八年级数学轴对称图形测试卷
数学八年级上册《轴对称》单元检测(含答案)
9.如图,在 中, , , 平分 , ,则图中共有等腰三角形( )
A. 个B. 个C. 个D. 个
[答案]D
[解析]
[分析]
根据等腰三角形性质和三角形内角和定理求出∠A C B=∠B= (180°−∠A)=72°,求出∠A C D=∠B C D= ∠A C B=36°,求出∠C D B=∠A+∠A C D=72°,根据平行线的性质得出∠ED B=∠A=36°,∠DEB=∠A C B=72°,∠C DE=∠A C D=36°,推出∠A=∠A C D=∠B C D=∠C DE=36°,∠B=∠A C D=∠DEB=∠C D B=72°即可.
A. B. C. D.
3.一个角是 等腰三角形是( )
A.等腰直角三角形B.等边三角形C.直角三角形D.上述都正确
4.如图,在一个规格为 (即 个小正方形)的球台上,有两个小球 , .若击打小球 ,经过球台边的反弹后,恰好击中小球 ,那么小球 击出时,应瞄准球台边上的点( )
A. B. C. D.
5.如图,桌面上有M、N两球,若要将M球射向桌面的任意一边,使一次反弹后击中N球,则4个点中,可以瞄准的是( )
[详解]解:∵A B=A C,
∴∠A B C=∠C,
∵B D=B A,
∴∠A=∠B D A,
∴∠A>∠C,
∴2∠A<180°且3∠A>180°,
∴60°<∠A<90°,即60<x<90.
故选C.
[点睛]此题考查了等腰三角形的性质,三角形内角和为180°和三角形外角的性质,关键是得到2∠A<180°且3∠A>180°.
[答案]D
[解析]
[分析]
此题根据△A B C中∠A为锐角与钝角分为两种情况解答.
人教版八年级数学上册《轴对称》测试卷(含答案)
人教版八年级数学上册《轴对称》测试卷(含答案)一、选择题(每小题3分,共30分)1.点A(m,3)与B(4,n)关于x轴对称,则m,n的值分别为( )A.4,3B.-4,-3C.-4,3D.4,-32.下列交通标志中,是轴对称图形的是( )3.下列轴对称图形中,对称轴最多的是( )A.线段B.等边三角形C.五角星D.圆4.下列三角形中,不是轴对称图形的是( )A.等腰直角三角形B.有一个角是30°的直角三角形C.两内角分别是30°,120°的三角形D.两内角分别是30°,75°的三角形5.如图,ABCD 是矩形纸片,翻折∠B、∠D,使AD、BC 边与对角线AC重叠,且顶点B、D恰好落在同一点0上,折痕分别是CE、AF,则AE等于( )EBA.√3B.2C.1.5D.√26.到三角形三个顶点距离相等的点是( )A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三边垂直平分线的交点7.如图,在等腰梯形ABCD中,AD //BC,AB=CD,AC=BD,AC平分∠BCD,若∠ABC=72°,则图中等腰三角形共有( )A.8个B.6个C.4个D.2个8.如图,在△ABC 中,AB<AC,BC边的垂直平分线交BC于D,交AC 于E,连BE,AB=6cm,△ABE 的周长为14cm,则AC的长为( )A.4cmB.6cmC.8cmD.10cm9.如图,已知AB=AC=BD,则∠1与∠2的关系是( )A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°10.如图,在△ABC中,∠BAC=90,AB=AC,BD平分∠ABC交AC于D,AE⊥BD,交BC于E,下列说法:①AB=BE;②∠CAE=1∠C;③AD=CE;④CD=CE.其中正确的是( )2A.①②③B.②③④C.①②④D.①②③④二、填空题(每小题3分,共18分)11.已知点A(m-1,3)与点B(2,n+1)关于x轴对称,则m=_________,n=__________.12.等腰三角形的一个角是80°,则它顶角的度数是_______________度.13.在△ABC 中.①若AB=BC=CA,则△ABC为等边三角形;②若∠A=∠B=∠C,则△ABC 为等边三角形;③有两个角都是60°的三角形是等边三角形;④一个角为60°的等腰三角形是等边三角形.上述结论中正确的有__个.14.如图,在△ABC 中,∠A=90°,∠ABC=60°,∠ABC,∠ACB的平分线交于点O,OE // AB交BC于E,OF //AC交BC于F,若AB=1,则△OEF 的周长为_____________.15.如图,AD是等边△ABC底边上的中线,AC的垂直平分线交AC 于点E,交AD于点F ,若AD=9,则DF长为____.16.已知Rt△ABC 中,∠C=90°,∠A=30°.在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有________个.三、解答题(72分)17.(8分)如图,△ABC 中,点D是BC边的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.求证:∠BAD=∠CAD.18.(8分)如图,在△ABC中,D,E分别是AC,AB边上的点,BD,CE相交于点0,给出下列条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.(1)上述四个条件中,哪两个条件可判定△ABC是等腰三角形?(用序号写出所有的情形);(2)选择(1)中的一种情形,证明△ABC是等腰三角形.19.(8分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-3,0),B(-3,-4),C(-1,-4).(1)求△ABC的面积;(2)在图中作出△ABC关于x轴对称的图形△DEF,并写出D,E,F 的坐标.20.(8分)如图,在△ABC中,∠ACB=2∠B,∠BAC的平分线AD交BC于D,过C作CN⊥AD交AD于H,交AB于N.(1) 求证:△ANC为等腰三角形;(2)试判断BN与CD的数量关系,并说明理由.21.(8分)已知如图,在△ABC中,AB=BC=2,∠ABC=120°,BC//x轴,点B的坐标是(一3,1).(1)写出顶点C的坐标;(2)作出△ABC 关于y轴对称的△A'B'C';(3)求以点A,B,B',A'为顶点的四边形的周长.22.(10 分)在△ABC 中,AB=CB.(1)若AC=AB,如图1,CM⊥AB 于点M,MN⊥AC 于点N,NP ⊥BC 于点P.若CP=2,则BP=_______;(2)若∠BAC=45°,如图2,CD平分∠ACB交AB于点D,过边AC上一点E作EF //CD,交AB于点F,AG是△AEF的高,探究高AG与边EF的数量关系;(3)若∠ABC=90°,点E是射线BC上的一个动点,作AF⊥AE且AF=AE,连CF交直线AB于点G.若BCCE =53,则AGBG=__________.23.(10分)图1,在△ABC中,AB=AC,∠BAC=30°,点D 是△ABC内一点,DB=DC,∠DCB=30°,点E是BD延长线上一点,AE=AB.(1)直接写出∠ADE 的度数___________;(2)求证:DE=AD+DC;(3)作BP 平分∠ABE,EF⊥BP,垂足为F(如图2),若EF=3,求BP 的长.24.(12分)如图1,A 是OB 的垂直平分线上的一点,P为y轴上一点,且∠OPB=∠OAB.(1)若∠AOB=60°,PB=4,求点P的坐标;(2)在(1)的条件下,求证:PA+PO=PB;(3)如图2,若点A是OB 的垂直平分线上的一点,已知A(2,5),∠OPB=∠OAB,求PO+PB 的值.参考答案:。
第13章 轴对称(单元测试培优卷)(学生版) 2024-2025学年八年级数学上册基础知识专项突破
第13章轴对称(单元测试·培优卷)一、单选题(本大题共10小题,每小题3分,共30分)1.下列图形中是轴对称图形的是()A .B .C .D .2.如图,点A 在直线l 上,△ABC 与AB C '' 关于直线l 对称,连接BB ',分别交AC ,AC '于点D ,D ¢,连接CC ',下列结论不一定正确的是()A .BACB AC ∠=∠''B .CC BB '' C .BD B D =''D .AD DD ='3.我们知道光的反射是一种常见的物理现象.如图,某V 型路口放置如图所示的两个平面镜1l ,2l ,两个平面镜所成的夹角为1∠,位于点D 处的甲同学在平面镜2l 中看到位于点A 处的乙同学的像,其中光的路径为入射光线AB 经过平面镜1l 反射后,又沿BC 射向平面镜2l ,在点C 处再次反射,反射光线为CD ,已知入射光线2AB l ∥,反射光线1CD l ∥,则1∠等于()A .40︒B .50︒C .60︒D .70︒4.如图,已知a b ∥,直线l 与直线a ,b 分别交于点A ,B ,分别以点A ,B 为圆心,大于12AB 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交直线a ,b 于点D 、C ,连接AC ,若135∠=︒,则BAD ∠的度数是()A .35︒B .55︒C .65︒D .70︒5.如图,在等腰Rt ABC △,90BAC ∠=︒,AB AC =,BD 为ABC V 的角平分线,过点C 作CE BD ⊥交BD 的延长线与点E ,若2CE =,则BD 的长为()A .3B .4C .5D .66.如图,90ACB AED ∠=∠=︒,CAE BAD ∠=∠,BC DE =,若BD AC ∥,则ABC ∠与CAE ∠间的数量关系为()A .2ABC CAE∠=∠B .ABC CAE ∠=∠C .290ABC CAE ∠+∠=︒D .2180ABC CAE ∠+∠=︒7.某平板电脑支架如图所示,其中AB CD =,EA ED =,为了使用的舒适性,可调整AEC ∠的大小.若AEC ∠增大16︒,则BDE ∠的变化情况是()A .增大16︒B .减小16︒C .增大8︒D .减小8︒8.如图,在ABC V 中,80BAC ∠=︒,边A 的垂直平分线交BC 于点E ,边AC 的垂直平分线交AC 于点F ,连接AE ,AG .则EAG ∠的度数为()A .35︒B .30︒C .25︒D .20︒9.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,AD 是△ABC 的角平分线,若P ,Q 分别是AD 和AC 边上的动点,则PC +PQ 的最小值是()A .65B .2C .125D .5210.如图,在ABC V 中,90BAC ∠=︒,A 是高,BE 是中线,C 是角平分线,C 交A 于G ,交BE 于H ,下面说法:①ACF BCF S S = ;②AFG AGF ∠=∠;③2FAG ACF ∠=∠;④BH CH =.其中正确的是()A .①②③④B .①③C .②③D .①③④二、填空题(本大题共8小题,每小题4分,共32分)11.如图,在ABC V 中,分别以点B 和点C 为圆心,大于12BC 的长为半径画弧,两弧相交于点M 、N ,作直线MN ,交AB 于点D ,连接CD ,若ABC V 的周长为24,9BC =,则ADC △的周长为.12.如图,直线m n ∥,点A 是直线m 上一点,点B 是直线n 上一点,AB 与直线m ,n 均不垂直,点P为线段AB 的中点,直线l 分别与m ,n 相交于点C ,D ,若90,CPD CD ∠=︒=m ,n 之间的距离为2,则PC PD ⋅的值为.13.如图,A EGF ∠=∠,F 为BE CG ,的中点,58DB DE ==,,则AD 的长为.14.如图所示,在平面直角坐标系中,ABC V 满足45,90BAC CBA ∠=︒∠=︒,点A ,C 的坐标分别是()()2,0,3,5--,点B 在y 轴上,在坐标平面内存在一点D (不与点C 重合),使ABC ABD △≌△,且AC 与AD 是对应边,请写出点D 的坐标.15.如图,60AOB ∠=︒,C 是BO 延长线上一点,12cm OC =,动点M 从点C 出发沿射线CB 以2cm /s 的速度移动,动点N 从点O 出发沿射线OA 以1cm /s 的速度移动,如果点M 、N 同时出发,设运动的时间为s t ,那么当t =s 时,MON △是等腰三角形.16.如图,锐角ABC 中,30A ∠=︒,72BC =,ABC 的面积是6,D ,E ,F 分别是三边上的动点,则DEF 周长的最小值是.17.如图,在平面直角坐标系中,点1A ,2A ,3A ,4A ,…在x 轴正半轴上,点1B ,2B ,3B ,…在直线()0y x =≥上,若()11,0A ,且112A B A △,223A B A △,334A B A △,…均为等边三角形,则线段20212022A A 的长度为.18.如图,将长方形纸片ABCD 沿EF 折叠(折线EF 交AD 于E ,交BC 于F ),点C D 、的对应点分别是1C 、1D ,1ED 交BC 于G ,再将四边形11C D GF 沿FG 折叠,点1C 、1D 的对应点分别是2C 、2D ,2GD 交EF 于H ,给出下列结论:①2EGD EFG∠=∠②2180EFC EGC ∠=∠+︒③若26FEG ∠=︒,则2102EFC ∠=︒④23FHD EFB∠=∠上述正确的结论是.三、解答题(本大题共6小题,共58分)19.(8分)在ABC V 中,90ACB ∠=︒,AC BC BE ==,AD EC ⊥,交EC 延长线于点D .求证:2CE AD =.20.(8分)如图,点P 是AOB ∠外的一点,点E 与点P 关于OA 对称,点F 与点P 关于OB 对称,直线FE 分别交OA OB 、于C 、D 两点,连接PC PD PE PF 、、、.(1)若20OCP F ∠=∠=︒,求CPD ∠的度数;(2)若求=CP DP ,13CF =,3DE =,求CP 的长.21.(10分)如图,在ABC V 中,AD 平分BAC ∠,点E 为AC 中点,AD 与BE 相交于点F .(1)若38,82ABC ACB ∠=︒∠=︒,求ADB ∠的度数;(2)过点B 作BH AD ⊥交AD 延长线于点H ,作ABH 关于AH 对称的AGH ,设BFH △,AEF △的面积分别为12,S S ,若6BCG S V =,试求12S S -的值.22.(10分)已知:OP 平分MON ∠,点A ,B 分别在边OM ,ON 上,且180OAP OBP ∠+∠=︒.(1)如图1,当BP OM ∥时,求证:OB PB =.(2)如图2,当90OAP ∠<︒时,作PC OM ⊥于点C .求证:2OA OB AC -=.23.(10分)已知,在ABC V 中,90CAB ∠=︒,AD BC ⊥于点D ,点E 在线段BD 上,且CD DE =,点F 在线段AB 上,且45BEF ∠=︒(1)如图1,求证:DAE B∠=∠(2)如图1,若2AC =,且2AF BF =,求ABC V 的面积(3)如图2,若点F 是AB 的中点,求AEF ABCS S的值.24.(12分)如图,在ABC V 中,90ACB ∠=︒,30ABC ∠=︒,CDE 是等边三角形,点D 在边AB 上.(1)如图1,当点E 在边BC 上时,求证DE EB=(2)如图2,当点E 在ABC V 内部时,猜想ED 和EB 数量关系,并加以证明;(3)如图3,当点E 在ABC V 外部时,EH AB ⊥于点H ,过点E 作GE AB ,交线段AC 的延长线于点G ,5AG CG =,3BH =,求CG 的长.。
数学八年级上册《轴对称》单元检测题附答案
A.40°B.55°C.70°D.110°
[答案]C
[解析]
试题解析:∵m∥n,
∴
∵A B=B C,
∴
故选C.
点睛:平行线的性质:两直线平行,内错角相等.
5.如图,已知DE∥B C,A B=A C,∠1=125°,则∠C的度数是( )
一、选择题(共12小题,总分36分)
1.下列图案是轴对称图形的有 个.
A.1B.2C.3D.4
[答案]B
[解析]
试题分析:根据轴对称图形的概念(延某条直线对折,两部分能够完全重合)可知第一和第四个是轴对称图形.
故选B
考点:轴对称图形
2.点A(-2,5)关于x轴对称的点的坐标是( )
A.(2,5)B.(-2,-5)C.(2,-5)D.(5,-2)
(1)试判定△ODE的形状,并说明你的理由;
(2)线段B D、DE、EC三者有什么关系,写出你的判断过程.
25.如图所示,点O是等边三角形A B C内一点,∠AOB=110°,∠BOC=α,以OC为边作等边三角形OC D,连接A D.
(1)当α=150°时,试判断△AOD 形状,并说明理由;
(2)探究:当A为多少度时,△AOD是等腰三角形?
A. 31°B. 32°C. 59°D. 62°
11.如图,等边三角形A B C与互相平行的直线A,B相交,若∠1=25°,则∠2的大小为( )
A. 25°B. 35°C. 45°D. 55°
12.如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A10B10O=( )
【试题】八年级数学上册第12章轴对称图形单元综合检测试题含解析新版新人教版
【关键字】试题第12章《轴对称图形》一、选择题1.下列标志中,可以看作是轴对称图形的是()2.正方形对称轴的条数是()A.1B.1C.1D.13.点P(2,-5)关于x轴对称的点的坐标为A.(-2,5)B.(2,5)C.(-2,-5)D.(2,-5)4.如图,直线CD是线段AB的笔直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长度为()A.6B.5C.4D.35.将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是()6.如图,在△ABC中,点D、E分别是边AB、AC的中点,∠B=50°,∠A=26°,将△ABC沿DE折叠,点A的对应点是点A′,则∠AEA′的度数是()A.145°B.152°C.158°D.160°7.在等腰△ABC中,AB=AC,其周长为,则AB边的取值范围是()A.<AB<B.<AB<C.<AB<D.<AB<10cm8.从一个等腰三角形纸片的底角顶点出发,能将其剪成两个等腰三角形纸片,则原等腰三角形纸片的底角等于()A.72°B.C.144°D.72°,或9.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA 的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()cmB.5.5C.6.5D.710.如图所示,已知△ABC和△ADE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AG与BD交于点F,连结OC、FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,其中正确的结论个数()A.1个B.2个C.3个D.4个二、填空题11.如图,在Rt△ABC中,∠ABC=90°,AC=10cm,点D为AC的中点,则BD=___cm.12.如图,∠A=30°,∠C′=60°,△ABC与△A′B′C′关于直线l对称,则∠B=___.13.已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为___.14.如图,在Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AC于点E,∠A=30°,AB=8,则DE的长度是___.15.如图,在等腰三角形纸片ABC中,AB=AC,∠A=50°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE=___.16.如图,在△ABC中,按以下步骤作图:①分别以点B、C为圆心,以大于BC的长为半径作弧,两弧相交于M、N两点;②作直线MN交AB于点D,连接CD.若CD=AC,∠B=25°,则∠ACB的度数为___.17.在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图),那么,由此可知,B、C两地相距___m.18.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以An为顶点的内角度数是___.三、解答题19.在平面直角坐标系中,已知点A(-3,1),B(-1,0),C(-2,-1),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.20.如图,△ABC与△DEF关于直线l对称,请用无刻度的直尺,在下面两个图中分别作出直线l.21.如图,在等边△ABC中,AB=2,点P是AB边上任意一点(点P可以与点A重合),过点P作PE⊥BC,垂足为E,过点E作EF⊥AC,垂足为F,过点F作FQ⊥AB,垂足为Q,求当BP的长等于多少时,点P与点Q重合?22.如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC 的中点,连结EF交CD于点M,连接AM.(1)求证:EF=AC.(2)若∠BAC=45°,求线段AM、DM、BC之间的数量关系.23.如图,O为△ABC内部一点,OB=3,P、R为O分别以直线AB、直线BC为对称轴的对称点.(1)请指出当∠ABC在什么角度时,会使得PR的长度等于7?并完整说明PR的长度为何在此时会等于7的理由.(2)承(1)小题,请判断当∠ABC不是你指出的角度时,PR的长度是小于7还是会大于7?并完整说明你判断的理由.24.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.25.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E 作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数.(2)若CD=2,求DF的长.26.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点.过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点.(2)将如图1中△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△CAN为等腰直角三角形.(3)将如图1中△BCE绕点旋转到图3的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.27.如图,△ABC 中,AB =AC ,∠A =36°,称满足此条件的三角形为黄金等腰三角形.请完成以下操作:(画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括△ABC ) (1)在图1中画1条线段,使图中有2个等腰三角形,并直接写出这2个等腰三角形的顶角度数分别是___度和___度. (2)在图2中画2条线段,使图中有4个等腰三角形.(3)继续按以上操作发现:在△ABC 中画n 条线段,则图中有___个等腰三角形,其中有___个黄金等腰三角形.28.(1)操作发现:如图①,D 是等边△ABC 边BA 上一动点(点D 与点B 不重合),连结DC ,以DC 为边在BC 上方作等边△DCF ,连结AF .你能发现线段AF 与BD 之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D 运动至等边△ABC 边BA 的延长线上时,其它作法与(1)相同.猜想AF 与BD 在(1)中的结论是否仍然成立? (3)深入探究: Ⅰ.如图③,当动点D 在等边△ABC 边BA 上运动时(点D 与点B 不重合),连接DC ,以DC 为边在其上方、下方分别作等边△DCF 和等边△DCF ′,连接AF 、BF ′,探究AF 、BF ′与AB 有何等量关系?并证明你探究的结论.Ⅱ.如图④,当动点D 运动至等边△ABC 边BA 的延长线上运动时,其它作法与图③相同.Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.参考答案: 一、1.D.点拨:A 、不是轴对称图形,不符合题意;B 、不是轴对称图形,不符合题意;C 、不是轴对称图形,不符合题意;D 、是轴对称图形,符合题意.故应选D .2.D.3.B.点拨:把点P (2,-5)的纵坐标-5改成它的相反数5,即可得到点P 关于x 轴对称点的坐标.4.B.点拨:由根据线段垂直平分线性质可以直接判断线段PA 与线段PB 的长度相等.5.B.点拨:按照图中的顺序向右上翻折,向左上角翻折,剪去左上角,展开得到图形B .故应选B .6.B.点拨:∵D 、E 分别是边AB 、AC 的中点,∴DE ∥BC ,∴∠ADE =∠B =50°,∵∠A =26°,∴∠ADE =180°-50°-26°=104°;再由折叠可知:∠AED =∠A ′ED =104°,∴∠AEA ′=360°-104°-104°=152°.7.B.点拨:∵在等腰△ABC 中,AB =AC ,其周长为20cm ,∴设AB =AC =x ,则BC =20-2x cm ,∴2x >20-2x ,且20-2x >0,解得5cm <x <10cm.故应选B .8.D.点拨:如图,等腰三角形ABC 中,因为AB =AC ,所以∠ABC =∠C ,设顶角为α、底角为β,则根据三角形三内角和为180°,得α+2β=180.此时,由于过B 点画直线交AC 于D ,则△ADB 与△BDC 都是等腰三角形,若AD =DB =BC ,则β=2α,α+2β=180°,解得α=36°,β=72°;若AD =DB ,BC =DC ,则β=3α,α+2β=180°,解得α=7180,β=7540 .所以原等腰三角形纸片的底角等于72°,或5407⎛⎫ ⎪⎝⎭.故应选D . F D C B A 图① F D C B A 图② F D C B A 图③ F ′ F AC F ′D 图④B D A DC B A E M N图1 D C B A E M N 图2 DC B A E M N 图3 图1 C B A E F 图2 C B A E 图3C B A9.A.点拨:∵点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在MN 的延长线上,∴PM =MQ ,PN =NR .∵PM =2.5cm ,PN =3cm ,MN =4cm ,∴RN =3cm ,MQ =2.5cm ,NQ =MN -MQ =4-2.5=1.5(cm ),则线段QR 的长为:RN +NQ =3+1.5=4.5(cm ).故应选A .10.D.点拨:因为BC =AC ,∠BCD =∠ACE =120°,CD =CE ,所以△BCD ≌△ACE ,从而得①AE =BD 是正确的;又因为△BCD ≌△ACE ,所以∠FBC =∠GAC ,根据BC =AC ,∠BCF =∠ACG =60°,得△BCF ≌△ACG ,所以②AG =BF 是正确的;由△BCF ≌△ACG ,得CF =CG ,而∠FCG =60°,所以∠CGF =∠CFG =∠FCG =60°,所以③FG ∥BE 是正确的;如图,过C 作CM ⊥BD 于M ,CN ⊥AE 于N ,易得△BCM ≌△CAN ,所以CM =CN ,所以④∠BOC =∠EOC 是正确的.故应选D .二、11.5. 12.90°.点拨:因为△ABC 与△A ′B ′C ′关于直线l 对称,∠C ′=60°,所以∠C ′=∠C =60°,在△ABC 中,因为∠A =30°,所以∠B =180°-30°-60°=90°. 13.10.点拨:由角平分线的性质及题中已知条件可得PD =PE ,又因为PD =10,所以PE =10.14.2.点拨:∵D 为AB 的中点,AB =8,∴AD =4,∵ DE ⊥AC 于点E ,∴∠DEA =90°,∵∠A =30°,∴DE =12AD =2; 15.15°.点拨:∵折叠该纸片,使点A 落在点B 处,折痕为DE ,∴EA =EB ,∴∠EBA =∠A .又∵AB =AC ,∠A =50°,∴∠B =65°,∠EBA =50°,∴∠CBE =15°.16.105°.点拨:由①的作图可知CD =BD ,∴∠DCB =∠B =25°,∴∠ADC =50°.又∵CD =AC ,∴∠A =∠ADC =50°,∴∠ACD =80°,∴∠ACB =80°+25°=105°.17.200.点拨:由条件,得∠ABC =90°+30°=120°,∠BAC =90°-60°=30°,所以∠ACB =180°-∠ABC -∠BAC =180°-120°-30°=30°,所以∠ACB =∠BAC ,所以BC =AB =200,即B 、C 两地相距200m.18.(12)n -1·75°.点拨:∵A 1B =CB ,∠B =30°,∴∠C =∠BA 1C =12(180°-∠B )=75°,又∵A 1A 2=A 1D ,∴∠A 1A 2D =∠A 1DA 2=12∠DA 1C =12×75°(三角形外角等于不相邻两内角之和)=2112-×75°=2112-⎛⎫ ⎪⎝⎭×75°;同样,∵A 2A 3=A 2E ,∴∠A 2A 3E =∠A 2EA 3=12∠DA 2A 1=12×12×75°=14×75°=3112-×75°=3112-⎛⎫ ⎪⎝⎭×75°;同理,∠A 3A 4F =∠A 3FA 4=12∠EA 3A 2=4112-⎛⎫ ⎪⎝⎭×75°;…第n 个三角形中以A n 为顶点的内角度数是112n -⎛⎫ ⎪⎝⎭×75°. 三、19.如图,△ABC 就是所求的三角形,A ,B ,C 三点关于y 轴的对称点分别为A ′(3,1),B ′(1,0),C ′(2,-1),△A ′B ′C ′就是△ABC 关于y 轴对称的图形. 20.如图1和2所示中的直线l 21.设BP =x ,在Rt △PBE 中,∠BPE Rt △G F O D C B AE M NEFC中,∠FEC=30°,所以FC=12EC=1-14x,所以AF=2-FC=2-(1-14x)=1+14x,同理,AQ=12AF=12+18x,当点P与点Q重合时,有BP+AQ=2,即x+(12+18x)=2,解得x=43,故当BP=43时,点P与点Q重合.22.(1)证明:∵CD=CB,E为BD的中点,∴CE⊥BD,∴∠AEC=90°.又∵F为AC的中点,∴EF=12AC.(2)∵∠BAC=45°,∠AEC=90°,∴∠ACE=∠BAC=45°,∴AE=CE.又∵F为AC的中点,∴EF⊥AC,∴EF为AC的垂直平分线,∴AM=CM,∴AM+DM=CM+DM =CD.又∵CD=CB,∴AM+DM=BC.23.(1)∠ABC=90°时,PR=7.证明:连接PB、RB,∵P、R为O分别以直线AB、直线BC为对称轴的对称点,∴PB=OB=312,RB=OB=312,∵∠ABC=90°,∴∠ABP+∠CBR=∠ABO+∠CBO=∠ABC=90°,∴点P、B、R三点共线,∴PR=2×312=7.(2)PR的长度是小于7.理由:∠ABC≠90°,则点P、B、R三点不在同一直线上,∴PB+BR>PR,∵PB+BR=2OB=2×312=7,∴PR<7.24.(1)①②、①③.(2)选①②证明如下:在△BOE和△COD中,∵∠EBO=∠DCO,∠EOB=∠DOC,BE=CD,∴△BOE≌△COD(AAS),∴BO=CO,∠OBC=∠OCB,∴∠EOB+∠OBC =∠DOC+∠OCB,即∠ABC=∠ACB,∴AB=AC,即△ABC是等腰三角形.25.(1)∵三角形ABC为等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°-∠EDC=30°.(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形,∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.26.(1)∵点M为DE的中点,∴DM=ME.∵AD∥EN,∴∠ADM=∠NEM,又∵∠DMA=∠EMN,∴△DMA≌△EMN,∴AM=MN,即M为AN的中点.(2)由(1)中△DMA≌△EMN可知DA=EN,又∵DA=AB,∴AB=NE,∵∠ABC=∠NEC=135°,BC=CE,∴△ABC≌△NEC,∴AC=CN,∠ACB=∠NCE,∵∠BCE=∠BCN+∠NCE=90°,∴∠BCN+∠ACB=90°,∴∠CAN=90°,∴△CAN为等腰直角三角形.(3)由(2)可知AB=NE,BC=CE.又∵∠ABC=360°-45°-45°-∠DBE=270°-∠DBE=270°-(180°-∠BDE-∠BED)=90°+∠BDE+∠BED=90°+∠ADM-45°+∠BED=45+∠MEN+∠BED=∠CEN,∴△ABC≌△NEC,再同(2)可证△CAN 为等腰直角三角形,∴(2)中的结论是否仍然成立.27.(1)如图1所示.∵AB=AC,∠A=36°,∴当AE=BE,则∠A=∠ABE=36°,则∠AEB=108°,则∠EBC=36°,∴这2个等腰三角形的顶角度数分别是108度和36度.(2)画法不惟一.如,如图2所示.四个等腰三角形分别是:△ABE,△BCE,△BEF,△CEF.(3)如图3所示.当1条直线可得到2个等腰三角形;当2条直线可得到4个等腰三角形;当3条直线可得到6个等腰三角形;…∴在△ABC中画n条线段,则图中有2n个等腰三角形,其中有n个黄金等腰三角形.28.(1)AF=BD.证明:因为△ABC和△DCF均是等边三角形,所以∠ACB=∠DCF,所以∠ACB-∠ACD=∠DCF-∠ACD,即∠BCD=∠ACF.在△BDC和△AFC中,BC=AC,∠BCD=∠ACF,DC=FC,所以△BDC≌△AFC,所以AF=BD.(2)仍然成立.证法同(1).(3)Ⅰ:AF+BF′=AB.证明:由(1)可证AF=BD,同理可证△ADC≌△BF′C,所以BF′=AD,所以AF+BF′=AB.Ⅱ.在Ⅰ中的结论不成立,新结论是:AF-BF′=AB.证明:同(1)可证△BDC≌△AFC,所以AF=BD,同理可证△ADC≌△BF′C,所以BF′=AD,因为BD-AD=AB,所以AF-BF′=AB.此文档是由网络收集并进行重新排版整理.word可编辑版本!。
初二数学轴对称测试卷
一、选择题(每题3分,共15分)1. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 圆D. 长方形2. 图形关于直线x=3对称,则该直线是()A. x轴B. y轴C. x=3D. y=33. 如果一个图形沿某条直线折叠,直线两旁的部分能够完全重合,那么这个图形一定是()A. 平行四边形B. 矩形C. 轴对称图形D. 梯形4. 已知点P(2,3)关于y轴对称的点是()A. P(-2,3)B. P(2,-3)C. P(-2,-3)D. P(2,3)5. 下列各式中,能够表示点(3,4)关于x轴对称点的坐标的是()A. (3,-4)B. (-3,4)C. (-3,-4)D. (3,-4)二、填空题(每题5分,共25分)6. 如果一个图形关于直线y=5对称,那么这条直线是图形的______。
7. 图形关于直线x=-2对称,那么这条直线是图形的______。
8. 一个图形关于y轴对称,那么它的对称轴是______。
9. 如果点A(1,2)关于x轴对称的点是B,那么点B的坐标是______。
10. 已知点C(-3,4)关于y轴对称的点是D,那么点D的坐标是______。
三、解答题(每题10分,共20分)11. (1)画出图形A,并找出它的对称轴。
(2)在图形A上找出一个点P,使得点P关于对称轴对称。
12. (1)画出图形B,并找出它的对称轴。
(2)在图形B上找出一个点Q,使得点Q关于对称轴对称。
四、附加题(15分)13. (1)已知点E(2,3)关于直线x=4对称的点是F,求点F的坐标。
(2)已知点G(-2,5)关于y轴对称的点是H,求点H的坐标。
答案:一、1.D 2.C 3.C 4.A 5.A二、6.对称轴 7.对称轴 8.对称轴 9.(1,-2) 10.(3,-4)三、11.(1)见答案(2)见答案12.(1)见答案(2)见答案四、13.(1)F(6,3)(2)H(2,-5)。
人教版八年级上册数学 画轴对称图形(练习)
13.2 画轴对称图形(练习)人教版八年级上册一.选择题1.a2﹣4a+4+|b+3|=0,则P(a,b)关于x轴对称点P的坐标()A.(2,3)B.(﹣2,﹣3)C.(﹣2,3)D.(﹣3,2)2.如图,在小方格中画与△ABC成轴对称的三角形(不与△ABC重合),这样的三角形能画出()A.1个B.2个C.3个D.4个3.已知M(2,2).规定“把点M先作关于x轴对称,再向左平移1个单位”为一次变换.那么连续经过2018次变换后,点M的坐标变为()A.(﹣2016,2)B.(﹣2016,﹣2)C.(﹣2017,﹣2)D.(﹣2017,2)4.若点A(3,2)、B(3,﹣2),则点A与点B的关系是()A.关于x轴对称B.关于直线x=﹣1对称C.关于y轴对称D.关于直线y=﹣1对称5.嘉嘉和淇淇下棋,嘉嘉执圆形棋子,淇淇执方形棋子,如图,棋盘中心的圆形棋子的位置用(﹣1,1)表示,右下角的圆形棋子用(0,0)表示,淇淇将第4枚方形棋子放入棋盘后,所有棋子构成的图形是轴对称图形.则淇淇放的方形棋子的位置可能是()A.(﹣1,2)B.(﹣1,﹣1)C.(0,2)D.(1,3)6.蝴蝶标本可以近似地看作轴对称图形.如图,将一只蝴蝶标本放在平面直角坐标系中,如果图中点A的坐标为(5,3),则其关于y轴对称的点B的坐标为()A.(5,﹣3)B.(﹣5,3)C.(﹣5,﹣3)D.(3,5)7.点P(﹣2,﹣4)与点Q(6,﹣4)的位置关系是()A.关于直线x=2对称B.关于直线y=2对称C.关于x轴对称D.关于y轴对称8.如图,将边长为1的正方形OABC沿x轴正方向连续翻转2020次,点A依次落在点A1、A2、A3、A4…A2020的位置上,则点A2020的坐标为()A.(2019,0)B.(2019,1)C.(2020,0)D.(2020,1)9.如图,平面直角坐标系xOy中,点A在第一象限,B(2,0),∠AOB=60°,∠ABO =90°.在x轴上取一点P(m,0),过点P作直线l垂直于直线OA,将OB关于直线l的对称图形记为O′B′,当O′B′和过A点且平行于x轴的直线有交点时,m的取值范围为()A.m≥4B.m≤6C.4<m<6D.4≤m≤6 10.如图,已知正方形ABCD的对角线AC,BD相交于点M,顶点A、B、C的坐标分别为(1,3)、(1,1)、(3,1),规定“把正方形ABCD先沿x轴翻折,再向右平移1个单位”为一次变换,如此这样,连续经过2020次变换后,点M的坐标变为()A.(2022,2)B.(2022,﹣2)C.(2020,2)D.(2020,﹣2)二.填空题11.若点A(m,﹣3),B(﹣2,n)关于y轴对称,则m n的值为.12.点P(4,﹣1)关于y轴的对称点坐标为.13.若点A与点B(4,3)关于x轴对称,则点A的坐标为.14.已知点A(a,2),B(﹣3,b)关于y轴对称,则ab=.15.如图,在平面直角坐标系内,点P(a,b)为△ABC的边AC上一点,将△ABC先向左平移2个单位,再作关于x轴的轴对称图形,得到△A′B′C',则点P的对应点P'的坐标为.三.解答题16.△ABC如图所示:(1)作出与△ABC关于MN对称的图形△A'B'C';(2)若小正方形的边长为1,则S△ABC=.17.已知:在平面直角坐标系xOy中,△ABC的三个顶点的坐标分别是A(2,3),B(1,0),C(1,2).(1)在坐标系中,描出△ABC;(2)在图中作出△ABC关于y轴对称的△A1B1C1;(3)如果要使以B、C、D为顶点的三角形与△ABC全等,直接写出所有符合条件的点D坐标.18.如图,在正方形网格中,每个小正方形的边长都是1,每个小正方形的顶点叫做格点.网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)画出△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.19.如图所示:(1)A,B两点关于轴对称;(2)A,D两点横坐标相等,线段AD y轴,线段AD x轴;若点P是直线AD上任意一点,则点P的横坐标为;(3)线段AB与CD的位置关系是;若点Q是直线AB上任意一点,则点Q的纵坐标为.20.如图,在正方形网格中,△ABC的三个顶点均在格点上.(1)画出△A1B1C1,使得△A1B1C1和△ABC关于直线l对称;(2)过点C作线段CD,使得CD∥AB,且CD=AB.。
数学八年级上册《轴对称》单元测试题(附答案)
[答案]C
[解析]
[详解]试题解析:设A D=x,∵△A B C是等边三角形,∴∠A=∠B=∠C=60°,∵DE⊥A C于点E,EF⊥B C于点F,FG⊥A B,∴∠A DF=∠DEB=∠EFC=90°,∴BF=2x,∴B D=x,CF=12﹣2x,∴CE=2CF=24﹣4x,∴AE=12﹣CE=4x﹣12,∴A D=2AE=8x﹣24,∵A D+B D=A B,∴x+8x﹣24=12,∴x=4,∴B D=4.A D=A B-B D=12-4=8,故选C.
7.已知点P(5,-2)与点Q关于y轴对称,则Q点的坐标为()
A.(-5,2)B.(-5,-2)C.(5,2)D.(5,-2)
[答案]B
[解析]
[分析]
平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出Q的对称点的坐标.
A. 3B. 4C. 8D. 9
7.已知点P(5,-2)与点Q关于y轴对称,则Q点的坐标为()
A. (-5,2)B. (-5,-2)C. (5,2)D. (5,-2)
8.如图,在锐角△A B C中,A B=4 ,∠B A C=45°,∠B A C的平分线交B C于点D,M、N分别是A D和A B上的动点,则BM+MN的最小值是()
人教版八年级上册《轴对称》单元测试卷
(时间:120分钟 满分:150分)
一、单选题(共10题;共28分)
1.下列交通标志是轴对称图形的是( )
A. B. C. D.
2.下面的图形中,既是轴对称图形又是中心对称图形的是()
A. B. C. D.
3.如图所示是4×5的方格纸,请在其中选取一个白色的方格并涂黑,使图中阴影部分是一个轴对称图形,这样的涂法有( )
人教版八年级数学轴对称章检测卷
第1页 共8页 ◎ 第2页 共8页人教版八年级数学轴对称章检测卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知点A (a ,2)与点B (3,b )关于x 轴对称,则a +2b =( ) A .-4B .-1C .-2D .42.下列图标中,是轴对称图形的是( )A .B .C .D .3.在平面直角坐标系中,点A (3,﹣1)关于x 轴对称的点的坐标为( ) A .(﹣3,1)B .(1,﹣3)C .(﹣3,﹣1)D .(3,1)4.如图,在ABC 中,DE 是AC 的垂直平分线,且分别交BC 、AC 于点D 和E ,70B ∠=︒,25C ∠=︒,则BAD ∠为( )A .55︒B .60︒C .65︒D .70︒5.剪纸是我国传统的民间艺术.将一张正方形纸片按图1,图2中的方式沿虚线依次对折后,再沿图3中的虚线裁剪,最后将图4中的纸片打开铺平,所得图案应该是( )A .B .C .D .6.如图,在△ABC 中,BD 平分△ABC ,BC 的垂直平分线交BD 于点E ,连接CE ,若△A =60°,△ACE =24°,则△ABE 的度数为( )A .24°B .30°C .32°D .48°7.下列图案中,是轴对称图形的是( )A .B .C .D .第3页 共8页 ◎ 第4页 共8页8.如图,△ABC 与A B C '''关于直线MN 对称,BB '交MN 于点O ,则下列结论不一定正确的是( )A .AC AC =''B .BO B O ='C .AA MN '⊥D .AB B C ''∥9.下列图形中,轴对称图形的个数是( )A .1个;B .2个;C .3个;D .4个;10.如图,△ABC 中△A =40°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,点C 恰好落在BE 上的点G 处,此时△BDC =82°,则原三角形的△B 的度数为( )A .57°B .60°C .63°D .70°二、填空题11.把一张长方形纸条ABCD 沿EF 折叠成图△,再沿HF 折叠成图△,若△DEF =β(0°<β<90°),用β表示△C ''FE ,则△C ''FE =_______.12.如图,将ABC 沿AB 边对折,使点C 落在点D 处,延长CA 到E ,使AE AD =,连接CD 交AB 于F ,连接ED ,则下列结论中:△若ABC 的周长为12,5DE =,则四边形ABDE 的周长为17;△AB DE ∥;△90CDE ∠=︒;△2ADE ADF S S =△△,正确的有_____________.13.如图,在△ABC 中,△B 、△C 的平分线交于点F ,过点F 作DE △BC 交AB 于点D ,交AC 于点E ,下列结论:△△BDF ,△ADE 都是等腰三角形;△DE =BD +CE ;△△ADE 的周长等于AB +AC ;△BF=CF ;△若△A =80°,则△BFC =130°,其中正确的有_________14.如图,在平行四边形ABCD 中,60C ∠=︒,以点A 为圆心,AB 长为半径画弧交AD 于点F ,再分别以点B ,F 为圆心,大于12BF 的长为半径画弧,两弧交于一点P ,连接AP 并延长交BC 于点E ,连接EF .设AE 与BF 相交于点O ,若四边形ABEF 的周长为16,则四边形ABEF 的面积是_________.第5页 共8页 ◎ 第6页 共8页15.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,△ABO △△ADO ,下列结论:△AC △BD ;△CB =CD ;△△ABC △△ADC ;△DA =DC .其中不正确结论的序号是____.16.如图,在ABC 中,90ACB ∠=︒,15B ∠=︒,DE 的垂直平分线AB 分别交AB 、BC 于点D 、E ,连接AE ,若6cm BE =,则AC 等于___________cm .17.等腰三角形的顶角是100︒,那么它的一个底角的度数是________.18.如图,在△ABC 中,AB =8,BC =9,AC =5,直线m 是△ABC 中BC 边的垂直平分线,P 是直线上的一动点,则△APC 的周长的最小值为________.三、解答题19.如图,在△ABC 中,AB =BC ,△ABC =120°,AB 的垂直平分线DE 交AC 于点D ,连接BD ,若AC =12(1)求证:BD △BC . (2)求DB 的长.20.如图,E 为ABC 的外角CAD ∠平分线上的一点,AE //BC ,BF AE =.(1)求证:ABC 是等腰三角形;(2)若4AF =,求CE 的长.21.如图,△ABC 是边长为6的等边三角形,三边上分别有点E 、D 、F ,使得AE =BD =CF ,过点E 作EP △DF ,垂足为点P(1)求证:△BDE △△CFD ; (2)求△DEP 的度数;第7页 共8页 ◎ 第8页 共8页(3)当点E 、D 、F 分别在三边BA 、CB 及AC 的延长线上时,过点E 作EP △DF ,垂足为点P ,若AE =BD =CF =2,若△BDE 的周长为19,求DP 的长. 22.如图,AB 是线段,AD 和BC 是射线,AD//BC .(1)尺规作图:作AB 的垂直平分线EF ,垂足为O ,且分别与射线BC 、AD 相交于点E 、F (不写作法,保留作图痕迹);(2)在(1)条件下,连接AE ,求证:AE=AF .23.已知:如图,△ABC 是等边三角形,边长为6,点D 为动点,AD 绕点A 逆时针旋转60°得到AE .(1)如图1,连接BD ,CE ,求证BD CE =;(2)如图2,BAD DBC ∠=∠,连接DE ,求证:点B ,D ,E 三点在同一条直线上; (3)如图3,点D 在△ABC 的高BF 上,连接EF ,求EF 的最小值. 24.已知:Rt ABC ,90B .求作:点P ,使点P 在ABC 内部,且,45PB PC PBC =∠=︒.25.在正方形网格中,建立如图所示的平面直角坐标系,△ABC 的三个顶点都在格点上,△ABC 关于y 轴对称图形为△A 1B 1C 1(要求:A 与A 1,B 与B 1,C 与C 1相对应)(1)写出A 1,B 1,C 1的坐标,并画出△A 1B 1C 1的图形; (2)求△A 1B 1C 1的面积;(3)点P 是y 轴上一动点,画出P A +PC 最短时,点P 的位置.(保留作图痕迹,不写画法)26.如图,在平面直角坐标系中,A (3,4),B (1,2),C (5,1).(1)作出△ABC 关于y 轴的对称图形△1A 1B 1C ; (2)写出△1A 1B 1C 的三个顶点的坐标;(3)连接1AA ,1BB ,并求出四边形11ABB A 的面积.参考答案:1.B【分析】先根据关于x轴对称的点的坐标特点求出a、b,再代入计算即可.【详解】解:△点A(a,2)与点B(3,b)关于x轴对称,所以a=3,b=−2,△a+2b=3+2×(−2)=-1.故选B.【点睛】此题主要考查关于x轴对称的点的坐标特点.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数.2.D【分析】根据轴对称图形的定义“如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形”逐项判断即可.【详解】A、不是轴对称图形,此项不符题意;B、不是轴对称图形,此项不符题意;C、不是轴对称图形,此项不符题意;;D、是轴对称图形,此项符合题意;故选:D.【点睛】本题考查了轴对称图形的定义,熟记定义是解题关键.3.D【分析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【详解】解:点P(3,−1)关于x轴对称的点的坐标是(3,1)故选:D.【点睛】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.B【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到△DAC=△C,根据三角形内角和定理求出△BAC的度数,计算出结果.【详解】解:△DE是AC的垂直平分线,△DA=DC,△△DAC=△C=25°,△△B=70°,△C=25°,△△BAC=85°,△△BAD=△BAC-△DAC=60°,故选:B.【点睛】本题考查的是线段垂直平分线的性质的知识,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.A【分析】依据翻折变换,将图4中的纸片按顺序打开铺平,即可得到一个图案.【详解】解:将图4中的纸片打开铺平,所得图案应该是:故选:A.【点睛】本题主要考查了剪纸问题,解决这类问题要熟知轴对称图形的特点,关键是准确地找到对称轴.一般方法是动手操作,拿张纸按照题目的要求剪出图案,展开即可得到正确的图案.6.C【分析】先根据BC的垂直平分线交BD于点E证明△BFE△△CFE(SAS),根据全等三角形∠=∠=∠,再根据三角形内角和定理即可得到的性质和角平分线的性质得到ABE EBF ECF答案.【详解】解:如图:△BC的垂直平分线交BD于点E,△BF=CF,△BFE=△CFE=90°,在△BFE和△CFE中,EF EF EFB EFC BF CF =⎧⎪∠=∠⎨⎪=⎩, △△BFE △△CFE (SAS ),△EBF ECF ∠=∠(全等三角形对应角相等), 又△BD 平分△ABC , △ABE EBF ECF ∠=∠=∠,又△180ABE EBF ECF ACE A ∠+∠+∠+∠+∠=︒(三角形内角和定理), △180602496ABE EBF ECF ∠+∠+∠=︒-︒-︒=︒, △196323ABE ∠=⨯︒=︒,故选:C .【点睛】本题主要考查了三角形全等的判定与性质、角平分线的性质、三角形内角和定理,解题的关键是证明ABE EBF ECF ∠=∠=∠. 7.C【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,对各选项判断即可.【详解】根据轴对称图形的定义可知A 、B 、D 均不是轴对称图形, 只有C 是轴对称图形. 故选:C .【点睛】本题考查了轴对称图形的知识,属于基础题,解答本题的关键是找出对称轴从而判段是否是轴对称图形. 8.D【分析】根据轴对称的性质逐项判断即可得.【详解】解:A .AC AC='',则此项正确,不符合题意; B .BO B O =',则此项正确,不符合题意; C .AA MN '⊥,则此项正确,不符合题意; D .AB B C ''∥不一定正确,则此项符合题意; 故选:D .【点睛】本题考查了轴对称的性质,解题的关键是熟练掌握轴对称的性质:成轴对称的两个图形的对应边相等,对应角相等,对称轴垂直平分对应点连接的线段.9.C【分析】根据轴对称图形的概念对各图形分析判断即可得解. 【详解】解:第1个不是轴对称图形; 第2个是轴对称图形; 第3个是轴对称图形; 第4个是轴对称图形; 故选:C .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 10.C【分析】根据折叠的性质可知:△BDG =△BDC =82°,△ABE =△A 'BE =△A 'BG=△A 'BC ,根据三角形外角性质可得:△DBA =△BDC ﹣△A =82°﹣40°=42°,进一步可求出△ABE =△A 'BE =21°,△ABC =3×21°=63°,即原三角形的△B =63°.【详解】解:由折叠性质可得,△BDG =△BDC =82°,△ABE =△A 'BE =△A 'BG=△A 'BC , △△BDC 是△BDA 的外角,△△DBA =△BDC ﹣△A =82°﹣40°=42°, △△ABE =△A 'BE =21°,△△ABC =3×21°=63°,即原三角形的△B =63°, 故选:C .【点睛】此题主要考查的是图形的折叠及三角形外角性质,能够根据折叠的性质发现△BDG =△BDC =82°,△ABE =△A 'BE =△A 'BG=△A 'BC 是解答此题的关键. 11.1803β︒-【分析】先利用平行线的性质得到EFH DEF β∠=∠=,180EFC β∠=︒-,再根据折叠的性质得到180EFC β∠'=︒-,所以1802HFC β∠'=︒-,接着再利用折叠的性质得到1802C FH C FH β∠''=∠'=︒-,然后计算C FH EFH ''∠-∠即可.【详解】四边形ABCD 为长方形,//AD BC ∴,EFH DEF β∴∠=∠=,180EFC β∠=︒-,方形纸条ABCD 沿EF 折叠成图△, 180EFC EFC β∴∠'=∠=︒-,1801802HFC EFC EFH βββ∴∠'=∠'-∠=︒--=︒-,长方形ABCD 沿HF 折叠成图△, 1802C FH C FH β∴∠''=∠'=︒-,18021803C FE C FH EFH βββ∴∠=∠-∠=︒--=''︒-''.故答案为:1803β︒-.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等. 12.△△△△【分析】△由题知AE =AC ,BD =BC ,可得结论正确;△由三角形外角知△CAB +△DAB =△ADE +△AED ,又知△CAB =△DAB ,△ADE =△AED ,即可得△CAB =△DAB =△ADE =△AED ,即可得证结论; △由对称知CD △AB ,由AB △DE 可得结论;△由△知S △ADE =12DF •DE ,S △ADF =12DF •AF ,证AF 是中位线可得AF =12DE ,即可得证结论.【详解】解:△由图形翻折可知,AD =AC ,BD =BC , △AE =AD , △AE =AC ,△C 四边形ABDE =C △ABC +DE , △C △ABC =12,DE =5, △C 四边形ABDE =17, △△正确;△由图形翻折知,△CAB =△DAB , △AE =AD , △△ADE =△AED ,又△△CAB +△DAB =△ADE +△AED , △△CAB =△DAB =△ADE =△AED , △AB //DE , △△正确;△由△知,AB //DE ,由图形翻折知,CD△AB,△△CF A=△CDE=90°,△△正确;△由△知,△CF A=△CDE=90°,△S△ADE=12DF•DE,S△ADF=12DF•AF,△A是EC的中点,AB//DE,△AF是△CDE的中位线,△AF=12DE,△S△ADE=2S△ADF,△△正确,故答案为:△△△△.【点睛】本题主要考查图形的翻折,三角形的面积,平行线的判定和性质等知识点,证明AB DE是解题的关键.13.△△△【分析】由平行线得到角相等,由角平分线得角相等,根据平行线的性质及等腰三角形的判定和性质.【详解】解:△△B、△C的角平分线交于点F,△△DBF=△CBF,△ECF=△BCF,设△DBF=△CBF=α,△ECF=△BCF=β,△DE BC∥,△△DFB=△CBF=α,△EFC=△BCF=β,△△DBF=△DFB,△EFC=△ECF,△DB=DF,EF=EC,△△BDF与△CEF为等腰三角形,△DE=DF+EF=BD+CE,故△正确;△△ADE的周长为AD+AE+DE=AD+AE+BD+CE=AB+AC,故△正确;只有当△ABC是等腰三角形时,即△ABC=△ACB,则△FBC=△FCB,△ADE=△AED,则BF =CF,AD=AE,根据现有条件无法证明BF=CF,并且无法证明△ADE=△A或△AED=△A,即无法证明△ADE为等腰三角形,故△、△错误;△△A =80°,△△FBC +△FCB =218080︒-︒=50°, △△BFC =180°-50°=130°,故△正确.故答案为△△△.【点睛】本题考查了等腰三角形的性质与判定及角平分线的定义及平行线的性质,三角形内角和定理;题目利用了两直线平行,内错角相等,及等角对等边来判定等腰三角形的;等量代换的利用是解答本题的关键.14.【分析】根据题意可知AE 是BF 的垂直平分线,可得AB=AF ,BE=EF ,再根据“AAS ”证明△AOF △△EOB ,可得AF=BE ,进而根据“四边相等的四边形是菱形”得出四边形ABEF 是菱形,可知AF=AB=4,再说明△ABF 是等边三角形,可求出BF=4,然后根据勾股定理求出AO ,最后根据菱形的面积等于对角线乘积的一半得出答案即可.【详解】根据题意可知AE 是BF 的垂直平分线,△AB=AF ,BE=EF .△△F AO=△BEO ,△AOF=△BOE ,BO=FO ,△△AOF △△EOB ,△AF=BE ,△AB=BE=EF=AF ,△四边形ABEF 是菱形,△AF=AB=4.△四边形ABCD 是平行四边形,且△C =60°,△△BAF =60°,△△ABF 是等边三角形,△BF=4,△OF=2.在Rt △AOF 中,AO ===,△AE =△11==422ABEF S AE BF ⨯⋅⨯⨯四边形故答案为:【点睛】本题主要考查了尺规作垂直平分线,菱形的判定和性质,平行四边形的性质,等边三角形的判定和性质,勾股定理等,掌握菱形面积的计算方法是解题的关键.15.△【分析】根据全等三角形的性质可得AOB AOD ∠=∠,根据平角的定义可得1180902AOB AOD ∠=∠=⨯︒=︒,即可判断△,根据全等三角形的性质得出AB AD =,BO DO =,结合△可得AC 是BD 的垂直平分线,即可判断△,根据SSS 即可证明△,不能得出结论△.【详解】解:△△ABO △△ADO ,△AOB AOD ∠=∠,AB AD =,BO DO =△四边形ABCD 的对角线AC 、BD 相交于点O , △1180902AOB AOD ∠=∠=⨯︒=︒, △△AC △BD 正确;△AB AD =,BO DO =△AC 是BD 的垂直平分线,△△CB =CD 正确;△,,AB AD BC DC AC AC ===,△△△ABC △△ADC 正确;由已知条件不能判断△DA =DC .故答案为:△.【点睛】本题考查了全等三角形的性质与判定,垂直平分线的性质与判定,掌握以上知识是解题的关键.16.3【分析】根据垂直平分线的性质,可知6AE BE ,再由三角形外角的性质得出30AEC ABE BAE ∠=∠+∠=︒,最后由含30°的直角三角形的性质得出AC 的值即可.【详解】解:△DE 垂直平分AB ,6BE =△6AE BE ,又15B ∠=︒△15ABE BAE ∠=∠=︒,△30AEC ABE BAE ∠=∠+∠=︒,又△90ACB ∠=︒△在Rt AEC 中,132AC AE == 故答案为:3.【点睛】本题考查了垂直平分线的性质、三角形的外角的性质、含30°的直角三角形的性质,解题的关键在于对知识的灵活运用.17.40︒##40度【分析】根据等腰三角形的性质即可得. 【详解】解:根据题意得,底角的度数为:1(180100)402⨯︒-︒=︒, 故答案为:40︒.【点睛】本题考查了等腰三角形的性质,解题的关键是熟记等腰三角形的性质. 18.13【分析】首先连接PC ,由中垂线的性质可得PB =PC ,由于△APC 的周长为AC +P A +PC ,AC 长度固定,则只要P A +PB 最小即可,此时可推出P 、A 、B 三点共线,即P A +PB =AB ,由此计算即可.【详解】解:如图,连接PC ,则由中垂线的性质可得PB =PC ,△△APC 的周长=AC +P A +PC ,△△APC 的周长=AC +P A +PB ,△AC =5,△要使得△APC 的周长最小,使得P A +PB 最小即可,显然,根据两点之间线段最短,可知当P 、A 、B 三点共线时,P A +PB 最小此时,P 点即在AB 边上,P A +PB =AB ,△P A +PB 最小值为8,△△APC 的周长最小为:8+5=13,故答案为:13.【点睛】本题考查最短路径问题,以及中垂线的性质,理解并掌握中垂线的性质,以及最短路径问题的基本处理方式是解题关键.19.(1)见解析(2)4【分析】(1)根据等腰三角形的性质和三角形内角和定理求出△A=△C=30°,再根据线段垂直平分线的性质得出AD=BD,求出△DBA=30°,据此即可证得;(2)根据含30°角的直角三角形的性质求出BD=12CD,求出AD=12CD,据此求出答案即可.【详解】(1)证明:△AB=BC,△ABC=120°,△1180302A C ABC∠=∠=︒-∠︒()=,△AB的垂直平分线是DE,△AD=BD,△△DBA=△A=30°,△△DBC=△ABC﹣△DBA=120°﹣30°=90°,△BD△BC;(2)解:△△DBC=90°,△C=30°,△12BD CD=,△AD=BD,△1123AD CD AC==,△AC=12,△AD=4,△BD=AD=4.【点睛】本题考查了线段垂直平分线的性质,含30°角的直角三角形的性质,三角形内角和定理,等腰三角形的性质等知识点,能灵活运用知识点进行推理和计算是解此题的关键.20.(1)证明见解析(2)4【分析】(1)先根据平行线的性质可得DAE B ∠=∠,EAC ACB ∠=∠,再根据角平分线的定义可得DAE EAC ∠=∠,从而可得B ACB ∠=∠,然后根据等腰三角形的判定即可得证; (2)先根据三角形全等的判定证出ABF CAE ≅,再根据全等三角形的性质即可得.【详解】(1)证明:△AE //BC ,DAE B ∴∠=∠,EAC ACB ∠=∠, E 为ABC 的外角CAD ∠平分线上的一点,DAE EAC ∴∠=∠,B ACB ∴∠=∠,AB AC ∴=,ABC ∴是等腰三角形.(2)解:由(1)已得:,DAE B DAE EAC ∠=∠∠=∠,B EAC ∴∠=∠,在ABF △和CAE 中,AB CA B EAC BF AE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ABF CAE ∴≅,AF CE ∴=,4AF =,4CE ∴=.【点睛】本题考查了等腰三角形的判定、三角形全等的判定与性质等知识点,熟练掌握等腰三角形的判定是解题关键.21.(1)见解析;(2)30°;(3)4.5【分析】(1)直接根据SAS 证明△BDE △△CFD 即可;(2)由(1)得△BDE △△CFD ,则△BED =△CDF ,即可推出△ EDP =△B =60°,再由EP △DF ,即可得到△ DEP =30° ;(2)根据△ABC 边长为6, AE =BD =2,得到BE =AB +AE =8,由△BDE 的周长为19,求出DE =19-BD -BE =9,然后证明△BDE △△CFD 得到△DEB =△FDC ,推出△EDP =60°,即可利用含30度角的直角三角形的性质求解.【详解】解:(1)△△ABC是等边三角形,△△B=△C=60°,AB=BC,△AE=BD=CF,△AB-AE=BC-BD,即BE=CD,△△BDE△△CFD(SAS);(2)由(1)得△BDE△△CFD,△△BED=△CDF,又△△EDC=△B+△BED,△△ EDP+△CDF=△B+△BED,△△ EDP=△B=60°,△EP△DF,△△EPD=90°,△△ DEP=30° ;(2)△△ABC边长为6,AE=BD =2,△BE=AB+AE=8,又△△BDE的周长为19,△ DE=19-BD-BE=9,△△ABC是等边三角形,△△ABC=△ACB=60°,BA=CB,△△EBD=180°-△ABC=180°-△ACB=△DCF=120°,又△BD=AE,△BA+AE=CB+BD,即BE=CD,△△BDE△△CFD(SAS),△△DEB=△FDC,△△EBC=△EDB+△DEB=60°,△△EDB+△FDC=60°,即△EDP=60°,又△EP△DF,△△EPD=90°,△△ DEP=30°,△DE=2DP,△DP= 4.5.【点睛】本题主要考查了等边三角形的性质,全等三角形的性质与判定,三角形外角的性质,含30度角的直角三角形的性质,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.22.(1)见详解;(2)见详解【分析】(1)按照垂直平分线的作法画出AB的垂直平分线即可;(2)通过平行线的性质及垂直平分线的性质得出BAF EAB∠=∠,然后通过ASA证明≅,再由全等三角形的性质即可得出结论.AOE AOF【详解】(1)如图(2)如图,连接AE//AD BCEBA BAF∴∠=∠△EF是AB的垂直平分线,90 EB EA AOE AOF∴=∠=∠=︒EBA EAB∴∠=∠BAF EAB∴∠=∠在AOE△和AOF中,EAO FAO AO AOAOE AOF ∠=∠⎧⎪=⎨⎪∠=⎩()AOE AOF ASA∴≅AE AF∴=【点睛】本题主要考查尺规作图及全等三角形的判定及性质,掌握垂直平分线的作法和全等三角形的判定方法及性质是解题的关键.23.(1)见解析(2)见解析(3)3 2【分析】(1)证明△BAD△△CAE,从而得出结论;(2)△BAD=△CAE=△CBE,所以△ABC=△ABD+△CBE=△ABD+△BAD=60°,从而得出△ADB=120°,进一步得出结论;(3)可证得△ACE=△ABF=30°,从而得出点E的运动轨迹,进而求得EF的最小值.【详解】(1)△△ABC是等边三角形,△AB=AC,△BAC=60°,△AD 绕点A 逆时针旋转60°得到AE ,△△DAE =60°,AD =AE ,△△BAC =△DAE ,△△BAC -△DAC =△DAE -△DAC ,即:△BAD =CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , △△BAD △△CAE (SAS ),△BD =CE ;(2)由(1)知:△CAE =△BAD ,△△CAE =△CBE ,△△BAD =△CBE ,△△ABC 是等边三角形,△△ABC =60°,△△ABD +△CBE =60°,△△ABD +△BAD =60°,△△ADB =180°-(△ABD +△BAD )=120°,△AD =AE ,△DAE =60°,△△ADE 是等边三角形,△△ADE =60°,△△ADB +△ADE =180°,△B 、D 、E 在同一条直线上;(3)如图,连接CE ,由(1)得:△BAD △△CAE ,△△ACE=△ABD,△△ABC是等边三角形,△AB=BC,△ACB=△ABC=60°,△BF△AC,△△ABF=12△ABC=30°,CF=AF=12AC=3,△△ACE=30°,△△BCE=△ACB+△ACE=90°,△点E在过点C且与BC垂直的直线上运动,△当FE垂直于该直线时,CE最小(图中点CE′),△△CE′F=90°,△ACE=30°,△FE′=12CF=32,△EF的最小值为:32.【点睛】本题考查了等边三角形性质,直角三角形性质,全等三角形的判定和性质等知识,解决问题的关键是熟练掌握“手拉手”模型.24.见解析【分析】分别以点B、C为圆心,大于BC长的一半为半径画弧,交于两点,连接这两点,然后再以点B为圆心,适当长为半径画弧,交AB、BC于点M、N,以点M、N为圆心,大于MN长一半为半径画弧,交于一点Q,连接BQ,进而问题可求解.【详解】解:如图,点P即为所求:【点睛】本题主要考查角平分线与垂直平分线的尺规作图,熟练掌握角平分线与垂直平分线的尺规作图是解题的关键.25.(1)A1(4,1) ;B1(2,-1);C1(1,3);见解析;(2)5;(3)见解析【分析】(1)根据关于y轴对称的点的坐标特征,纵坐标相同,横坐标互为相反数,先找到A 、B 、C 关于y 轴对称的点,然后顺次连接即可;(2)根据111A B C △的面积等于其所在的长方形面积减去周围三个三角形面积求解即可; (3)连接1A C 与y 轴交于点P 即为所求.【详解】解:(1)如图所示,111A B C △即为所求;由图可知,1A 的坐标为(4,1),1B 的坐标为(2,-1),1C 的坐标为(1,3);(2)由图可知111111341422325222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=△; (3)如图所示,连接1A C 与y 轴交于点P 即为所求;【点睛】本题主要考查了画轴对称图形,坐标与图形变化,轴对称最短路径等等,解题的关键在于能够熟练掌握关于y 轴对称的点的坐标特征.26.(1)作图见详解(2)1(3,4)A -,1(1,2)B -,1(5,1)C -(3)作图见详解,四边形11ABB A 的面积为8【分析】(1)先依次作A ,B ,C 关于y 轴的对称点,再顺次连接即可.(2)由图写出1A ,1B ,1C 坐标即可.(3)由图可知四边形11ABB A 为梯形,用梯形面积公式即可求得面积.【详解】(1)(2)解:由(1)中图可知1(3,4)A -,1(1,2)B -,1(5,1)C -(3)解:如图四边形11ABB A 的面积=1(26)282+⨯= 【点睛】本题考查了轴对称的作图,以及平面直角坐标系相关知识点.掌握轴对称的作图步骤是解题关键.。
八年级数学轴对称图形试题
初中八年级上册数学轴对称基础题一、选择题(共8小题,每小题3分,满分24分)1.下列图案是轴对称图形的有()A、1个B、2个C、3个D、4个2、在平面直角坐标系中,点(3,-4)关于x轴对称的点的坐标是()A、(3,4)B、(-3,4)C、(4,-3)D、(4,3)3、羊年话“羊”,“羊”字象征着美好和吉祥,下面图案都与“羊”字有关,其中是轴对称图形的个数是()A、1B、2C、3D、44、等腰三角形的两边长为3和6,则此等腰三角形的周长为()A、12或15B、12C、15D、185、如图:AC⊥BC,AC=BC,CD⊥AB,DE⊥BC,则图中共有等腰三角形()A、2个B、3个C、4个D、5个6、如果一个三角形的一条边上的中点到其他两边的距离相等,那么这个三角形一定是()A、等腰三角形B、等边三角形C、不等边三角形D、不等腰钝角三角形7、如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔果一个球按图中所示的方向被击出(球可以经过多反射),那么该球最后将落入的球袋是()A、1号袋B、2号袋C、3号袋D、4号袋8、下列说法正确的是()A、两个全等的三角形合在一起是轴对称图形B、两个轴对称的三角形一定是全等的C、线段不是轴对称图形D、三角形的一条高线就是它的对称轴11题13、数的计算中有一些有趣的对称形式,如:12×231=132×21;仿照上面的形式填空,并判断等式是否成立:(1) 12×462= ×(),(2) 18×891= ×().14、如图,平面镜A与B之间夹角为120°,光线经过平面镜A反射后射在平面镜B上,再反射出去,若∠1=∠2,则∠1= 度.(14)(15)15、如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于D,∠CAD:∠DBA=1:2,则∠DBA的度数为.16、如图,L是四边形ABCD的对称轴,若AD∥BC,有下列结论:①AB∥CD,②AB=BC,③AB⊥BC,④AO=CO,其中正确的是.三、解答题(共5小题,满分52分)17、如图,作出它们的对称轴.(6分)18、已知如下图,求作△ABC关于对称轴l的轴对称图形△A′B′C′.(8分)19、如图,A、B两村位于河岸CD同侧,现在要在CD上找一点建一抽水站,使抽水站到A、B两村的距离相等,请通过作图找到站址.(用直尺、圆规作图,保留作图痕迹,不写作法,不要求证明)(8分)20、如图,在正方形网格上有一个△ABC.(15分)(1)作△ABC关于直线MN的对称图形(不写作法);(2)若网格上的最小正方形的边长为1,求△ABC的面积.21、求证:等腰三角形底边上的任意一点到两腰的距离之和等于一腰上的高.(15分)。
人教版八年级上册数学第13章《轴对称》单元测试卷(含答案解析)
人教版八年级上册数学第13章《轴对称》单元测试卷班级_________ 姓名__________ 考号_____________ 得分____________一、选择题(每小题3分,共30分)1、下列图形中一定是轴对称图形的是()A.B.C.D.2、点A(a﹣3,﹣1)与点B(2,b+2)关于x轴对称,则a,b的值分别是()A.a=1,b=﹣3 B.a=1,b=﹣1 C.a=5,b=﹣3 D.a=5,b=﹣13、如图,在△ABC中,AB=AD=DC,若∠BAD=36°,则∠C的大小为()A.36°B.38°C.40°D.42°4、等腰三角形的一个外角是140°,则其底角是()A.40°B.70°或40°C.70°D.140°5、等腰三角形的周长为15,其中一边长为3,则该等腰三角形的底边长为()A.3 B.4 C.5 D.66、如图,△ABC中,AB=AC,AD=DE,∠BAD=18°,∠EDC=12°,则∠DAE的度数为()A.58°B.56°C.62°D.60°7、如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′恰好落在CD上,若∠BAD=100°,则∠ACB的度数为()A.40°B.45°C.60°D.80°8、如图,在△ABC中,∠C=90°,点A关于BC边的对称点为A′,点B关于AC边的对称点为B′,点C关于AB边的对称点为C′,则△ABC与△A′B′C′的面积之比为()A.B.C.D.9、在△ABC中,AB=AC,OB=OC,点A到BC的距离是6,O到BC的距离是4,则AO为()A.2 B.10 C.2或10 D.无法测量10、如图,在Rt△ABC中(AB>2BC),∠C=90°,以BC为边作等腰△BCD,使点D落在△ABC的边上,则点D的位置有()A.2个B.3个C.4个D.5个二、填空题(每小题4分,共24分)11、在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴对称得到点A′,再将点A′向上平移2个单位,得到点A″,则点A″的坐标是(1,4).12、一个等腰三角形一腰上的中线把这个三角形的周长分为12和30两部分,则这个等腰三角形的腰长为20.13、如图,等腰△ABC中,AB=AC,∠A=54°,AB的垂直平分线MN交AC于点D,则∠DBC的度数是9°.14、如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为.15、如图,在平面直角坐标系xOy中,已知点A(6,2),B(0,1).在x轴上找一点P,使得PA+PB最小,则点P的坐标是(2,0),此时△PAB的面积是4.16、在Rt△ABC中,∠ACB=90°,∠CAB=36°,在直线AC或BC上取点M,使得△MAB为等腰三角形,符合条件的M点有8个.。
八年级数学上册第十三章《轴对称》测试-人教版(含答案)
八年级数学上册第十三章《轴对称》测试-人教版(含答案)题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分)1以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2 B.1,1,3 C.2,2,1 D.2,2,52如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD3如图,DE是△ABC中AB边的垂直平分线,若BC=6,AC=8,则△BCE的周长为()A.10 B.12 C.14 D.164.如图,直线m是多边形ABCDE的对称轴,其中∠A=120°,∠B=110°,那么∠BCD的度数为( )A.50° B.60° C.70° D.80°5.如图,在等腰△ABO中,∠ABO=90°,腰长为2,则A点关于y轴的对称点的坐标为()A.(﹣2,2)B.(﹣2,﹣2)C.(2,2)D.(2,﹣2)6.以下叙述中不正确的是()A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等7.如图①,在边长为4cm的正方形ABCD中,点P从点A出发,沿AB→BC的路径匀速运动,当点C停止,过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(s)的函数关系图象如图②所示,当点P运动2.5s时,PQ的长是()cm.A.B.C.D.8.如图13-5,P是∠AOB外的一点,M,N分别是∠AOB两边上的点,点P关于OA的对称点Q 恰好落在线段MN上,点P关于OB的对称点R恰好落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段QR的长为()A.4.5 cmB.5.5 cmC.6.5 cmD.7 cm图13-5 图13-69.如图13-6,已知在△ABC中,∠ABC=90°,∠A=30°,BD⊥AC,DE⊥BC,D,E分别为垂足,下列结论中正确的是()A.AC=2ABB.AC=8ECC.CE=12BDD.BC=2BD10. 如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为()A.90°B.108°C.110°D.126°二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.17.如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心、BC的长为半径作弧,交AB于点D,交AC于点E,连接BE,则∠ABE的大小为______.18.如图,△ABC中,BC的垂直平分线DP与∠BAC的平分线相交于点D,垂足为点P,若∠BAC =84°,则∠BDC=______.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC,(1)分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;(2)直接写出B1和B2点坐标.20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.21.如图,△ABC中,AB=AC,DE是腰AB的垂直平分线.(1)若∠A=40°,求∠DBC的度数;(2)若AB=9,BC=5,求△BDC的周长.22.如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE.求证:∠BCE=∠A+∠ACB.23.已知△ABC中,AC=BC,∠C=120°,点D为AB边的中点,∠EDF=60°,DE、DF分别交AC、BC于E、F点.(1)如图1,若EF∥AB.求证:DE=DF.(2)如图2,若EF与AB不平行.则问题(1)的结论是否成立?说明理由.24.已知等腰ABC,AC AB⊥交BA延长线于点D,点P在直线AC上=,30ABC∠=︒,CD AB运动,连接BP,以BP为边,并在BP的左侧作等边三角形BPE,连接AE.(1)如图1,当BP AC≌△△;⊥时,求证:ABP ACD(2)如图2,当点D与点E在直线CP同侧时,求证:AP AB AE=+;(3)在点P运动过程中,是否存在定直线,使得线段BE、CE始终关于这条直线对称,若存在,指出这一条直线,并加以证明:若不存在,请说明理由.参考答案一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案 C D C D C C D B D B二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.【考点】轴对称图形.【答案】见试题解答内容【分析】应根据各图形组成特征找出对应关系.【解答】解:A剪开后是三个三角形,B和C剪开后是两个直角梯形和一个三角形,D剪开后是两个三角形和一个四边形,因而,A与G对应,B与E对应,C与F对应,D与H对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.【考点】线段垂直平分线的性质.【专题】三角形.【答案】见试题解答内容【分析】先根据题意得到AB垂直平分CD,然后根据线段垂直平分线的性质可判断C,D到B的距离相等.【解答】解:∵AB⊥CD,AC=AD,∴AB垂直平分CD,∴BC=BD,即C,D到B的距离相等.故答案为:垂直平分线上的点到线段两端点的距离相等.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.【考点】等边三角形的性质;含30度角的直角三角形.【专题】推理填空题.【答案】见试题解答内容【分析】根据等边三角形的性质得到AD=4,AC=8,∠A=∠C=60°,根据直角三角形的性质得到AE=AD=2,计算即可.【解答】解:等边△ABC中,D是AB的中点,AB=8,∴AD=4,BC=AC=8,∠A=∠C=60°,∵DE⊥AC于E,EF⊥BC于F,∴∠AFD=∠CFE=90°,∴AE=AD=2,∴CE=8﹣2=6,∴CF=CE=3,∴BF=5,故答案为:5.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.【考点】解一元一次不等式组;一元一次不等式组的整数解;关于x轴、y轴对称的点的坐标.【专题】平面直角坐标系;数感;运算能力.【答案】2.【分析】由于点P关于y轴的对称点在第二象限,则点P在第一象限,再根据点的坐标特征,即可得出整数m的值.【解答】解:由于点P关于y轴的对称点在第二象限,则点P在第一象限.依题意有解得<m<3.因为m为整数,所以m=2,故答案为:2.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.【考点】等边三角形的性质;轴对称﹣最短路线问题.【专题】平移、旋转与对称;推理能力.【答案】见试题解答内容【分析】根据等边三角形的性质得到AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,根据直角三角形的性质得到BG=2BF=14,求得EG=8,于是得到结论.【解答】解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,∵∠B=60°,∠BFG=90°,∴∠G=30°,∵BF=7,∴BG=2BF=14,∴EG=8,∵CE=CG=4,∴AC=BC=10,故答案为:10.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【答案】见试题解答内容【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或17.21°解析:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°.依题意可知BC=EC,∴∠BEC =∠EBC=53°,∴∠ABE=∠ABC-∠EBC=74°-53°=21°.18.96°解析:如图,过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于点F.∵AD是∠BAC的平分线,∴DE =DF .∵DP 是BC 的垂直平分线,∴BD =CD .在Rt△DEB 和Rt△DFC 中,⎩⎨⎧DB =DC ,DE =DF ,∴Rt△DEB ≌Rt△DFC (HL).∴∠BDE =∠CDF ,∴∠BDC =∠EDF .∵∠DEB =∠DFA =90°,∠BAC =84°,∴∠BDC =∠EDF =360°-90°-90°-84°=96°.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1和△A 2B 2C 2;(2)直接写出B 1和B 2点坐标.【分析】(1)分别作出点A 、B 、C 关于x 轴、y 轴对称的点,然后顺次连接;(2)根据坐标系的特点,写出点B 1和B 2的坐标.【解答】解:(1)所作图形如图所示:;(2)B1(2,2),B2(﹣2,﹣4).20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.【分析】①③;②③;①④;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形,首先证明△EBO≌△DCO,可得BO=CO,根据等边对等角可得∠OBC =∠OCB,进而得到∠ABC=∠ACB,根据等角对等边可得AB=AC,即可得到△ABC是等腰三角形.【解答】①③;②③;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形;证明:∵在△EBO和△DCO中,∵,∴△EBO≌△DCO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.21.解:(1)∵△ABC中,AB=AC,∠A=40°,∴∠ABC==70°.∵DE是腰AB的垂直平分线,∴AD=BD,∠DBA=∠A=40°,∴∠DBC=70°﹣40°=30°;(2)由(1)得:AD=BD,∴△BDC的周长=BD+CD+BC=AD+CD+BC=AC+BC=AB+BC=9+5=14.答:△BDC的周长是14.22.证明:∵BC的垂直平分线交BC于点D,交AB延长线于点E,∴CE=BE,∴∠ECB=∠EBC,∵∠EBC=∠A+∠ACB,∴∠BCE=∠A+∠ACB.23.【答案】(1)解:∵EF∥AB.∴∠FEC=∠A=30°.∠EFC=∠B=30°∴EC=CF.又∵AC=BC∴AE=BFD是AB中点.∴DB=AD∴△ADE≌△BDF.∴DE=DF(2)解:过D作DM⊥AC交AC于M,再作DN⊥BC交BC于N.∵AC=BC,∴∠A=∠B,又∵∠ACB=120°,∴∠A=∠B=(180°﹣∠ACB)÷2=30°,∴∠ADM=∠BDN=60°,∴∠MDN=180°﹣∠ADM﹣∠BDN=60°.∵AC=BC、AD=BD,∴∠ACD=∠BCD,∴DM=DN.由∠MDN=60°、∠EDF=60°,可知:一当M 与E 重合时,N 就一定与F 重合.此时:DM=DE 、DN=DF ,结合证得的DM=DN ,得:DE=DF .二当M 落在C 、E 之间时,N 就一定落在B 、F 之间.此时:∠EDM=∠EDF﹣∠MDF=60°﹣∠MDF,∠FDN=∠MDN﹣∠MDF=60°﹣∠MDF,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.三当M 落在A 、E 之间时,N 就一定落在C 、F 之间.此时:∠EDM=∠MDN﹣∠EDN=60°﹣∠EDN,∠FDN=∠EDF﹣∠EDN=60°﹣∠EDN,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.综上一、二、三所述,得:DE=DF .24. (1)证明∶如图1,∵CD ⊥AB , BP ⊥AC ,∴∠ADC =∠APB =90°,∵在△ABP 和△ACD 中,ADC APB CAD BAP AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABP ≌△ACD ;(2)证明:如图3,在PA 上取一点M ,使得PM =AB ,∵△BPE是等边三角形,∴BE=PE,∠BEP=60°,∵AB=AC,∠ABC=30°,∴∠ACB=∠ABC=30°,∴∠BAP=∠ABC+∠ACB=60*,∴∠BEP=∠BAP,∴∠EPM=∠EBA,∴△PEM≌△BEA,∴EM=AE,∠PEM=∠BEA,∴∠AEM=∠AEB+∠BEM=∠PEM+∠MEB=∠BEP=60°,∴△AEM是等边三角形,∵AE=AM,∴AP=AM+PM=AE+AB;(3)解∶存在定直线,使得线段BE、CE始终关于这条直线对称,理由如下:①当点D与点E在直线CP同侧时,连接CE,如图4,∵△AEM是等边三角形,∴∠EAM=60°,∵∠BAP =60°,∴∠DAE =180°-∠DAE -∠EAM =60°,∴∠CAE =CAD +∠DAE =120°,∠BAE =∠BAP +∠AEM =120°,∴∠CAE =∠BAE ,∵在△CAE 和△BAE 中AE AE CAE BAE AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△CAE ≌△BAE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;②当点D 与点E 在直线CP 两侧时,在PC 上取一点M ,使得PM = BA ,如图5,∵△BPE 是等边三角形,∴BE =PE ,∠BEP =60°,∵AB =AC ,∠ABC =30°,∴∠ACB =∠ABC =30°,∴∠BAP =∠ABC +∠ACB =60°,∴∠BEP =∠BAP ,∴∠EPM =∠EBA ,∴△PEM ≌△BEA ,∴∠PME =∠BAE , EM =AE ,∴∠PME =∠MAE ,∴∠MAE =∠BAE ,∵△ACE 和△ABE 中,CA AB MAE BAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△ABE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;即∶在点P 运动过程中,存在定直线(线段BC 的垂直平分线),使得线段BE 、CE 始终关于这条直线对称.。
八年级数学:画轴对称图形练习(含答案)
八年级数学:画轴对称图形练习(含答案)一、选择题1、作已知点关于某直线的对称点的第一步是()A. 过已知点作一条直线与已知直线相交B. 过已知点作一条:直线与已知直线垂直C. 过已知点作一条直线与已知直线平行D. 不确定【答案】B【解析】试题分析:根据对称轴是对称点所连的线段的垂直平分线进行解答.解:作已知点关于某直线的对称点的第一步是,过已知点作一条:直线与已知直线垂直。
故应选B考点:轴对称图形2、若在△ABC所在平面上求作一点P,使P到∠A的两边的距离相等,且PA=PB,那么下列确定P点的方法正确的是()A. P是∠A与∠B两角平分线的交点B. P为AC、AB两边上的高的交点C. P为∠A的角平分线与AB的垂直平分线的交点D. P为∠A的角平分线与AB边上的中线的交点【答案】C【解析】试题分析:点P到∠A的两边的距离相等,则点P在∠A的平分线上,PA=PB,则点P 在线段AB的垂直平分线上.所以点P是∠A的角平分线与AB的垂直平分线的交点.解:∵点P到∠A的两边的距离相等,∴点P在∠A的平分线上,∵PA=PB,∴点P在线段AB的垂直平分线上.∴点P是∠A的角平分线与AB的垂直平分线的交点.故应选C考点:1.轴对称的性质;2.角平分线的性质3、下列图形:其中所有轴对称图形的对称轴条数之和为()A.13B.11C.10D.8【答案】B【解析】试题分析:分别数出四个图形的对称轴的条数,然后再相加.解:第一个图形有1条对称轴,第二个图形有2条对称轴,第三个图形有2条对称轴,第四个图形有6条对称轴,∴共有11条对称轴.故应选B考点:轴对称4、小华将一张如图所示矩形纸片沿对角线剪开,他利用所得的两个直角三角形通过图形变换构成了下列四个图形,这四个图形中不是轴对称图形的是()A. B. C. D.【答案】A【解析】试题分析:根据轴对称图形的定义进行判断.解:A选项中的图形不是轴对称图形;B、C、D选项中的图形都是轴对称图形.故应选A考点:轴对称图形5、如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC 的周长为()A.7B.14C.17D.20【答案】C【解析】试题分析:根据轴对称的性质求出AC、CB的长度之和,再根据AB的长度求出△ABC 的周长.解:∵MN是AB的垂直平分线,∴AD=BD,∵△ADC的周长=10,∴AC+AD+CD=10,∴AC+CD+BD=AC+BC=10,∵AB=7,∴△ABC的周长=AC+BC+AB=17.故应选C。
八年级上册数学第十三章 轴对称 测试卷(含答案)
八年级上册数学第十三章轴对称测试卷一、选择题。
(每小题3分,共24分)1.以下四个图形中,对称轴条数最多的是()A B C D2.如图所示是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击中(球可以经过多次反弹),那么该球最后将落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋第2题图第3题图3.如图所示,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A. 30°B.36°C.45°D.70°4.小亮在镜中看到身后墙上的时钟如下,你认为实际时间最接近8:00的是()A B C D5.下列说法正确的是()A.等腰三角形的高、中线、角平分线互相重合B.顶角相等的两个等腰三角形全等C.等腰三角形一边不可以是另一边的二倍D.等腰三角形的两个底角相等6.小朋友文文把一张长方形的纸对折了两次(如图所示),使A,B都落在DC上,折痕分别是DE,DF,则∠EDF的度数为()A. 60 °B.75°C.90°D.120°第6题图第8题图7.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数是()A. 60°B. 120°C. 60°或150°D.60°或120°8.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A. 3B. 2.5C. 2D. 1二、填空题(每小题3分,共24分)1.仔细观察如图所示的图案,并按规律在横线上画出合适的图形.______2,则该汽车的车牌号是______.3.已知么MON= 45°,其内部有一点P,它关于OM的对称点是A,关于ON的对称点是B,且OP =2cm,则S△AOB=______4.如图所示,DE是AB的垂直平分线,D是垂足,DE交BC于E,若BC=32cm,AC=18cm,则△AEC的周长为______cm.第4题图第6题图第7题图5.在直角坐标系中,点A,B,C,D的坐标分别为(-1,3),(-2,-4),(1,3),(2,-4),则线段AB与CD的位置关系是______.6.如图,在△ABC中,∠ACB = 90°,AB=10,AC=8,P是AB边上的动点(不与点B重合),点B关于直线CP的对称点B',连接B'A,则B’A长度的最小值是______.7.如图所示,△ABD、△ACE是正三角形,BE和CD交于O点,则∠BOC =______.8.如图所示,有一块形状为等边△ABC的空地,DE,EF为空地中的两条路,且D为AB的中点,DE⊥AC于E,EF∥AB,现已知AE=5m,则地块△EFC的周长为______.三、解答题(共72分)1.如图所示,已知在△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF.2.用围棋棋子可以在棋盘中摆出许多有趣的图案,如图甲,在棋盘上建立平面直角坐标系,以直线y=x为对称轴,我们可以摆出一个轴对称图形(其中A与A’是对称点),你看它像不像一条美丽的鱼?(1)请你在图乙中,也用10枚以上的棋子摆出一个以直线y=x为对称轴的轴对称图案,并在所摆的图形中找出两组对称点,分别标为B—B',C—C'(注意棋子要摆在格点上).(2)在给定的平面直角坐标系中,你标出的B,B',C,C'的坐标分别是:B( ),B'( ),C( ),C'( ).根据以上对称点的坐标规律,写出点P(a,b)关于对称轴y=x对称点p’的坐标是( ).甲乙3.如图所示,△ABC和△A’B’C’关于直线MN对称,△A’B’C'和△A’’B’’C’’关于直线EF对称.(1)画出直线EF;(2)直线MN与EF相交于点O,试探究∠BOB’’与直线MN, EF所夹锐角α的数量关系.4.如图所示,AD⊥BC,BD=DC,点C在AE的垂直平分线上,AB +BD与DE的长度有什么关系?并加以证明.5.如图所示,在等边三角形ABC中,∠B,∠C的平分线相交于点O,作BO,CO的垂直平分线分别交BC于点E和点F.小明说:“E,F是BC的三等分点.”你同意他的说法吗?请说明理由.6.元旦联欢会上,同学们在礼堂四周摆了一圈条桌,其中北边条桌上摆满了苹果,东边条桌上摆满了香蕉,礼堂中间放一把椅子B.游戏规则是这样的:甲、乙二人从A 处同时出发,先去拿苹果再去拿香蕉,然后回到B处,谁先坐到椅子上谁赢.小张和小李比赛,比赛一开始,只见小张直奔东北两张条桌的交点处,左手抓苹果,右手拿香蕉,回头直奔B处,可是还未跑到B处,只见小李已经手捧苹果和香蕉稳稳地坐在B处的椅子上了,如果小李不比小张跑得快,那他是不是有捷径呢?如果有,请把捷径画出来,并说明理由.参考答案一、1.B 2.B 3.B 4.D 5.D 6.C 7.D 8.C 二、1. 2.M645379 3.2cm ² 4. 50 5.关于y 轴对称 6.2 7. 120° 8. 45m三、1.连接AF. ∵AB=AC,∴∠B= ∠C=︒=︒-︒=∠-︒3021201802A 180.又∵EF 垂直平分AC ,∴AF = CF ∴∠CAF =∠C= 30°. ∴∠BAF= ∠BAC- ∠CAF=120°-30°=90°.在Rt △BAF 中,∵∠B=30°,∴BF =2AF.叉∵AF= CF,∴BF=2CF .2.(1)按要求摆出图形并标出两组对称点B-B ’,C-C';(2)答案不唯一,只要满足点B 的横坐标等于点B ’的纵坐标,点B 的纵坐标等于点B ’的横坐标,点C 的横坐标等于点C ’的纵坐标,点C 的纵坐标等于点C ’的横坐标即可;根据以上对称点坐标的规律,可以发现P(a ,b)关于对称轴y=x 的对称点P ’的坐标为(b ,a).3.(1)如图所示,连接B'B ’’,作线段B'B ’’的垂直平分线EF,则直线EF 是△A ’B ’C ’和△A ’’B ’’C ’’的对称轴.(2)连接BO .因为△ABC 和△A'B'C'关于MN 对称,所以∠BOM=∠B 'OM.又因为△A ’B ’C ’和△A ’’B ’’C ’’关于EF 对称,所以∠B 'OE= ∠B ''OE.所以∠BOB''=∠BOM+ ∠B 'OM+∠B'OE+ ∠B ‘’OE =2(∠B'OM+∠B 'OE) =2a .即∠BOB ’’= 2a.4. AB+BD= DE ,证明略.5.同意,连接OE ,OF.由题意可知:BE= OE,CF= OF,∠OBC=∠OCB= 30°, ∴∠BOE=∠OBC=30°,∠COF=∠OCB=30°,∴∠BOC=120°,∴∠EOF=60°, ∠OEF=60°, ∠OFE=60°.∴△OEF 是等边三角形,∴OE = OF= EF= BE=CF.∴E ,F 是BC 的三等分点.6.分别以北条桌和东条桌为对称轴,作A ,B 的对称点A ’,B ’,连接A'B ’,交两长条桌于C ,D 两点,则折线ACDB 就是捷径.连接A'M 和B'M 因为A ,A ’于CM 对称,B ,B ’关于DM 对称,所以AC=A'C ,AM=A'M ,BD=B'D,BM=B'M.所以折线ACDB 的长=AC+CD+DB=A'C+CD+DB'=A'CDB'=A'B ’,而AM+BM=A'M+B'M> A'B',所以拆线ACDB 是捷径.。
八年级数学:轴对称图形与轴对称练习(含答案)
八年级数学:轴对称图形与轴对称练习(含答案)八年级数学:轴对称图形与轴对称练习(含答案)一、选择题(共8小题)1.下列各图,不是轴对称图形的是()A.B.] C.D.2.下列四句话中的文字有三句具有对称规律,其中没有这种规律的一句是()A.上海自来水来自海上B.有志者事竞成C.清水池里池水清D.蜜蜂酿蜂蜜3.下列说法错误的是()A.等边三角形有3条对称轴B.正方形有4条对称轴C.角的对称轴有2条D.圆有无数条对称轴4.如图是经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变5.观察图形…并判断照此规律从左到右第四个图形是( )A .B .C.D.6.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分 D.对应点连线互相平行第5题图第6题图第7题图7.如图,两个三角形关于某条直线成轴对称,其中已知某些边的长度和某些角的度数,则x的度数是()A.55°B.60°C.65°D.70°8.小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是()A.B.C.D.二、填空题(共10小题)9.2011年11月2日,即20111102,正好前后对称,因而被称为“完美对称日”,请你写出本世纪的一个“完美对称日”:_________ .10.写出一个至少具有2条对称轴的图形名称_________ .11.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中的一个小正方形涂黑,所得图案是一个轴对称图形,则涂黑的小正方形可以是_________ (填出所有符合要求的小正方形的标号)12.在轴对称图形中,对应点的连线段被_________ 垂直平分.13.下列图形中,一定是轴对称图形的有_________ ;(填序号)(1)线段(2)三角形(3)圆(4)正方形(5)梯形.14.如图是汽车牌照在水中的倒影,则该车牌照上的数字是_________ .15.请同学们写出两个具有轴对称性的汉字_________ .16.如图,国际奥委会会旗上的图案由5个圆环组成.每两个圆环相交的部分叫做曲边四边形,如图所示,从左至右共有8个曲边四边形,分别给它们标上序号.观察图形,我们发现标号为2的曲边四边形(下简称“2”)经过平移能与“6”重合,2又与_________ 成轴对称.(请把能成轴对称的曲边四边形标号都填上)第11题图第14题图第16题图17.如图,长方形ABCD中,长BC=a,宽AB=b,(b<a<2b),四边形ABEH和四边形ECGF都是正方形.当a、b满足的等量关系是_________ 时,图形是一个轴对称图形.18.请利用轴对称性,在下面这组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形:三、解答题(共5小题)19.判断下列图形是否为轴对称图形?如果是,说出它有几条对称轴.20.如图,五边形ABCDE是轴对称图形,线段AF所在直线为对称轴,找出图中所有相等的线段和相等的角.21.如图,l是该轴对称图形的对称轴.(1)试写出图中二组对应相等的线段:;(2)试写出二组对应相等的角:;(3)线段AB、CD都被直线l .22.如图是由两个等边三角形(不全等)组成的图形.请你移动其中的一个三角形,使它与另一个三角形组成轴对称图形,并且所构成的图形有尽可能多的对称轴.画出你所构成的图形,它有几条对称轴?23.有一些整数你无论从左往右看,还是从右往左看,数字都是完全一样的,例如:22,131,1991,123321,…,像这样的数,我们叫它“回文数”.回文数实际上是由左右排列对称的自然数构成的,有趣的是,当你遇到一个普通的数(两位以上),经过一定的计算,可以变成“回文数”,办法很简单:只要将这个数加上它的逆序数就可以了,若一次不成功,反复进行下去,一定能得到一个回文数,比如:①132+231=363②7299+9927=17226,17226+62271=79497,成功了!(1)你能用上述方法,将下列各数“变”成回文数吗?①237 ②362(2)请写出一个四位数,并用上述方法将它变成回文数.参考答案一、选择题(共8小题)1.A 2.B 3.C 4.A 5.D 6.B 7.B 8.D二.填空题(共10小题)9.20011002,20100102(答案不唯一);10.矩形;11.2,3,4,5,712.对称轴;13.(1)(3)(4);14.21678 .;15.甲、由、中、田、日等.;16.1,3,7 ;17.;18.三.解答题(共5小题)19.解:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.则(1)(3)(5)(6)(9)不是轴对称图形;(2)(4)有1条对称轴;(7)有4条对称轴;(8)有1条对称轴;(10)有2条对称轴.20.解:相等的线段:AB=AE,CB=DE,CF=DF;相等的角:∠B=∠E,∠C=∠D,∠BAF=∠EAF,∠AFD=∠AFC.21.(1)AC=BD,AE=BE,CF=DF,AO=BO ;(2)∠BAC=∠ABD,∠ACD=∠BDC;(3)垂直平分.22.解:如图,小正三角形再大正三角形的内部,该图形有3条对称轴.23.解:(1)①237+732=969,②362+263=625,(2)1151+1511=2662;。
八年级数学轴对称图形测试题试题
轴对称图形 测试题制卷人:打自企; 成别使; 而都那。
审核人:众闪壹; 春壹阑; 各厅…… 日期:2022年二月八日。
一、选择题1. 以下图案中,轴对称图形的个数为〔 〕A. 1个B. 2个C. 3个D. 4个2. 等腰三角形的两边长分别为3和5,那么此等腰三角形的周长为〔 〕 A.13 B.113. 如图,在一个规格为4×8的球台桌面上,有两个小球P 和Q,假设击打小球P 经过球台的边AB 反弹后,恰好击中小球Q,那么小球P 击出时,应瞄准AB 边上的 〔 〕 A. 点O 1B. 点O 2C. 点O 3D. 点O 4第3题 第4题4. 如图,在△ABC 中BF 、CF 平分∠ABC 、∠ACB ,过F 作直线平行于BC ,交AB 、AC 于D 、E ,当∠A 的位置及大小变化时,线段DE 和BF+CF 的大小关系 〔 〕A.DE>BF+CFB.DE=BF+CF21DA5.如图,D 是△ABC 中BC 边上一点,AB=AC=BD ,那么∠1和∠2的关系是〔 〕 A .∠1=2∠2B. ∠1+∠2=90°C. 180°-∠1=3∠2D. 180°+∠2=3∠16. O 为锐角△ABC 的∠C 平分线上一点,点O 关于AC 、BC 的对称点分别为点P 、Q ,那么△POQ 一定是〔 〕二、填空题7. 长方形有 条对称轴,正方形有 条对称轴,圆有 条对称轴。
8. 小明在穿衣镜里看到身后墙上电子钟显示那么此时实际时刻为 。
9.等腰三角形的周长为22,其中一边的长是8,那么其余两边长分别为 。
10. 在△ABC 中,CD 是∠ACB 的平分线,DE ∥BC ,交AC 于E,假设DE=7cm ,AE =5cm,那么AC= 。
11. 等腰梯形的腰长为2cm ,上、下底之和为10且有一底角为60°,那么它的两底长分别为__________.12. 如图,AB 垂直平分CD ,AC=6cm ,BD=4cm ,那么四边形ADBC 的周长 。
数学八年级上册《轴对称》单元测试卷含答案
8.如图,已知Rt△A B C中,∠A C B=90°,C D是高,∠A=30°,B D=2Cm,则A B的长是( )
A. 4B. 6C. 8D. 10
9.如图,若 是等边三角形, , 是 的平分线,延长 到 ,使 ,则
A. 7B. 8C. 9D. 10
10.如图,在等边三角形A B C中,中线A D,BE交于F,则图中共有等腰三角形( )
∴△FA B,△FDE,△A DE,△B DE是等腰三角形,
∵∠ED C=∠C=60°,
∴△A B C,△D CE是等边三角形,
则图中共有等腰三角形共有6个.
故选D.
点睛:本题考查了等边三角形的性质,记住等边三角形也属于等腰三角形.
11.等腰△A B C中,A B=A C,一边上的中线B D将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()
∵以B为圆心,B C长为半径画弧,∴BE=B D=B C.∴∠B D C=∠A C B=75°.
∴∠C B D .∴∠D BE=75° 30°=45°.
∴∠BED=∠B DE= .
故选C.
考点: 1.等腰三角形的性质;2.三角形内角和定理.
8.如图,已知Rt△A B C中,∠A C B=90°,C D是高,∠A=30°,B D=2Cm,则A B的长是()
A.45B.52.5C.67.5D.75
[答案]用三角形内角和定理求出∠A B C的度数,再利用等腰三角形的性质和三角形内角和定理求出∠D B C=30°,然后即可求出∠B DE的度数:
∵A B=A C,∴∠A B C=∠A C B.
∵∠A=30°,∴∠A B C=∠A C B= .
苏科新版八年级上册数学《第2章 轴对称图形》单元测试卷【含答案】
苏科新版八年级上册数学《第2章轴对称图形》单元测试卷一.选择题1.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=4cm,则点D到AB的距离DE是( )A.5cm B.4cm C.3cm D.2cm2.若等腰三角形的两边长分别为2和5,则它的周长为( )A.9B.7C.12D.9或123.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画( )A.2条B.3条C.4条D.5条4.下列判断错误的是( )A.等腰三角形是轴对称图形B.有两条边相等的三角形是等腰三角形C.等腰三角形的两个底角相等D.等腰三角形的角平分线、中线、高互相重合5.△ABC是等边三角形,D,E,F为各边中点,则图中共有正三角形( )A.2个B.3个C.4个D.5个6.在△ABC中,∠A=90°,∠C=30°,AB=4,则BC等于( )A.2B.C.D.87.如图,在△ABC中,AB=5,BC=6,AC的垂直平分线分别交BC、AC于点D、E,则△ABD的周长为( )A.8B.11C.16D.178.如图,在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为( )A.3B.4C.5D.69.如图,在△ABC中,AB=AC,AD平分∠BAC,E为AC的中点,DE=3,则AB等于( )A.4B.5C.5.5D.610.一艘轮船由海平面上A地出发向南偏西40°的方向行驶100海里到达B地,再由B 地向北偏西20°的方向行驶100海里到达C地,则A,C两地相距( )A.100海里B.80海里C.60海里D.40海里二.填空题11.如果一个等腰三角形的两边长分别为4cm和9cm,则此等腰三角形的周长 cm.12.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A 运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是 秒.13.已知等边三角形的边长是2,则这个三角形的面积是 .(保留准确值)14.右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,则DE长为 .15.在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC,分别交AB、AC于点E、F.若AB=5,AC=4,那么△AEF的周长为 .16.如图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=10,则DF等于 .17.如图,在△ABC中,AC=BC=2,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E,AD的垂直平分线交AB于点F,则△DEF的面积为 .18.下列三角形中:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个角都相等的三角形;④三边都相等的三角形.其中是等边三角形的有 (填序号).19.如图,AB=AC,DB=DC,若∠ABC为60°,BE=3cm,则AB= cm.20.如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=3cm,则AB= .三.解答题21.如图,已知D为BC的中点,DE⊥AB,DF⊥AC,点E,F为垂足,且BE=CF,∠BDE=30°,求证:△ABC是等边三角形.22.如图,AD是等边△ABC的中线,AE=AD,求∠EDC的度数.23.已知:如图,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA,PE⊥OB,垂足分别为D、E,点F是OC上的另一点,连接DF,EF.求证:DF=EF.24.如图,已知△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于E,若AC=9cm,△ABE的周长为16cm,求AB的长.25.如图,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分线,DE⊥BC,垂足为D.(1)请你写出图中所有的等腰三角形;(2)请你判断AD与BE垂直吗?并说明理由.(3)如果BC=10,求AB+AE的长.26.如图,点D、E在△ABC的边BC上,AD=AE,BD=CE.(1)求证:AB=AC;(2)若∠BAC=108°,∠DAE=36°,直接写出图中除△ABC与△ADE外所有的等腰三角形.27.如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:BE=CE(要求:不用三角形全等的方法)参考答案与试题解析一.选择题1.解:∵∠C=90°,BD是∠ABC的平分线,DE⊥AB,∴DE=CD,∵CD=4cm,∴点D到AB的距离DE是4cm.故选:B.2.解:(1)若2为腰长,5为底边长,由于2+2<5,则三角形不存在;(2)若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故选:C.3.解:如图所示,当AB=AF=3,BA=BD=3,AB=AE=3,BG=AG时,都能得到符合题意的等腰三角形.故选:C.4.解:A、等腰三角形是轴对称图形,正确;B、两条边相等的三角形叫做等腰三角形,正确;C、等腰三角形的两腰相等,两个底角相等,正确;D、等腰三角形顶角的角平分线与底边上的中线、底边上的高线互相重合,故本选项错误;故选:D.5.因为△ABC为等边三角形,所以AB=BC=AC,又因为D,E,F为各边中点,所以AE=EB=BF=FC=CD=DA;又因为DE,DF,EF分别为中位线,所以DE=BC,EF=AC,DF=AB,即DE=EF=DF.所以AE=EB=BF=FC=CD=DA=DE=EF=FD.所以此图中所有的三角形均为等边三角形.因此应选择5个,故选:D.6.解:根据含30度角的直角三角形的性质可知:BC=2AB=8.故选:D.7.解:∵DE是线段AC的垂直平分线,∴DA=DC,∴△ABD的周长=AB+BD+AD=AB+BD+DC=AB+BC=11,故选:B.8.解:∵在等边△ABC中,D是AB的中点,AB=8,∴AD=4,AC=8,∠A=∠C=60°,∵DE⊥AC于E,EF⊥BC于F,∴∠AFD=∠CFE=90°,∴AE=AD=2,∴CE=8﹣2=6,∴CF=CE=3,∴BF=5,故选:C.9.解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=AC=3,∴AB=AC=6,故选:D.10.解:如图所示:连接AC.∵点B在点A的南偏西40°方向,点C在点B的北偏西20°方向,∴∠CBA=60°.又∵BC=BA,∴△ABC为等边三角形.∴AC=BC=AB=100海里.故选:A.二.填空题11.解:当腰长为4cm时,则三边分别为4cm,4cm,9cm,因为4+4<9,所以不能构成直角三角形;当腰长为9cm时,三边长分别为4cm,9cm,9cm,符合三角形三边关系,此时其周长=4+9+9=22cm.故答案为22.12.解:设运动的时间为x,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x即20﹣3x=2x,解得x=4.故答案为:4.13.解:如图,过点A作AD⊥BC于点D,∵等边三角形的边长是2,∴BD=BC=×2=1,在Rt△ABD中,AD==,所以,三角形的面积=×2×=.故答案为:.14.解:∵∠A=30°,BC⊥AC,∴BC=AB=3.7,∵DE⊥AC,BC⊥AC,∴DE∥BC,∵点D是斜梁AB的中点,∴DE=BC=1.85m,故答案为:1.85m.15.解:由∠ABC与∠ACB的平分线相交于点O,得∠EBO=∠OBC,∠FCO=∠OCB.由EF∥BC,得∠EOB=∠OBC,∠FOC=∠OCB,∠EOB=∠EBO,∠FOC=∠FCO,∴EO=BE,OF=FC.C△AEF=AE+EF+AF=AE+BE+AF+CF=AB+AC=9.故答案为:9.16.解:过D作DM⊥AC,∵∠DAE=∠ADE=15°,∴∠DEC=30°,AE=DE,∵AE=10,∴DE=10,∴DM=5,∵DE∥AB,∴∠BAD=∠ADE=15°,∴∠BAD=∠DAC,∵DF⊥AB,DM⊥AC,∴DF=DM=5.故答案为:5.17.解:∵AD是△ABC的角平分线,∠ACB=90°,DE⊥AB,∴∠CAD=∠EAD,DE=CD,AE=AC=2,∵AD的垂直平分线交AB于点F,∴AF=DF,∴∠ADF=∠EAD,∴∠ADF=∠CAD,∴AC∥DE,∴∠BDE=∠C=90°,∴△BDF、△BED是等腰直角三角形,设DE=x,则EF=BE=x,BD=DF=2﹣x,在Rt△BED中,DE2+BE2=BD2,∴x2+x2=(2﹣x)2,解得x1=﹣2﹣2(负值舍去),x2=﹣2+2,∴△DEF的面积为(﹣2+2)×(﹣2+2)÷2=6﹣4.故答案为:6﹣4.18.解:①有两个角等于60°的三角形是等边三角形.②有一个角等于60°的等腰三角形是等边三角形.③三个角都相等的三角形是等边三角形④三边都相等的三角形是等边三角形,故答案为①②③④.19.解:在△ABD和△ACD中,∴△ABD≌△ACD.∴∠BAD=∠CAD.又∵AB=AC,∴BE=EC=3cm.∴BC=6cm.∵AB=AC,∠ABC=60°,∴△ABC为等边三角形.∴AB=6cm.故答案为:6.20.解:∵∠ACB=90°,D是AB的中点,CD=3cm,∴AB=2CD=6cm.故答案为:6cm.三.解答题21.证明:∵D是BC的中点,∴BD=CD,∵DE⊥AB,DF⊥AC,∴△BED和△CFD都是直角三角形,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴∠B=∠C,∴AB=AC(等角对等边).∵∠BDE=30°,DE⊥AB,∴∠B=60°,∴△ABC是等边三角形.22.解:∵AD是等边△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×60°=30°,∴∠ADC=90°,∵AD=AE,∴∠ADE=∠AED==75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.23.证明:∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,∴PD=PE,在Rt△OPD和Rt△OPE中,,∴Rt△OPD≌Rt△OPE(HL),∴OD=OE,∵OC是∠AOB的平分线,∴∠DOF=∠EOF,在△ODF和△OEF中,,∴△ODF≌△OEF(SAS),∴DF=EF.24.解:∵ED是线段BC的垂直平分线,∴BE=CE,∴BE+AE=CE+AE=AC=9cm,∵△ABE的周长为16cm,∴AB=16﹣(BE+AE)=16﹣9=7cm.25.解:(1)根据等腰三角形的定义判断,△ABC等腰直角三角形;∵BE为角平分线,而AE⊥AB,ED⊥CE,故AE=DE,故△ADE均为等腰三角形;∵BE=BE,∠ABE=∠DEB,∴△ABE≌△DBE(SAS),∴AB=BD,∴△ABD和△ADE均为等腰三角形;∵∠C=45°,ED⊥DC,∴△EDC也符合题意,综上所述符合题意的三角形为有△ABC,△ABD,△ADE,△EDC;(2)AD与BE垂直.证明:∵△ABE≌△DBE(SAS),∴BA=BD,EA=EC,∴BE垂直平分相等AD,即AD⊥BE.(3)∵BE是∠ABC的平分线,DE⊥BC,EA⊥AB,∴AE=DE,在Rt△ABE和Rt△DBE中∴Rt△ABE≌Rt△DBE(HL),∴AB=BD,又△ABC是等腰直角三角形,∠BAC=90°,∴∠C=45°,又ED⊥BC,∴△DCE为等腰直角三角形,∴DE=DC,即AB+AE=BD+DC=BC=10.26.证明:(1)过点A作AF⊥BC于点F,∵AD=AE,∴DF=EF,∵BD=CE,∴BF=CF,∴AB=AC.(2)∵∠B=∠BAD,∠C=∠EAC,∠BAE=∠BEA,∠ADC=∠DAC,∴除△ABC与△ADE外所有的等腰三角形为:△ABD、△AEC、△ABE、△ADC,27.证明:∵AB=AC,点D是BC的中点,∴AD⊥BC,BD=CD,∴BE=CE.。
人教版八年级上册数学第13章《轴对称》测试题【含答案】
一、选择题(每小题3分,共24分)1.下列交通标志图案是轴对称图形的是()2.下列图形中对称轴只有两条的是()3.如图1,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的()A.轴对称性 B.用字母表示数C.随机性 D.数形结合4.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18C.20 D.16或205.如图2,△ABC与△A′B′C′关于直线l对称,且∠A′=78°,∠C=48°,则∠ABC的度数为()A.48°B.54°C.74°D.78°6.图3是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中不一定成立的是()A.△ABD≌△ACDB.AF垂直平分线段EGC.连接BG,CE,其交点在AF上D.△DEG是等边三角形7.在平面直角坐标系xOy中,点P(-3,8)关于y轴的对称点的坐标为()A.(-3,-8)B.(3,8)C.(3,-8)D.(8,-3)8.如图4,在△ABC中,∠ACB=90°,∠A=20°,若将△ABC沿CD折叠,使点B落在AC边上的点E处,则∠CED的度数是()A.30°B.40°C.50°D.70°二、填空题(每小题4分,共32分)9.如果一个三角形是轴对称图形,且有一个角是60°,那么这个三角形是________三角形.10. 已知M,N是线段AB的垂直平分线上任意两点,则∠MAN和∠MBN的关系是________. 11.如图5,在△ABC中,AB=AC,∠B=50°,则∠A=________.12.如图6,在△ABC中,AB=AC=3 cm,AB的垂直平分线MN交AC于点N,交AB于点M.已知△BCN的周长是5 cm,则BC的长是________cm.13.如图7,A,B,C三个居民小区的位置呈三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在________________.14.如图8,在△ABC中,∠ACB=90°,∠BAC=30°,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有________个.15.观察规律,并填空:16.如图9,O为△ABC内一点,O与D关于AB对称,O与E关于BC对称,O与F关于AC对称,∠BAC=40°,∠ABC=80°,∠ACB=60°,则∠ADB+∠BEC+∠CFA=_________.三、解答题(共64分)17.(9分)请在如图10所示的三个2×2的方格中各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)18.(8分)汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性.如图11所示的三个汉字可以看成是轴对称图形,请在方框中再写出4个类似轴对称图形的汉字.19.(12分)如图12,在△ABC中,∠BAC=90°,∠B=45°,D为BC上一点,BD=AB,DE⊥BC,交AC于点E.(1)求证:△ADE是等腰三角形;(2)图中除△ADE是等腰三角形外,还有没有等腰三角形?若有,请一一写出来(不要求证明);若没有,请说明理由.20.(11分)如图13,在△ABC中,点D,E分别是AB,AC边的中点,请你在BC边上确定一点P,使△PDE的周长最小,在图中作出点P.21.(12分)如图14,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线DE交AB于点E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.22.(12分)如图15,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E,A在直线DC的同侧,连接AE,则线段AE与BC有什么位置关系?请说明理由.第十三章轴对称测试题一、1.B 2.C 3.A 4.C 5.B 6.D 7.B 8.D二、9.等边 10. 相等 11.80° 12.213. AB,BC,CA垂直平分线的交点处14. 6 15. 16. 360°三、17.解:答案不唯一,如图1所示.18.解:答案不唯一,如中、田、日、吕、呆等.19.(1)证明:因为BD=AB,所以∠BAD=∠BDA.因为DE⊥BC,所以∠BDE=90°.又∠BAC=90°,所以∠EAD=∠EDA.所以AE=DE,即△ADE是等腰三角形.(2)还有三个等腰三角形,△ABD、△ABC、△CDE.20.解:如图2,作点D关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求作.21.解:(1)因为DE垂直平分AC,所以CE=AE,即△ACE是等腰三角形.所以∠ECD =∠A=36°.(2)因为AB=AC,∠A=36°,所以∠B=∠ACB=(180°-36°)÷2=72°.因为∠ECD=36°,所以∠BEC=∠A+∠ECD=72°,即∠BEC=∠B.所以BC=CE=5.22.解:AE∥BC.理由:因为△ABC和△DEC是等边三角形,所以BC=AC,CD=CE,∠ABC=∠BCA=∠ECD =60°.所以∠BCA-∠DCA=∠ECD-∠DCA,即∠BCD=∠ACE.在△ACE和△BCD中,AC=BC,∠ACE=∠BCD,CE=CD,所以△ACE≌△BCD.所以∠EAC=∠B=60°.所以∠EAC=∠ACB.所以AE∥BC.。
八年级数学--画轴对称图形练习(含答案)
八年级数学--画轴对称图形练习(含答案)一、选择题1、已知M(0,2)关于x轴对称的点为N,线段MN的中点坐标是()A.(0,-2);B.(0,0);C.(-2,0);D.(0,4)【答案】B【解析】试题分析:首先求出点N的坐标,根据M、N的坐标求出线段MN的中点的坐标.解:因为点M与点N关于x轴对称,所以点N的坐标是(0,-2),所以线段MN的中点的坐标是(0,0).故应选B.考点:关于坐标轴对称的点的坐标2、已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论:①A、B关于x轴对称;②A、B关于y轴对称;③A、B关于原点对称;④若A、B之间的距离为4,其中正确的有()A.1个;B.2个;C.3个;D.4个【答案】B【解析】试题分析:点A、B的横坐标互为相反数,纵坐标相等,所以点A、B关于y轴对称,点A的横坐标是-2,点B的横坐标是2,所以A、B之间的距离是4. 解:因为点A的坐标是(-2,3)点B的坐标是(2,3),所以点A、B关于y轴对称,因为点A的横坐标是-2,点B的横坐标是2,所以A、B之间的距离是4.故应先B.考点:画轴对称图形3、平面内点A(-1,2)和点B(-1,-2)的对称轴是()A.x轴;B.y轴;C.直线y=4 ;D.直线x=-1【答案】A【解析】试题分析:根据点A、B的坐标的关系进行解答.解:因为点A的坐标是(-1,2),点B(-1,-2),点A、B的横坐标相等,纵坐标互为相反数,所以点A、B关于x轴对称.故应选A.考点:关于坐标轴对称的点的坐标.二、填空题4、将一个点的纵坐标不变,横坐标乘以-1,得到的点与原来的点的位置关系是;将一个点的横坐标不变,纵坐标乘以-1,得到的点与原来的点的位置关系是【答案】关于y轴对称;关于x轴对称【解析】试题分析:将一个点的纵坐标不变,横坐标乘以-1,得到的点与原来的点的纵坐标相等,横坐标互为相反数,所以两个点关于y轴对称;将一个点的横坐标不变,纵坐标乘以-1,得到的点与原来的点的横坐标相等,纵坐标互为相反数,所以两个点关于x轴对称.解:将一个点的纵坐标不变,横坐标乘以-1,得到的点与原来的点的位置关系是关于y轴对称;将一个点的横坐标不变,纵坐标乘以-1,得到的点与原来的点的位置关系是关于x轴对称.考点:关于坐标轴对称的点的坐标5、点M(-2,1)关于x轴对称的点N的坐标是________,直线MN与x•轴的位置关系是___________【答案】(-2,-1);垂直【解析】试题分析:根据关于x轴对称的点的横坐标不变,纵坐标相等求解.解:因为点M、N关于x轴对称,所以点N的坐标是(-2,-1);因为点M、N关于x轴对称,所以x轴是线段MN的垂直平分线,所以MN⊥x轴.考点:关于x轴对称的点的坐标.6、已知点A(2m+1,m-3)关于y轴的对称点在第四象限,则m的取值范围是________【答案】12 m<-.【解析】试题分析:根据点A的坐标求出点A关于y轴对称点的坐标,根据对称点在第四象限,列出关于m的不等式组,解不等式组求出结果.解:点A关于y轴对称点的坐标是(-2m-1,m-3),因为点A关于y轴对称点在第四象限,所以21030mm-->⎧⎨-<⎩,解得:12 m<-.故答案是12 m<-.考点:关于坐标轴对称的点的坐标7、若点C(-2,-3)关于x轴的对称点为A,关于y轴的对称点为B,则△ABC的面积为【答案】12【解析】试题分析:根据关于坐标轴对称的点的坐标求出点A、B的坐标,再根据点A、B、C的坐标注出△ABC的面积.解:因为点C的坐标是(-2,-3),所以点A的坐标是(-2,3),点B的坐标是(2,-3),所以△ABC是直角三角形,AC=6,BC=4,所以△ABC的面积是14612 2⨯⨯=.考点:关于坐标轴对称的点的坐标8、由一个平面图形可以得到它关于一条直线l成轴对称的图形,这个图形与原图形的、________完全相同;新图形上的任意一点,都是原图形上某一点关于直线l的__________;【答案】形状;大小;对称点【解析】试题分析:根据轴对称图形的性质进行解答.解:关于直线l轴对称的两个图形是全等图形,所以这两个图形的形状、大小完全相同;新图形上的任意一点,都是原图形上某一点关于直线l的对称点.考点:轴对称图形的性质9、几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的再连接这些,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的,连接这些,就可以得到原图形的轴对称图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八(上)数学第一章轴对称图形测试卷
(时间:90分钟满分:100分)
一、选择题(每题3分,共24分)
1.下列图形是轴对称图形的是( )
2.如图,在Rt△ABC中,∠ACB=90°,D、E分别为AC、AB的中点,连结DE、CE.则下列结论中不一定正确的是( )
A.ED∥BC B.ED⊥AC
C.∠ACE=∠BCE D.AE=CE
3.如图,已知正方形网格中,每个小方格都是边长为1的正方形,
A、B两点在小方格的顶点上,点C也在小方格的顶点上,且△
ABC为等腰三角形,则点C的个数为( )
A.7 B.8 C.9 D.10 4.如图,梯形ABCD中,AD∥BC,AB=CD,对角线AC、BD交于点O,则图中的全等三角形共有( )
A.1对B.2对C.3对D.4对
5.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P 是AB上一动点,连结OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是( )
A.4 B.5 C.6 D.8 6.如图,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是( )
A.(1)(2)(3) B.(1)(2)(4) C.(2)(3)(4) D.(1)(3)(4)
7.如图所示的矩形纸片,先沿虚线按箭头方向向右对折,接着将对折后的纸片沿虚线
剪下一个小圆和一个小三角形,将纸片打开后是下列图中的( )
8.下列语句:①如果两个图形全等,那么这两个图形一定关于某直
线对称;②等腰梯形的两底角相等;③已知等腰三角形的一腰上的高与另一腰的夹角等于48°,则其顶角为42°;④内角为60°的等腰三角形是等边三角形;⑤在等腰△ABC中,若∠B=70°,则∠C=70°;⑥如果成轴对称的两个图形中的对称线段所在直线相交,那么这个交点一定在对称轴上.其中正确的有( )
A.0个B.1个C.2个D.3个
二、填空题(每题3分,共30分)
9.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这个图案有__________条对称轴.
10.一个等腰三角形的一个外角等于114°,则这个三角形的三个角应该为_________.
11.等腰三角形的一边长为10,另一边长为5,则它的周长是_________.
12.如图所示是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指锐角)是_______.
13.如图,D是△ABC中BC边上一点,AB=AC=BD,则∠1与∠2之间的等量关系为______.
14.如图,镜子中号码的实际号码是________.
15.如图,在△ABC中,AB=AC=32 cm,DE是AB的垂直平分线,分别交AB、AC于D、E两点.
(1)若∠C=70°,则∠BEC=_______;
(2)若BC=21 cm,则△BCE的周长是_________cm.
16.在Rt△ABC中,斜边上的中线长为5 cm,则斜边长为_______.17.如图,∠MAN是一钢架,且∠MAN=15°,为使钢架更加坚固,需在其内部加一些钢管CD、DE、EF……添加的钢管长度都与AC相等,则最多能添加这样的钢管______根.
18.如图,三角形纸片ABC中,∠A=75°,∠B=65°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为________.
三、解答题(本大题共6题,共46分)
19.(6分)用若干根火柴棒可以摆出一些优美的图案.下图所示是用火柴棒摆出的一个图案,此图案表示的含义可以是天平(或公正).请你用5根或5根以上的火柴棒摆成一个有意义的轴对称图案,并说明你画出的图案的含义.
图案:
含义:天平
你的作品:
含义:___________________________________________________________ ____
20.(6分)如图,在△ABC中,AB=AC,D是BC边上的一点,DE ⊥AB,DF⊥AC,垂足分别为E、F,添加一个条件,使DE=DF,并说明理由.
解:需添加条件是________.
理由是
21.(6分)如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线
上一点,DE=BC.
试判断△ACE的形状,并说明理由.
22.(6分)如图,在四边形ABCD中,∠BAD=∠BCD=90°,O为BD的中点,∠OAC和
OCA相等吗?请说明理由.
23.(12分)如图,一辆汽车在直线形公路AB由A向B行驶,M、N 分别是位于公路AB两侧的村庄.
(1)设汽车行驶到公路彻上点P的位置时,距离村庄M最近,行
驶到点Q的位置时,距离村庄N最近,请在公路AB上分别作出P、Q的位置;(不写作法,保留作图痕迹)
(2)当汽车从A出发向B行驶时,在公路AB的哪一段上距离M、N两村都越来越近?
在哪一段上距离村庄N越来越迎,而距离村庄M越来越远?在哪一段上距离M、N
两村都越来越远?(分别用文字表述你的结论)
(3)在公路AB上是否存在这样一点H,汽车行驶到该点时,与村
庄M、N的距离之和最短?如果存在,请在图中AB上作出此点;
如果不存在,请说明理由.(不写作法,保留作图痕迹)
24.(10分)如图,在等边△ABC中,BD是高,延长BC到点E,使CE=CD,AB=6 cm.
(1)小刚同学说:BD=DE,他说得对吗?请你说明道理.
(2)小红同学说:把“BD是高”改为其他条件,也能得到同样的
结论,并能求出BE长.你认为应该如何改呢?然后求出BE长.
参考答案
1.A 2.C 3.D 4.C 5.B 6.D 7.C 8.C 9.2 10.66°,66°,48°或66°,57°,57 11.25 12.60°13.∠1+2∠2=180°14.3265
15.80°53 cm 16.10 cm 17.4 18.60°
19.
含义:家和万事兴20.BD=CD 21.△ACE是等腰三角形,∵四
边形ABCD是等腰梯形,∴AC=BD,又∵AD∥BC,∴∠BCD=△CDE,∵CD=CD.∴△BC D≌△EDC,即BD=CE,∴AC=CE,即△ACE为等腰三角形.22.相等∵∠BAD=∠BCD=90°,O为BD
中点,∴OA=1
2BD,OC=1
2
BD,∴OA=OC,∴∠OAC=∠OCA.23.(1)
略(2)AP PQ
BQ (3)
24.(1)对,∵△ABC为等边三角形,∴AB=BC,∠ACB=∠ABC=60°,∵BD⊥AC,∴∠DBC=1
2
∠ABC=30°,∵DC=CE,∴∠E=∠CDE,
∴∠E=1
2
∠ACB=30°,∴∠E=∠DBC,即BD=DE.(2)D为AC 中点.∵△ABC为等边三角形,∴AB=BC=6,∠ACB=
∠ABC=60°,∵D为AC中点,∴BD平分∠ABC,DC=1
2
AC=3.BD
⊥AC,∴∠DBC=1
2
∠ABC=30°,∵DC=CE=3,∴∠E=∠CDE,∴
∠E=1
2
∠ACB=30°,∴∠E=∠DBC,∴BD=CE,∴BE=BC+CE=6+3=9.。