锁相式频率合成器
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章概述
1.1频率合成技术及其发展
随着通信、数字电视、卫星定位、航空航天和遥控遥测技术的不断发展, 对频率源的频率稳定度、频谱纯度、频率范围和输出频率个数的要求越来越高。为了提高频率稳定度, 经常采用晶体振荡器等方法来解决, 但它不能满足频率个数多的要求, 因此, 目前大量采用
频率合成技术。频率合成的方法主要有三种:直接合成模拟式频率合成、直接数字频率合成和锁相频率合成。
通过对频率进行加、减、乘、除运算, 可从一个高稳定度和高准确度的标准频率源, 产生大量的具有同一稳定度和准确度的不同频率。频率合成器是从一个或多个参考频率中产生多种频率的器件。它是现代通讯系统必不可少的关键电路, 广泛应用于数字通信、卫星通信、雷达、导航、航空航天、遥控遥测以及高速仪器仪表等领域。以通信为代表的信息产业是当代发展最快的行业,因此, 频率合成器也得到了较快发展, 形成了完善的系列品种, 市场需求也特别大。频率合成器的技术复杂度很高, 经过了直接合成模拟式频率综合器、锁相式频率综合器、直接数字式频率综合器(DDS)三个发展阶段。
直接合成模拟式频率合成器是通过倍频器、分频器、混频器, 对频率进行加、减、乘、除运算, 得到各种所需频率。直接合成法的优点是频率转换时间短,并能产生任意小的频率增量。但用这种方法合成的频率范围将受到限制。更重要的是, 直接合成模拟式频率合成器不能实现单片集成, 而且输出端的谐波、噪声及寄生频率难以抑制。因此, 直接合成模拟式频率综合器已逐渐被锁相式频率综合器、直接数字式频率综合器取代。
使用PLL技术实现的锁相式频率合成器在性能上较之RC、LC振荡源有很大提高, 但外围电路仍然较复杂, 且容易受外界干扰, 分辨率难以提高,其它指标也不理想。近年来, 直接数字频率合成器(DDS)的出现, 使频率合成技术大大前进了一步。频率控制是现代通信技术中很重要的一环, 获取宽带、快速、精细、杂散小的频率控制信号一直是通信领域中的一个重要研究内容。DDS技术是从相位概念出发直接合成所需波形的一种新的频率合成技术, 具有频率分辨率高、频率变换速度快、相位可连续线性变化等优点, 在基于数字信号处理的现代通信频率控制中已被广泛采用。1971年, 美国学者J.Tierncy、C.M.Rader和B.Gold提出了以全数字技术, 从相位概念出发, 直接合成所需波形的一种新的频率合成原理。限于当时的技术和器件水平, 它的性能指标不能与已有的技术相比, 故未受到重视。近20年间, 随着技术和器件水平的提高, 直接数字频率合成技术得到了飞速的发展, 成为现代频率合成技术
中的佼佼者。DDS具有超高速的频率转换时间, 极高的频率分辨率, 低的相位噪声, 变频相位连续, 容易实现频率、相位、幅度调制, 全数字化控制等突出优点, 已成为移动通信、卫星定位、数字通信等系统中信号源的首选。
目前, 在各种无线系统中使用的频率合成器普遍采用锁相式频率合成器, 通过CPU控制, 可获得不同的频点。锁相式频率合成器含有参考振荡器与分频器、可控分频器、压控振荡器及鉴相器、前置分频器等功能单元。频率合成器的最终发展方向是锁相式频率合成器、双环或多环锁相式频率合成器、DDS频率合成器, 以及PLL加DDS混合式频率合成器。因此,
锁相式频率合成器和直接数字式频率综合器受到各界关注, 并得到迅猛发展。
锁相式频率合成器是采用锁相环(PLL)进行频率合成的一种频率合成器。它是目前频率合成器的主流, 可分为整数频率合成器和分数频率合成器。在压控振荡器与鉴相器之间的锁相环反馈回路上增加整数N分频器, 就形成了一个整数频率合成器。通过改变分频系数N, 压控振荡器就可以产生不同频率的输出信号, 而输出信号的频率是参考信号频率的整数倍,
因此称为整数频率合成器。其输出信号之间的最小频率间隔等于参考信号的频率, 而这一点也正是整数频率合成器的局限所在。
构成锁相式整数频率合成器的关键部分是锁相环, 它是一个相位误差控制系统, 通过
比较输入信号和压控振荡器输出信号之间的相位差, 产生误差控制电压, 调整压控振荡器
的频率, 以达到与输入信号同频。在环路开始工作时, 如果输入信号频率与压控振荡器频率不同, 则由于两信号之间存在固有的频率差, 它们之间的相位差势必一直在变化, 致使鉴
相器输出的误差电压在一定范围内变化。在这种误差电压的控制下, 压控振荡器的频率也在变化。若压控振荡器的频率能够变化到与输入信号频率相等, 在满足稳定性的条件下, 就在这个频率上稳定下来。达到稳定后, 输入信号和压控振荡器输出信号之间的频差为零, 相差不再随时间变化, 误差电压为一固定值, 环路进入“锁定”状态。环路滤波器的作用是滤除误差电压中的高频成分和噪声, 以保证环路所要求的性能, 增加系统的稳定性。
锁相式分数频率合成器的输出信号频率不必是参考信号频率的整数倍, 而可以是参考
信号频率的小数倍, 因此称为锁相式分数频率合成器。小数频率合成器输出信号的最小频率间隔, 即输出频率精度, 由参考信号频率和分数频率合成器的分辨位数决定。锁相式整数频率合成器输出信号的最小频率间隔等于参考信号的频率。为了精确控制输出信号的频率, 需要采用频率很低的参考信号。在频率合成器的设计中, 滤波器带宽通常低于参考信号频率的十分之一。为了获得较高精度的输出信号频率, 同时防止参考信号的泄漏, 必须使用带宽很窄的滤波器。但是, 滤波器的带宽越窄, 频率合成器的调整时间就越长。而锁相式分数频率合成器则可以在使用高频率的参考信号的同时, 获得高精度的输出信号频率, 放松了对滤
波器带宽的限制, 从而有效地解决了上述问题。频率合成器的一个重要指标是相位噪声。在滤波器通带内, 输出信号的相位噪声是参考信号的相位噪声的N倍。显而易见, 在保持输出信号频率不变的情况下, 提高参考信号的频率可以有效地降低输出信号的相位噪声。理论上, 参考信号的频率提高一倍, 输出相位噪声下降6dB。小数频率合成器支持高频率的参考信号, 因此, 它的相位噪声指标好于整数频率合成器。当然, 也可以通过减小滤波器带宽的方式来抑制相位噪声, 但是, 这样会延长频率合成器的调整时间。相对于整数频率合成器, 小数频率合成器有精度高、相位噪声低、调整时间短, 且参考信号泄漏小等优点。到目前为止, Δ-Σ小数频率合成器是最成功的频率合成器实现方式。
频率合成器在国外已经发展得比较成熟, 形成了各种类型的锁相式整数频率合成器、锁相式分数频率合成器、直接数字频率合成器、双环或多环锁相式频率合成器、DDS与PLL混合式频率合成器等完整系列品种, 满足了通信、数字电视等领域的需要, 形成了巨大的频率合成器市场。频率合成器的发展趋势是频率更高、系统功能更强、制作工艺更先进、集成度更高、成本更低、功耗更低、系列品种更加完善。双环或多环锁相式频率合成器、DDS与锁相式混合的频率合成器已经实现单片集成。频率合成器已经与通信系统收发信机的射频电路集