长是 △ABC 的第三边,则这个正方形的面积是
()
A.25
B.7
C.12
D.25 或 7
15.已知 | 2x y 3 | (x 3y 5) 2 0 ,则 x y __________.

人教版初中数学八年级下册十六至二十章全册检测题测试卷期末考试附答案

人教版初中数学八年级下册十六至二十章全册检测题测试卷期末考试附答案

第十六章测试题一、选择题(每题3分,共30分)1.代数式x -3在实数范围内有意义,则x 的取值范围是( )A .x ≥3B .x >3C .x ≤3D .x <32.当x >2时,(2-x )2=( )A .2-xB .x -2C .2+xD .±(x -2)3.下列二次根式中,最简二次根式是( ) A.30 B.12 C.8 D.12 4.下列运算正确的是( )A.2+3= 5 B .30=0 C .(-2a )3=-8a 3 D .a 6÷a 3=a 2 5.化简二次根式(-5)2×3的结果为( )A .-5 3B .5 3C .±5 3 D.306.估计⎝ ⎛⎭⎪⎫10+43×3的值在( ) A .4和5之间 B .5和6之间 C .6和7之间 D .7和8之间 7.若实数a ,b 满足ab >0,则化简a-b a 2的结果为( ) A .--b B.b C.-b D .-b8.若x 为实数,在“(3+1) x ”的“ ”中添上一种运算符号(在“+,-,×,÷”中选择)后,其运算的结果为有理数,则x 不可能是( ) A.3+1 B.3-1 C .2 3 D .1-39.【教材P 19复习题T 5改编】若x =2+1,则代数式x 2-2x +2的值为( )A .7B .4C .3D .3-2210.一块长为7 dm 、宽为5 dm 的木板,采用如图的方式在这块木板上截出两块面积分别是8 dm 2和18 dm 2的小正方形木板,甲同学说:想要截出来的两块小正方形木板的边长均小于木板的宽,所以可以截出;乙同学说:想要截出来的两块小正方形木板的边长之和大于木板的长,所以不能截出.下面对于甲、乙两名同学说法判断正确的是()A.甲同学说的对B.乙同学说的对C.甲、乙同学说的都对D.无法判断二、填空题(每题3分,共24分)11.计算:2×8=________.12.如果两个最简二次根式3a-1与2a+3能合并,那么a=________.13.比较:5-12________12(填“>”“=”或“<”).14.实数a在数轴上对应的点的位置如图所示,则(a-4)2+(a-11)2化简后为________.15.若实数m,n满足|m-n-5|+2m+n-4=0,则3m+n=________.16.【教材P10练习T3变式】△ABC的面积S=12 cm2,底边a=2 3 cm,则底边上的高为________cm.17.【数学建模】某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使BP扩大到原来的n(n>1)倍,且钢梁保持水平,则弹簧秤读数为________(N)(用含n,k的代数式表示).18.【规律探索题】观察下列二次根式化简:12+1=2-1,13+2=3-2,….从中找出规律并计算:(12+1+13+2+…+12 023+ 2 022+12 024+ 2 023)×( 2 024+1)=________. 三、解答题(19题16分,20题8分,24题12分,其余每题10分,共66分)19.计算下列各式:(1)(3.14-π)0+|2-1|+⎝ ⎛⎭⎪⎫12-1-8; (2)20+5(2+5);(3)(3+3)(3-3)+8+62; (4)(3+2-6)2-(2-3+6)2.20.【教材P 19复习题T 5改编】若a =3-10,求代数式a 2-6a -2的值.21.阅读下面的解题过程,并回答问题.化简:(1-3x )2-|1-x |.解:由1-3x≥0,得x≤13,∴1-x>0,∴原式=(1-3x)-(1-x)=1-3x-1+x=-2x.按照上面的解法,试化简:(x-3)2-(2-x)2.22.已知一个长方形花坛与一个圆形花坛的面积相等,长方形花坛的长为140πm,宽为35πm,求这个圆形花坛的半径.23.【跨学科题】据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=h5(不考虑风速的影响).(1)求从40 m高空抛物到落地的时间.(2)小明说从80 m高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由.(3)已知高空坠落物体动能(单位:焦耳)=10×物体质量×高度,某质量为0.05 kg的鸡蛋经过6 s后落在地上,这个鸡蛋产生的动能是多少?你能得到什么启示?(注:杀伤无防护人体只需要65焦耳的动能)24.【数学抽象】(1)用“=”“>”“<”填空:4+3________24×3,1+1 6________21×16,5+5________25×5.(2)由(1)中各式猜想m+n与2mn(m≥0,n≥0)的大小,并说明理由.(3)请利用上述结论解决下面问题:某园林设计师要对园林的一个区域进行设计改造,将该区域用篱笆围成长方形的花圃,如图所示,花圃恰好可以借用一段墙体,为了围成面积为200 m2的花圃,所用的篱笆至少为多少米?答案一、1.A 2.B 3.A 4.C 5.B 6.D7.A8.C9.C10.B点拨:∵两块小正方形木板的面积分别是8 dm2和18 dm2,∴边长分别为8=22(dm),18=32(dm).∴两块小正方形木板的边长之和为22+32=52(dm)>7 dm.∴不能截出.二、11.412.413.>14.715.716.4317.kn点拨:设装有大象的铁笼重力为a N,将弹簧秤移动到B′的位置时,弹簧秤读数为k′N.由题意可得BP·k=P A·a,B′P·k′=P A·a,∴BP·k=B′P·k′.又∵B′P=nBP,∴k′=BP·kB′P=BP·knBP=kn.18.2 023点思路:先将第一个括号内的各项分母有理化,此时发现,除第二项和倒数第二项外,其他各项的和为0,由此可计算出第一个括号内式子的值,然后再计算其与第二个括号内式子的乘积.三、19.解:(1)原式=1+2-1+2-22=2-2;(2)原式=25+25+(5)2=45+5;(3)原式=32-(3)2+(2+3)=9-3+2+3=8+3;(4)原式=(3+2-6+2-3+6)×(3+2-6-2+3-6)=22×(23-26)=46-8 3.将a=3-10代入上式,得原式=(a-3)2-11=(3-10-3)2-11=10-11=-1.21.解:∵2-x≥0,∴x≤2.∴x-3<0.∴(x-3)2-(2-x)2=|x-3|-(2-x)=3-x-2+x=1. 22.解:长方形花坛的面积为140π×35π=70π(m2),∴圆形花坛的面积为70πm2.设圆形花坛的面积为S m2,半径为r m,则S=πr2,即70π=πr2,∴r=70ππ=70.故这个圆形花坛的半径为70 m. 23.解:(1)由题意知h=40 m,∴t=h5=405=8=22(s).(2)不正确.理由如下:当h=80 m时,t=805=16=4(s).∵4≠2×22,∴不正确.(3)当t=6 s时,6=h5,∴h=180 m.∴鸡蛋产生的动能为10×0.05×180=90(焦耳).启示:严禁高空抛物.24.解:(1)>;>;=(2)m+n≥2mn.理由如下:当m≥0,n≥0时,(m-n)2≥0,∴(m)2-2mn+(n)2≥0.∴m-2mn+n≥0.∴m+n≥2mn.(3)设花圃平行于墙的一边长为a m,垂直于墙的一边长为b m,则a>0,b>0,ab=200.根据(2)中的结论可得a+2b≥2a·2b=22ab=22×200=2×20=40,∴所用的篱笆至少为40 m.第十七章综合素质评价一、选择题(每题3分,共30分)1.设直角三角形的两条直角边长分别为a和b,斜边长为c,已知b=12,c=13,则a=()A.1 B.5 C.10 D.252.在三边分别为下列长度的三角形中,不是直角三角形的为() A.1,2, 3 B.2,3, 5 C.6,8,10 D.4,7,53.在Rt△ABC中,∠ACB=90°,AB=3,则AB2+BC2+AC2=() A.9 B.18 C.20 D.244.把命题“如果x=y,那么x=y”作为原命题,下列对原命题和它的逆命题真假判断正确的是()A.原命题和逆命题都是真命题B.原命题和逆命题都是假命题C.原命题是真命题,逆命题是假命题D.原命题是假命题,逆命题是真命题5.在三边分别为4、4、6的等腰三角形中,底边上的高是() A.5 B.3 C.4 D.76.如图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD的长为()A. 3 B.2 3 C.3 3 D.4 3(第6题)(第7题)(第8题)(第9题)7.【教材P27图17.1­10变式】如图,A(8,0),C(-2,0),以点A为圆心,AC 长为半径画弧,交y轴正半轴于点B,则点B的坐标为()A.(0,5) B.(5,0)C.(6,0) D.(0,6)8.某工程的测量人员在规划一块如图所示的三角形土地时,在BC上有一处古建筑D,使得BC的长不能直接测出,工作人员测得AB=130米,AD=120米,BD=50米,在测出AC=150米后,测量工具坏了,使得DC的长无法测出,请你想办法求出BC的长度为()A.90米B.120米C.140米D.150米9.如图,小巷左右两侧都是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左端墙脚的距离为0.7 m,顶端距离地面2.4 m,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2 m,则小巷的宽度为()A.0.7 m B.1.5 m C.2.2 m D.2.4 m10.【直观想象】如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短路程是()A.20 B.25 C.30 D.32二、填空题(每题3分,共24分)11.勾股数为一组连续自然数的是__________.12.【数学运算】已知在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,∠C=90°,c=10,a b=34,则a=________.13.已知正方形的面积为8,则其对角线的长为________.14.已知a,b,c是△ABC的三边长,且满足关系式c2-a2-b2+|a-b|=0,则△ABC的形状为______________.15.《九章算术》是我国古代数学名著,书中有下列问题:今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?其意思为:今有一门,高比宽多6尺8寸,门对角线距离恰好为1丈.问门高、宽各是多少?(1丈=10尺,1尺=10寸)如图,设门高AB为x尺,根据题意,可列方程为____________________.(第15题)(第16题)(第17题)(第18题) 16.如图,已知△ABO为等腰三角形,且OA=AB=5,B(-6,0),则点A的坐标为__________.17.【传统文化】“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为________.18.如图,正方形ABCD的边长为8,点E是CD的中点,HG垂直平分AE且分别交AE,BC于点H,G,则BG=________.三、解答题(19~22题每题10分,23题12分,24题14分,共66分)19.如图,在△ABC中,CD⊥AB于D,AB=AC=13,BD=1.求:(1)CD的长;(2)BC的长.20.【教材P39复习题T9变式】如图,在边长为1的小正方形组成的网格中,点A,B,C都在格点上,请按要求完成下列各题.(1)线段AB的长为________;(2)若三角形ABC是直角三角形,且边BC的长度为5,请在图中确定点C的位置,并补全三角形ABC.21.【教材P38复习题T8变式】如图,已知AD是△ABC的中线,DE⊥AC于点E,CE=1,DE=2,AE=4.(1)求AD的长;(2)求证:AD垂直平分线段BC.22.【数学建模】小渝和小川是一对好朋友.如图,小渝家住在A处,小川家住在B处,两家相距10千米,小渝家A在一条笔直的公路AC边上,小川家到这条公路的距离BC为6千米,两人相约在公路D处见面,且两家到见面地点D的距离相等.求小渝家A到见面地点D的距离.23.【数学抽象】阅读下面一段文字,然后回答问题.已知在平面内两点P1(x1,y1),P2(x2,y2),其两点间的距离P1P2=(x1-x2)2+(y1-y2)2,同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2-x1|或|y2-y1|.(1)已知A(2,4),B(-3,-8),试求A,B两点间的距离.(2)已知M,N在平行于y轴的直线上,点M的纵坐标为4,点N的纵坐标为-1,试求M,N两点之间的距离.(3)已知一个三角形各顶点坐标为D(1,6),E(-2,2),F(4,2),你能判定此三角形的形状吗?说明理由.24.【阅读理解题】在学习完《勾股定理》这一章后,小力和小美进行了如下对话:根据对话回答问题:(1)判断:等腰直角三角形________“类勾股三角形”(填“是”或“不是”).(2)已知△ABC其中两边长分别为1,7,若△ABC为“类勾股三角形”,则另一边长为________.(3)如果Rt△ABC是“类勾股三角形”,它的三边长分别为a,b,c(a,b为直角边长且a<b,c为斜边长),用只含有a的式子表示其周长和面积.答案一、1.B 2.D 3.B 4.D 5.D 6.D7.D8.C9.C10.B二、11.3,4,512.613.414.等腰直角三角形15.(x-6.8)2+x2=10216.(-3,4)17.318.1点思路:连接AG,EG.设CG=x,则BG=8-x,易得AG=EG,根据勾股定理可得AB2+BG2=AG2=EG2=CE2+CG2,可求得x的值,进而求出BG 的长.三、19.解:(1)∵AB=13,BD=1,∴AD=13-1=12.在Rt△ACD中,CD=AC2-AD2=132-122=5.(2)在Rt△BCD中,BC=BD2+CD2=12+52=26.20.解:(1)5(2)当AC为斜边时,AC=AB2+BC2=5+52=30,即AC2=30.∵30无法表示成两个整数的平方和,∴此时无法满足C点在格点上,故舍去.当BC为斜边时,AC=BC2-AB2=52-5=25,即AC2=20=42+22,此时C点可以在格点上.作图如下:21.(1)解:∵DE⊥AC于点E,∴∠AED=90°.在Rt△ADE中,AD2=AE2+DE2=42+22=20,∴AD=2 5.(2)证明:由(1)知AD2=20.同理可得CD2=5,∴AD2+CD2=25.∵AC=AE+CE=4+1=5,∴AC2=25.∴AD2+CD2=AC2.∴△ADC是直角三角形.∴∠ADC=90°.∵AD是△ABC的中线,∴AD垂直平分线段BC.22.解:由题意得AB=10千米,BC=6千米,AD=BD,BC⊥AC,∴AC=AB2-BC2=102-62=8(千米).设AD=BD=x千米,则CD=AC-AD=(8-x)千米,在Rt△BCD中,BC2+CD2=BD2,即62+(8-x)2=x2,解得x=25 4.答:小渝家A到见面地点D的距离为254千米.点方法:运用勾股定理解决实际问题的一般步骤:1.从实际问题中抽象出几何图形;2.确定要求的线段所在的直角三角形;3.找准直角边和斜边,根据勾股定理建立等量关系;4.求得结果.23.解:(1)由题意可知A,B两点间的距离为(2+3)2+(4+8)2=13.(2)由题意可知,直线MN平行于y轴,∴M,N两点之间的距离为4-(-1)=5.(3)△DEF是等腰三角形.理由如下:DE=(-2-1)2+(2-6)2=5,EF=(4+2)2+(2-2)2=6,DF=(4-1)2+(2-6)2=5,∴DE=DF. ∴△DEF是等腰三角形.24.解:(1)不是(2)2或13(3)∵a<b<c,∴c2+b2>2a2,a2+b2<2c2.∵Rt△ABC是“类勾股三角形”,∴c2+a2=2b2.又∵c2=b2+a2,∴b2+a2+a2=2b2,解得b=2a.∴c=a2+b2=a2+2a2=3a.∴S=12ab=12a·2a=22a2,C=a+b+c=a+2a+3a=(1+2+3)a.第十八章综合素质评价一、选择题(每题3分,共30分)1.已知在▱ABCD中,∠B+∠D=200°,则∠B的度数为() A.100°B.160°C.80°D.60°2.如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()A.14 B.12C.1 D.2(第2题)(第4题)(第5题)(第8题) 3.依据所标数据,下列一定为平行四边形的是()4.【教材P44例2改编】如图,在▱ABCD中,AB=13,AD=5,AC⊥BC,则▱ABCD 的面积为()A.30 B.60 C.65 D.65 25.【教材P53例1改编】如图,在矩形ABCD中,对角线AC,BD交于点O,∠AOB=60°,AB=5,则BD的长为()A.20 B.15 C.10 D.56.关于菱形的性质,以下说法不正确...的是()A.四条边相等B.对角线相等C.对角线互相垂直D.是轴对称图形7.下列命题中,是真命题的为()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形8.如图,已知在菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A.16 3 B.16 C.8 3 D.89.如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB =2,则OE的长度为()A.62 B. 6 C.2 2 D.23(第9题)(第10题)(第11题)(第13题)10.如图,在四边形ABCD中,∠A=∠B=90°,AD=10 cm,BC=8 cm,点P从点D出发,以1 cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是()A.当t=4时,四边形ABMP为矩形B.当t=5时,四边形CDPM为平行四边形C.当CD=PM时,t=4D.当CD=PM时,t=4或6二、填空题(每题3分,共24分)11.如图,在▱ABCD中,AB=5,AC=8,BD=12,则△COD的周长是________.12.在Rt△ABC中,∠C=90°,AC=5,BC=12,则斜边上的中线CD=________. 13.如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC=BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是________(限填序号).14.如图,平行四边形ABCD的三个顶点的坐标分别为A(1,1),B(4,1),D(2,3),要把顶点A平移到顶点C的位置,则其平移方式可以是:先向右平移________个单位长度,再向上平移________个单位长度.(第14题)(第15题)(第16题)(第17题)15.如图,菱形ABCD的对角线AC,BD相交于点O.点E在OB上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为________.16.如图,在矩形ABCD中,E是BC边上一点,AE=AD,DF⊥AE于点F,连接DE,AE=5,BE=4,则DF=________.17.如图,在平行四边形ABCD中,AB⊥AC, AB=3, AC=4,分别以A,C为圆心,大于12AC的长为半径画弧,两弧相交于点M,N,过M,N两点作直线,与BC交于点E,与AD交于点F,连接AE,CF.则四边形AECF的周长为________.18.以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是____________.三、解答题(19,20题每题8分,21,22题每题12分,其余每题13分,共66分)19.如图,在▱ABCD中,点E和点F是对角线BD上的两点,且BF=DE.(1)求证:BE=DF;(2)求证:△ABE≌△CDF.20.如图,四边形ABCD中,AB=DC,将对角线AC向两端分别延长至点E,F,使AE=CF, 连接BE,DF.若BE=DF,证明:四边形ABCD是平行四边形.21.如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4.(1)求证:▱ABCD是矩形;(2)求AD的长.22.【如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠F AC=30°,∠B=45°,求AB的长.23.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF;(2)若正方形的边长是5,BE=2,求AF的长.24.在▱ABCD中,AB≠AD,对角线AC,BD交于点O,AC=10,BD=16.点M,N在对角线BD上,点M从点B出发以每秒1个单位长度的速度向点D运动,到达点D时停止运动,同时点N从点D出发,运动至点B后立即返回,点M停止运动的同时,点N也停止运动,设运动时间为t秒(t>0).(1)若点N的速度为每秒1个单位长度,①如图,当0<t<8时,求证:四边形AMCN是平行四边形;②点M,N运动的过程中,四边形AMCN可能出现的形状是________.A.矩形B.菱形C.正方形(2)若点N的速度为每秒2个单位长度,运动过程中,t为何值时,四边形AMCN是平行四边形?答案一、1.A 2.D 3.D 4.B 5.C 6.B7.D8.C9.B10.D点拨:根据题意,可得DP=t cm,BM=t cm.∵AD=10 cm,BC=8 cm,∴AP=(10-t)cm,CM=(8-t)cm.当四边形ABMP为矩形时,AP=BM,即10-t=t,解得t=5.故A选项错误.当四边形CDPM为平行四边形时,DP=CM,即t=8-t,解得t=4.故B选项错误.当CD=PM时,分两种情况:(1)四边形CDPM是平行四边形,此时CM=PD,即8-t=t,解得t=4.(2)四边形CDPM是等腰梯形,如图,过点M作MG⊥AD于点G,过点C作CH⊥AD于点H,则∠MGP=∠CHD=90°,易得GM=HC.又∵PM=CD,∴Rt△MGP≌Rt△CHD(H L).∴GP=HD.易得GP=t-(8-t)2cm.∴AG=AP+GP=[10-t+t-(8-t)2]cm.又∵BM=t cm,易得AG=BM,∴10-t+t-(8-t)2=t,解得t=6.综上,当CD=PM时,t=4或6.故C选项错误,D选项正确.二、11.1512.13 213.①14.4;215.2516.317.10点思路:根据勾股定理得到BC=AB2+AC2=5,由作图可知,MN是线段AC的垂直平分线,所以EC=EA, AF=CF.易证AE=CE=12BC=2.5.根据平行四边形的性质得到AD=BC=5,CD=AB=3,∠ACD=∠BAC=90°,同理证得AF=CF=2.5,于是得到结论.18.30°或150°点拨:分两种情况.(1)如图,等边三角形ADE在正方形ABCD的内部,则∠CDE=∠CDA-∠ADE=90°-60°=30°.又∵CD=AD=DE,∴∠DCE=75°.∴∠ECB=15°.同理,∠EBC=15°.∴∠BEC=150°.(2)如图,等边三角形ADE在正方形ABCD的外部,则∠CDE=∠CDA+∠ADE=90°+60°=150°.又∵CD=AD=DE,∴∠CED=15°.同理,∠AEB=15°.∴∠BEC=∠AED-∠CED-∠AEB=60°-15°-15°=30°.三、19.证明:(1)∵BF =DE ,∴BF -EF =DE -EF ,即BE =DF . (2)∵四边形ABCD 为平行四边形, ∴AB =CD ,且AB ∥CD . ∴∠ABE =∠CDF . 在△ABE 和△CDF 中,⎩⎨⎧AB =CD ,∠ABE =∠CDF ,BE =DF ,∴△ABE ≌△CDF (SAS ).20.证明:在△BEA 和△DFC 中,⎩⎨⎧AB =CD ,AE =CF ,BE =DF ,∴△BEA ≌△DFC (SSS ). ∴∠EAB =∠FCD . ∴∠BAC =∠DCA . ∴AB ∥DC .∵AB =DC ,∴四边形ABCD 是平行四边形. 21.(1)证明:∵△AOB 是等边三角形,∴OA =OB .∵四边形ABCD 是平行四边形, ∴OB =OD =12BD ,OA =OC =12AC . ∴BD =AC . ∴▱ABCD 是矩形. (2)解:∵▱ABCD 是矩形, ∴∠BAD =90°. 又易知∠ABO =60°,∴∠ADB =90°-60°=30°.∴BD =2AB =8.∴AD =BD 2-AB 2=82-42=4 3.22.(1)证明:在△ABC 中,点D 是AC 的中点,∴AD=DC.∵AF∥BC,∴∠F AD=∠ECD,∠AFD=∠CED.∴△AFD≌△CED(AAS).∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.又∵EF⊥AC,∴平行四边形AECF是菱形.(2)解:如图,过点A作AG⊥BC于点G.由(1)知四边形AECF是菱形,又CF=2,∠F AC=30°,∴AE=CF=2,∠F AE=2∠F AC=60°.∵AF∥BC,∴∠AEB=∠F AE=60°.∴∠GAE=30°.∴GE=12AE=1.∴AG=AE2-GE2= 3.∵∠B=45°,∴AG=BG= 3.∴AB=AG2+BG2= 6.23.(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=∠D=90°.∴∠BAE+∠AEB=90°.∵BH⊥AE,∴∠BHE=90°.∴∠AEB+∠EBH=90°.∴∠BAE=∠EBH.在△ABE 和△BCF 中,⎩⎨⎧∠BAE =∠CBF ,AB =BC ,∠ABE =∠BCF ,∴△ABE ≌△BCF (ASA ). ∴AE =BF .(2)解:由(1)得△ABE ≌△BCF , ∴BE =CF .∵正方形的边长是5,BE =2, ∴DF =CD -CF =CD -BE =5-2=3.在Rt △ADF 中,由勾股定理得AF =AD 2+DF 2=52+32=34. 24.(1)①证明:当0<t <8时,根据题意,得BM =DN =t .∵四边形ABCD 是平行四边形, ∴OA =OC ,OB =OD . ∴OB -BM =OD -DN . ∴OM =ON .∴四边形AMCN 是平行四边形. ②A(2)解:若点N 的速度为每秒2个单位长度,则0<t ≤8时,点N 从点D 向点B 运动,点M 在线段OB 上;当8<t ≤16时,点N 从点B 向点D 运动,点M 在线段OD 上.若四边形AMCN 是平行四边形,则OM =ON 且点M ,N 在点O 的两侧,当0<t ≤4时,ON =8-2t ,OM =8-t ,OM 与ON 不可能相等,不存在四边形AMCN 是平行四边形;当4<t ≤8时,点M ,N 在点O 的同侧,不存在四边形AMCN 是平行四边形; 当8<t ≤12时,点M ,N 在点O 的两侧,OM =t -8,ON =24-2t ,此时存在OM =ON ,即t -8=24-2t ,解得t =323;当12<t ≤16时,点M ,N 都在线段OD 上,点M ,N 在点O 的同侧,不存在四边形AMCN 是平行四边形.综上,当t =323时,四边形AMCN 是平行四边形.点思路:(1)② ∵AB ≠AD ,∴四边形ABCD 不可能是菱形或正方形. ∴AC 与MN 不能垂直.∴四边形AMCN 不可能是正方形或菱形. ∴当MN =AC 时,四边形AMCN 可以是矩形.第十九章综合素质评价一、选择题(每题3分,共30分)1.寒冷的冬天里我们在利用空调制热调控室内温度的过程中,空调的每小时用电量随开机设置温度的高低而变化,这个问题中自变量是( ) A .每小时用电量 B .室内温度 C .开机设置温度 D .用电时间 2.函数y =x +1x -3的自变量x 的取值范围是( )A .x ≠3B .x ≥3C .x ≥-1且x ≠3D .x ≥-13.下列图象中,表示y 是x 的函数的是( )4.一个正比例函数的图象经过点(2,-1),则它的解析式为( )A .y =-2xB .y =2xC .y =-12xD .y =12x5.把直线y =x 向上平移3个单位长度,下列点在该平移后的直线上的是( )A .(2,2)B .(2,3)C .(2,4)D .(2,5)6.在直角坐标系中,已知点A ⎝ ⎛⎭⎪⎫32,m ,点B ⎝ ⎛⎭⎪⎫72,n 是直线y =kx +b (k <0)上的两点,则m ,n 的大小关系是( ) A .m <n B .m >n C .m ≥n D .m ≤n7.李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽误了几分钟,为了按时到单位,李叔叔在不违反交通规则的前提下加快了速度,仍保持匀速行驶,则汽车行驶的路程y(千米)与行驶的时间t(小时)的函数关系的大致图象是()8.表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象可能是()9.某品牌鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16 cm,44码鞋子的长度为27 cm,则38码鞋子的长度为()A.23 cm B.24 cm C.25 cm D.26 cm10.北京冬奥会开幕式上,以“二十四节气”为主题的倒计时短片,用“中国式浪漫”美学惊艳了世界,下图是一年中部分节气所对应的白昼时长示意图,给出下列结论:①从立春到大寒,白昼时长先增大再减小;②夏至时白昼时长最长;③春分和秋分,昼夜时长大致相等.其中正确的是()A.①②B.②③C.②D.③二、填空题(每题3分,共24分)11.函数y=(m-2)x|m|-1+m+2是关于x的一次函数,则m=________.12.已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:______________.13.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.14.如图,直线y=x+2与直线y=ax+4相交于点A(1,3),则关于x的不等式ax+4≥x+2的解集为__________.(第14题)(第17题)(第18题)15.关于x的一次函数y=(2-m)x-3m的图象经过第一、三、四象限,则m的取值范围为__________.16.声音在空气中传播的速度简称音速,科学研究发现声音在空气中传播的速度(m/s)与气温(℃)有关,下表列出了一组不同气温时的音速:用y(m/s)表示音速,用x(℃)表示气温,则y与x之间的关系式为____________.17.如图,AB,CB表示某工厂甲、乙两车间产品的总量y(t)与生产时间x(天)之间的函数图象,第30天结束时,甲、乙两车间产品总量为________t. 18.日常生活中常用的二维码是由许多大小相同的黑白两色小正方形按某种规律组成的一个大正方形,图①是一个20×20格式(即黑白两色小正方形个数的和是400)的二维码,左上角、左下角、右上角是三个相同的7×7格式的正方形,将其中一个放大后如图②,除这三个正方形外,图①中其他的黑色小正方形个数y与白色小正方形个数x正好满足图③所示的函数图象,则图①所示的二维码中共有个白色小正方形.三、解答题(19,20题每题12分,其余每题14分,共66分)19.【教材P107复习题T4(2)改编】一次函数的图象经过(-2,1)和(1,4)两点.(1)求这个一次函数的解析式;(2)当x=3时,求y的值.20.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=-x -2与坐标轴交于B、D两点,两线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)利用图象求当x取何值时,y1>y2.21.随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18 km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数解析式;(2)何时乙骑行在甲的前面?22.某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.23.如图,在平面直角坐标系中,线段AB的端点为A(-8,19),B(6,5).(1)求AB所在直线的解析式;(2)某同学设计了一个动画:在函数y=mx+n(m≠0,y≥0)中,分别输入m和n的值,便得到射线CD,其中C(c,0),当c=2时,会从C处弹出一个光点P,并沿CD飞行;当c≠2时,只发出射线而无光点弹出.①若有光点P弹出,试推算m,n应满足的数量关系;②当有光点P弹出,并击中线段AB上的整点(横、纵坐标都是整数)时,线段AB就会发光,求此时整数m的个数.答案一、1.C 2.C 3.D 4.C 5.D 6.A 7.B 8.A 9.B 10.B二、11.-2 12.y =-x +1(答案不唯一) 13.-2 14.x ≤1 15.0<m <2 16.y =2x +330 17.1 50018.198 点拨:设y =kx +b ,由题意得⎩⎨⎧b =28,-56k +b =0,解得⎩⎪⎨⎪⎧b =28,k =12.∴y =12x +28.∵黑白两色小正方形个数的和是400, ∴7×7×3+x +12x +28=400,解得x =150.∵三个7×7格式的正方形中白色小正方形的个数为16×3=48, ∴该20×20格式的二维码中共有白色小正方形150+48=198(个). 三、19.解:(1)设一次函数的解析式为y =kx +b .将点(-2,1)和(1,4)的坐标代入解析式,得 ⎩⎨⎧-2k +b =1,k +b =4,解得⎩⎨⎧k =1,b =3. ∴一次函数的解析式为y =x +3. (2)当x =3时,y =3+3=6.20.解:(1)当y 1=y 2时,有2x +1=-x -2,解得x =-1,∴y =-1.∴P (-1,-1). (2)令x =0,得y 1=1,y 2=-2, ∴A (0,1),B (0,-2).∴AB =3. ∴S △APB =12×1×3=32.(3)由图象可知:当y 1>y 2时,x 的取值范围是x >-1.21.解:(1)s 与t 之间的函数解析式为s =⎩⎨⎧15t (0≤t ≤0.2),20t -1(t >0.2).(2)设a h 后乙骑行在甲的前面. 根据题意,得20a -1>18a , 解得a >0.5.答:0.5 h 后乙骑行在甲的前面.22.解:(1)设每桶甲消毒液的价格是x 元,每桶乙消毒液的价格是y 元.根据题意,得⎩⎨⎧9x +6y =615,8x +12y =780,解得⎩⎨⎧x =45,y =35.答:每桶甲消毒液的价格是45元,每桶乙消毒液的价格是35元. (2)根据题意,得W =45a +35(30-a )=10a +1 050. ∵10>0,∴W 随a 的增大而增大.∵甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍,∴⎩⎨⎧a ≥30-a +5,a ≤2(30-a ), 解得17.5≤a ≤20. ∵a 为整数,∴当a =18时,W 取得最小值,此时W =1 230,30-a =12.答:购买甲消毒液18桶、乙消毒液12桶,才能使总费用W 最少,最少费用是1 230元.23.解:(1)设AB 所在直线的解析式为y =kx +b .把点A (-8,19),B (6,5)的坐标分别代入y =kx +b ,得⎩⎨⎧-8k +b =19,6k +b =5,解得⎩⎨⎧k =-1,b =11.∴AB 所在直线的解析式为y =-x +11.(2)①由题意知,直线y =mx +n 经过点C (2,0),∴2m+n=0;②设线段AB上的整点为(t,-t+11),则tm+n=-t+11.∵2m+n=0,∴(t-2)m=-t+11.易知t-2≠0,∴m=-t+11t-2=-1+9t-2.∵-8≤t≤6,且t为整数,m也是整数,∴t-2=±1,±3或±9,解得t=1,3,5,-1,-7或11.∵当t=1时,m=-10;当t=3时,m=8;当t=5时,m=2;当t=-1时,m=-4;当t=-7时,m=-2;当t=11时,m=0(不符合题意,舍去).∴符合题意的整数m的个数为5.第二十章综合素质评价一、选择题(每题3分,共30分)1.某班5名同学参加学校“感党恩,跟党走”主题演讲比赛,他们的成绩(单位:分)分别是8,6,8,7,9,这组数据的中位数是()A.6 B.7 C.8 D.92.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表所示.所售30双女鞋尺码的众数是()A.25 cm B.24 cm C.23.5 cm D.23 cm3.某校健美操队共有10名队员,统计队员的年龄情况,结果如下:13岁3人,14岁5人,15岁2人,该健美操队队员的平均年龄为()A.14.2岁B.14.1岁C.13.9岁D.13.7岁4.在学校举行的“庆祝百周年,赞歌献给党”合唱比赛中,七位评委给某班的评分去掉一个最高分、一个最低分后得到五个有效评分,分别为:9.0,9.2,9.0,8.8,9.0(单位:分).这五个有效评分的平均数和众数分别是()A.9.0分,8.9分B.8.9分,8.9分C.9.0分,9.0分D.8.9分,9.0分5.甲、乙两人在相同的条件下,各射击10次,经计算:甲射击成绩的平均数是8环,方差是1.1;乙射击成绩的平均数是8环,方差是1.5.下列说法中不一..定.正确的是()A.甲、乙的总环数相同B.甲的成绩比乙的成绩稳定C.乙的成绩比甲的成绩波动大D.甲、乙成绩的众数相同6.为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间条形统计图(如图),则所调查学生睡眠时间的众数、中位数分别为()A.7 h,7 h B.8 h,7.5 hC.7 h,7.5 h D.8 h,8 h7.甲、乙两人进行飞镖比赛,每人各投6次,他们的成绩如下表(单位:环):如果两人的比赛成绩的中位数相同,那么乙第三次的成绩是()A.6环B.7环C.8环D.9环8.从小到大的一组数据-1,1,2,x,6,8的中位数为2,则这组数据的众数和平均数分别是()A.2,4 B.2,3 C.1,4 D.1,39.学校朗诵比赛,共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉一个最高分、一个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数据特征是()A.平均数B.中位数C.众数D.方差10.【数据分析】为了解某小区居民的用水情况,随机抽查了若干户家庭的某月用水量,统计结果如下表所示.关于这若干户家庭的该月用水量的数据统计分析,下列说法正确的是() A.众数是5 B.平均数是7C.中位数是5 D.方差是1二、填空题(每题3分,共24分)11.学校为落实立德树人,发展素质教育,加强美育,需要招聘两位艺术老师,对学历、笔试、上课和现场答辩四个项目进行测试,以最终得分择优录取.甲、乙、丙三位应聘者的测试成绩(10分制)如表所记,如果四项得分按照“1:1:1:1”的比例确定每人的最终得分,丙得分最高,甲与乙得分相同,分不出谁将被淘汰;鉴于教师行业应在“上课”项目上权重大一些(其他项目比例相同),为此设计了新的计分比例,你认为三位应聘者中________将被淘汰(填:甲、乙或丙).12.今年4月23日是第27个世界读书日,某校举行了演讲大赛,演讲得分按“演。

人教版八年级数学下册第16章综合能力检测卷

人教版八年级数学下册第16章综合能力检测卷

所以 C 错误; 2 1 = 2 2=2 ,所以 D 正确.故选 D. 2
5.A
解析:
24 3 15 2
2
2 3
2=
48 3
30 2
1Hale Waihona Puke =4 33 330 8 3
3
= 20 3 3 30 .故选 A. 3
6.B
解析:由题意,得 x-2≥0 且 2-x≥0,所以 x=2,则 y=3.所以 yx =9,所以 yx 的算术平
3y 1
1 的值是(
)
x 1
yy
A. 1 3 3
B. 4 3
C.16 3
D. 64 3
9.若 3,m,5 为三角形的三边长,则化简 2 m2 m 82 的结果为( )
A.6
B.2m-10
C.2m-6
D.10
10.对于任意的正数
m,n,定义运算※为:m※n=
m m
n (m≥n) ,计算(3※2)× n (m<n)
所以 a2 b2 a b2
= a b ab
=abab = 2b 名师点睛:本题数轴中隐含着解题所需要的信息,需要解题者细心挖掘,体现了数形结
合的数学思想.
19.解析:(1)
2
x y
2
x y
=x 2 xy y x 2 xy y
=4 xy 当x= 6 2,y= 6 2时
方根是 3.故选 B. 7.C
解析:因为 18x 2 x 2x =3 2x 2 2x 2x =10 ,所以5 2x =10 ,所以
2
2
2x =2,所以x=2 .
8.B
解析:因为 x<1,所以 y= x 1 3= 1 3=2 ,所以 y 3y 1 1 =2 6 1 1

八年级数学第十六章测试题2-初中二年级数学试题练习、期中期末试卷-初中数学试卷

八年级数学第十六章测试题2-初中二年级数学试题练习、期中期末试卷-初中数学试卷

八年级数学第十六章测试题2-初中二年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载八年级数学第十六章测试题一、选择题(每小题3分,共24分):1、在式子:中,分式的个数是()A、2B、3C、4D、52、如果把分式中的x、y都扩大10倍,则分式的值是()A、扩大100倍B、扩大10倍C、不变D、缩小到原来的3、下列等式成立的是()A、B、C、(a12)2=a14D、4、某厂去年产值是m万元,今年产值是n万元(m<n),则今年的产值比去年的产值增加的百分比是()A、B、C、D、5、如图所示的电路总电阻是6Ω,若R1=3R2,则R1、R2的值分别是()A、R1=45Ω,R2=15ΩB、R1=24Ω,R2=8ΩC、R1=Ω,R2=ΩD、R1=Ω,R2=Ω6、若分式的值为0,则的取值为()A、B、C、D、无法确定7、下列约分正确的是()A、;B、;C、;D、8、若分式的值为正数,则()A、B、C、D、二、填空题(每小题3分,共30分):9、,满足关系_____时,分式无意义。

10、,=________11、化简的结果是_____12、已知,则的值是______13、我国是一个水资源贫乏的国家,每一个公民都应养成节约用水的意识和习惯。

为提高水资源的利用效率,某住宅小区安装了循环用水装置,经测算,原来天需用水吨,现在这些水可多用5天,现在每天比原来少用水吨。

14、分式的最简公分母为15、观察下面一列有规律的数:,,,,,,…根据规律可知第n个数应是(n为正整数)16、计算:=___________17、某车间加工1200个零件,原来每天可加工x个零件,如果采用新工艺,工效是原来的1.5倍,可比原来提前10天完成,则可列方程:18、关于的方程无解,则a=_______.三、算一算(每小题5分,共20分):19、20、21、22、化简求值:,其中四、解方程(每小题6分,共12分):23、24、五、学以致用(每小题7分,共14分):25、比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴出发,到相距16米的银杏树下参加探讨环境保护问题的微型动物首脑会议。

初二数学十六章综合测试.doc

初二数学十六章综合测试.doc

初二数学十六章综合测试一、选择题1、已知0<x<3,化简|5|)12(2--+x x 的结果是( )A 、3x-4B 、x-4C 、3x+6D 、-x-62、0.81的平方根是( ) A 、0.9 B 、±0.9 C 、0.09 D 、±0.093、计算)21(8--的结果是( ) A 、123- B 、123+ C 、12- D 、12+ 4、下列各组数中互为相反数的是( )A 、-2与2)2(-B 、-2与38-C 、-2与21- D 、| -2 |与2 5、有下列说法,其中正确的说法有( ) A 、1个 B 、2个 C 、3个 D 、4个 ①负数和零没有算术平方根;②计算132+的结果是13-;③38ab 和b a 232是同类二次根式;④化简2221x x x +-(x>1)的结果是x x 1-。

6、下列正确的是( )A 、552332=+B 、228=÷C 、652535=⋅D 、212214= 7、不查表,估计76的大小应在( )A 、7—8之间B 、8.0—8.5之间C 、8.5—9.0之间D 、9—10之间8、若a<0,则b a 2化简后为( ) A 、b a B 、b a - C 、b a - D 、b a --9、计算23-得( ) A 、12 B 、 12- C 、18 D 、18-10、计算:01)2004()3(3|31|-+⨯+--的值是( ) A 、32 B 、32- C 、2 D 、011、若x 为实数,则| x |-x 表示的数一定是( )A 、负数 B 、非负数 C 、正数 D 、非正数12、若表示a 、b 两个实数的点在数轴上的位置如图所示,则化简2)(||b a b a ++-的结果为( )A 、2aB 、2bC 、-2aD 、-2b二、填空题13、比较大小:当实数a<0时,1+a 1-a ;14、若m =30,则2.1= ;15、一个实数的平方根是a+3和2a-3,则这个实数是 ;16、在数731,Λ22.3.,2π,8,0.4040040004中无理数的个数是 ; 17、25的平方根是 ;18、△ABC 的三边长为a 、b 、c ,且a 、b 满足09622=+-+-b b a ,则△ABC 的周长的取值范围是 ;19、在数轴上点A 表示实数87-,点B 表示76-,那么离原点较远的点是 ;20、与数轴上的点成一一对应关系的数是 ;21、若12)1(212-+-+-=x x x y ,则代数式2004)(y x += ;22、等式xx x x --=--5353成立,则x 的取值范围是 ; 三、解答题23、计算:|23|22221418---++, 24、计算:)13(12)21()2(2102-⋅--+ 25、求x 的值:64125)1(83-=-x 26、化简求值:24422222-++-÷+-yxy x y x y x y x ,其中122,22-=-=y x 。

人教版八年级数学下册16-20章综合测试卷共五套01答案

人教版八年级数学下册16-20章综合测试卷共五套01答案

人教版八年级数学下册 第十六章综合测试卷01一、选择题(每小题4分,共32分)1.x 的取值范围是( ) A .3x <B .3x ≤C .3x >D .3x ≥2.下列式子中,是最简二次根式的是( )ABCD3.若0a < )A .B .-C .D .-4.下列运算正确的是( )A 5±B .1CD 5.下列计算结果正确的是( )AB .7CD6. )A .B .C .D .7.()230x +=,则x y -的值为( ) A .4B .4-C .7D .7-8.3a -的正整数a 的值有( )A .1个B .2个C .3个D .4个二、填空题(每小题4分,共24分)9.如果2a +成立,那么实数a 的取值范围是________.10.已知x x 的最小值是________.11.已知|1|0a -,则=b a ________.12.已知1m =1n =________.13.=________.14.计算________.三、解答题(共44分)15.化简.(每小题4分,共8分)(1;(2)(3x -.16.计算.(每小题5分,共20分)(1)0a b >0,>;(2)((3;(4⎛- ⎝.17.先化简,再求值.(每小题5分,共10分)(1)若()1401a aa +=<<(2)已知x =y =x yy x+的值.18.(6分)已知一个直角三角形两直角边长分别为a =,b =,求这个直角三角形的面积.第十六章综合测试答案解析一、1.【答案】D30x-≥,所以x的取值范围是3x≥.答案选D.2.【答案】A||a b =最简二次根式的条件.故选A.3.【答案】B()()0,||0,a aaa a⎧⎪==⎨-⎪⎩≥<所以当0a<=-B.4.【答案】D,故A项不正确;==,故B,故C,故D项正确.5.【答案】C【解析】A选项,被开方数不相同,不能合并;B选项,=CD,故A,B,D选项均错误,C选项正确.6.【答案】A【解析】==,故选A.7.【答案】B【解析】由二次根式和平方的非负性,得1030yx-=⎧⎨+=⎩,,所以13yx=⎧⎨=-⎩,,所以314x y-=--=-.8.【答案】C3a -,所以30a -≤.所以3a ≤.所以正整数a 的值可以为1,2,3,共3个.二、9.【答案】2a ≤【解析】因为2a +=2a =-.所以20a -≤.所以2a ≤.10.【答案】3x 是正整数,当12x=,3x =6=,所以x 的最小值是3. 11.【答案】1【解析】因为|1|0a-≥0,|1|0a -,所以|1|=0a -,即10a -=,80b -=.所以1a =,8b =.所以811b a ==. 12.【答案】3【解析】因为(11m n -=+=,((111mn ==-g ,所以3===.三、 13.【答案】0【解析】原式0.14.【答案】3【解析】原式(=3=.15.【答案】(1.(2)由二次根式有意义的条件及分母不为0,得30x ->,即30x -<.所以((33x x -=--=. 16.【答案】(1)原式=. (2)原式(=6=-(3)原式126⨯=22.(4)原式⎛-⎝()25513⎛-⎝==-=17.【答案】(1)因为14aa+=,所以122aa+-=.所以2222+-=,即22=.因为01a<<,所以11a>.=(2)因为12x==,12y==,所以x yy x+=+12=.18.【答案】)211cm22S ab==⨯==.答:这个直角三角形的面积是2.人教版八年级数学下册 第十七章综合测试卷01一、选择题(每小题4分,共32分)1.底边长为10cm ,底边上的高为12cm 的等腰三角形的腰长为( ) A .12cmB .13cmC .14cmD .15cm2.下列各组数中,是勾股数的是() A .5,6,7B .40,41,9C .12,1,32D .0.2,0.3,0.43.已知直角三角形的两条边长分别是5和12,则第三条边长为( ) A .13B .119C .13或119D .不能确定4.在Rt ABC △中,=90C ︒∠,9AC =,12BC =,则点C 到AB 的距离是( )A .365B .1225C .94D .335.“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的大正方形。

人教版初中数学八年级下册16-20章全册测试卷及期中期末附答案

人教版初中数学八年级下册16-20章全册测试卷及期中期末附答案

第十六章测试卷一、选择题(每题3分,共30分)1.若x+2在实数范围内有意义,则x的取值范围是()A.x≥0 B.x≤2 C.x≥-2 D.x≥2 2.下列等式正确的是()A.(7)2=7 B.(-7)2=-7C.73=7 D.(-7)2=-73.下列二次根式中,最简二次根式是()A.30B.12C.8D.1 24.下列等式成立的是()A.3+42=7 2 B.3×2=5C.3÷16=2 3 D.(-3)2=35.∵23=22×3=12,①-23=(-2)2×3=12,②∴23=-23,③∴2=-2.④以上推导中的错误出在第几步?()A.①B.②C.③D.④6.下列计算正确的是()A.a+b=abB.(-a2)2=-a4C.1a=aD.a÷b=ab(a≥0,b>0)7.估计5+2×10的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间8.若x为实数,在“(3+1)x”的“”中添上一种运算符号(在“+,-,×,÷”中选择)后,其运算的结果为有理数,则x不可能是()A.3+1B.3-1C.2 3 D.1-39.已知a,b,c为△ABC的三边长,且a2-2ab+b2+|b-c|=0,则△ABC的形状是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形10.已知m=1+2,n=1-2,则代数式m2+n2-3mn的值为() A.9 B.±3C.3 D.5二、填空题(每题3分,共24分)11.计算:23÷5×15=________.12.如果两个最简二次根式3a-1与2a+3能合并,那么a=________.13.比较:5-12________12(填“>”“=”或“<”).14.实数a在数轴上对应的点的位置如图所示,则(a-4)2+(a-11)2化简后为________.15.实数a,b满足a+1+4a2+4ab+b2=0,则b a的值为________.16.【教材P10练习T3变式】△ABC的面积S=12 cm2,底边a=2 3 cm,则底边上的高为__________.17.若xy <0,则x 2y 化简的结果是__________.18.【教材P 16阅读与思考改编】已知三角形的三边长分别为a ,b ,c ,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式S =p (p -a )(p -b )(p -c ),其中p =a +b +c2;我国南宋时期数学家秦九韶曾提出利用三角形的三边求其面积的秦九韶公式S =12a 2b 2-⎝⎛⎭⎪⎫a 2+b 2-c 222,若一个三角形的三边长分别为2,3,4,则其面积是________.三、解答题(19题16分,20题8分,24题12分,其余每题10分,共66分) 19.计算下列各式: (1)20+5(2+5);(2)【教材P 14例3(2)改编】(46-32)÷22;(3)218-418+332;(4)(3+2-6)2-(2-3+6)2.20.若二次根式2x-6无意义,化简|x-4|-|7-x|.21.【教材P19复习题T5改编】若a=3-10,求代数式a2-6a-2的值.22.已知a ,b ,c 满足|a -8|+b -5-(c -18)2=0. (1)求a ,b ,c 的值.(2)试问以a ,b ,c 为边能否构成三角形?若能构成三角形,请求出三角形的周长;若不能,请说明理由.23.阅读理解:我们把⎪⎪⎪⎪⎪⎪a b c d 称为二阶行列式,规定其运算法则为⎪⎪⎪⎪⎪⎪a b c d =ad -bc .如⎪⎪⎪⎪⎪⎪2345=2×5-3×4=-2. (1)计算:⎪⎪⎪⎪⎪⎪2261224; (2)如果⎪⎪⎪⎪⎪⎪3x +12x =0,求x 的值.24.我们学习了二次根式,那么所有的非负数都可以看成是一个数的平方,如3=(3)2,5=(5)2,下面我们观察:(2-1)2=(2)2-2×1×2+12=2-22+1=3-22;反之,3-22=2-22+1=(2-1)2,∴3-22=(2-1)2,∴3-22=2-1.(1)化简3+2 2.(2)化简4+2 3.(3)化简4-12.(4)若a±2 b=m±n,则m,n与a,b的关系是什么?并说明理由.答案一、1.C 2.A 3.A 4.D 5.B 6.D 7.B 8.C 9.B10.C 点拨:∵m -n =(1+2)-(1-2)=22,mn =(1+2)(1-2)=-1,∴m 2+n 2-3mn =(m -n )2-mn =(22)2-(-1)=9=3. 二、11.235 12.4 13.> 14.7 15.12 16.43 cm17.-x y 点拨:∵xy <0,x 2y >0,∴x <0,y >0. ∴x 2y =-x y . 18.3154三、19.解:(1)原式=25+25+(5)2=45+5;(2)原式=46÷22-32÷22=23-32; (3)原式=62-2+122=172;(4)原式=(3+2-6+2-3+6)·(3+2-6-2+3-6) =22×(23-26) =46-8 3.20.解:∵二次根式2x -6无意义,∴2x -6<0,∴x <3, ∴x -4<0,7-x >0.∴|x -4|-|7-x |=4-x -(7-x )=4-x -7+x =-3. 21.解:a 2-6a -2=(a -3)2-11,将a =3-10代入上式,得(3-10-3)2-11=10-11=-1,∴a 2-6a -2=-1.22.解:(1)a =22,b =5,c =3 2.(2)∵22+32=52>5,32-22=2<5, ∴以a ,b ,c 为边能构成三角形. 三角形的周长为22+32+5=52+5.23.解:(1)⎪⎪⎪⎪⎪⎪2261224=2×24-12×26=43-23=2 3.(2)因为⎪⎪⎪⎪⎪⎪3x +12x =0, 所以3x -2(x +1)=0, 即(3-2)x =2. 则x =23-2=-2(3+2)=-23-4. 24.解:(1)3+22=(2+1)2=2+1.(2)4+23=(3+1)2=3+1.(3)4-12=4-23=(3-1)2=3-1. (4)⎩⎨⎧m +n =a ,mn =b .理由:把a ±2b =m ±n 两边平方,得a ±2b =m +n ±2mn ,∴⎩⎨⎧m +n =a ,mn =b .第十七章达标测试卷一、选择题(每题3分,共30分)1.设直角三角形的两条直角边长分别为a 和b ,斜边长为c ,已知b =12,c =13,则a =( ) A .1B .5C .10D .252.在Rt △ABC 中,∠ACB =90°,AB =3,则AB 2+BC 2+AC 2=( )A .9B .18C .20D .243.把命题“如果x =y ,那么x =y ”作为原命题,下列对原命题和它的逆命题真假判断正确的是( ) A .原命题和逆命题都是真命题 B .原命题和逆命题都是假命题 C .原命题是真命题,逆命题是假命题 D .原命题是假命题,逆命题是真命题4.如图,在三角形纸片ABC 中,AB =AC ,∠BAC =90°,点E 为AB 的中点.沿过点E 的直线折叠,使点B 与点A 重合,折痕EF 交BC 于点F .已知EF =32,则BC 的长是( ) A.322B .3 2C .3D .33(第4题) (第5题) (第6题)5.如图,△ABC 和△DCE 都是边长为4的等边三角形,点B ,C ,E 在同一条直线上,连接BD ,则BD 的长为( ) A. 3B .2 3C .3 3D .4 36.如图,在平面直角坐标系中,点P 的坐标为(-2,3),以点O 为圆心,以OP的长为半径画弧,交x 轴的负半轴于点A ,则点A 的横坐标介于( ) A .-4和-3之间 B .3和4之间 C .-5和-4之间D .4和5之间7.如图,小巷左右两侧都是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左端墙脚的距离为0.7 m ,顶端距离地面2.4 m ,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2 m,则小巷的宽度为()A.0.7 m B.1.5 m C.2.2 m D.2.4 m(第7题)(第8题)8.如图是台阶的示意图,已知每级台阶的宽度都是30 cm,每级台阶的高度都是15 cm,连接AB,则AB等于()A.195 cm B.200 cm C.205 cm D.210 cm 9.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短路程是() A.20 B.25 C.30 D.32(第9题) (第10题)10.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3二、填空题(每题3分,共24分)11.已知在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,∠C=90°,c=10,a∶b=3∶4,则a=________.12.已知正方形的面积为8,则其对角线的长为________.13.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:____________________________________,该逆命题是________(填“真”或“假”)命题.14.已知a,b,c是△ABC的三边长,且满足关系式c2-a2-b2+|a-b|=0,则△ABC的形状为__________________________________________.15.一艘轮船以16 n mile/h的速度离开港口向东南方向航行,另一艘轮船在同时同地以12 n mile/h的速度向西南方向航行,则1.5 h后两船相距________n mile.16.如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB于点E,则DE=________.(第16题)(第17题)17.定义:点M,N把线段AB分割成三条线段AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称M,N是线段AB的勾股分割点.如图,M,N是线段AB的勾股分割点,若AM=2,MN=3,则BN的长为________.18.我们定义:有一组邻边相等的凸边形叫做“等邻边四边形”.在Rt△ABC中,∠ACB=90°,AB=4,AC=2,D是BC的中点,M是AB边上一点,当四边形ACDM是“等邻边四边形”时,BM的长为__________.三、解答题(19~22题每题10分,23题12分,24题14分,共66分)19.如图,在△ABC中,CD⊥AB于D,AB=AC=13,BD=1.求:(1)CD的长;(2)BC的长.20.如图,分别以Rt△ABC的三边为斜边向外作等腰直角三角形,若斜边AB=4,求图中阴影部分的面积.21.如图,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P从点A 开始沿AB边向B点以1 cm/s的速度移动;点Q从点B开始沿BC边向点C 以2 cm/s的速度移动.如果同时出发,经过3 s,△PBQ的面积为多少?22.如图,OA⊥OB,OA=45 cm,OB=15 cm,一机器人在B处发现有一个小球自A点出发沿着AO方向匀速滚向点O,机器人立即从B处出发以相同的速度匀速直线前进去拦截小球,在点C处截住了小球,求机器人行走的路程BC.23.如图,某沿海城市A接到台风警报,在该城市正南方向260 km的B处有一台风中心,沿BC方向以15 km/h的速度向C移动,已知城市A到BC的距离AD=100 km,那么台风中心经过多长时间从B点移动到D点?如果在距台风中心30 km的圆形区域内都将受到台风的影响,正在D点休息的游人在接到台风警报后的几小时内撤离才可以免受台风的影响?24.问题背景在△ABC中,AB,BC,AC的长分别为5,10,13,求这个三角形的面积.晓辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长均为1),再在网格中画出格点三角形ABC(即△ABC的三个顶点都在小正方形的顶点处),如图①所示,这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你直接写出△ABC的面积:________.(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC的三边长分别为5a,22a,17a(a>0),请利用图②的正方形网格(每个小正方形的边长均为a)画出相应的△ABC,并求出它的面积.探索创新(3)若△ABC的三边长分别为m2+16n2,9m2+4n2,2m2+n2(m>0,n>0,且m≠n),试运用构图法(自己重新设计一个符合结构特征的网格)求出这个三角形的面积.答案一、1.B 2.B 3.D 4.B 5.D 6.A 7.C 8.A 9.B 10.D 二、11.6 12.413.如果两个三角形的面积相等,那么这两个三角形全等;假 14.等腰直角三角形15.30 点拨:如图,东南方向即南偏东45°,西南方向即南偏西45°,故两艘轮船航行的方向OA ,OB 成直角,OA =16×1.5=24(n mile),OB =12×1.5=18(n mile).连接AB ,在Rt △AOB 中,由勾股定理得AB 2=AO 2+BO 2=242+182=900,所以AB =30 n mile.16.6013 17.5或1318.2,3或135三、19.解:(1)∵AB =13,BD =1,∴AD =13-1=12.在Rt △ACD 中,CD =AC 2-AD 2=132-122=5. (2)在Rt △BCD 中,BC =BD 2+CD 2=12+52=26. 20.解:设阴影部分三个三角形的直角边长分别为a ,b ,c ,则S 阴影=12a 2+12b 2+12c 2, AC 2=2a 2,BC 2=2b 2,AB 2=2c 2. 在Rt △ABC 中,AC 2+BC 2=AB 2, ∴12a 2+12b 2+12c 2=12AB 2. ∵AB =4, ∴S 阴影=12×42=8.21.解:依题意,设AB =3k cm ,BC =4k cm ,AC =5k cm ,则3k +4k +5k =36,∴k =3.∴AB =9 cm ,BC =12 cm ,AC =15 cm. ∵AB 2+BC 2=AC 2,∴△ABC 是直角三角形且∠B =90°.点P ,Q 分别从点A ,B 同时出发3 s 后,BP =9-1×3=6 (cm),BQ =2×3=6 (cm),∴S △PBQ =12BP ·BQ =12×6×6=18 (cm 2).22.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC =CA .设BC =CA =x cm ,则OC =(45-x )cm ,由勾股定理可知OB 2+OC 2=BC 2,即152+(45-x )2=x 2,解得x =25. 答:机器人行走的路程BC 是25 cm. 23.解:由题意可知∠ADB =90°.在Rt △ABD 中,∵AB =260 km ,AD =100 km , ∴BD =2602-1002=240(km).∴台风中心从B 点移动到D 点所用的时间为24015=16(h).在D 点休息的游人应在台风中心距D 点30 km 前撤离,30÷15=2(h),16-2=14(h).∴在接到台风警报后的14 h 内撤离才可以免受台风的影响. 24.解:(1)72(2)△ABC 如图①所示.(位置不唯一)S △ABC =2a ×4a -12×a ×2a -12×2a ×2a -12×a ×4a =3a 2. (3)构造△ABC 如图②所示.S △ABC =3m ×4n -12×m ×4n -12×3m ×2n -12×2m ×2n =12mn -2mn -3mn -2mn =5mn .第十八章达标测试卷一、选择题(每题3分,共30分)1.已知在▱ABCD中,∠B+∠D=200°,则∠A的度数为()A.100° B.160° C.80° D.60°2.如图,▱ABCD中,对角线AC,BD交于点O,点E是BC的中点.若OE=3 cm,则AB的长为()A.12 cm B.9 cm C.6 cm D.3 cm(第2题)(第3题)3.如图,在菱形ABCD中,下列结论错误的是()A.AC=BD B.AC⊥BD C.AB=AD D.∠1=∠2 4.如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10 cm,BD=6 cm,则AD的长为()A.4 cm B.5 cm C.6 cm D.8 cm(第4题)(第5题)5.如图,在菱形ABCD中,∠B=60°,AB=4,则以AC为一边的正方形ACEF的周长为()A.14 B.15 C.16 D.176.下列说法中,正确的个数有( )①对顶角相等;②两直线平行,同旁内角相等; ③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形. A .1个B .2个C .3个D .4个7.如图,已知在菱形ABCD 中,对角线AC 与BD 交于点O ,∠BAD =120°,AC =4,则该菱形的面积是( ) A .16 3B .16C .8 3D .8(第7题) (第8题)8.将五个边长都为2 cm 的正方形按如图所示摆放,点A ,B ,C ,D 分别是四个正方形的中心,则图中四块阴影部分面积的和为( ) A .2 cm 2B .4 cm 2C .6 cm 2D .8 cm 29.如图,在矩形ABCD 中,AD =3AB ,点G ,H 分别在AD ,BC 上,连接BG ,DH ,且BG ∥DH ,当AGAD =( )时,四边形BHDG 为菱形. A.45 B.35 C.49D.38(第9题) (第10题)10.如图是一个矩形的储物柜,它被分成4个大小不同的正方形①②③④和一个矩形⑤,若要计算⑤的周长,则只需要知道哪个小正方形的周长?你的选择是( ) A .①B .②C .③D .④二、填空题(每题3分,共24分)11.如图,▱ABCD 中,AC ,BD 相交于点O ,若AD =6,AC +BD =16,则△BOC的周长为________.(第11题)(第12题)12.如图,四边形ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件:____________,使四边形ABCD成为菱形(只需添加一个即可).13.若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在第________象限.14.如图,在菱形ABCD中,AB=13 cm,BC边上的高AH=5 cm,那么对角线AC 的长为________cm.(第14题)(第15题)15.如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC于点E,延长BC 到点F,使CF=CE,连接DF.若CE=1 cm,则BF=__________.16.矩形ABCD中,AB=3,AD=4,P是AD上一动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为________.17.以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是__________.18.如图,在边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连接AE,再以AE为边作第三个菱形AEGH,使∠HAE=60°……按此规律所作的第n个菱形的边长是________.三、解答题(19题8分,20~22题每题10分,其余每题14分,共66分)19.如图,在▱ABCD中,点E,F分别在边CB,AD的延长线上,且BE=DF,EF 分别与AB,CD交于点G,H.求证AG=CH.20.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证AE=BF;(2)若正方形的边长是5,BE=2,求AF的长.21.已知:如图,在▱ABCD中,延长CB至点E,延长AD至点F,使得DF=BE,连接EF与对角线AC交于点O.求证:OE=OF.22.在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.23.如图,△ABC中,∠ACB=90°,D为AB的中点,四边形BCED为平行四边形,DE,AC相交于F.连接DC,AE.(1)试确定四边形ADCE的形状,并说明理由.(2)若AB=16,AC=12,求四边形ADCE的面积.(3)当△ABC满足什么条件时,四边形ADCE为正方形?请给予证明.24.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形.(1)如图①,在四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点,求证:中点四边形EFGH是平行四边形;(2)如图②,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,判断中点四边形EFGH 的形状,并说明理由;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状(不必证明).答案一、1.C 2.C 3.A 4.A 5.C 6.B 7.C 8.B9.C 点拨:在矩形ABCD 中,AD =3AB ,设AB =1,则AD =3,由AD ∥BC ,BG ∥DH 得四边形BHDG 为平行四边形.若四边形BHDG 为菱形,则BG =GD ,设BG =GD =x ,则AG =3-x ,在Rt △ABG 中,12+()3-x 2=x 2,解得x =53 ,所以AG AD =3-533=49. 10.C 二、11.1412.OA =OC (答案不唯一) 13.三 14.2615.(2+2)cm 点拨:过点E 作EG ⊥BD 于点G .∵BE 平分∠DBC ,∠EGB =∠BCE =90°, ∴EG =EC =1 cm.易知△DEG 为等腰直角三角形, ∴DE =2EG =2cm. ∴CD =(1+2)cm , ∴BC =(1+2)cm. 又∵CF =CE =1 cm , ∴BF =(2+2)cm.16.125 点拨:设AC 与BD 交于点O ,连接PO ,过D 作DG ⊥AC 于G ,由△AOD的面积=△AOP 的面积+△POD 的面积,可得PE +PF =DG ,易得PE +PF =125.17.30°或150° 点拨:分两种情况.(1)如图①,等边三角形ADE 在正方形ABCD 的内部,则∠CDE =∠CDA -∠ADE =90°-60°=30°. 又∵CD =AD =DE , ∴∠DCE =75°. ∴∠ECB =15°. 同理∠EBC =15°. ∴∠BEC =150°.(2)如图②,等边三角形ADE 在正方形ABCD 的外部,则∠CDE =∠CDA +∠ADE =90°+60°=150°. 又∵CD =AD =DE , ∴∠CED =15°. 同理∠AEB =15°.∴∠BEC =∠AED -∠CED -∠AEB =60°-15°-15°=30°.18.(3)n -1 点拨:连接DB ,与AC 相交于M .∵四边形ABCD 是菱形,∴AD =AB ,AC ⊥DB . ∵∠DAB =60°, ∴△ADB 是等边三角形. ∴DB =AD =1. ∴DM =12. ∴AM =32. ∴AC =3.同理可得AE =3AC =(3)2,AG =3AE =33=(3)3,…,按此规律所作的第n 个菱形的边长为(3)n -1.三、19.证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∠A =∠C . ∴∠F =∠E . ∵BE =DF ,∴AD +DF =CB +BE ,即AF =CE . 在△AGF 和△CHE 中,⎩⎨⎧∠A =∠C ,AF =CE ,∠F =∠E ,∴△AGF ≌△CHE (ASA). ∴AG =CH .20.(1)证明:∵四边形ABCD 是正方形,∴AB =BC ,∠ABE =∠BCF =∠D =90°. ∴∠BAE +∠AEB =90°. ∵BH ⊥AE , ∴∠BHE =90°. ∴∠AEB +∠EBH =90°. ∴∠BAE =∠EBH . 在△ABE 和△BCF 中,⎩⎨⎧∠BAE =∠CBF ,AB =BC ,∠ABE =∠BCF ,∴△ABE ≌△BCF (ASA). ∴AE =BF .(2)解:由(1)得△ABE ≌△BCF , ∴BE =CF .∵正方形的边长是5,BE =2,∴DF =CD -CF =CD -BE =5-2=3.在Rt △ADF 中,由勾股定理得AF =AD 2+DF 2=52+32=34. 21.证明:连接AE ,CF .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC . 又∵BE =DF ,∴AD +DF =BC +BE ,即AF =EC . 又∵AF ∥EC ,∴四边形AECF 为平行四边形. ∴OE =OF .22.(1)证明:∵AF ∥BC ,∴∠AFE =∠DBE . ∵E 是AD 的中点, ∴AE =DE .在△AFE 和△DBE 中,⎩⎨⎧∠AFE =∠DBE ,∠FEA =∠BED ,AE =DE ,∴△AFE ≌△DBE (AAS). ∴AF =BD .∵AD 是BC 边上的中线, ∴DC =BD . ∴AF =DC .(2)解:四边形ADCF 是菱形. 证明:由(1)得AF =DC , 又∵AF ∥BC ,∴四边形ADCF 是平行四边形. ∵AC ⊥AB ,AD 是斜边BC 上的中线, ∴AD =12BC =DC .∴四边形ADCF是菱形.23.解:(1)四边形ADCE是菱形.理由:∵四边形BCED为平行四边形,∴CE∥BD,CE=BD,BC∥DE.∵D为AB的中点,∴AD=BD.∴CE=AD.又∵CE∥AD,∴四边形ADCE为平行四边形.∵BC∥DF,∴∠AFD=∠ACB=90°,即AC⊥DE.∴四边形ADCE为菱形.(2)在Rt△ABC中,∵AB=16,AC=12,∴BC=47.又易知BC=DE,∴DE=47.∴四边形ADCE的面积=12AC·DE=247.(3)当AC=BC时,四边形ADCE为正方形.证明:∵AC=BC,D为AB的中点,∴CD⊥AB,即∠ADC=90°.∴四边形ADCE为正方形.24.(1)证明:如图①,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=12BD.∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=12BD.∴EH∥FG,EH=FG.∴中点四边形EFGH 是平行四边形. (2)解:中点四边形EFGH 是菱形. 理由:如图②,连接AC ,BD . ∵∠APB =∠CPD ,∴∠APB +∠APD =∠CPD +∠APD , 即∠BPD =∠APC . 在△APC 和△BPD 中,⎩⎨⎧PA =PB ,∠APC =∠BPD ,PC =PD ,∴△APC ≌△BPD (SAS). ∴AC =BD .∵点E ,F ,G 分别为边AB ,BC ,CD 的中点, ∴EF =12AC ,FG =12BD . ∴EF =FG .又由(1)中结论知中点四边形EFGH 是平行四边形, ∴中点四边形EFGH 是菱形. (3)解:中点四边形EFGH 是正方形.第十九章达标测试卷一、选择题(每题3分,共30分)1.函数y =1x -3+x -1的自变量x 的取值范围是( )A.x≥1B.x≥1且x≠3C.x≠3D.1≤x≤3 2.下列图象中,表示y是x的函数的是()3.如果函数y=kx+b(k,b是常数)的图象不经过第三象限,那么k,b应满足的条件是()A.k≤0且b≥0 B.k<0且b≥0C.k≤0且b>0 D.k<0且b>04.把直线y=x向上平移3个单位长度,下列在该平移后的直线上的点是() A.(2,2) B.(2,3) C.(2,4) D.(2,5) 5.一个正比例函数的图象经过点(2,-1),则它的解析式为()A.y=-2x B.y=2x C.y=-12x D.y=12x6.如图所示,表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象可能是()7.某学习小组做了一个实验:从100 m高的楼顶随手放下一个苹果,测得有关数据如下:则下列说法错误的是()A.苹果每秒下落的路程越来越长B.苹果每秒下落的路程不变C.苹果下落的速度越来越快D.可以推测,苹果落到地面的时间不超过5 s8.若直线y=-2x+m与直线y=2x-1的交点在第四象限,则m的取值范围是()A.m>-1 B.m<1C.-1<m<1 D.-1≤m≤19.双胞胎兄弟小明和小亮在同一班读书,周五16:00放学后,小明和同学走路回家,途中没有停留,小亮骑车回家,他们各自离学校的路程s(米)与用去的时间t(分)之间的关系如图所示,根据图象提供的有关信息,下列说法中错误的是()A.兄弟俩的家离学校1 000米B.他们同时到家,用时30分C.小明的速度为50米/分D.小亮中间停留了一段时间后,再以80米/分的速度骑回家10.如图,点P是菱形ABCD边上的一动点,它从点A出发沿着A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()二、填空题(每题3分,共24分)11.直线y=2x+1经过点(a,0),则a=________.12.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.13.图中直线是由直线l向上平移1个单位长度、向左平移2个单位长度得到的,则直线l对应的函数解析式为__________.(第13题)(第16题)(第18题)14.直线y=2x+b经过点(3,5),则关于x的不等式2x+b≥0的解集是__________.15.若一次函数y=-x+a与一次函数y=x+b的图象的交点坐标为(m,8),则a +b=________.16.某天,某巡逻艇凌晨1:00出发巡逻,预计准点到达指定区域,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(n mile)与所用时间t(h)的函数图象,则该巡逻艇原计划准点到达的时刻是__________.17.已知一次函数y=(m+2)x+(1-m),若y随x的增大而减小,且该函数的图象与x轴的交点在原点的右侧,则m的取值范围是__________.18.如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<13x时,x的取值范围为__________.三、解答题(19~21题每题10分,其余每题12分,共66分)19.一次函数的图象经过(-2,1)和(1,4)两点.(1)求这个一次函数的解析式;(2)当x=3时,求y的值.20.在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当-2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m-n=4,求点P的坐标.21.如图,在平面直角坐标系中,已知点A(6,0),点B(x,y)在第一象限内,且x +y=8,设△AOB的面积是S.(1)写出S与x之间的函数解析式,并求出x的取值范围;(2)画出(1)中所求函数的图象.22.某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:(1)该地出租车的起步价是________元;(2)当x>2时,求y与x之间的函数解析式;(3)若某乘客有一次乘出租车的里程为18 km,则这位乘客需付出租车车费多少元?23.为了落实党的“精准扶贫”政策,A,B两城决定向C,D两乡运送肥料以支持农村生产,已知A,B两城分别有肥料210吨和290吨,从A城往C,D两乡运送肥料的费用分别为20元/吨和25元/吨;从B城往C,D两乡运送肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)设从A城运往C乡的肥料有x吨.①用含x的代数式完成下表:②设总运费为y元,写出y与x的函数关系式,并求出最少总运费.(2)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时A城运往C乡的肥料有多少吨时总运费最少?24.新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/m2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120 m2.若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/m2)与楼层x(1≤x≤23,x取整数)之间的函数解析式;(2)老王要购买第十六层的一套楼房,若他一次性付清所有房款,请帮他计算哪种优惠方案更合算.答案一、1.B 2.D 3.A 4.D 5.C 6.A 7.B8.C点拨:由题意得⎩⎨⎧y =-2x +m ,y =2x -1,解得⎩⎪⎨⎪⎧x =m +14,y =m -12.∵交点在第四象限,∴⎩⎪⎨⎪⎧m +14>0,m -12<0.解不等式组,得-1<m <1. 9.C 10.B二、11.-12 12.-2 13.y =x -2 14.x ≥12 15.16 16.7:0017.m <-2 点拨:∵y 随x 的增大而减小,∴m +2<0,解得m <-2.又∵该函数的图象与x 轴的交点在原点的右侧, ∴图象过第一、二、四象限. ∴图象与y 轴的交点在正半轴上, 故1-m >0,解得m <1. ∴m 的取值范围是m <-2. 18.x >3三、19.解:(1)设一次函数的解析式为y =kx +b .将点(-2,1)和(1,4)的坐标代入解析式中得: ⎩⎨⎧-2k +b =1,k +b =4,解得⎩⎨⎧k =1,b =3. ∴一次函数的解析式是y =x +3. (2)当x =3时,y =3+3=6.20.解:将点(1,0),(0,2)的坐标分别代入y =kx +b ,得⎩⎨⎧k +b =0,b =2,解得⎩⎨⎧k =-2,b =2.∴这个函数的解析式为y =-2x +2. (1)把x =-2代入y =-2x +2, 得y =6;把x =3代入y =-2x +2, 得y =-4.∴y 的取值范围是-4≤y <6. (2)∵点P (m ,n )在该函数的图象上, ∴n =-2m +2. ∵m -n =4, ∴m -(-2m +2)=4, 解得m =2. ∴n =-2.∴点P 的坐标为(2,-2). 21.解:(1)过点B 作BC ⊥OA 于点C .∵点A 和点B 的坐标分别是(6,0),(x ,y ),且点B 在第一象限内, ∴S =12OA ·BC =12×6y =3y . ∵x +y =8, ∴y =8-x .∴S =3(8-x )=24-3x .即所求函数解析式为S =-3x +24.由⎩⎨⎧x >0,-3x +24>0,解得0<x <8.(2)S =-3x +24(0<x <8)的图象如图所示.22.解:(1)7(2)设当x >2时,y 与x 之间的函数解析式为y =kx +b ,分别代入点(2,7),(4,10)的坐标,得⎩⎨⎧2k +b =7,4k +b =10,解得⎩⎪⎨⎪⎧k =32,b =4.∴y 与x 之间的函数解析式为y =32x +4(x >2). (3)∵18>2,∴把x =18代入y =32x +4,得y =32×18+4=31.答:这位乘客需付出租车车费31元. 23.解:(1)①210-x ;240-x ;50+x②y =20x +25(210-x )+15(240-x )+24(x +50)=4x +10 050. 因为y =4x +10 050是一次函数,k =4>0, 所以y 随x 的增大而增大.因为x ≥0,所以当x =0时,总运费最少,最少总运费是10 050元. (2)y =(20-a )x +25(210-x )+15(240-x )+24(x +50)=(4-a )x +10 050. 当0<a <4时,4-a >0,∴当x =0时,总运费最少是10 050元; 当4<a <6时,∵4-a <0,∴当x 最大时,总运费最少.即当x =210时,总运费最少.当a =4时,不管A 城运往C 乡的肥料有多少吨(不超过210吨),总运费都是10 050元.综上所述,当0<a <4时,A 城不向C 乡运送肥料时,总运费最少;当a =4时,不管A 城运往C 乡的肥料有多少吨(不超过210吨),总运费都是10 050元;当4<a <6时,当A 城运往C 乡的肥料有210吨时,总运费最少. 24.解:(1)当1≤x ≤8,x 取整数时,y =4 000-(8-x )×30=30x +3 760;当9≤x ≤23,x 取整数时,y =4 000+(x -8)×50=50x +3 600.∴y =⎩⎨⎧30x +3 760(1≤x ≤8,x 取整数),50x +3 600(9≤x ≤23,x 取整数).(2)第十六层楼房的售价为50×16+3 600=4 400(元/m 2). 设按照方案一所交房款为:W 1=4 400×120×(1-8%)-a =(485 760-a )元, 设按照方案二所交房款为:W 2=4 400×120×(1-10%)=475 200(元).当W 1=W 2时,即485 760-a =475 200,解得a =10 560; 当W 1>W 2时,即485 760-a >475 200,解得a <10 560; 当W 1<W 2时,即485 760-a <475 200,解得a >10 560. ∴当0<a <10 560时,方案二更合算; 当a =10 560时,两种方案一样合算; 当a >10 560时,方案一更合算.第二十章达标测试卷一、选择题(每题3分,共30分)1.一组数据2,4,6,4,8的中位数为( )A .2B .4C .6D .82.若一组数据2,3,4,x ,6的平均数是4,则x 的值是( )A .2B .3C .4D .53.已知一组数据:66,66,62,67,63,这组数据的众数和中位数分别是( )A .66,62B .66,66C .67,62D .67,664.在音乐比赛中,经常采用这样的办法来得到一名选手的最后成绩:将所有评委的打分组成一组数据,去掉一个最高分和一个最低分,得到一组新的数据,再计算平均分.假设评委不少于10人,则比较两组数据,一定不会发生变化的是( ) A .平均数B .中位数C .众数D .方差5.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵树,每棵树产量的平均数x (单位:千克)及方差s 2如下表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树扩大种植,应选的品种是()A.甲B.乙C.丙D.丁6.下表是某公司员工月收入的资料:能够反映该公司全体员工月收入水平的统计量是()A.平均数和众数B.平均数和中位数C.中位数和众数D.平均数和方差7.超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如下表:将创新能力、综合知识和语言表达三项测试成绩按5∶3∶2的比确定,则该应聘者的平均成绩是()A.77分B.77.2分C.77.3分D.77.4分8.李大伯承包了一个果园,种植了100棵樱桃树,2021年已进入收获期,收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:据调查,市场上今年樱桃的批发价格为每千克15元.用所学的统计知识估计今年此果园樱桃的总产量与按批发价格销售樱桃所得的总收入分别约为()A.200 kg,3 000元B.1 900 kg,28 500元C.2 000 kg,30 000元D.1 850 kg,27 750元9.甲、乙两地去年12月前5天的日平均气温如图所示,下列描述错误的是()A.两地气温的平均数相同B.甲地气温的中位数是6 ℃C.乙地气温的众数是4 ℃D.乙地气温相对比较稳定10.某篮球队10名队员的年龄结构如下表,已知该队队员年龄的中位数为21.5岁,这组数据的众数与方差分别为()A.22,3 B.22,4 C.21,3 D.21,4二、填空题(每题3分,共24分)11.在综合实践课上,六名同学的作品数量(单位:件)分别为3,5,2,5,5,7,则这组数据的众数为________.12.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是________分.13.一组数据2,x,4,3,3的平均数是3,则这组数据的中位数是________.14.某同学用计算器计算30个数据的平均数时,错将其中一个数据105输成了15,那么由此求得的平均数与实际平均数的差是________.15.某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如右表,则这20户家庭这个月的平均用水量是________t.16.在射击比赛中,某运动员的6次射击成绩(单位:环)为7,8,10,8,9,6,则这组数据的方差为__________.17.一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组⎩⎨⎧x -3≥0,5-x >0的整数,则这组数据的平均数是________.18.若一组数据1,2,3,4,x 的平均数与中位数相同,则实数x 的值可能是____________.三、解答题(19~21题每题10分,其余每题12分,共66分)19.某部队为测量一批新制造的炮弹的杀伤半径,从中抽查了50枚炮弹,它们的杀伤半径如下表:估计这批炮弹的平均杀伤半径是多少?20.随机抽取某理发店一周的营业额如下表(单位:元):(1)求该店本周的日平均营业额.(2)如果用该店本周星期一到星期五的日平均营业额估计当月的营业总额,你认为是否合理?如果合理,请说明理由;如果不合理,请设计一个方案,并估计该店当月(按30天计算)的营业总额.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【关键字】初二
第16章综合测试A卷
一、选择题
1.数3.14,,π,0.323232…,,中,无理数的个数为()A.2个B.3个C.4个D.5个
2.下列说法正确的是( )
A.的平方根是±9 B.的立方根的平方根是±2
C.x为任意实数都有=x D.16的四次方根是2
3.若实数-1<x<0且y=,则( )
A.x>y B.x<y C.x≤y D.x与y的大小谬误定4.若实数a满足+a=0,则有( )
A.a>0 B.a≥0 C.a<0 D.a≤0
5.下列命题中,正确的一个是()
A.若a>b,则> B.若>a,则a>0
C.若|a|=()2,则a=b D.若a2=b,则a是b的平方根6.以下说法中,正确的是()
①任何数的平方根都是正数,②是-2的一个平方根,
③8.1的负的平方根是-=-0.9,④(-2)-1没有平方根
A.0个B.1个C.2个D.3个
7.使+有意义的x的取值范围是()
A.x≥0 B.x≠2 C.x>2 D.x≥0且x≠2
8.下列说法错误的是()
A.负数不能开偶次方B.有理数和无理数统称实数C.无限小数是无理数D.数轴上的点和实数一一对应9.若x是实数,下列各式中一定是二次根式的是()A.B.C.D.
10.若a>0,则可化简为()
A.2b B.C.-D.-
11.若|1-x|-=2x-5,则x的取值范围是()
A.x>1B.x<4 C.1≤x≤4 D.以上都不对12.下列各式正确的是()
A.+=B.(2-)÷5=2-1
C.=·=(-2) ·(-3)=6
D.-3=-=-
13.二次根式,,,中与是同类二次根式的有()
A.1个B.2个C.3个D.4个
14.如果a<b ,那么等于()
A.(x+a) B.(x+a)
C.-(x+a) D.-(x+a)
15.当-1≤x≤1时,在实数范围内有意义的式子是()A.B.C.D.
二.填空题
1.若有意义,则x的取值范围是.2.比较大小:1-0, 1.732
3.-27的立方根与的平方根的和是 .
4.若=||,则a = .
5.最简二次根式与是同类二次根式,则a = ,b = .
6.化简(7-4)2004·(-7-4)2005= .
7.已知-≤x≤1,则|x -1|+|x -3|+= .
8.不改变根式的大小将根号外的因式移到根号内:
(a -b) = .
9.( -+)(+-)= .
10.式子=成立的条件是 .
三.解答题
1.计算: (1)32 +0.5 -
3127 -218 +75 (2)x 21x -(9y -3y 1y
+x 3 ) (3)2b ab 5 ·(-32 a 3b )÷13 b a
(4)( 2 +1)0-|32 -1|-(3+12 )-1+(-1)2005
2.已知(x+9)2=169,(y -1)3=-0.125,求x -8xy -3
2y -7x 的值.
3.已知0<x<1且x 2-2+1x 2 -(1x - 12 )=0,求x +32 +1x 的平方根. 4.已知一个正方体的体积是16cm 3,另一正方体的体积是这个正方体体积的4
被,求另一个正方体的表面积.
5.实数m ,n 在数轴上的位置如图所示.化简m 2n 2
6.已知x 2+y 2-4x -2y +5=0,求(x -y)+4xy x+xy
的值. 7.已知y =2-x +x -2 +3,求y x -y +y x+y .
此文档是由网络收集并进行重新排版整理.word 可编辑版本!。

相关文档
最新文档