小学数学应用题解题技巧大全8

合集下载

小学数学考试答题技巧一览

小学数学考试答题技巧一览

小学数学考试答题技巧一览数学是讨论数量、结构、变化、空间以及信息等概念的一门学科。

下面是我为大家整理的学校数学考试答题技巧,仅供参考,喜爱可以(保藏)共享一下哟!学校(五年级数学)11种解题技巧1、对比法如何正确地理解和运用数学概念?学校数学常用的(方法)就是对比法。

依据数学题意,对比概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学学问的理解、记忆、辨识、再现、迁移来解题的方法叫做对比法。

这个方法的思维意义就在于,训练同学对数学学问的正确理解、坚固记忆、精确辨识。

例1:三个连续自然数的和是18,则这三个自然数从小到大分别是多少?对比自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。

例2:推断题:能被2除尽的数肯定是偶数。

这里要对比“除尽”和“偶数”这两个数学概念。

只有这两个概念全理解了,才能做出正确推断。

2、公式法运用定律、公式、规章、法则来解决问题的方法。

它体现的是由一般到特别的演绎思维。

公式法简便、有效,也是学校生学习数学必需学会和把握的一种方法。

但肯定要让同学对公式、定律、规章、法则有一个正确而深刻的理解,并能精确运用。

例3:计算59×37+12×59+5959×37+12×59+59=59×(37+12+1)…………运用乘法安排律=59×50…………运用加法计算法则=(60-1)×50…………运用数的组成规章=60×50-1×50…………运用乘法安排律=3000-50…………运用乘法计算法则=2950…………运用减法计算法则3、比较法通过对比数学条件及问题的异同点,讨论产生异同点的缘由,从而发觉解决问题的方法,叫比较法。

比较法要留意:(1)找相同点必找相异点,找相异点必找相同点,不行或缺,也就是说,比较要完整。

(2)找联系与区分,这是比较的实质。

浅析小学数学应用题解题技巧

浅析小学数学应用题解题技巧

浅析小学数学应用题解题技巧1. 引言1.1 概述小学数学应用题在学生学习过程中起着至关重要的作用。

通过解答这些应用题,学生不仅可以提高自己的计算能力和逻辑思维能力,还可以将数学知识应用到实际生活中解决问题。

掌握小学数学应用题解题技巧是学生学习数学的重要部分。

在学习小学数学应用题时,理解题意是首要任务。

只有正确理解题目所描述的问题,才能有针对性地进行解题。

学生需要学会提取题目中的关键信息,将问题简化为数学运算或逻辑推理的过程。

选择合适的解题方法也是解答应用题的关键,不同类型的题目可能需要不同的解题思路和方法。

逐步推导解答过程是解答应用题的常用策略,通过逐步分析和推导,可以清晰地展现解题思路和过程。

在得出答案之后,学生需要检查答案的合理性,确保所得结果符合题目要求并且计算过程正确无误。

小学数学应用题解题技巧包括理解题意、列出关键信息、选择合适的解题方法、逐步推导解答过程和检查答案的合理性。

通过掌握这些技巧,学生可以提高解题效率,巩固学习成果,从而更好地理解和应用数学知识。

1.2 意义小学数学应用题在学生日常学习中占有重要地位,通过解答应用题可以巩固基础知识、培养逻辑思维能力和实际问题解决能力。

数学应用题不仅考察了学生对知识的理解和掌握,更重要的是培养了学生的综合运用能力。

在解题过程中,学生需要理解题意、分析问题、提炼信息,最终找出解决问题的有效方法。

数学应用题的意义在于培养学生的解决问题的能力,提高学生的综合素质。

通过解答应用题,学生可以将抽象的知识应用到实际问题中,培养学生的实际动手能力和解决问题的能力。

数学应用题也可以激发学生学习数学的兴趣,让学生感受到数学在现实生活中的应用和重要性。

通过应用题的解答,学生可以提高自己的思维逻辑能力和分析问题的能力,为将来的学习打下坚实的基础。

小学数学应用题的解答不仅是学习数学知识的手段,更是培养学生综合素质和解决问题能力的重要途径。

只有通过不断的练习和思考,才能更好地掌握解题技巧,提高解题效率,巩固学习成果,让数学这门学科变得更加有趣和具有挑战性。

解析小学生数学应用题解题方法与技巧

解析小学生数学应用题解题方法与技巧

解析小学生数学应用题解题方法与技巧数学应用题在小学生学习过程中占据重要地位,它们旨在让学生将所学数学知识应用于实际问题中解决。

然而,对许多小学生来说,解决这些题目可能是一项具有挑战性的任务。

本文将分享一些解决小学生数学应用题的方法与技巧,帮助他们更好地掌握这一领域。

一、读懂题目读懂题目是解决数学应用题的第一步。

小学生应该仔细阅读题目,理解问题的要求和给定的条件。

在读题时,可以用手指指导读,将注意力集中在每个关键词上,确保理解问题的核心。

在阅读过程中,还可以采用画图或标注的方式来帮助理解。

画图能够将抽象的问题具象化,更加直观地反映问题的本质。

标注可以帮助辨识出给定的条件和需要解决的问题,减少混淆。

二、分析问题分析是解决数学应用题的关键步骤。

在这一阶段,小学生应该将问题分解为更小的部分,并识别出与所学知识相关的关键点。

这有助于他们建立解题的框架和思路。

一种常用的分析方法是查找关键信息。

在题目中,常常会给出一些关键的数据或条件,小学生需要识别出这些信息,并确定它们对解题的影响。

他们还应该考虑问题的背景和实际应用,以便更好地理解问题。

三、选择解题方法正确选择解题方法也是解决数学应用题的重要因素之一。

小学生可以根据题目的要求和给定的条件来选择适当的解题策略。

以下是一些常见的解题方法:1. 图表法:适用于问题涉及数量关系,可以通过制表或者图表的方式来清晰地展示数据。

2. 反证法:适用于需要证明某个结论的问题,可以通过假设反面情况,然后证明矛盾来推导正确结论。

3. 反推法:适用于需要逆向思维的问题,可以从问题的结果出发,逆向推导每个步骤。

4. 模式识别法:适用于一些重复性的问题,可以通过发现并利用问题中的模式来解决。

四、解题步骤和技巧小学生在解答数学应用题时,可以遵循以下步骤和技巧,提高解题效率和准确性:1. 进行思维导图:将问题的要素和条件用图形化的方式展示出来,帮助理清思路。

2. 制定计划:明确解题的步骤和方法,合理安排时间,避免走题。

小学数学应用题解题技巧

小学数学应用题解题技巧

小学数学应用题解题技巧同学们学习了用字母表示数和解简易方程,还开始试着运用简易方程来解决一些实际问题。

列方程解应用题是一个难点,这一部分内容融入了等式的性质,以及四则运算各部分的关系,有助于同学们对所学的算术知识进行巩固和加深理解。

如何应用方程来解应用题呢?同学们不妨看看下面的一些技巧。

一、首先是审题,确定未知数。

审题,理解题意。

就是全面分析已知数与已知数、已知数与未知数的关系。

特别要把牵涉到的一些概念术语弄清,如同向、相向、增加到、增加了等,并确立未知数。

即用x表示所求的数量或有关的未知量。

在小学阶段同学们遇到的应用题并不十分复杂,一般只需要直接把要求的数量设为未知数,如:“学校图书馆里科技书的本数比文艺书的2倍多47本,科技书有495本,文艺书有多少本?”在这道题目中只有“文艺书的数量”不知道,所以只要设“文艺书的数量”为未知数x就可以了。

二、寻找等量关系,列出方程是关键。

“含有未知数的等式称为方程”,因而“等式”是列方程必不可少的条件。

所以寻找等量关系是解题的关键。

如上题中“科技书得本数比文艺书的2倍多47本”这是理解本题题目意思的关键。

仔细审题发现“文艺书本数的2倍加上47本就是科技书的本数”故本题的等量关系为:文艺书本数的2倍+47=科技书的本数。

上题中的方程可以列为:“2x+47=495”三、解方程,求出未知数得值。

解方程时应当注意把等号对齐。

如:2x+47=4952x+47——47=495——47 ←应将“2x”看做一个整体。

2x=4482x÷2=448÷2x=224四、检验也是列方程解应用题中必不可少的。

检验并写出答案.检验时,一是要将所求得的未知数的值代入原方程,检验方程的解是否正确;二是检查所求得的未知数的值是否符合题意,不符合题意的要舍去,保留符合题意的解.1)将求得的方程的解代入原方程中检验。

如果左右两- 1 -边相等,说明方程解正确了。

如上题的检验过程为:检验:把x=224代入原方程。

小学数学应用题解题技巧

小学数学应用题解题技巧

小学数学应用题解题技巧数学是一门让人们学习思考和逻辑推理的学科,而应用题则是数学知识在实际生活中的应用。

小学阶段,应用题的解题技巧对于学生的数学学习和思维能力的培养非常重要。

下面将介绍一些解题技巧,帮助小学生更加轻松地应对数学应用题。

一、理清题意,分析问题在解决任何数学应用题之前,首先要仔细阅读题目,理解题目所提供的信息和要求。

通过分析题目信息,确定题目的求解目标和方法。

例如,一道题目可能在描述一种场景或者给出一些条件,通过分析这些信息,学生就能够理清问题的思路,并且能够更好地找到解决问题的方法和策略。

二、建立数学模型应用题往往需要将实际问题转化为数学问题进行求解。

建立数学模型是解决应用题的关键步骤,它能把问题实质转化为数学计算的形式。

在建立模型时,我们可以使用图表、表格等工具,将问题可视化。

在小学阶段,常见的模型包括比例模型、面积模型、实物模型等。

建立模型有助于学生理解问题,从而更好地进行推理和计算。

三、运用合适的计算方法通过模型的建立,我们就能够根据题目要求使用合适的计算方法进行求解。

小学应用题常见的计算方法包括四则运算、比例运算、面积运算等。

学生可以根据题目的条件和问题的要求运用相应的计算方法进行计算。

同时,也要注重计算的准确性,避免粗心错误或计算错误对整个问题的解答产生不良影响。

四、多维度思考,辅助求解有时,一道应用题可能需要多个步骤和方法来解决。

在解题过程中,学生可以采用多维度的思考方式,综合运用不同的解题方法。

例如,对于一个文字题目,学生可以尝试画图,帮助自己更好地理解问题。

或者通过列式计算、逻辑推理等方式辅助求解。

多维度思考能够培养学生的综合思维能力,提高解题的效率和准确性。

五、巩固练习,善于总结解决应用题需要反复的练习和思考。

学生需要通过大量的练习题来提高自己的解题能力。

在解题过程中,可以将解题思路和方法进行总结和归纳。

例如,可以将涉及比例的题目分为几类,总结相应的解题方法。

通过总结,学生可以在解题过程中更快地找到问题的突破口和解题思路。

小学数学应用题解题技巧分析

小学数学应用题解题技巧分析

小学数学应用题解题技巧分析
解题技巧分析:
1. 理清题意:阅读题目时必须理清题意,弄清楚问题的含义和要求,避免将题目理
解错误。

2. 看清数据:理清楚数据间的联系和关系,同时看清所给数据的单位和量纲,以确
保计算无误。

3. 分析数据:通过对数据的分析,找到问题的本质和解决办法,从而确定解题思
路。

4. 选择方法:找到解题方法后,根据题目的要求和自己的能力选择合适的方法进行
计算和验证。

5. 优化思路:在解题过程中要注重思路的优化,利用已有的知识和方法,减少计算
步骤和错误率。

6. 检查答案:计算完成后一定要认真检查答案,确保结果正确无误。

题目分析举例:
小明有一张长方形的红毯子,长为3米,宽为2米。

他想在毯子的四周各围一圈白带子,白带子的长度为多少米?
解题思路:
根据图示,我们可以发现,白带子的长度实际上是毯子的周长加上四个角的长
度。

因此,我们只需要计算出毯子的周长和四个角的长度,再把它们相加起来,就可以得到白带子的长度了。

周长的公式是:周长 = 2 * (长 + 宽) ,所以毯子的周长为:周长 = 2 * (3 + 2) = 10米。

综合以上,白带子的长度为:白带子的长度 = 周长 + 四个角的长度 = 10米 + 10米= 20米。

解答:
小明需要用的白带子的长度为20米。

小学数学应用题解题技巧与思路

小学数学应用题解题技巧与思路

小学数学应用题解题技巧与思路“直接思路”是解题中的常规思路。

它一般是通过分析、综合、归纳等方法,直接找到解题的途径。

【顺向综合思路】从已知条件出发,根据数量关系先选择两个已知数量,提出可以解决的问题;然后把所求出的数量作为新的已知条件,与其他的已知条件搭配,再提出可以解决的问题;这样逐步推导,直到求出所要求的解为止。

这就是顺向综合思路,运用这种思路解题的方法叫“综合法”。

例1 兄弟俩骑车出外郊游,弟弟先出发,速度为每分钟200米,弟弟出发5分钟后,哥哥带一条狗出发,以每分钟250米的速度追赶弟弟,而狗以每分钟300米的速度向弟弟追去,追上弟弟后,立即返回,见到哥哥后又立即向弟弟追去,直到哥哥追上弟弟,这时狗跑了多少千米?分析(按顺向综合思路探索):(1)根据弟弟速度为每分钟200米,出发5分钟的条件,可以求什么?可以求出弟弟走了多少米,也就是哥哥追赶弟弟的距离。

(2)根据弟弟速度为每分钟200米,哥哥速度为每分钟250米,可以求什么?可以求出哥哥每分钟能追上弟弟多少米。

(3)通过计算后可以知道哥哥追赶弟弟的距离为1000米,每分钟可追上的距离为50米,根据这两个条件,可以求什么?可以求出哥哥赶上弟弟所需的时间。

(4)狗在哥哥与弟弟之间来回不断奔跑,看起来很复杂,仔细想一想,狗跑的时间与谁用的时间是一样的?狗跑的时间与哥哥追上弟弟所用的时间是相同的。

(5)已知狗以每分钟300米的速度,在哥哥与弟弟之间来回奔跑,直到哥哥追上弟弟为止,和哥哥追上弟弟所需的时间,可以求什么?可以求出这时狗总共跑了多少距离?这个分析思路可以用下图(图2.1)表示。

例2 下面图形(图2.2)中有多少条线段?分析(仍可用综合思路考虑):我们知道,直线上两点间的一段叫做线段,如果我们把上面任意相邻两点间的线段叫做基本线段,那么就可以这样来计数。

(1)左端点是A的线段有哪些?有AB AC AD AE AF AG共6条。

(2)左端点是B的线段有哪些?有BC、BD、BE、BF、BG共5条。

小学数学分数应用题的解题技巧

小学数学分数应用题的解题技巧

(小学数学分数应用题的解题技巧)分数应用题是小学数学中的一个重要内容,它涉及到分数的概念、运算和应用,对于培养学生的数学思维和解决问题的能力具有重要意义。

本文将介绍一些小学数学分数应用题的解题技巧,帮助同学们更好地理解和解决这类问题。

一、理解分数的概念分数是一个相对的概念,它表示的是部分与整体的关系。

在进行分数应用题解题时,首先要理解分数的概念,知道什么是分子、分母和分数单位,以及分数的加减乘除运算。

只有正确理解分数的概念,才能更好地解决分数应用题。

二、找准单位“1”单位“1”是分数应用题中的一个重要概念,它表示的是一个整体或是一个事物的数量。

在解决分数应用题时,要找准单位“1”,才能更好地分析题意和列式。

一般来说,分数应用题中会出现一个表示数量的词语,这个词语后面的那个量就是单位“1”。

例如,“男生人数的1/3是女生人数”,男生人数就是单位“1”。

三、分析题意,列出正确的式子在找准单位“1”后,需要分析题意,根据题目的描述列出正确的式子。

一般来说,分数应用题的式子包括两个部分:一个是已知量(部分)和未知量(整体)之间的关系;另一个是分数的运算。

在列式时,需要注意题目中的单位是否一致,以免出现错误。

四、运用解题技巧,提高解题效率1.画图法:对于一些比较抽象的分数应用题,可以通过画图来帮助理解。

通过画图,可以直观地看到题目中的数量关系,从而更快地找到答案。

2.假设法:在解题时,有时候会遇到一些比较复杂的问题,可以通过假设某个条件或数值来帮助解题。

这种方法可以帮助我们更好地理解题目中的数量关系,从而更快地找到答案。

3.代数法:对于一些比较复杂的分数应用题,可以通过建立方程来求解。

这种方法需要有一定的数学基础和技巧,但在解决一些复杂问题时非常有效。

五、举一反三,提高解题能力除了掌握解题技巧外,还需要通过练习和思考来提高解题能力。

在做题时,要尝试举一反三,通过相似的题目来巩固和提高自己的解题能力。

同时,也要注意总结解题经验和方法,发现规律和技巧,提高解题效率和质量。

浅析小学数学应用题解题技巧

浅析小学数学应用题解题技巧

浅析小学数学应用题解题技巧小学数学应用题是小学数学中最难的一个部分,很多学生都会感到头疼。

其实,只要我们掌握了一些解题技巧,我们就能够迎刃而解。

下面,我将为大家介绍一些小学数学应用题的解题技巧。

一、先读懂题目首先,我们在做小学数学应用题时,要先认真读懂题目,理解题目的意思。

在认真读懂题目之后,我们要学会提取有用信息,判断信息的重要性,把重要信息提取出来,进行分析,明确要求,然后设定解题思路。

二、找到关键词在解小学数学应用题时,关键词是一切。

因为题目中的关键词可以让我们找到解题的方法。

例如,如果题目中出现了“平均数”、“比例”、“倍数”、“剩余”等词语,我们就可以把它们当作解题的突破口,找到正确的解题方法。

三、逻辑思维小学数学应用题需要我们拥有良好的逻辑思维,能够正确地对信息进行分析、推理和判断。

我们需要根据题目信息,判断哪些数据是有用的,哪些数据是不需要的,进而提取重要信息,找到解题思路。

在解题过程中,我们需要理性思考,合理推理,避免盲目猜测和主观臆断。

四、建立方程在解决小学数学应用题时,我们需要学会建立方程式。

如果题目中出现了未知数,我们就可以建立方程,通过方程式来求解未知数的值。

通过建立方程,我们可以根据题目中的条件和要求,得出正确的答案。

五、善于总结最后,我们需要总结做题经验,总结解题方法和技巧。

通过积累经验,我们可以更快地发现解题方法和技巧,提高解题的效率和准确度,更加轻松地完成小学数学应用题。

综上所述,小学数学应用题解题技巧有很多,但是最重要的是认真读懂题目,注意关键词,拥有良好的逻辑思维,善于建立方程,还要不断总结做题经验。

只有通过不断的练习和巩固,我们才能快速高效地解决小学数学应用题,达到良好的学习效果。

小学数学应用题解题思路与技巧

小学数学应用题解题思路与技巧

小学数学应用题解题思路与技巧1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1:买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例2:3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。

例3:5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

2、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

小学1-6年级数学应用题解题公式大全

小学1-6年级数学应用题解题公式大全

『1-6年级数学应用题』1.鸡兔同笼问题鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数) 兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数) 2.流水问题:顺水速度=船速+水速逆水速度=船速-水速水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷23.火车问题基本数量关系是:火车速度×时间=车长+桥长(同向运动,追及问题)路程差=车身长的和超车时间=车身长的和÷速度差(反向运动,相遇问题)路程和=车身长的和错车时间=车身长的和÷速度和4.列车过桥问题公式(桥长+列车长)÷速度=过桥时间(桥长+列车长)÷过桥时间=速度『1-6年级数学应用题』5.植树问题间隔数+1=棵数(两端植树)路长÷间隔长+1=棵数间隔数-1=棵数路长÷间隔数=棵数路长÷间隔数=路长÷棵数=每个间隔长每个间隔长×间隔数=每个间隔长×棵数=路长锯的次数=段数-1段数=锯的次数+1A每个角上都摆的情况每边数=总盆数÷边数+1 边数=总盆数÷(每边数-1) B.每个角上都不摆的情况:每边数×边数=总盆数总盆数÷边数=每边数总盆数÷每边数=边数6.剪绳问题一根绳对折N次,从中剪M刀,则被剪成了(2N×M+1)段『1-6年级数学应用题』7.年龄问题两个人的年龄的倍数是发生变化的几年后年龄=大小年龄差÷倍数差-小年龄几年前年龄=小年龄-大小年龄差÷倍数差8.盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数9.和差问题公式(和-差)÷2=较小数 (和+差)÷2=较大数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数÷差=大数10.方阵问题1.方阵总人数=最外层每边人数的平方(方阵问题的核心)2.方阵最外层每边人数=(方阵最外层总人数÷4)+13.方阵最外层总人数=(最外层每边人数-1)×411.握手问题共需要(n-1)+(n-2)+(n-3)+....+2+1+0=n(n-1)/2『1-6年级数学应用题』12.等差数列末项=首项+(项数-1)÷公差项数=(末项-首项)÷公差+1总和=(末项+首项)×项数÷213.牛吃草问题1.草的每天生长量不变;2.每头牛每天的食草量不变;3.草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值4.新生的草量=每天生长量×天数①草的生长速度=(对应的牛头数x吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);②原有草量=牛头数×吃的天数-草的生长速度×吃的天数;③吃的天数=原有草量÷(牛头数-草的生长速度);④牛头数=原有草量÷吃的天数+草的生长速度。

五年级数学应用题的解题技巧有哪些

五年级数学应用题的解题技巧有哪些

五年级数学应用题的解题技巧有哪些在小学的学习中,数学是学习的重点知识,而应用题是考察的重点,所以我们应该了解一些答题的技巧,下面是小编为大家总结的小学五年级数学应用题解题技巧。

应用题解题技巧一、和差问题:已知两个数的和与差,求这两个数的应用题,叫做和差问题。

一般关系式有:(和-差)÷2=较小数 (和+差)÷2=较大数二、倍差问题:已知两个数的差及两个数的倍数关系,求这两个数的应用题,叫做差倍问题;基本关系式是:两数差÷倍数差=较小数三、还原问题:已知一个数经过某些变化后的结果,要求原来的未知数的问题,一般叫做还原问题:还原问题是逆解应用题。

一般根据加、减法,乘、除法的互逆运算的关系。

由题目所叙述的的顺序,倒过来逆顺序的思考,从最后一个已知条件出发,逆推而上,求得结果。

四、置换问题:题中有二个未知数,常常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算。

其结果往往与条件不符合,再加以适当的调整,从而求出结果。

五、盈亏问题(盈不足问题):题目中往往有两种分配方案,每种分配方案的结果会出现多(盈)或少(亏)的情况,通常把这类问题,叫做盈亏问题(也叫做盈不足问题):解答这类问题时,应该先将两种分配方案进行比较,求出由于每份数的变化所引起的余数的变化,从中求出参加分配的总份数,然后根据题意,求出被分配物品的数量。

其计算方法是:当一次有余数,另一次不足时:每份数=(余数+不足数)÷两次每份数的差当两次都有余数时:总份数=(较大余数-较小数)÷两次每份数的差当两次都不足时:总份数=(较大不足数-较小不足数)÷两次每份数的差六、年龄问题:年龄问题的主要特点是两人的年龄差不变,而倍数差却发生变化。

常用的计算公式是:成倍时小的年龄=大小年龄之差÷(倍数-1)几年前的年龄=小的现年-成倍数时小的年龄几年后的年龄=成倍时小的年龄-小的现在年龄七、鸡兔问题:已知鸡兔的总只数和总足数,求鸡兔各有多少只的一类应用题,叫做鸡兔问题,也叫“龟鹤问题”、“置换问题”;一般先假设都是鸡(或兔),然后以兔(或鸡)置换鸡(或兔)。

小学三年级数学应用题答题技巧

小学三年级数学应用题答题技巧

小学三年级数学应用题答题技巧在小学三年级数学课程中,应用题的出现是为了让学生将所学的数学知识应用到实际问题中。

对于小学生来说,应用题可能会稍显难度,但只要掌握一些答题技巧,就能轻松解答。

本文将介绍一些小学三年级数学应用题的答题技巧,希望能帮助学生更好地应对这类题型。

1. 理解问题在解答应用题之前,首先要仔细阅读并理解题目内容。

了解题目在描述什么情境以及需要解决的问题是什么。

不要匆忙下结论,要确保自己完全理解题目的要求。

2. 提取关键信息在理解题目的基础上,要学会提取关键信息。

关键信息包括已知条件、需要求解的未知数以及问题的具体要求。

将这些关键信息提取出来并进行整理,有助于我们更好地解答问题。

3. 使用图表表示对于一些涉及数量关系的应用题,可以使用图表或表格来表示已知条件和未知数之间的关系,以便更好地理清思路。

例如,被求解的问题是某物品的价格,我们可以使用一张表格来记录不同物品的价格和数量,进一步计算总价。

4. 利用所学知识在解答应用题时,要善于运用所学的数学知识。

在小学三年级,我们已经学习了加法、减法、乘法和除法等基本运算,以及相关的问题解决方法。

在解答应用题时,要结合题目的要求,灵活运用这些知识。

5. 多种解法比较有些应用题可以有多种解法。

在解答完题目之后,可以尝试使用不同的方法进行求解,然后比较结果是否相同。

这样可以帮助我们更好地检验答案的正确性,并提高问题解决的灵活性。

6. 反思和总结在解答完应用题之后,要进行反思和总结。

回顾解题过程,思考是否还有其他更简单或更有效的解法。

如果在解题过程中遇到了困难或错误,要及时找出原因并进行改正。

只有通过不断的练习和反思,才能更好地掌握数学应用题的解题技巧。

以上就是一些小学三年级数学应用题答题的技巧,希望能够对学生们在解答这类题目时提供一些帮助。

通过掌握这些技巧,并不断进行实践和总结,相信大家会在数学学习中取得更好的成绩。

小学数学应用题解题技巧8、类比思路

小学数学应用题解题技巧8、类比思路

【类比思路】类比就是从一个问题想到了相似的另一个问题。

例如从等差数列求和公式想到梯形面积公式,从矩形面积公式想到长方体体积公式等等;类比是一个重要的思想方法,也是解题的一种重要思路。

例1 有一个挂钟,每小时敲一次钟,几点钟就敲几下,钟敲6下,5秒钟敲完;钟敲12下,几秒敲完?
分析(用类比思路探讨):
有人会盲目地由倍数关系下结沦,误认为10秒钟敲完,那就完全错了。

其实此题只要运用类比思路,与植树问题联系起来想一想就通了:一条线路植树分成几段(株距),如果不包括两个端点,共需植(n-1)棵树,如果包括两个端点,共需植树(n+1)棵,把钟点指数看作是一棵棵的树,把敲的时间看作棵距,此题就迎刃而解了。

例2 从时针指向4点开始,再经过多少分钟,时针正好与分钟重合。

分析(用类比思路讨论):
本题可以与行程问题进行类比。

如图2.11,如果用时针1小时所走的一格作为路程单位,那么本题可以重新叙述为:已知分针与时针相距4格,分如果分针与时针同时同向出发,问:分针过多少分钟可追上时针?这样就与行程问题中的追及问题相似了。

4为距离差,速度差为,重合的时间,就是追上的时间。

小学数学应用题解题10个思路应用题解题思路解题技巧

小学数学应用题解题10个思路应用题解题思路解题技巧

1.顺向综合思路“直接思路”是解题中的常规思路。

它一般是通过分析、综合、归纳等方法,直接找到解题的途径。

【顺向综合思路】从已知条件出发,根据数量关系先选择两个已知数量,提出可以解决的问题;然后把所求出的数量作为新的已知条件,与其他的已知条件搭配,再提出可以解决的问题;这样逐步推导,直到求出所要求的解为止。

这就是顺向综合思路,运用这种思路解题的方法叫“综合法”。

例1 兄弟俩骑车出外郊游,弟弟先出发,速度为每分钟200米,弟弟出发5分钟后,哥哥带一条狗出发,以每分钟250米的速度追赶弟弟,而狗以每分钟300米的速度向弟弟追去,追上弟弟后,立即返回,见到哥哥后又立即向弟弟追去,直到哥哥追上弟弟,这时狗跑了多少千米?分析(按顺向综合思路探索):(1)根据弟弟速度为每分钟200米,出发5分钟的条件,可以求什么?可以求出弟弟走了多少米,也就是哥哥追赶弟弟的距离。

(2)根据弟弟速度为每分钟200米,哥哥速度为每分钟250米,可以求什么?可以求出哥哥每分钟能追上弟弟多少米。

(3)通过计算后可以知道哥哥追赶弟弟的距离为1000米,每分钟可追上的距离为50米,根据这两个条件,可以求什么?可以求出哥哥赶上弟弟所需的时间。

(4)狗在哥哥与弟弟之间来回不断奔跑,看起来很复杂,仔细想一想,狗跑的时间与谁用的时间是一样的?狗跑的时间与哥哥追上弟弟所用的时间是相同的。

(5)已知狗以每分钟300米的速度,在哥哥与弟弟之间来回奔跑,直到哥哥追上弟弟为止,和哥哥追上弟弟所需的时间,可以求什么?可以求出这时狗总共跑了多少距离?这个分析思路可以用下图(图2.1)表示。

例2 下面图形(图2.2)中有多少条线段?分析(仍可用综合思路考虑):我们知道,直线上两点间的一段叫做线段,如果我们把上面任意相邻两点间的线段叫做基本线段,那么就可以这样来计数。

(1)左端点是A的线段有哪些?有 AB AC AD AE AF AG共 6条。

(2)左端点是B的线段有哪些?有 BC、BD、BE、BF、BG共5条。

小学数学应用题解题技巧指导

小学数学应用题解题技巧指导

小学数学应用题解题技巧指导一、了解题意解题技巧的第一步是充分了解题意。

在解决任何问题之前,我们必须准确地理解问题的要求。

在阅读数学应用题时,我们应该仔细阅读题目,并将其分解成更小的部分,以确保我们完全理解。

二、寻找关键信息掌握题目中的关键信息是解决数学应用题的关键。

我们需要注意题目给出的数字和数据,以及涉及的问题。

仔细分析这些信息,并将其组织起来,以便在解题过程中能够使用。

三、确定解题方法在解决数学应用题时,我们需要根据问题的性质和题目要求选择合适的解题方法。

有些题目需要使用运算符号,有些需要使用比较符号,还有些需要使用代数等。

我们需要根据题目要求确定最佳的解题方法,并正确地运用它。

四、绘制图形对于涉及几何图形的数学应用题,绘制图形可以帮助我们更好地理解题目并找到解决方法。

通过将题目中的信息进行可视化,我们可以更快地发现规律和模式,并找到答案。

五、列方程和代数在解决涉及代数表达式的数学应用题时,我们可以利用列方程和代数的方法。

通过用变量代替未知数,我们可以将复杂的问题简化为更容易解决的问题,从而找到解答。

六、找出关系在处理一些复杂的数学应用题时,我们需要找出数值之间的关系。

通过观察数字之间的模式、比例和相关性,我们可以找到隐藏在问题背后的规律,并由此解决问题。

七、合理估计当面对一些复杂的数学应用题时,我们可以使用合理估计的方法。

通过将数字进行合理地估计,我们可以简化问题,从而更容易找到答案。

八、检查答案在解答数学应用题后,我们应该检查答案的准确性。

通过将我们的解答代入原始问题中,我们可以确认我们的答案是否正确,并在需要的情况下进行修正。

九、总结经验在解决数学应用题的过程中,我们会不断积累经验和技巧。

每当我们解决一个新的问题时,我们都应该总结我们的经验,并将其运用到未来的解题中。

十、勤加练习解决数学应用题的技巧不是一蹴而就的,需要通过不断的练习来提高。

我们应该多做各种类型的数学应用题,培养我们的问题解决能力。

小学数学应用题解题技巧总结

小学数学应用题解题技巧总结

小学数学应用题解题技巧总结解题是数学学习中非常重要的一环,尤其是对于小学生来说,掌握解题技巧能够帮助他们更好地应用所学的知识解决问题。

在小学数学应用题解题过程中,以下几个技巧是十分实用的。

1. 阅读理解:在解答阅读理解题目时,首先要仔细阅读题目和相关的材料,理解其中的问题、要求和条件。

然后将问题进行分解,找出相关信息,确定解题思路。

在计算过程中,要注意符号的准确运用,如加减乘除。

最后,回答问题时要将答案用通俗易懂的语言进行解释,以确保回答正确完整。

2. 图形解析:当解决与图形相关的问题时,要将图形仔细观察和分析。

首先,理解题目要求并标记出关键信息。

其次,根据题目要求,选择合适的图形进行绘制,并标记出所需的数据和尺寸。

然后,利用几何定律和数学关系进行分析和计算。

最后,将结果用简洁明了的方式表达出来,例如用图形、数字或文字。

3. 反求法:有些应用题要求推断或反向计算。

当这种情况发生时,我们可以使用反求法。

首先,要明确题目中给出的已知条件,并将其列出。

然后,根据已知条件进行逆向推理,找到所需的求解方程或关系式。

通过代入数值、试错方法或解方程等方式,求解未知量。

最后,将求得的结果验证,确保其符合题目要求。

4. 列表法:适用于一些需要列示可能性的题目。

当遇到题目要求求出满足一定条件的数目时,我们可以使用列列表法。

首先,明确题目要求的条件,然后列出可能的情况,进行组合或全排列。

最后,计算满足要求的个数。

在列列表时,要时刻注意题目条件的限制和排除重复计数的情况。

5. 分类法:当应用题目给出一些分类或分组的条件时,我们可以使用分类法。

首先,根据题目条件将对象进行分类。

然后,分别计算每个类别或分组中的数据,并根据题目要求进行汇总或计算。

最后,对各类别的结果进行合并或比较,得到最终的答案。

6. 逻辑推理: 逻辑推理是解答应用题中常用的方法。

通过分析题干,理清思路,利用条件和逻辑关系进行合理推断,从而解决问题。

在应用题中,逻辑推理常涉及比较、排列组合、关系运算等。

小学数学应用题解题技巧

小学数学应用题解题技巧

小学数学应用题解题技巧在小学数学的学习中,应用题是一个重点和难点。

对于许多小学生来说,应用题可能会让他们感到困惑和无从下手。

但实际上,只要掌握了一些有效的解题技巧,就能轻松应对。

接下来,我将为大家介绍一些小学数学应用题的解题技巧。

一、认真审题认真审题是解题的关键。

在拿到一道应用题时,首先要仔细阅读题目,理解题意。

要注意题目中的关键词、数量关系以及问题的要求。

比如,“多”“少”“一共”“平均”等关键词,往往能够提示我们解题的思路。

同时,要弄清楚题目中给出了哪些已知条件,需要求解的是什么。

例如,有这样一道题:“小明有 10 个苹果,小红比小明多 5 个,请问小红有几个苹果?”在这道题中,“多”这个关键词就很重要,它提示我们要用加法来计算小红的苹果数。

二、画图辅助对于一些比较复杂的应用题,通过画图可以更直观地理解题目中的数量关系。

画图的方式有很多种,比如线段图、示意图等。

比如,“甲乙两地相距 200 千米,一辆汽车从甲地开往乙地,每小时行驶 50 千米,几小时能到达乙地?”这道题我们就可以画一个简单的线段图,把甲乙两地的距离表示出来,然后再把汽车的速度标注上去,这样就能很清楚地看出时间等于路程除以速度。

三、寻找等量关系很多应用题中都存在着等量关系,找到这些等量关系往往就能列出方程或算式来求解。

例如,“商店里卖出的苹果比香蕉多 10 千克,卖出的香蕉是 20 千克,卖出的苹果是多少千克?”在这道题中,等量关系就是“苹果的重量香蕉的重量= 10 千克”,我们可以根据这个等量关系列出算式:20 + 10 = 30(千克)四、运用逆向思维有时候,从正面思考问题可能会比较困难,这时候可以尝试运用逆向思维。

比如,“一个数加上 5 之后等于 12,这个数是多少?”如果从正面思考,可能会觉得有些迷茫,但如果从逆向思考,用 12 减去 5 就能很快得出答案,即 7。

五、单位换算在应用题中,经常会涉及到单位的换算。

如果单位不统一,就很容易出错。

小学数学应用题解析与解题技巧分享

小学数学应用题解析与解题技巧分享

小学数学应用题解析与解题技巧分享数学是一门重要的学科,也是小学生学习过程中必不可少的一部分。

在学习数学的过程中,应用题是一个重要的环节。

应用题不仅考察学生对基本概念和方法的理解,还能培养学生的逻辑思维和问题解决能力。

本文将分享一些小学数学应用题的解析和解题技巧。

一、理解问题在解决应用题之前,首先要理解问题的意思。

有些问题可能会用文字描述,有些可能会用图形表示。

无论是哪种形式,都要仔细阅读并理解问题的要求。

可以在纸上标记出关键信息,有助于整理思路和解题。

例如,有一道题目是这样描述的:“小明有10个苹果,他打算将这些苹果分给他的5个朋友,每人分多少个?”在这个问题中,关键信息是10个苹果和5个朋友。

我们需要找到一个数,使得这个数乘以5等于10。

通过分析问题,我们可以得出答案是2。

二、建立数学模型在理解问题后,我们需要将问题转化为数学表达式或方程,建立数学模型。

数学模型是解决问题的关键,它能够帮助我们更好地理解问题,找到解决问题的方法。

例如,有一道题目是这样描述的:“小明和小红一起做作业,小明每小时能做3道题,小红每小时能做4道题。

他们一起做了8小时,共做了多少道题?”在这个问题中,我们可以建立一个数学模型:小明做题的数量加上小红做题的数量等于总题数。

根据题目中的信息,我们可以得出方程3x + 4x = 8,其中x表示小明和小红每小时做题的数量。

解这个方程,我们可以得到x = 1,即小明和小红每小时做题的数量为1。

因此,他们一起做了8道题。

三、运用逻辑推理在解决应用题的过程中,运用逻辑推理能够帮助我们更好地分析问题和找到解决问题的方法。

逻辑推理是通过观察问题的特点和规律,进行推理和判断的过程。

例如,有一道题目是这样描述的:“小明有一些红苹果和绿苹果,红苹果的数量是绿苹果数量的2倍,他一共有18个苹果。

红苹果和绿苹果的总数是多少?”在这个问题中,我们可以通过逻辑推理来解决。

假设绿苹果的数量为x个,那么红苹果的数量就是2x个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学应用题解题技巧大全小升初应用题大全,可分为一般应用题与典型应用题。

1归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1买5支铅笔要0。

6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0。

6÷5=0。

12(元)(2)买16支铅笔需要多少钱?0.12×16=1。

92(元)列成综合算式0.6÷5×16=0.12×16=1。

92(元) 答:需要1。

92元。

例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷.例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

2归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量.例1服装厂原来做一套衣服用布3。

2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米?3.2×791=2531。

2(米)(2)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式3.2×791÷2。

8=904(套)答:现在可以做904套。

例2小华每天读24页书,12天读完了《红岩》一书。

小明每天读36页书,几天可以读完《红岩》?解(1)《红岩》这本书总共多少页?24×12=288(页)(2)小明几天可以读完《红岩》?288÷36=8(天)列成综合算式24×12÷36=8(天)答:小明8天可以读完《红岩》。

例3食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。

后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?解(1)这批蔬菜共有多少千克?50×30=1500(千克)(2)这批蔬菜可以吃多少天?1500÷(50+10)=25(天)列成综合算式50×30÷(50+10)=1500÷60=25(天)答:这批蔬菜可以吃25天。

3和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题. 【数量关系】大数=(和+差)÷2 小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

例1甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人) 答:甲班有52人,乙班有46人。

例2长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。

解长=(18+2)÷2=10(厘米)宽=(18-2)÷2=8(厘米)长方形的面积=10×8=80(平方厘米) 答:长方形的面积为80平方厘米。

例3有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。

解:甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。

由此可知:甲袋化肥重量=(22+2)÷2=12(千克)丙袋化肥重量=(22-2)÷2=10(千克)乙袋化肥重量=32-12=20(千克)答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。

例4甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?解“从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(14×2+3),甲与乙的和是97,因此甲车筐数=(97+14×2+3)÷2=64(筐)乙车筐数=97-64=33(筐)答:甲车原来装苹果64筐,乙车原来装苹果33筐。

4和倍问题【含义】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。

【数量关系】总和÷(几倍+1)=较小的数总和-较小的数=较大的数较小的数×几倍=较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。

例1果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?解(1)杏树有多少棵?248÷(3+1)=62(棵)(2)桃树有多少棵?62×3=186(棵)答:杏树有62棵,桃树有186棵。

例2东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1。

4倍,求两库各存粮多少吨?解(1)西库存粮数=480÷(1.4+1)=200(吨)(2)东库存粮数=480-200=280(吨)答:东库存粮280吨,西库存粮200吨.例3甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?解:每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28-24)辆。

把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(52+32)就相当于(2+1)倍,那么,几天以后甲站的车辆数减少为: (52+32)÷(2+1)=28(辆) 所求天数为(52-28)÷(28-24)=6(天)答:6天以后乙站车辆数是甲站的2倍。

例4甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少? 解: 乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。

因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;这时(170+4-6)就相当于(1+2+3)倍。

那么,甲数=(170+4-6)÷(1+2+3)=28乙数=28×2-4=52丙数=28×3+6=90答:甲数是28,乙数是52,丙数是90。

5差倍问题【含义】已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题.【数量关系】两个数的差÷(几倍-1)=较小的数较小的数×几倍=较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。

例1果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。

求杏树、桃树各多少棵?解(1)杏树有多少棵?124÷(3-1)=62(棵)(2)桃树有多少棵?62×3=186(棵)答:果园里杏树是62棵,桃树是186棵.例2爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?解(1)儿子年龄=27÷(4-1)=9(岁)(2)爸爸年龄=9×4=36(岁)答:父子二人今年的年龄分别是36岁和9岁。

例3商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?解如果把上月盈利作为1倍量,则(30-12)万元就相当于上月盈利的(2-1)倍,因此上月盈利=(30-12)÷(2-1)=18(万元)本月盈利=18+30=48(万元)答:上月盈利是18万元,本月盈利是48万元。

例4粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?解:由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(138-94)。

把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么,(138-94)就相当于(3-1)倍,因此剩下的小麦数量=(138-94)÷(3-1)=22(吨)运出的小麦数量=94-22=72(吨)运粮的天数=72÷9=8(天) 答:8天以后剩下的玉米是小麦的3倍.6倍比问题【含义】有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。

【数量关系】总量÷一个数量=倍数另一个数量×倍数=另一总量【解题思路和方法】先求出倍数,再用倍比关系求出要求的数.例1100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?解:(1)3700千克是100千克的多少倍?3700÷100=37(倍)(2)可以榨油多少千克?40×37=1480(千克)列成综合算式40×(3700÷100)=1480(千克)答:可以榨油1480千克。

例2今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?解(1)48000名是300名的多少倍?48000÷300=160(倍)(2)共植树多少棵?400×160=64000(棵)列成综合算式400×(48000÷300)=64000(棵)答:全县48000名师生共植树64000棵。

例3凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?解(1)800亩是4亩的几倍?800÷4=200(倍)(2)800亩收入多少元?11111×200=2222200(元)(3)16000亩是800亩的几倍?16000÷800=20(倍)(4)16000亩收入多少元?2222200×20=44444000(元)答:全乡800亩果园共收入2222200元,全县16000亩果园共收入44444000元。

相关文档
最新文档