参数估计
第三章 参数估计
第三章参数估计重点:1.总体参数与统计量2.样本均值与样本比例及其标准误差难点:1.区间估计2.样本量确实定知识点一:总体分布与总体参数统计分析数据的方法包括:描绘统计和推断统计〔第一章〕推断统计是研究如何利用样本数据来推断总体特征的统计学方法,包括参数估计和假设检验两大类。
总体分布是总体中所有观测值所形成的分布。
总体参数是对总体特征的某个概括性的度量。
通常有总体平均数〔μ〕总体方差〔σ2〕总体比例〔π〕知识点二:统计量和抽样分布总体参数是未知的,但可以利用样本信息来推断。
统计量是根据样本数据计算的用于推断总体的某些量,是对样本特征的某个概括性度量。
统计量是样本的函数,如样本均值〔〕、样本方差〔 s2〕、样本比例〔p〕等。
构成统计量的函数中不能包括未知因素。
由于样本是从总体中随机抽取的,样本具有随机性,由样本数据计算出的统计量也就是随机的。
统计量的取值是根据样本而变化的,不同的样本可以计算出不同的统计量值。
[例题·单项选择题]以下为总体参数的是( )a.样本均值b.样本方差c.样本比例d.总体均值答案:d解析:总体参数是对总体特征的某个概括性的度量。
通常有总体平均数、总体方差、总体比例题·判断题:统计量是样本的函数。
答案:正确解析:统计量是样本的函数,如样本均值〔〕、样本方差〔〕、样本比例〔p〕等。
构成统计量的函数中不能包括未知因素。
[例题·判断题]在抽样推断中,作为推断对象的总体和作为观察对象的样本都是确定的、唯一的。
答案:错误解析:作为推断对象的总体是唯一的,但作为观察对象的样本不是唯一的,不同的样本可以计算出不同的统计量值。
〔一〕样本均值的抽样分布设总体共有n个元素,从中随机抽取一个容量为n的样本,在重置抽样时,共有n n种抽法,即可以组成n n不同的样本,在不重复抽样时,共有个可能的样本。
每一个样本都可以计算出一个均值,这些所有可能的抽样均值形成的分布就是样本均值的分布。
五种估计参数的方法
五种估计参数的方法在统计学和数据分析中,参数估计是一种用于估计总体的未知参数的方法。
参数估计的目标是通过样本数据来推断总体参数的值。
下面将介绍五种常用的参数估计方法。
一、点估计点估计是最常见的参数估计方法之一。
它通过使用样本数据计算出一个单一的数值作为总体参数的估计值。
点估计的核心思想是选择一个最佳的估计量,使得该估计量在某种准则下达到最优。
常见的点估计方法有最大似然估计和矩估计。
最大似然估计(Maximum Likelihood Estimation,简称MLE)是一种常用的点估计方法。
它的核心思想是选择使得样本观测值出现的概率最大的参数值作为估计值。
最大似然估计通常基于对总体分布的假设,通过最大化似然函数来寻找最优参数估计。
矩估计(Method of Moments,简称MoM)是另一种常用的点估计方法。
它的核心思想是使用样本矩和总体矩之间的差异来估计参数值。
矩估计首先计算样本矩,然后通过解方程组来求解参数的估计值。
二、区间估计点估计只给出了一个参数的估计值,而没有给出该估计值的不确定性范围。
为了更全面地描述参数的估计结果,我们需要使用区间估计。
区间估计是指在一定的置信水平下,给出一个区间范围,该范围内包含了真实参数值的可能取值。
常见的区间估计方法有置信区间和预测区间。
置信区间是对总体参数的一个区间估计,表示我们对该参数的估计值的置信程度。
置信区间的计算依赖于样本数据的统计量和分布假设。
一般来说,置信区间的宽度与样本大小和置信水平有关,较大的样本和较高的置信水平可以得到更准确的估计。
预测区间是对未来观测值的一个区间估计,表示我们对未来观测值的可能取值范围的估计。
预测区间的计算依赖于样本数据的统计量、分布假设和预测误差的方差。
与置信区间类似,预测区间的宽度也与样本大小和置信水平有关。
三、贝叶斯估计贝叶斯估计是一种基于贝叶斯理论的参数估计方法。
它将参数看作是一个随机变量,并给出参数的后验分布。
贝叶斯估计的核心思想是根据样本数据和先验知识来更新参数的分布,从而得到参数的后验分布。
概率论 第七章 参数估计
L( ) max L( )
称^为
的极大似然估计(MLE).
求极大似然估计(MLE)的一般步骤是:
(1) 由总体分布导出样本的联合概率分布 (或联合密度);
(2) 把样本联合概率分布(或联合密度)中自变 量看成已知常数,而把参数 看作自变量, 得到似然函数L( );
(3) 求似然函数L( ) 的最大值点(常常转化 为求ln L( )的最大值点) ,即 的MLE;
1. 将待估参数表示为总体矩的连续函数 2. 用样本矩替代总体矩,从而得到待估参
数的估计量。
四. 最大似然估计(极大似然法)
在总体分布类型已知条件下使用的一种 参数估计方法 .
首先由德国数学家高斯在1821年提出。 英国统计学家费歇1922年重新发现此
方法,并首先研究了此方法的一些性质 .
例:某位同学与一位猎人一起外出打猎.一只 野兔从前方窜过 . 一声枪响,野兔应声倒下 .
p值 P(Y=0) P(Y=1) P( Y=2) P(Y=3) 0.7 0.027 0.189 0.441 0.343 0.3 0.343 0.441 0.189 0.027
应如何估计p?
若:只知0<p<1, 实测记录是 Y=k
(0 ≤ k≤ n), 如何估计p 呢?
注意到
P(Y k) Cnk pk (1 p)nk = f (p)
第七章 参数估计
参数估计是利用从总体抽样得到的信息 估计总体的某些参数或参数的某些函数.
仅估 计一 个或 几个 参数.
估计新生儿的体重
估计废品率
估计降雨量
估计湖中鱼数
…
…
参数估计问题的一般提法:
设总体的分布函数为 F(x, ),其中为未 知参数 (可以是向量).从该总体抽样,得样本
第7章参数估计
x 1 0
f P 1-p
x
xf f
1 p 0 (1 p) p (1 p)
p
2 (x x)2 f (1 p)2 p (0 p)2 (1 p)
f
p (1 p)
似然函数常简记为L或 L 1,2, ,k
未知参数的函数。
38
若有 ˆi (x1, x2,..., xn ) i 1, 2, k 使得
L x1, x2,..., xn;ˆ1, ˆ 2,
, ˆ k
max L (1 ,2 , ,k )
x1, x2,..., xn; 1, 2,
, k
则 ˆi (X1, X2,..., Xn) 为参数θi的极大似然估计量。
中选出一个使样本观察值出现的概率为最大的 ˆ 作
为θ的估计量。
称 ˆ 为θ 的极大似然估计量。
37
2.似然函数的数学表达式
设X1,X2,…Xn是取自总体X的一个样本,样本的联合密度 (连续型)或联合分布律 (离散型)为 :
f (x; 1,2 , , k )
定义似然函数为:
n
L L x1,..., xn; 1, 2, , k f xi; 1, 2, , k i 1 x1, x2 ,..., xn 给定的样本观察值
§7.1.4抽样误差
1.误差:调查结果与实际值之间的差异 抽样调查中的误差
登记性误差(非抽样误差) 误差代表性误差随系机统误误差差((抽非样抽误样差误)差)
2.抽样误差—由于抽样的随机性而产生的 样本指标对总体指标的代表性误差。抽样误 差可以计算并加以控制,但不可以避免。
第五章 参数估计
1
X 2 t n1 n2 2
2
2 Sp
n1
n2
X
1
X 2 z
2
2 S12 S 2 n1 n2
2 Sp
2 2 n1 1S1 n2 1S 2
n1 n2 2
20
例题:
分别在城市1和城市2中随机抽取n1=400, n2=500的职工进行调查,经计算两城市职工的 平均月收入及标准差分别为X1=1650元,
22
思考题:
一个研究机构做了一项调查,以确定稳定的吸 烟者每周在香烟上的消费额。他们抽取49位固 定的吸烟者,发现均值为20元,标准差5元。
1.总体均值的点估计是多少?
2.总体均值μ的95%置信区间是什么?
23
思考题解答:
1.总体均值的点估计是20元。
2.总体均值μ的95%置信区间: 随机变量X表示每周香烟消费额,由题意可知,X=20, S=5,1-α=0.95,α=0.05;n=49 属于大样本,σ 未知以S估计。总体均值μ的95%置信区间为
P z Z z 1 2 2
P L U 1
X P z z 1 2 2 n
Step3:将上面等式进行等价变换即可。
P L U 1
第五章 参数估计
第五章 参数估计
利用样本数据对总体特征进行推断,通常在以下 两种情况下进行:
当总体分布类型已知(如:正态),根据样本数据对 总体分布的未知参数进行估计或检验。参数估 计或参数检验。(如:μ或σ为何?) 当总体分布类型未知或知道很少,根据样本数据 对总体的未知分布的形状或特征进行推断。非参 数检验。(如:是否正态分布?是否随机?)
第四章 参数估计
x
n
总体标准差,若 未知,可用样本
标准差代替
36
总体均值的置信区间引例
(2 未知)
例:某商场从一批袋装食品中随机抽取10袋,测得 每袋重量(单位:克)分别为789,780,794, 762,802,813,770,785,810,806,要 求以95%的把握程度,估计这批食品的平均每袋 重量的区间范围。假定食品重量服从正态分布。
0.95,Z/2=1.96
x Z 2
n
,
x
Z
2
n
26 1.96 6 ,26 1.96 6
100
100
24.824,27.176
我们可以95%的概率保证平均每天 参加锻炼的时间在24.824~ 27.176 分钟之间。
一般置信水平
一般使用的置信水平是:90%, 95%, 99%
Confidence Level
▪ 总体服从正态分布,且总体方差(2)已知 ▪ 如果不是正态分布,可以由正态分布来近似 (n 30)
2. 使用正态分布统计量Z
Z
x s
m ~ N (0,1)
n
3. 总体均值 在1-置信水平下的置信区间为
s
s
x
Za 2
,x n
Za 2 n
总体均值的置信区间
(2 已知)
抽样极限误差:
s x Za 2 n
❖ 定理1
当总体 X ~ N ( m , s 2 ) 时,抽自该总体
的简单随机样本 x1 , x 2 , , x n 的样本平均数
服从数学期望为 ,方差为 s2的正态分布,
n
即 x ~ N (m, s2 ) 。
n
Z x ~ N (0,1) n
(04)第4章 参数估计
(2)99%的置信区间是多少?
(3)若样本容量为40,而观测的数据不变,则 95%的置信区间又是多少?
5 - 31
统计学
STATISTICS
总体均值的区间估计
(例题分析)
12, s 4.1
解:(1)已知n=15, 1- = 95%, =0.05 ,x
统计学
STATISTICS
总体均值的区间估计
统计学
STATISTICS
大样本的估计方法
不论总体是不是服从正态分布,在大样本 (n 30)时,样本均值均服从正态分布。 若已知 2 x
x ~ N ( ,
总体均值 在1- 置信水平下的置信区间为
n
)
z
n
~ N (0,1)
z 2
有效性:对同一总体参数的两个无偏点估计量, 有更小标准差的估计量更有效
ˆ P( )
ˆ1 的抽样分布
B A
ˆ2 的抽样分布
ˆ
5 - 11
ˆ ˆ1 是比 2 更有效,是一个更好的估计量
统计学
STATISTICS
有效性
(efficiency)
x1 x2 x3 样本均值 x 3 x1 2 x2 3x3 和 x1 6
统计学
STATISTICS
第 4 章 参数估计
4.1 参数估计的基本原理 4.2 一个总体参数的区间估计 4.4 样本容量的确定
5-1
统计学
STATISTICS
4.1 参数估计的一般问题
4.1.1 估计量与估计值 4.1.2 点估计与区间估计 4.1.3 评价估计量的标准
参数估计
参数估计
参数估计就是用样本统计量来推算总体参 数,有点估计和区间估计两种方法。 一、参数估计的理论基础 按正态分布理论对参数进行估计。 正态分布的主要特征有: 1.以总体平均数为中心两侧呈对称分布,即 1.以总体平均数为中心两侧呈对称分布,即 样本平均数大于或小于总体平均数的概率完全相 等,就是说样本平均数的正离差与负离差出现的 可能性完全相等。
2.样本平均数越接近总体平均数,其出现的 2.样本平均数越接近总体平均数,其出现的 可能性越大;反之样本平均数越远离总体平均数, 其出现的可能性越小。这种可能性数学上称为概 率F(t),也就是可靠性。与概率对应的数值称为 ),也就是可靠性。与概率对应的数值称为 概率度,即抽样误差扩大的倍数,用字母t表示。 概率F(t)与概率度t 的对应函数关系如图4-2所 的对应函数关系如图4 示。
30
f x
25 20
( )
15
10
5
0
-4 -3 -2 -1 0 1 2 3 4
x
-3t
x 3 x 2
-2t
x
-1t
0 68.27% 95.45% 99.73% F(t)
X
x + x + 2
1t
2t
x + 3
3t
图4 - 2
正态分布概率图
图4-2显示样本平均数与总体平均数的平均误差不超过1μ的 显示样本平均数与总体平均数的平均误差不超过1 概率为0.6827,不超过2 的概率为0.9545,不超过3 概率为0.6827,不超过2μ的概率为0.9545,不超过3μ的概率为 0.9973。即: 0.9973。即: 当t =1时,F(t) = 0.6827 =1时, 当t =2时,F(t) = 0.9545 =2时, 当t =3时,F(t) = 0.9973 =3时, 概率度t与概率F(t)的对应关系是:概率F(t)越大,则概率 度t值越大,估计的可靠性越高,样本统计量与总体参数之间正 负离差的变动范围也越大。对于t每取一个值,概率保证程度F(t) 有一个唯一确定的值与之对应。因此人们制定正态分布概率表 有一个唯一确定的值与之对应。因此人们制定正态分布概率表 (见书后附页)供大家查找。
参数估计
6. 参数估计6.1. 参数估计概述统计学包括四个方面的问题,其中之一就是统计推断。
所谓统计推断就是指,如果有一个总体,其分布和统计量都不知道,如一批生产出来的产品的质量。
这样就需要对其进行推断,如一批灯泡的平均使用寿命是多少,是否为合格品等。
统计推断就是解决这些问题。
统计推断分为两个方面,一方面是参数估计,另一方面是假设检验。
6.1.1.参数估计所谓参数估计就是通过对样本的研究,来确定总体的统计量。
其中又可分为点估计和区间估计两类。
点估计就是估计出总体的某一统计量的确切值,如总体的均值、方差等。
通常可以通过样本的相应值来进行估计。
如:样本的平均值∑=i X nx 1是总体平均值的估计量; 样本的方差为∑=--=ni i x x n s 122)(11是总体方差的估计量; 点估计的优点在于它能明确地给出所估计的参数。
但是一般说来,估计的数值与实际值之间是肯定会有误差存在的。
在实际工作中常常需要对这种误差进行衡量,也就是说还需要确定这个估计值的精度,或误差范围和可信程度。
因此就产生了区间估计的问题。
区间估计是通过样本来估计总体参数可能位于的区间。
例如说一批产品的平均使用寿命为1000小时,这仅仅是一个点估计,还需要说明大多数产品(95%)的使用寿命的上限和下限值,比如说位于800~1200小时之间,这就是一个区间估计值。
因此,在进行区间估计时,除了要给出一个区间值外,还需要同时指明可以信赖的程度,即在进行区间估计时,需要确定的是αθθθ-=<<1)ˆˆ(21p ,其中α为事先给定的一个很小的正数,如0.10, 0.05, 0.01或0.001等,称之为显著水平;1-α称为参数θ的置信概率,或置信水平。
θ1和θ2为所估计的参数θ的区间范围的上下限。
其含为我们有100(1-α)%的把握相信所估计的参数θ位于θ1和θ2的区间范围内。
6.1.2.估计量的评价标准对于所给出的估计来说,有些是好的,有些则不是。
07心理统计学-第七章 参数估计
犯错误的概率,常用α(或p)表示。则1-α为置信 度。(显著性水平越高表示的是α值越小,即犯错误的可
能性越低) α为预先设定的临界点,常用的如.05、.01、.001;p 为检验计算所得的实际(犯错误)概率。
第一节 点估计、区间估计与标准误
三、区间估计与标准误
3、区间估计的原理与标准误
转换成比率为
p
n
p, SE p
n
pq n
同理可得公式7-17。自习[例7-12、例7-13]
1、从某地区抽样调查400人,得到每月人均文化消费为 160元。已知该地区文化消费的总体标准差为40元。试 问该地区的每月人均文化消费额。(α=.05,总体呈正态
分布)
2、上题中总体方差未知,已知Sn-1=44元。 3、已知某中学一次数学考试成绩的分布为正态分布,总 体标准差为5。从总体中随机抽取16名学生,计算得平 均数为81、标准差为Sn=6。试问该次考试中全体考生成 绩平均数的95%置信区间。 4、上题中总体方差未知,样本容量改为17人。 5、假定智商服从正态分布。随机抽取10名我班学生测 得智商分别为98、102、105、105、109、111、117、 123、124、126(可计算得M=112,Sn≈9.4),试以95% 的置信区间估计我班全体的智商平均数。 返回
值表,求tα /2(df)。
5、计算置信区间CI。
σ2已知,区间为M-Zα /2 SE <μ< M+Zα /2 SE;
σ2未知,区间为M-tα /2(df)SE <μ< M+tα /2(df)SE。
6、对置信区间进行解释。
二、σ2已知,对μ的区间估计(Z分布,例7-1 & 2) 三、σ2未知,对μ的区间估计(t分布,例7-3 & 4)
第二章 参数估计
0
x 2de
x
2xe
x
dx
2
xde
x
0
x
0
0
2 e dx 2 2
0
9
例4:设X1, … , Xn为取自 N ( , 2 ) 总体的
样本,求参数 , 2 的矩估计。
: E( X ) D( X ) 2 E( X 2 ) [E( X )]2
极大似然法是由德国数学家G.F.Gauss在1821年提 出的.然而这个方法通常归于英国统计学家 R.A.Fisher,因为他在1912年里发现了这一方法,并 且首先研究了这种方法的性质.
设总体的密度函数为f(x,θ), θ为待估参数,θ∈Θ,Θ
为参数空间.当给定样本观察值 x (x1, x2 , xn )后,f(x,
以随便给的,所以根据统计思想建立各种点估计方法
和评价点估计的好坏标准便是估计问题的研究中心.
这里先介绍三个常用的标准:无偏性、有效性和一致
性.
1
有效性
^
^
设 i i ( X1,, X n ), i 1, 2分别是参数 的两个无偏估计,
^
^
^
^
若D 1 D 2 至少有一个n使 成立 , 则称 1比 2 有效.
总体k阶矩 样本k阶矩
k E(Xk )
Ak
1 n
n i 1
X
k i
的矩估计量是
约定:若
是未知参数的矩估计,则u()的矩
估计为u(
),
6
例2、:设X1, … , Xn为取自参数为的指数分布 总体的样本,求的矩估计。
第六章 参数值的估计
第六章 参数值的估计 第一节 参数估计的一般问题一、估计量与估计值参数估计就是用样本统计量去估计总体参数,如用X 估计μ,用S2估计2σ,用p 估计π等。
总体参数可以笼统地用一个符号θ表示。
参数估计中,用来估计总体参数的统计量的名称,称为估计量,用θ表示,如样本均值、样本比例等就是估计量。
用来估计总体参数时计算出来的估计量的具体数值,叫做估计值。
二、点估计与区间估计——参数估计的两种方法 1、点估计用样本估计量θ的值直接作为总体参数θ的估计量值。
2、区间估计它是在点估计基础上,给出总体参数估计的一个区间,由此可以衡量点估计值可靠性的度量。
这个区间通常是由样本统计量加减抽样误差而得到。
以样本均值的区间估计来说明区间估计原理:根据样本均值的抽样分布可知,重复抽样或无限总体抽样情况下,样本均值,由此可知,样本均值落在总体均值两侧各为一个标准误差范围内的概率为0.6827,两个标准误差范围0.9545,三个标准误差范围0.9973,并可计算出样本均值落在μ的两侧任何一个标准误差范围内的概率(根据已知的μ,σ计算)。
但实际估计时,μ是未知的,因而不再是估计样本均值落在某一范围内的概率,而只能根据已设定的概率计算这个范围的大小。
例如:约有95%的样本均值会落在距μ的两个标准误差范围内,即约有95%的样本均值所构造的两个标准误差的区间会包括μ。
在区间估计中,由样本统计量所构造的总体参数的估计区间,称为置信区间,区间的最小值为置信下限,最大值为置信上限。
例如,抽取了1000个样本,根据每个样本构造一个置信区间,其中有95%的区间包含了真实的总体参数,而5%的没有包括,则称95%为置信水平/置信系数。
构造置信区间时,可以用所希望的值作为置信水平,常用的置信水平是90%,95%,99%,见下表:α称为显著性水平,表示用置信区间估计的不可靠的概率,1-为置信水平。
如何解释置信区间:如用95%的置信水平得到某班学生考试成绩的置信区间为(60,80),即在多次抽样中有95%的样本得到的区间包含了总体真实平均成绩,(60,80)这个区间有95%的可能性属于这些包括真实平均成绩的区间内的一个。
第5章 参数估计
猎物射击,结果该猎物身中一弹,你认为谁打中的可能
性最大? 根据经验而断:老猎人打中猎物的可能性最大. 极大似然估计法的思想就是对固定的样本值,选
择待估参数的估计值使“样本取样本值”[离散型]或 “样
本取值落在样本值附近”[连续型] 的概率最大。
(2、极大似然估计的求法
单参数情形
根据总体分 布律写出似 然函数:换x 为xi
来得到待估参数θ 的极大似然估计值(驻点);
③ 、必要时,参照极大似然估计值写出极大似然
估计量.
【例6】求服从二项分布B(m,p)的总体X未知参数 p的极大似然估计量。 〖解〗单参数,离散型。 因为总体 X
~ B(m, p),
x m x
其分布律为
m x
f ( x; p) C p (1 p)
下面分离散型与连续型总体来讨论. 设离散型总体X的分布律
P{X x} p( x; )
( )
形式已知,θ 为待估参数. X 1 , X 2 ,..., X n 为来自总体X的
样本, x1 , x2 ,..., xn 为其样本值,则 X 1 , X 2 ,..., X n 的联合分
布律为:
用其观察值
ˆ( X , X ,..., X ), 1 2 n
——θ 的估计量
ˆ( x , x ,..., x ) 1 2 n
——θ 的估计值
来估计未知参数θ .
今后,不再区分估计量和估计值而统称为θ 的估计,
ˆ . 均记为
二、构造估计量的两种方法
1、矩估计法 理论根据:样本矩(的连续函数)依概率收敛于总
因为X~N(μ ,σ 2),所以X总体的概率密度为
2 1 (x ) 2 f ( x; , ) exp ( R, 0) 2 2 2
社会统计学 第九章 参数估计
[例]研究者要调查某社区居民家庭收入分 布的差异情况,现随机抽查了10户,得到样本 方差为=200(元2)。试以此资料估计总体家庭 收入分布的差异情况。
[解] 因为样本容量较小,宜用修正样本 方差作为总体方差点估计量。即
=
=ห้องสมุดไป่ตู้
=222.2
第二节 区间估计(Interval estimation)
区间估计的任务是,在点估计值的两侧设置 一个区间,使得总体参数被估计到的概率大大增 加。可靠性和精确性(即信度和效度)在区间估计中 是相互矛盾的两个方面。
10元以内,问样本容量为多少? (2)若置信水平为90%,平均收入的最大误差在
10元以内,问样本容量为多少? (3)若置信水平为99%,平均收入的最大误差在
10元以内,问样本容量为多少? (4)若置信水平为95%,平均收入的最大误差在
20元以内,问样本容量为多少? (5)改变最大误差,对样本大小有什么影响? (6)改变置信水平,对样本大小有什么影响? (983,697,1704,246)
率度
=
(24)=2.064
代入公式得
=52±2.064
=52±5.06
因此,置信水平95%的总体均值的置信区 间是从46.94到57.06。
2. 大样本总体成数的估计 从总体的均值估计过渡到总体的成数估计,其方法和
思路完全相同,只要用 代替 ,用 代替
若总体成数未知,允许误差取 或
[例]假若从某社区抽取一个由200个家庭组成的样 本,发现其中有36%的家庭由丈夫在家庭开支上作决 定的次数超过半数。试问家庭开支的半数以上由丈夫 决定的家庭的置信区间是多少?(置信水平99%)
层内方差的平均(层间方差不进入): 回置抽样:
参数估计Parametersestimation
3. 置信度(水平) :用置信区间估计的可靠性 (把握度) 4. 抽样平均误差 与概率度 Z 抽样平均误差 :样本均值抽样分布的标准差。 反映在参数周围抽样平均值的平均变异程度。
练习
1、根据居民100户抽样家计调查,居民用于食品 费用占总收入的比例平均为45%,比例的标准差为 20%。求食品费用占居民总收入比例的区间估计(置 信度为95%)。 2、根据某大学100名学生的抽样调查,每月平均 用于购买书籍的费用为4.5元,标准差为5元,求大学 生每月用于购买书籍费用的区间估计(置信度为 95%)。 3、某工厂根据200名青年职工的抽样调查,其中60% 参加各种形式的业余学习。求青年职工参加业余学习 比例的区间估计(置信度为95%)。 (0.41,0.49)(3.52,5.48)(0.54,0.66)
=170±1.47
因此,有95%的把握,该校学生的平均身高在 168.5 ~ 171.5厘米之间。
第三节 其他类型的置信区间
1. 小样本,且为正态总体 ,总体均值的区间估计(用 分布)
[例] 在一个正态总体中抽取一个容量为25的样本, 其均值为52,标准差为12,求置信水平为95%的总体 均值的置信区间。 [解] 根据题意,总体方差未知,且为小样本,故 用 分布统计量。由95%置信水平查 分布表得概
因此,有95%的把握,该厂妇女的平均从事家务 劳动的时间在2.87 ~ 2.43小时之间。
从来自在“白领犯罪与罪犯生涯:一些初步
研究结果”的一项研究报告的数据表明,白领犯 罪可能是年纪较大者,并且显示比街头罪犯有较 低的犯罪率。给出数据为:白领犯罪发作平均年 龄为54岁, =100,标准差被估计为7.5岁。建立
第六章---参数估计ppt课件
1、条件分析:总体分布为正态,且总体方差已 知,用正态法进行估计。 2、计算标准误 3、确定置信水平为0.95,查表得
51
4、计算置信区间 D=0.95时 D=0.99时
52
解释:总体均数μ落在75.61-84.39之间的可 能性为95%,超出这一范围的可能只有5%。而 作出总体μ落在74.22-85.78之间结论时的正 确概率为99%,犯错误的可能性为1%。
38
( 二)、 分布法, 未知 1、前提条件: 总体正态分布, n不论大小,
2、使用 t分布统计量
D=0.95时 D=0.99时
39
例:总体正态, 未知,
,
,
,
,
平均数0.95的置信区间是多少?
,
,试问总体
40
解: 1、条件分析:总体正态, 未知,
小
于30,只能用 分布
2、计算标准误
3、计算自由度
9
一、点估计
(一)意义 含义:直接用样本统计量的值作为总体参数的估 计值 无偏估计量:恰好等于相应总体参数的统计量。
例8-1;假设某市六岁男童平均身高110.7cm,随机 抽取113人测得平均身高110.70cm.总体的平均数, 标准差是多少
10
(二)良好点估计的条件
无偏性: 一致性: 有效性: 无偏估计量的变异性问题。
47
1 、条件分析:总体分布为非正态, 未知, >30,只能用近似正态估计法。
2、计算标准误
3、确定置信水平为0.95,查表得
48
4、计算置信区间
5、结果解释:该校的平均成绩有95%的可能落 在50.2~54.0之间。
49
课堂练习
已知某总体为正态分布,其总体标准差为10。 现从这个总体中随机抽取n1=20的样本,其平 均数分别80。试问总体参数μ在0.95和0.99的 置信区间是多少。
统计学第4章 参数估计
无偏性
(unbiasedness)
无偏性:估计量抽样分布的数学期望等于被
估计的总体参数
抽样分布
中,样本 P(ˆ)
均值、比 率、方差
无偏
有偏
分别是总
A
B
体均值、
比率、方
差的无偏
估4计- 2量3
ˆ
统计学
STATISTICS
有效性
(efficiency)
有效性:对同一总体参数的两个无偏点估计
置信水平(1-α)表达了区间估计的可靠性。 它是区间估计的可靠概率。
显著性水平α表达了区间估计的不可靠的概 率。
4 - 20
统计学§4.2 点估计的评价标准
STATISTICS
对于同一个未知参数,不同的方法得到的估 计量可能不同,于是提出问题
应该选用哪一种估计量? 用何标准来评价一个估计量的好坏?
常用 标准
4 - 21
(1) 无偏性 (2) 有效性 (3) 一致性
统计学 定义 STATISTICS
无偏性
(unbiasedness)
若 E(ˆ)
则称 ˆ是 的无偏估计量.
定义的合理性
我们不可能要求每一次由样本得到的
估计值与真值都相等,但可以要求这些估 计值的期望与真值相等.
4 - 22
统计学
量,有更小标准差的估计量更有效
P(ˆ)
ˆ1 的抽样分布
B
无偏估计量还 必须与总体参 数的离散程度
比较小
4 - 24
A
ˆ2 的抽样分布
ˆ
统计学
有效性
STATISTICS
定义 设 ˆ1 1(X1, X 2, , X n )
参 数 估 计
二、参 数 估 计
【例5-5】 设X~B(1,p),(X1,X2,…,Xn)是取自总体X的一个子样, 试求参数p的极大似然估计量。
解:设(x1,x2,…,xn)是子样(X1,X2,…,Xn)的一组相应的取值。总体X 的分布律为
则似然函数为 取对数后,有 令
二、参 数 估 计
从而得p的极大似然估计值为 p的极大似然估计量为
项目
参数估计
二、参 数 估 计
一、 参数估计的基本原理
参数估计是指由样本指标值(统计量)估计总体指标值 (参数),即当总体的分布性质已知,但其所含参数真值未 知时,根据一组样本的观察值X1,X2,…,Xn来估计总体中未 知参数θ或θ的某函数。首先从样本(X1,X2,…,Xn)中提取有 关总体X的信息,即构造样本的函数——统计量 g(X1X2,…,Xn);然后用样本值代入,求出统计量 g(x1,x2,…,xn)的值,用该值来作为相应待估参数的值。
二、参 数 估 计
二 、 评价估计量的标准
在参数估计中,用样本估计量 作为总体参数θ的估 计量,实际上,对于同一参数,用不同的估计方法求出的估 计量可能不相同,用相同的方法也可能得到不同的估计量。 也就是说,同一参数可能具有多种估计量,而且,从原则上 讲,任何统计量都可以作为未知参数的估计量,那么采用哪 一个估计量好呢?这就涉及估计量的评价问题,而判断估计 量好坏的标准是:有无系统偏差,波动性的大小,伴随样本 容量的增大是否越来越精确,这就是估计的无偏性、有效性 和一致性。
区间的概念,并给出在一定可信程度的前提下求置信区间的
方法,使区间的平均长度最短。
二、参 数 估 计
用给定的置信度1-α说明区间估计的可靠程度
,通常α取值很小,如取0.05、0.01,有时取0.1。
第七章__参数估计
三、区间估计与标准误
㈠区间估计的定义 是根据样本统计量,利用抽样分布的原理,在一定的
可靠程度上,估计出总体参数所在的范围,即以数 轴上的一段距离表示未知参数可能落入的范围。 ㈡置信区间与显著性水平 ⑴置信区间:也称置信间距,指在一定可靠程度上,总体参
数所在的区域距离或区域长度。
⑵置信界限(临界值):置信区间的上下两端点值。 ⑶显著性水平:指估计总体参数落在某一区间时,可能犯错
⑶区间估计的原理是样本分布理论。在计算区间估计值解释估 计的正确概率时,依据的是该样本统计量的分布规律及样本 分布的标准误。样本分布可提供概率解释,而标准误的大小 决定区间估计的长度。一般情况下,加大样本容量可使标准 误变小。
当总体方差已知时,样本平均数的分布为正态分布或
渐近正态分布,此时,样本平均数的平均数uX u, 平均数的离散程度即平均数分布的标准差(简称
例4
解:由题意知,其总体方差未知,但其总体分布为正态分布,
则此样本均数的分布服从t分布, 可以依t分布对总平 均身高μ进行估计。
SEX
S 4.8 0.81; df n 1 36 1 35 n 1 35
查t值表可知 : t0.05 230 2.042;t0.01 230 2.75
例2 已知某区15 岁男生立定跳远的方差 为 436.8cm ,现从该区抽取58名15岁男生, 测得该组男生立定跳远的平均数为198.4cm, 试求该区15岁男生立定跳远平均成绩的95%和 99%的置信区间。
例2
解:由题意知:由于样本容量(n=58)大于30 ,
该样本的抽样分布为渐进正态分布。
SEX
因此, 的95%的置信区间为 :
82 2.0211.12 82 2.0211.12
参数估计PPT课件
目录
• 参数估计简介 • 最小二乘法 • 最大似然估计法 • 贝叶斯估计法 • 参数估计的评估与选择
01 参数估计简介
参数估计的基本概念
参数估计是一种统计学方法,用于估计未知参数的值。通过使用样本数据和适当的统计模型,我们可 以估计出未知参数的合理范围或具体值。
参数估计的基本概念包括总体参数、样本参数、点估计和区间估计等。总体参数描述了总体特征,而 样本参数则描述了样本特征。点估计是使用单一数值来表示未知参数的估计值,而区间估计则是给出 未知参数的可能范围。
到样本数据的可能性。
最大似然估计法的原理是寻找 使似然函数最大的参数值,该 值即为所求的参数估计值。
最大似然估计法的计算过程
确定似然函数的表达式
根据数据分布和模型假设,写出似然函数的表达式。
对似然函数求导
对似然函数关于参数求导,得到导数表达式。
解导数方程
求解导数方程,找到使似然函数最大的参数值。
确定参数估计值
04
似然函数描述了样本数据与参数之间的关系,即给定参数值下观察到 样本数据的概率。
贝叶斯估计法的计算过程
首先,根据先验信息确定参数的先验分布。 然后,利用样本信息和似然函数计算参数的后验分布。 最后,根据后验分布进行参数估计,常见的估计方法包括最大后验估计(MAP)和贝叶斯线性回归等。
贝叶斯估计法的优缺点
参数估计的常见方法
最小二乘法
最小二乘法是一种常用的线性回归分析方法,通过最小化误差的平方和来估计未知参数。这种方法适用于线性回归模 型,并能够给出参数的点估计和区间估计。
极大似然法
极大似然法是一种基于概率模型的参数估计方法,通过最大化样本数据的似然函数来估计未知参数。这种方法适用于 各种概率模型,并能够给出参数的点估计和区间估计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选择题:
1.估计量的含义是指()。
A.用来估计总体参数的统计量的名称
B.用来估计总体参数的统计量的具体数值
C.总体参数的名称
D.总体参数的具体数值
2.在参数估计中,要求通过样本的统计量来估计总体参数,评价统计量的标准之一是使它与总体参数的离差越小越好。
这种评价标准称为()。
A.无偏性B.有效性C.一致性D.充分性
3.根据一个具体的样本求出的总体均值的95%的置信区间()。
A.以95%的概率包含总体均值
B.有5%的可能性包含总体均值
C.一定包含总体均值
D.要么包含总体均值,要么不包含总体均值
4.无偏估计是指()。
A.样本统计量的值恰好等于待估的总体参数
B.所有可能样本估计值的数学期望等于待估总体参数
C.样本估计值围绕待估总体参数使其误差最小
D.样本量扩大到和总体单元相等时与总体参数一致
5.总体均值的置信区间等于样本均值加减边际误差,其中的边际误差等于所要求置信水平的临界值乘以()。
A.样本均值的抽样标准差B.样本标准差
C.样本方差D.总体标准差
6.当样本量一定时,置信区间的宽度()。
A.随着置信系数的增大而减小B.随着样本量的增大而增大
C.与置信系数的大小无关D.与置信系数的平方成反比
7.当置信水平一定时,置信区间的宽度()。
A.随着样本量的增大而减小B.随着样本量的增大而增大
C.与样本量的大小无关D.与样本量的平方根成正比
8.一个95%的置信区间是指()。
A.总体参数有95%的概率落在这一区间内
B.总体参数有5%的概率未落在这一区间内
C.在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数
D.在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数9.95%的置信水平是指()。
A.总体参数落在一个特定的样本所构造的区间内的概率为95%
B.在用同样的方法构造的总体参数的多个区间中,包含总体参数的区间比例为95% C.总体参数落在一个特定的样本所构造的区间内的概率为5%
D.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为5%
10.一个估计量的有效性是指()。
A.该估计量的数学期望等于被估计的总体参数
B.该估计量的一个具体数值等于被估计的总体参数
C.该估计量的方差比其他估计量大
D.该估计量的方差比其他估计量小
11.一个估计量的一致性是指()。
A.该估计量的数学期望等于被估计的总体参数
B.该估计量的方差比其他估计量小
C.随着样本量的增大,该估计量的值越来越接近被估计的总体参数
D.该估计量的方差比其他估计量大
12.置信系数(1-α)表达了置信区间的()。
A.准确性B.精确性C.显著性D.可靠性
13.在总体均值和总体比例的区间估计中,边际误差由()。
A.置信水平确定
B.统计量的抽样标准差确定
C.置信水平和统计量的抽样标准差确定
D.统计量饿抽样方差确定
14.在置信水平不变的条件下,要缩小置信区间,则()。
A.需要增加样本量B.需要减少样本量
C.需要保持样本量不变D.需要改变统计量的抽样标准差
=)。
15.使用统计量z
A.总体为正态分布B.总体为正态分布且方差已知
C.总体为正态分布但方差未知D.大样本
σ()。
16.样本均值的抽样标准差
x
A.随着样本量的增大而变小B.随着样本量的增大而变大
C.与样本量的大小无关D.大于总体标准差
17.根据n=250,p=0.38的样本计算的样本比例的抽样标准差为()。
A.0.031 B.0.016 C.0.043 D.0.052
18.在其他条件相同的情况下,95%的置信区间比90%的置信区间()。
A.要宽B.要窄C.相同D.可能宽也可能窄
19.指出下面的说法哪一个是正确的()。
A.样本量越大,样本均值的抽样标准差就越小
B.样本量越大,样本均值的抽样标准差就越大
C.样本量越小,样本均值的抽样标准差就越小
D.样本均值的抽样标准差与样本量无关
20.指出下面的说法哪一个是正确的()。
A.在置信水平一定的条件下,要提高估计的可靠性,就应缩小样本量
B.在置信水平一定的条件下,要提高估计的可靠性,就应增大样本量
C.在样本量一定的条件下,要提高估计的可靠性,就降低置信水平
D.在样本量一定的条件下,要提高估计的准确性,就提高置信水平
计算题:
1.从一批电子管中抽取100只,若抽取的电子管的平均寿命为1000小时,标准差为40小时,求整批电子管的平均寿命的置信区间(置信水平为95%)。
2. 在调查中欲了解居民拥有某一品牌的空调情况。
今随机抽取了200户居民,调查发现拥
有该品牌空调的家庭占到23%。
求总体比例的置信区间,置信水平为90%。
试求12μμ-在95%的置信水平下的置信区间。
4. 某一个居民小区共有居民500户,小区管理者准备采取一项新的供水措施,想调查居民
是否赞成。
采用重复抽样的方式随机抽取了50户,其中有32户赞成,18户反对。
(1)求总体中赞成的户数比例的置信区间,置信水平为95%。
(2)如果小区管理者预计赞成比例能达到80%,应该抽取多少户进行调查?
5. 从2个样本中各抽取12250n n ==的独立随机样本,来自总体1的样本成数为
140%p =;来自总体2的样本成数为230%p =。
试求总体12P P -在95%置信水平的置信区间。
6. 根据以往的生产数据,某种产品的废品率为2%。
如果要求95%的置信区间,估计误差
不超过4%,应抽取多大的样本?
7. 某超市想要估计每个顾客平均每次购物花费的金额。
根据过去的经验,标准差大约为120
元,现要求以95%的置信水平估计每个顾客平均购物金额的置信区间,并要求估计误差不超过20元,应抽取多少个顾客作为样本?。