大连理工大学09级矩阵与数值分析试题

合集下载

大连理工大学《矩阵与数值分析》2005-2009年真题答案

大连理工大学《矩阵与数值分析》2005-2009年真题答案

大 连 理 工 大 学课 程 名 称: 计算方法 试卷: A 考试形式: 闭卷 授课院(系): 数学系 考试日期: 2005 年 12 月 12 日 试卷共 7 页一二三四五 六 七 总分 标准分 得 分装 一、填空(共30分,每空1.5分)(1)误差的来源主要有 、 、 、 .(2)要使 7459666.760=的近似值a 的相对误差限不超过310-,应至少取 位有效数字, 此时的近似值a = .订 (3)设⎪⎪⎭⎫⎝⎛--=4224A , 则1A = , 2A = , ∞A = , F A = ,谱半径)(A ρ= , 2-条件数)(2A cond = , 奇异值为 .线 (4)设44⨯∈CA ,特征值3,24321====λλλλ,特征值2是半单的,而特征值3是亏损的,则A 的Jordan 标准型=J.(5)已知x x x f 3)(2-=,则=-]1,0,1[f ,=-]3,1,0,1[f .(6)求01)(3=-+=x x x f 在5.0=x 附近的根α的Newton 迭代公式是:,其收敛阶 . (7)计算u u 5-=')10(≤≤t , 1)0(=u 的数值解的Euler 求解公式为 . 为使计算保持绝对稳定性, 步长h 的取值范围 .二、(12分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=820251014A 的Doolittle 分解和Cholesky 分解,并求解⎪⎪⎪⎭⎫ ⎝⎛=1085Ax .三、(6分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=622292221A 的QR 分解(Q 可表示为两个矩阵的乘积).四、(12分)根据迭代法f Bx x k k +=+)()1(对任意)0(x 和f 均收敛的充要条件为1)(<B ρ, 证明若线性方程组b Ax =中的A 为严格对角占优矩阵, 则Jacobi 法和G-S 法均收敛.五、(12分)求满足下列插值条件的分段三次多项式(]0,3[-和]1,0[), 并验证它是不是三次样条函数.27)3(-=-f , 8)2(-=-f , 1)1(-=-f , 0)0(=f , ]0,3[-∈x ;0)0(=f , 0)0(='f , 0)1(=f , 1)1(='f , ]1,0[∈x .六、(10分)证明线性二步法])13()3[(4)1(212n n n n n f b f b hbu u b u +++=--++++, 当1-≠b 时为二阶方法,1-=b 时为三阶方法, 并给出1-=b 时的局部截断误差主项.七、(18分)求]1,1[-上以1)(≡x ρ为权函数的标准正交多项式系)(0x ψ, )(1x ψ, )(2x ψ, 并由此求3x ])1,1[(-∈x 的二次最佳平方逼近多项式, 构造Gauss 型求积公式⎰-+≈111100)()()(x f A x f A dx x f , 并验证其代数精度.大 连 理 工 大 学课 程 名 称: 计算方法 试卷: A 考试形式: 闭卷 授课院(系): 数学系 考试日期: 2006 年 12 月 11 日 试卷共 8 页一二三四五 六 七 八 总分 标准分 得 分装订 一、填空(共30分,每空2分)线 (1)误差的来源主要有 .(2)按四舍五入的原则,取 69041575.422= 具有四位有效数字的近似值 a = ,则绝对误差界为 ,相对误差界为 .(3)矩阵算子范数M A ||||和谱半径)(A ρ的关系为: ,和 .(4)设44⨯∈CA ,特征值3,24321====λλλλ,特征值2是半单的,而特征值3是亏损的,则A 的Jordan 标准型=J.(5)已知x x x f 3)(2-=,则=]1,0[f ,=-]1,0,1[f .(6)求01)(3=-+=x x x f 在5.0=x 附近的根α的Newton 迭代公式是:.(7)使用Aitken 加速迭代格式)(1-=k k x x ϕ得到的Steffensen 迭代格式为:,对幂法数列}{k m 的加速公式为:.(8)1+n 点的Newton-Cotes 求积公式∑==nk k k n x f A f I 0)()(的最高代数精度为.(9)计算u u 7-=')10(≤≤t , 1)0(=u 的数值解的Euler 求解公式为 ,为使计算保持绝对稳定性, 步长h 的取值范围 .二、(10分) 设⎪⎪⎭⎫ ⎝⎛--=4224A , 计算1A ,2A ,∞A ,F A , 谱半径)(A ρ, 2-条件数)(2A cond , 和奇异值.三、(10分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=820251014A 的Doolittle 分解和Cholesky 分解.四、(4分)求Householder 变换矩阵将向量⎪⎪⎪⎭⎫ ⎝⎛=221x 化为向量⎪⎪⎪⎭⎫ ⎝⎛=003y .五、(12分)写出解线性方程组的Jacobi 法,G-S 法和超松弛(SOR )法的矩阵表示形式,并根据迭代法f Bx x k k +=+)()1(对任意)0(x 和f 均收敛的充要条件为1)(<B ρ, 证明若线性方程组b Ax =中的A 为严格对角占优矩阵, 则超松弛(SOR )法当松弛因子]1,0(∈ω时收敛.六、(12分)求满足下列插值条件的分段三次多项式(]0,3[-和]1,0[), 并验证它是不是三次样条函数. 27)3(-=-f , 8)2(-=-f , 1)1(-=-f , 0)0(=f , ]0,3[-∈x ;0)0(=f , 0)0(='f , 0)1(=f , 1)1(='f , ]1,0[∈x .七、(12分)证明区间],[b a 上关于权函数)(x ρ的Gauss 型求积公式∑==nk k k n x f A f I 0)()(中的系数⎰=bak k dx x l x A )()(ρ,其中)(x l k 为关于求积节点n x x x ,,10的n 次Lagrange 插值基函数,n k ,1,0=. 另求]1,1[-上以1)(≡x ρ为权函数的二次正交多项式)(2x ψ, 并由此构造Gauss型求积公式⎰-+≈111100)()()(x f A x f A dx x f .八、(10分)证明线性二步法])13()3[(4)1(212n n n n n f b f b hbu u b u +++=--++++, 当1-≠b 时为二阶方法, 1-=b 时为三阶方法, 并给出1-=b 时的局部截断误差主项.大连理工大学应用数学系数学与应用数学专业2005级试A 卷答案课 程 名 称: 计算方法 授课院 (系): 应 用 数 学 系 考 试 日 期:2007年11 月 日 试卷共 6 页一 二 三 四 五 六 七 八 九 十 总分标准分 42 8 15 15 15 5 / / / / 100 得 分一、填空(每一空2分,共42分)1.为了减少运算次数,应将表达式.543242161718141311681x x x x x x x x -+---++- 改写为()()()()()()()1816011314181716-+++---+-x x x x x x x x x ;2.给定3个求积节点:00=x ,5.01=x 和12=x ,则用复化梯形公式计算积分dxe x ⎰-12求得的近似值为()15.02141--++e e , 用Simpson 公式求得的近似值为()15.04161--++e e 。

2000-9年大连理工大学高等代数考研试题

2000-9年大连理工大学高等代数考研试题

v ∈ Rn 使得 A = uv ' .
十.(15 分) 若 A 是实对称正定矩阵,则存在实对称正定矩阵 B,使得 A = B2 . 十一.(15 分) 证明:设 f (x) 是整系数多项式,且 f (1) = f (2) = f (3) = p < p 为素数>, 则不存在整数 m ,使 f (m) = 2 p .
大连理工大学 2004 年硕士生入学考试<<高等代数>>试题 说明:填空题的括号在原试题中均是横线 一.填空题(每小题四分)
1.设f (x), g(x)是有理系数多项式,且f (x), g(x)在复数域内无公共根,则f (x), g(x)在有理数域 上的最大公因式是 =()
⎡ 1 1 " 1 2 − n⎤
⎜⎝ 0 0 3⎟⎠
则向量β
=
2α1
+ 3α 2

α
的长度为()
3
二:(24 分)设 R,Q 分别表示实数域和有理数域,f(x),g(x)属于 Q[x].证明:
(1) 若在 R[x]中有 g(x)|f(x),则在 Q[x]中也有 g(x)|f(x)。 (2) f(x)与 g(x)在 Q[x]中互素,当且仅当 f(x)与 g(x)在 R[x]互素。 (3) 设 f(x)是 Q[x]中不可约多项式,则 f(x)的根都是单根。
2,β
3可又向量组α
1,α
2,α
线性表示:
3
β1 = α1 + 4α 2 + α3
β2 = 2α1 + α 2 −α3
β3 = α1 − 3α3
则β1,β 2,β 3线性()
5.设A是n阶矩阵,如果r( A) = n −1,且代数余子式A11 ≠ 0,则齐次线性方程组Ax = 0 得通解是()

大连理工大学矩阵与数值分析上机作业

大连理工大学矩阵与数值分析上机作业
s=s+abs(x(i));
end
case2%2-范数
fori=1:n
s=s+x(i)^2;
end
s=sqrt(s);
caseinf%无穷-范数
s=max(abs(x));
end
计算向量x,y的范数
Test1.m
clearall;
clc;
n1=10;n2=100;n3=1000;
x1=1./[1:n1]';x2=1./[1:n2]';x3=1./[1:n3]';
xlabel('x');ylabel('p(x)');
运行结果:
x=2的邻域:
x =
1.6000 1.8000 2.0000 2.2000 2.4000
相应多项式p值:
p =
1.0e-003 *
-0.2621 -0.0005 0 0.0005 0.2621
p(x)在 [1.95,20.5]上的图像
程序:
[L,U]=LUDe.(A);%LU分解
xLU=U\(L\b)
disp('利用PLU分解方程组的解:');
[P,L,U] =PLUDe.(A);%PLU分解
xPLU=U\(L\(P\b))
%求解A的逆矩阵
disp('A的准确逆矩阵:');
InvA=inv(A)
InvAL=zeros(n);%利用LU分解求A的逆矩阵
0 0 0.5000 -0.2500 -0.1250 -0.0625 -0.0625
0 0 0 0.5000 -0.2500 -0.1250 -0.1250
0 0 0 0 0.5000 -0.2500 -0.2500

大连理工大学矩阵分析matlab上机作业

大连理工大学矩阵分析matlab上机作业
x=zeros(n,1); %为列向量 x 预分配存储空间 y=1:n; %定义行向量 y y=y'; %把行向量 y 改成列向量 for i=1:n
x(i)=1/i; %按要求给向量 x 赋值,其值递减 end normx1=norm(x,1); %求解向量 x 的 1 范数 normx1 normx2=norm(x,2); %求解向量 x 的 2 范数 normx2 normxinf=norm(x,inf); %求解向量 x 的无穷范数 normxinf normy1=norm(y,1); %求解向量 y 的 1 范数 normy1 normy2=norm(y,2); %求解向量 y 的 2 范数 normy2 normyinf=norm(y,inf); %求解向量 y 的无穷范数 normyinf z1=[normx1,normx2,normxinf]; z2=[normy1,normy2,normyinf]; end
for i=2:n
for j=i:n U(i,j)=A(i,j)-L(i,1:i-1)*U(1:i-1,j);

%Doolittle 分解计算上三角矩阵的公
L(j,i)=(A(j,i)-L(j,1:i-1)*U(1:i-1,i))/U(i,i); %Doolittle 分解计算下三角矩 阵的公式
end
1 1 1 ������ x = (1, 2 , 3 , … , ������) ,
������ = (1,2, … , ������)������.
对n = 10,100,1000甚至更大的n计算其范数,你会发现什么结果?你能否修改
你的程序使得计算结果相对精确呢?
1.1 源代码
function [z1,z2]=norm_vector(n) %向量 z1 的值为向量 x 的是三种范数,向量 z2 的值为向量 y 的三 种范数,n 为输入参数

大连理工大学矩阵与数值分析大作业题目

大连理工大学矩阵与数值分析大作业题目

2014级工科硕士研究生《矩阵与数值分析》课程数值实验题目1. 方程在x=3.0附近有根,试写出其三种不同的等价形式以构成两种不同的迭代格式,再用这两种迭代求根,并绘制误差下降曲线,观察这两种迭代是否收敛及收敛的快慢2. 用复化梯形公式、复化辛普森公式、龙贝格公式求下列定积分,要求绝对误差为,并将计算结果与精确解进行比较:(1) (2)3. 使用带选主元的分解法求解线性方程组,其中,,当时.对于的情况分别求解.精确解为.对得到的结果与精确解的差异进行解释.4. 用4阶Runge-kutta 法求解微分方程t t t te e t u u u u u 222101)(,101)0(,2---+==-=' (1) 令1.0=h ,使用上述程序执行20步,然后令05.0=h ,使用上述程序执行40步(2) 比较两个近似解与精确解(3) 当h 减半时,(1)中的最终全局误差是否和预期相符?(4) 在同一坐标系上画出两个近似解与精确解.(提示输出矩阵R 包含近似解的x 和y 坐标,用命令plot(R(:,1),R(:,2))画出相应图形.)5. 设为阶的三对角方阵,是一个阶的对称正定矩阵其中为阶单位矩阵。

设为线性方程组的真解,右边的向量由这个真解给出。

(1) 用Cholesky 分解法求解该方程.(2) 用Jacobi 迭代法和Gauss-Seidel 迭代法求解该方程组,误差设为. 其中取值为4,5,6.6. 设考虑空间的一个等距划分,分点为设为插值于这些等分点上的Lagrange插值多项式。

(1)选择不断增大的分点数目画出原函数与插值多项式在的图像,并比较分析实验结果。

(2)选择重复上述的实验看其结果如何实验须知:(1)所有的数值实验的题目要求用C语言或Matlab编程;(2)实验报告内容应包括问题、程序、计算结果及分析等;(3)考试前提交实验报告;(4)本次实验成绩将占总成绩的10%。

(5)报告上要注明:所在教学班号、任课老师的姓名;报告人所在院系、学号。

(完整word版)数值分析考试试卷和答案(word文档良心出品)

(完整word版)数值分析考试试卷和答案(word文档良心出品)

线封密三峡大学试卷班级姓名学号2011年春季学期《数值分析》课程考试试卷( A 卷)答案及评分标准注意:1、本试卷共3页;2、考试时间:120 分钟;3、姓名、学号必须写在指定地方;一、(16分)填空题1. 已知1125A ⎡⎤=⎢⎥⎣⎦,则1A 6= (1分),∞A 7= . (1分)2.迭代过程),1,0)((1 ==+n x x n n ϕ收敛的一个充分条件是迭代函数)(x ϕ满足1|)(|<'x ϕ. (2分)3. 设),,2,1,0(,,53)(2==+=k kh x x x f k 则差商0],,,[321=+++n n n n x x x x f .(2分)4. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是.2,1,0,)(1)(1='---=+k x f x f x x x k k k k k (2分)5. 用二分法求方程01)(3=-+=x x x f 在区间]1,0[内的根,迭代进行二步后根所在区间为]75.0,5.0[.(2分)6.为尽量避免有效数字的严重损失,当1>>x 时,应将表达式x x -+1改写为xx ++11以保证计算结果比较精确.(2分)7. 将2111A ⎛⎫= ⎪⎝⎭作Doolittle 分解(即LU 分解),则100.51L ⎛⎫= ⎪⎝⎭(2分),2100.5U ⎛⎫= ⎪⎝⎭(2分)二、(10分)用最小二乘法解下列超定线性方程组:⎪⎩⎪⎨⎧=-=+=+2724212121x x x x x x 解:23222121,e e e x x ++=)(ϕ221221221)2()72()4(--+-++-+=x x x x x x由 ⎪⎪⎩⎪⎪⎨⎧=-+=∂∂=-+=∂∂0)1662(20)1323(2212211x x x x x x ϕϕ(8分)得法方程组 ⎩⎨⎧=+=+166213232121x x x x 7231=⇒x , 7112=x所以最小二乘解为: 7231=x 7112=x . (10分)三、(10分)已知)(x f 的函数值如下表25.15.001)(15.005.01---x f x用复合梯形公式和复合Simpson 公式求dx x f ⎰-11)(的近似值.解 用复合梯形公式,小区间数4=n ,步长5.0)]1(1[41=--⨯=h )]1())5.0()0()5.0((2)1([24f f f f f hT +++-+-=.线封密三峡大学试卷班级姓名学号25.1]2)5.15.00(21[25.0=++++-=(5分) 用复合Simpson. 小区间数2=n ,步长1)]1(1[21=--⨯=h)]1())5.0()5.0((4)0(2)1([62f f f f f hS ++-+⨯+-=33.168]2)5.10(45.021[61≈=+++⨯+-= (10分)四、(12分)初值问题 ⎩⎨⎧=>+='0)0(0,y x b ax y有精确解 bx ax x y +=221)(, 试证明: 用Euler 法以h 为步长所得近似解n y 的整体截断误差为n n n n ahx y x y 21)(=-=ε证: Euler 公式为:),(111---+=n n n n y x hf y y代入b ax y x f +=),(得:)(11b ax h y y n n n ++=-- 由0)0(0==y y 得:bh b ax h y y =++=)(001; 11122)(ahx bh b ax h y y +=++= )(3)(21223x x ah bh b ax h y y ++=++=……)()(12111---++++=++=n n n n x x x ah nbh b ax h y y (10分)因nh x n =,于是 )]1(21[2-++++=n ah bx y n n 2)1(2nn ah bx n -+==n n n bx x x a+-12∴n n n y x y -=)(ε)2(2112n n n n n bx x x abx ax +-+=-=n n n x x x a )(21--=n hx a 2 =221anh (12分)五、(10分) 取节点1,010==x x ,写出x e x y -=)(的一次插值多项式),(1x L 并估计插值误差.解: 建立Lagrange 公式为()=x L 110100101y x x x x y x x x x --+--=10101101-⨯--+⨯--=e x x x e x 11-+-=.(8分)())1)(0(!2)()()(11--''=-=x x y x L x y x R ξ )10(<<ξ ()811)0(max 2110≤--≤≤≤x x x(10分)六、(10分) 在区间]3,2[上利用压缩映像原理验证迭代格式,1,0,4ln 1==+k x x k k 的敛散性.解 : 在]3,2[上, 由迭代格式 ,1,0,4ln 1==+k x x k k , 知=)(x ϕx 4ln .因∈x ]3,2[时,]3,2[]12ln ,8[ln )]3(),2([)(⊂=∈ϕϕϕx (5分) 又1|1||)(|<='xx ϕ,故由压缩映像原理知对任意]3,2[0∈x 有收敛的迭代公式),1,0(,4ln 1 ==+k x x k k (10分)线封密三峡大学试卷班级姓名学号七、(10分)试构造方程组⎩⎨⎧=+=+423322121x x x x 收敛的Jacobi 迭代格式和Seidel Gauss -迭代格式,并说明其收敛的理由. 解:将原方程组调整次序如下:⎩⎨⎧=+=+324232121x x x x 调整次序后的方程组为主对角线严格占优方程组,故可保证建立的J 迭代格式和GS 迭代格式一定收敛.收敛的J 迭代格式为:⎪⎪⎩⎪⎪⎨⎧-=-=++)3(21)24(31)(1)1(2)(2)1(1k k k k x x x x .,1,0 =k (5分)收敛的GS 迭代格式为:⎪⎪⎩⎪⎪⎨⎧-=-=+++)3(21)24(31)1(1)1(2)(2)1(1k k k k x x x x .,1,0 =k (10分)八、(12分)已知43,21,41210===x x x 1)推导以这3个点作为求积节点在[0,1]上的插值型求积公式;2)指明求积公式所具有的代数精度.解:1)过这3个点的插值多项式)())(())(()())(())(()(121012002010212x f x x x x x x x x x f x x x x x x x x x p ----+----=+)())(())((2021201x f x x x x x x x x ----⎰⎰=∑=≈∴)()()(221010k k k x f A dx x p dx x f ,其中: ⎰⎰=----=----=32)4341)(2141()43)(21())(())((10201021100dx x x dx x x x x x x x x A ⎰⎰-=----=----=31)4321)(4121()43)(41())(())((10210120101dx x x dx x x x x x x x x A ⎰⎰=----=----=322143)(4143()21)(41())(())((10120210102dx x x dx x x x x x x x x A ∴所求的插值型求积公式为:⎰+-≈)]43(2)21()41(2[31)(10f f f dx x f (10分) 2)上述求积公式是由二次插值函数积分而来的,故至少具有2次代数精度,再将43,)(x x x f =代入上述求积公式,有:⎰+-==]43(2)21()41(2[3141333310dx x ⎰+-≠=])43(2)21(41(2[3151444410dx x 故上述求积公式具有3次代数精度. (12分)九、(10分)学完《数值分析》这门课程后,请你简述一下“插值、逼近、拟合”三者的区别和联系.。

大连理工大学《矩阵与数值分析》学习指导与课后参考答案第三章、逐次逼近法

大连理工大学《矩阵与数值分析》学习指导与课后参考答案第三章、逐次逼近法

第三章 逐次逼近法1.1内容提要1、一元迭代法x n+1=φ(x n )收敛条件为:1)映内性x ∈[a,b],φ(x) ∈[a,b] 2)压缩性∣φ(x) -φ(y)∣≤L ∣x-y ∣其中L <1,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。

由微分中值定理,如果∣φ’∣≤L <1,显然它一定满足压缩性条件。

2、多元迭代法x n+1=φ(x n )收敛条件为:1)映内性x n ∈Ω,φ(x n ) ∈Ω 2)压缩性ρ(▽φ)<1,其中▽φ为x n 处的梯度矩阵,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。

3、当φ(x )= Bx+f 时,收敛条件为,ρ(B )<1,此时x n+1= Bx n +f ,在不断的迭代中,就可以得到线性方程组的解。

4、线性方程组的迭代解法,先作矩阵变换 U L D A --=Jacobi 迭代公式的矩阵形式 f Bx b D x U L D x n n n +=++=--+111)(Gauss-Seidel 迭代公式的矩阵形式 f Bx b L D Ux L D x n n n +=-+-=--+111)()(超松弛迭代法公式的矩阵形式f Bx b L D x U D L D x k k k +=-++--=--+ωωωωω111)(])1[()(三种迭代方法当1)(<B ρ时都收敛。

5、线性方程组的迭代解法,如果A 严格对角占优,则Jacob 法和Gauss-Seidel 法都收敛。

6、线性方程组的迭代解法,如果A 不可约对角占优,则Gauss-Seidel 法收敛。

7、Newton 迭代法,单根为二阶收敛 2211'''21lim)(2)(lim---∞→+∞→--=-==--k k k k k k k k x x x x f f c x x ξξαα8、Newton 法迭代时,遇到重根,迭代变成线性收敛,如果知道重数m , )()('1k k k k x f x f m x x -=+仍为二阶收敛 9、弦割法)()())((111--+---=k k k k k k k x f x f x x x f x x 的收敛阶为1.618,分半法的收敛速度为(b-a )/2n-110、Aitken 加速公式11211112)(),(),(+----+-+--+---+---===k k k k k k k k k k k x x x x x x x x x x x ϕϕ1.2 典型例题分析1、证明如果A 严格对角占优,则Jacob 法和Gauss-Seidel 法都收敛。

大连理工大学-数学分析2009解答

大连理工大学-数学分析2009解答

大连理工大学2009年数学分析考试试题 数学分析试题解答 一、 计算题 1、 求极限:1222 (i),lim nn n n a a na a an→∞→∞+++=其中解:1212222...(1)(1)limlimlim()(1)212nn n n n n a a na n a n a a Stolz nn nn +→∞→∞→∞+++++===+-+利用公式2、求极限:21lim (1)xxx ex-→∞+解:2222221(1)1lim (1)lim ()1111(1)(1)(ln(1))1limlim111111(())21lim 121(1)12lim (1)lim ()lim ()xxxxx x xxx x x xxxxx x x x xex e ex xxx xxo exxx x e xee xx exee -→∞→∞→∞→∞→∞-→∞→∞→∞++=+-++-+=--+-+==--+-∴+===3、证明区间(0,1)和(0,+∞)具有相同的势。

证明:构造一一对应y=arctanx 。

4、计算积分21Ddxdyy x+⎰⎰,其中D 是x=0,y=1,y=x 围成的区域解:1120221101011ln()|ln(1)ln [(1)ln(1)(1)ln ]|2ln 2y yDdxdy dxdy x y dyy xy xy dy ydyy y y y y y ==+++=+-=++-+-+=⎰⎰⎰⎰⎰⎰⎰5、计算第二类曲线积分:22C ydx xdyI x y--=+⎰,22:21C x y +=方向为逆时针。

解:222222222tan 2222cos ,[0,2)cos 23cos 2cos 2213(2)(1)12arctan 1(2)(1)3111Cx x y ydx xdyI d x yxx x x d x dxxx x xππθθθπθθθθθθ+∞+∞=-∞-∞=⎧⎪∈⎨=⎪⎩--=−−−→=-+++-+-++−−−−−→-=--++++=-⎰⎰⎰⎰换元万能公式代换22661x dx dxπ+∞+∞-∞-∞+=-++⎛+ ⎝⎰6、设a>0,b>0,证明:111b ba ab b ++⎛⎫⎛⎫≥ ⎪⎪+⎝⎭⎝⎭。

数值分析试题及答案

数值分析试题及答案

数值分析试题及答案一、单项选择题(每题3分,共30分)1. 线性代数中,矩阵A的逆矩阵记作()。

A. A^TB. A^-1C. A^+D. A*答案:B2. 插值法中,拉格朗日插值多项式的基函数是()。

A. 多项式B. 指数函数C. 正弦函数D. 余弦函数答案:A3. 在数值积分中,梯形规则的误差是()阶的。

A. O(h^2)B. O(h^3)C. O(h)D. O(1/h)答案:A4. 求解线性方程组时,高斯消元法的基本操作不包括()。

A. 行交换B. 行乘以非零常数C. 行加行D. 行除以非零常数答案:D5. 非线性方程f(x)=0的根的迭代法中,收敛的必要条件是()。

A. f'(x)≠0B. f'(x)=0C. |f'(x)|<1D. |f'(x)|>1答案:C6. 利用牛顿法求解非线性方程的根时,需要计算()。

A. 函数值B. 函数值和导数值C. 函数值和二阶导数值D. 函数值、一阶导数值和二阶导数值答案:B7. 矩阵的特征值和特征向量是()问题中的重要概念。

A. 线性方程组B. 特征值问题C. 线性规划D. 非线性方程组答案:B8. 在数值分析中,条件数是衡量矩阵()的量。

A. 稳定性B. 可逆性C. 正交性D. 稀疏性答案:A9. 利用龙格现象说明,高阶插值多项式在区间端点附近可能产生()。

A. 振荡B. 收敛C. 稳定D. 单调答案:A10. 雅可比迭代法和高斯-塞德尔迭代法都是求解线性方程组的()方法。

A. 直接B. 迭代C. 精确D. 近似答案:B二、填空题(每题4分,共20分)11. 线性代数中,矩阵A的行列式记作________。

答案:det(A) 或 |A|12. 插值法中,牛顿插值多项式的基函数是________。

答案:差商13. 在数值积分中,辛普森规则的误差是________阶的。

答案:O(h^4)14. 求解线性方程组时,迭代法的基本思想是从一个初始近似解出发,通过不断________来逼近精确解。

大连理工大学矩阵与数值分析上机作业13388

大连理工大学矩阵与数值分析上机作业13388

大连理工大学矩阵与数值分析上机作业课程名称:矩阵与数值分析研究生姓名:交作业日时间:2016 年12 月20日1.1程序:Clear all;n=input('请输入向量的长度n:')for i=1:n;v(i)=1/i;endY1=norm(v,1)Y2=norm(v,2)Y3=norm(v,inf)1.2结果n=10 Y1 =2.9290Y2 =1.2449Y3 =1n=100 Y1 =5.1874Y2 =1.2787Y3 =1n=1000 Y1 =7.4855Y2 =1.2822Y3 =1N=10000 Y1 =9.7876Y2 =1.2825Y3 =11.3 分析一范数逐渐递增,随着n的增加,范数的增加速度减小;二范数随着n的增加,逐渐趋于定值,无群范数都是1.2.1程序clear all;x(1)=-10^-15;dx=10^-18;L=2*10^3;for i=1:Ly1(i)=log(1+x(i))/x(i); d=1+x(i);if d == 1y2(i)=1;elsey2(i)=log(d)/(d-1);endx(i+1)=x(i)+dx;endx=x(1:length(x)-1);plot(x,y1,'r');hold onplot(x,y2);2.2 结果2.3 分析红色的曲线代表未考虑题中算法时的情况,如果考虑题中的算法则数值大小始终为1,这主要是由于大数加小数的原因。

第3题3.1 程序clear all;A=[1 -18 144 -672 2016 -4032 5376 -4608 2304 -512];x=1.95:0.005:2.05;for i=1:length(x);y1(i)=f(A,x(i));y2(i)=(x(i)-2)^9;endfigure(3);plot(x,y1);hold on;plot(x,y2,'r');F.m文件function y=f(A,x) y=A(1);for i=2:length(A); y=x*y+A(i); end;3.2 结果第4题4.1 程序clear all;n=input('请输入向量的长度n:')A=2*eye(n)-tril(ones(n,n),0);for i=1:nA(i,n)=1;endn=length(A);U=A;e=eye(n);for i=1:n-1[max_data,max_index]=max(abs(U(i:n,i))); e0=eye(n);max_index=max_index+i-1;U=e0*U;e1=eye(n);for j=i+1:ne1(j,i)=-U(j,i)/U(i,i);endU=e1*U;P{i}=e0;%把变换矩阵存到P中L{i}=e1;e=e1*e0*e;endfor k=1:n-2Ldot{k}=L{k};for i=k+1:n-1Ldot{k}=P{i}*Ldot{k}*P{i};endendLdot{n-1}=L{n-1};LL=eye(n);PP=eye(n);for i=1:n-1PP=P{i}*PP;LL=Ldot{i}*LL;endb=ones(n,2);b=e*b; %解方程x=zeros(n,1);x(n)=b(n)/U(n,n);for i=n-1:-1:1x(i)=(b(i)-U(i,:)*x)/U(i,i);endX=U^-1*e^-1*eye(n);%计算逆矩阵AN=X';result2{n-4,1}=AN;result1{n-4,1}=x;fprintf('%d:\n',n)fprintf('%d ',AN);4.2 结果n=51.0625 -0.875 -0.75 -0.5 -0.06250.0625 1.125 -0.75 -0.5 -0.06250.0625 0.125 1.25 -0.5 -0.06250.0625 0.125 0.25 1.5 -0.0625-0.0625 -0.125 -0.25 -0.5 0.0625n=101.0625 -0.875 -0.75 -0.5 -0.0625 1.0625 -0.875 -0.75 -0.5 -0.0625 0.0625 1.125 -0.75 -0.5 -0.0625 0.0625 1.125 -0.75 -0.5 -0.0625 0.0625 0.125 1.25 -0.5 -0.0625 0.0625 0.125 1.25 -0.5 -0.0625 0.0625 0.125 0.25 1.5 -0.0625 0.0625 0.125 0.25 1.5 -0.0625 -0.0625 -0.125 -0.25 -0.5 0.0625 -0.0625 -0.125 -0.25 -0.5 0.0625 1.0625 -0.875 -0.75 -0.5 -0.0625 1.0625 -0.875 -0.75 -0.5 -0.0625 0.0625 1.125 -0.75 -0.5 -0.0625 0.0625 1.125 -0.75 -0.5 -0.0625 0.0625 0.125 1.25 -0.5 -0.0625 0.0625 0.125 1.25 -0.5 -0.0625 0.0625 0.125 0.25 1.5 -0.0625 0.0625 0.125 0.25 1.5 -0.0625 -0.0625 -0.125 -0.25 -0.5 0.0625 -0.0625 -0.125 -0.25 -0.5 0.0625同样的方法可以算出n=20,n=30时的结果,这里就不罗列了。

大连理工数学分析试题及解答

大连理工数学分析试题及解答

大连理工数学分析试题及解答大连理工大学硕士生入学考试数学分析试题一. 从以下的1到8题中选答6题1. 证明:2()f x x =在区间[0,]M 内一致连续(M 为任意正数),但是在[0,)+∞不一致连续2. 证明:若()f x 在[,]a b 内连续,那么()f x 在[,]a b 内Riemann 可积.3. 证明:若1α>,那么广义积分1sin x dx α+∞收敛4. 证明:若()f x ,()g x 为区间(,)a b 上的连续函数,对任意的(,)(,)a b αβ?有:()()f x dx g x dx ββαα=??,那么, ()()f x g x ≡于(,)a b5. 证明:若1nn a∞=∑收敛,那么1nxn n a e∞-=∑在[0,)+∞一致收敛6. 已知:2,0()0,0x e x f x x -?≠?=?=??,求"(0)f7. 已知:()()1(,)()22x atx at x at x at u x t d aφφψαα+-++-=+. 其中, ψ和φ分别是可以求导一次和求导两次的已知函数,计算22222(,)(,)u x t u x t a t x ??-??8. 计算,半径为R 的球的表面积二. 从9到14题中选取6题9.已知: lim '()0x f x →∞=,求证: ()lim0x f x x→∞=10.证明: ()af x dx +∞收敛,且lim ()x f x λ→+∞=,那么0λ=11.计算曲面积分: 333SI x dydz y dzdx z dxdy =++??, 其中S 为旋转椭球面2222221x y z a b c++=的外侧12.设()[0,1]f x C ∈,(0)0f =,(1)1f =,0()1f x ≤<. 求证: ()()n n S x f x =对于任意小于1的正数δ,在区间(0,1]δ-一致收敛,但是不在(0,1)一致收敛13.设()[0,1]f x C ∈,(0)0f =,(1)1f =,0()1f x ≤<. 求证: 1lim ()0n n f x dx →∞=?14.证明:若()[,]n u x C a b ∈,1,2,...,...n =且1()n n u b ∞=∑发散,那么1()n n u x ∞=∑不在[,)a b 一致收敛大连理工大学2001年硕士生入学考试数学分析试题解答一.1. 证利用定义证明(1) 对于0ε?>,21M εδ?=+,12||x x δ?-<,那么12121212|()()||()()|2||2f x f x x x x x M x x M δε-=-+<-<<(2) 任取1ε=,0δ?>,1211,22x x δδδ==+, 1212121|()()||()()|1f x f x x x x x δδ-=-+>=,推出矛盾,从而命题得证■2. 证利用一致连续的定义和Riemann 可积的定义来做因为函数在闭区间内连续,所以一致连续. 根据一致连续的定义对0ε?>,δ?,12||x x δ?-<,12|()()|f x f x ε-<考虑可积的定义,对于一个[,]a b 分割112:...n a a a a b ?=<<<=,11max ||i i i na a λ+≤<=-下面证明:振幅函数121110,[,]1()limmax {()}()i i n i i x x a a i w x f x a a λ+-+→∈==-∑=0当λδ<时,12111110,[,]110()limmax {()}()()i i n n i i i i x x a a i i w x f x a a a a b λεε+--++→∈==≤=-≤-=∑∑.根据夹逼定理,不难得到()0w x =. 从而,命题得证■3. 证利用莱布尼兹交错级数:假设;n a n π=,1sin nn a n a s x dx α-=?考虑:111|||||sin ||sin |n nnn a a n n a a s s x dx x dx αα+-+-=-?1111[|sin ||sin |]n n n n x x dx xx dx ππππααππα--+-=+??1111[|sin |(2)|sin |]n n n n xx dx n x x dx ππππααππαπ--++=--??1111[(2)]|sin |0n n x n x x dx ππααπαπ--+=--<?11lim |||sin |||lim ||0nnn n a a n n a a n n s x dx dx n n s αααπππ--→∞→∞=≤=--?=??如此,不难看出1sin x dx α+∞是一个莱布尼兹交错级数,从而命题得证■4. 证不妨设:2a bc +=()()x c F x f t dt =?,那么()()F x G x =于(,)x a b ∈因为()f x ()g x 都是(,)x a b ∈上的连续函数,所以()'()()()f x F x G xg x ===■5. 证利用A-D 判别法做,也可以通过Abel 求和公式出发推导1nxn n a e∞-=∑中nxn b e-=,现在,根据原题:1n n a∞=∑收敛,1nxnb e -=≤一致有界所以,根据Abel 判别法,知该函数项级数在定义域一致收敛. ■6. 解题目有问题,在零点不连续■7. 解不断利用链式求导法则()()1(,)()22x atx at x at x at u x t d aφφψαα+-++-=+(,)()()()()()()()()()()22'()'()'()'()22u x t xx at x at x at x at x at x at x at x at x at x x at x x x ax at x at x at x at aφφψψφφψψ+?+?-?-?+?-++--?+??-=+++-+--=+22'()'()()()(,)()()()()22"()"()'()'()22x at x at x at x at u x t x at x at x at x at x ax at x at x at x at aφφψψφφψψ?+?-?+?-+-+?-?+?-=+++-+--=+同理:(,)()()()()()()()()()()22'()'()'()'()22u x t tx at x at x at x at x at x at x at x at x at t x at t t t aa x at a x at x at x at φφψψφφψψ+?+?-?-?+?-++--?+??-=++--++-=+222'()'()()()(,)()()()()"()"()'()'()22x at x at x at x at aa u x t x at x at x at x at x x at x at x at x at a aφφψψφφψψ?+?-?+?--++?-?+?-=+++-+--=+22222(,)(,)0u x t u x t a t x ??-=??■8. 解方法很多,此处介绍一种比较简单的假设:()V R 为半径R 为的球的体积2234()()3R R V R R x dx R ππ-=-=?假设: ()S R 为半径R 为的球的表面积20()()()'()4RV R S x dx S R V R R π=?==?■二9. 证L ’Hosptial 法则因为x →+∞,()'()lim lim lim '()0'x x x f x f x f x x x →∞→∞→∞===■10. 证反证法如果命题不成立,即0λ≠,那么,根据极限的定义,G ?,当x G >的时候, |()|||2f x λ>()Gf x dx +∞→∞?和收敛矛盾,从而命题得证■11. 解利用Gauss 定理加换元3332223()VSI x dydz y dzdx z dxdy x y z dxdydz =++=++换元sin cos sin sin ,[0,1],[0,2),[0,]cos x ar y br r z cr ?θ?θθπ?π?=??=∈∈∈??=?4222222223sin (sin sin sin cos cos )VI abc r a b c drd d ??θ?θ?θ?=++22322322200033(sin sin sin cos )cos sin 55abc abc a b d d c d πππ?θ?θ?θ=++332232203646()sin ()5555abc abc abc abc a b d a b πππ??=++=++?■12. 证首先由于在闭区间内连续,所以函数在闭区间内一致连续(1)(0,1]x δ?∈-,根据确界存在定理,存在上确界,且上确界不等于1,否则和题意矛盾不妨设:(0,1]sup ()1x f x m δ∈-=<根据定义,对于0ε?>,ln ln N mε=,当n N >,|()||()|n n n S x f x m ε=≤< 从而知一致收敛于0(2)首先,根据前半题,显然()n S x 于(0,1)x ?∈收敛于0由于(1)1f =,且函数一致收敛,存在一组数列:12...a a <<,1()1i fa n=- 如此,考虑11lim ()lim ()lim(1)0nnn n n n n n S a f a ne→∞→∞→∞==-=≠,从而不是一致收敛的. ■13. 证利用前一小题的结论因为()nf x 内闭一致收敛,对于0ε?>,2εδ?=,当n 足够大的时候:10()2n f x dx δε-<又1111|()|||2n f x dx dx δδε--<=所以,1111()()()n n n f x dx f x dx f x dx δδε--=+<?从而命题得证. ■14. 证反证法:假设命题不成立,那么1()n n u x ∞=∑在[,)a b 一致收敛.即0ε?>,N ?,,m n N ?>,(,)x a b ?∈,|()|m n nu x ε<∑因为|()|lim |()|m mn n x bnnu b u b ε→=≤∑∑,否则与()[,]n u x C a b ∈矛盾而1|()|n n u b ∞=∑发散,所以|()|n n Nu b ∞=∑发散,与|()|lim |()|m m n n x bnnu b u b ε→=≤∑∑矛盾从而命题得证. ■。

大连理工大学矩阵与数值分析MATLAB上机实验

大连理工大学矩阵与数值分析MATLAB上机实验

二、解线性方程组 1.分别 Jacobi 迭代法和 Gauss-Seidel 迭代法求解线性方程组
3 1 0 0 x1 1 1 3 1 0 x2 0 , 0 1 2 1 x3 0 0 0 1 3 x4 0
Gauss 列主元消去法程序:
clc; clear; format long a=[2,4,3,1;8,2,0,0;5,0,4,0;9,0,0,5]; %系数矩阵 b=[12;6;23;16]; [n,m]=size(a); nb=length(b); det=1; for k=1:n-1 amax=0; for i=k:n if abs(a(i,k))>amax amax=abs(a(i,k)); r=i; end end if amax<1e-10 return; end if r>k for j=k:n z=a(k,j); a(k,j)=a(r,j); a(r,j)=z; end z=b(k);
从小到大求和程序计算结果:
N 100 10000 1000000 从小到大求和程序得 到的 SN 0.497512437810945 0.499975001249937 0.499999750000134 真实值������������ = ������ 2������ + 1 0.497512437810945 0.499975001249937 0.499999750000125 计算值有效位数 15 15 13
8
2
1 dx x
复化梯形公式程序
clc; clear; format long syms t m=int(1/t,2,8); %真实值 a=2; b=8; n=300; h=(b-a)/n; sum=0; f=inline('1/x'); for i=1:n-1 sum=sum+f(a+i.*h); end T=h/2*(f(a)+2*sum+f(b))

大连理工大学矩阵与数值分析上机作业13388

大连理工大学矩阵与数值分析上机作业13388

共享知识分享快乐大连理工大学矩阵与数值分析上机作业课程名称:矩阵与数值分析研究生姓名:12 交作业日时间:日20 月年2016卑微如蝼蚁、坚强似大象.共享知识分享快乐第1题1.1程序:Clear ;all n=input('请输入向量的长度n:') for i=1:n;v(i)=1/i;endY1=norm(v,1)Y2=norm(v,2)Y3=norm(v,inf)1.2结果n=10 Y1 =2.9290Y2 =1.2449Y3 =1n=100 Y1 =5.1874Y2 =1.2787Y3 =1n=1000 Y1 =7.4855Y2 =1.2822Y3 =1N=10000 Y1 =9.7876Y2 =1.2825Y3 =11.3 分析一范数逐渐递增,随着n的增加,范数的增加速度减小;二范数随着n的增加,逐渐趋于定值,无群范数都是1.卑微如蝼蚁、坚强似大象.共享知识分享快乐第2题2.1程序;clear all x(1)=-10^-15;dx=10^-18;L=2*10^3; i=1:L fory1(i)=log(1+x(i))/x(i); d=1+x(i); d == 1ify2(i)=1;elsey2(i)=log(d)/(d-1);endx(i+1)=x(i)+dx;end x=x(1:length(x)-1););'r'plot(x,y1,on holdplot(x,y2);卑微如蝼蚁、坚强似大象.共享知识分享快乐2.2 结果2.3 分析红色的曲线代表未考虑题中算法时的情况,如果考虑题中的算法则数值大小始终为1,这主要是由于大数加小数的原因。

第3题3.1 程序;clear all A=[1 -18 144 -672 2016 -4032 5376 -4608 2304 -512];x=1.95:0.005:2.05; i=1:length(x);for y1(i)=f(A,x(i)); y2(i)=(x(i)-2)^9;end figure(3);plot(x,y1);;on hold卑微如蝼蚁、坚强似大象.共享知识分享快乐);'r'plot(x,y2,F.m文件y=f(A,x)function y=A(1); i=2:length(A);for y=x*y+A(i);;end3.2 结果第4题卑微如蝼蚁、坚强似大象.共享知识分享快乐4.1 程序;clear all n=input('请输入向量的长度n:')A=2*eye(n)-tril(ones(n,n),0); i=1:n for A(i,n)=1;end n=length(A);U=A; e=eye(n);for i=1:n-1[max_data,max_index]=max(abs(U(i:n,i))); e0=eye(n);max_index=max_index+i-1; U=e0*U; e1=eye(n); j=i+1:n fore1(j,i)=-U(j,i)/U(i,i);endU=e1*U;中把变换矩阵存到P P{i}=e0;% L{i}=e1; e=e1*e0*e;endk=1:n-2for Ldot{k}=L{k}; i=k+1:n-1forLdot{k}=P{i}*Ldot{k}*P{i};endend Ldot{n-1}=L{n-1};LL=eye(n);PP=eye(n); i=1:n-1for PP=P{i}*PP;LL=Ldot{i}*LL;endb=ones(n,2);解方程 %b=e*b;x=zeros(n,1);x(n)=b(n)/U(n,n); i=n-1:-1:1for卑微如蝼蚁、坚强似大象.共享知识分享快乐x(i)=(b(i)-U(i,:)*x)/U(i,i);end计算逆矩阵%X=U^-1*e^-1*eye(n);AN=X'; result2{n-4,1}=AN;result1{n-4,1}=x;,n)'%d:\n'fprintf(fprintf('%d ',AN);4.2 结果n=51.0625 -0.875 -0.75 -0.5 -0.0625-0.0625 0.0625 -0.75 1.125 -0.5-0.0625 0.125 0.0625 1.25 -0.5-0.0625 0.1250.25 0.06251.50.0625-0.5-0.25-0.0625 -0.125n=101.0625 -0.875 -0.75 -0.5 -0.0625 1.0625 -0.875 -0.75 -0.5 -0.0625 -0.0625 1.125 0.0625 -0.75 -0.5 -0.5 0.0625 1.125 -0.75 -0.0625 -0.0625 0.0625 0.125 1.25 1.25 -0.0625 -0.5 0.0625 0.125 -0.5-0.0625 0.250.250.0625 0.1251.5 1.5 -0.0625 0.1250.06250.0625 -0.0625 -0.125 -0.25 0.0625 -0.5 -0.0625 -0.125 -0.25 -0.5 -0.0625 -0.75 1.0625 -0.5 -0.0625 -0.875 -0.5 -0.75 1.0625 -0.875 -0.0625 -0.5 0.0625 1.125 -0.5 0.0625 1.125 -0.75 -0.0625 -0.75 1.25 0.125 0.0625 -0.0625 -0.0625 -0.5 -0.5 0.0625 0.125 1.250.25-0.0625 -0.0625 1.50.1250.0625 0.0625 0.250.1251.5-0.0625 -0.125 -0.25 0.0625-0.5 0.0625 -0.0625 -0.125 -0.25-0.5同样的方法可以算出n=20,n=30时的结果,这里就不罗列了。

大连理工大学程名松矩阵与数值分析计算方法-第3章

大连理工大学程名松矩阵与数值分析计算方法-第3章

1 (1 − ρ ( A ) ) > 0 一定存在 2 一种相容的矩阵范数 ⋅ ,使得 A ≤ ρ ( A) + ε 。
充分性 根据定理2.8,对于 ε =
又根据相容矩阵范数的性质, 再注意到上述关系式有 1 ρ ( A ) + ε = (1 + ρ ( A ) ) < 1 2 那么
A k ≤ A ≤ ( ρ ( A) + ε ) ≤ q k < 1
k→∞
k→∞
1⎞ lim ⎛ 1 + ⎟ k →∞ ⎜ ⎝ k⎠
k
lim sin k k →∞ k lim
lim
k →∞
k →∞
e− k
k
k
⎞ ⎛e 0 ⎞ ⎟ ⎜1 0 ⎟= A ⎟ =⎜ ⎟ ⎟ ⎜1 1 ⎟ ⎠ ⎠ ⎝
由矩阵序列极限的定义可以看出,矩阵序列收敛的性质和数 列收敛性质相似。 由定义可见,C m × n 中的矩阵序列的收敛相当于mn个数列同时 收敛。 因此可以用初等分析的方法来研究它。
∞ ∞
并且 则
lim Ak = A , k →∞
lim Bk = B
k →∞
lim A k B k = AB
k →∞
证 由
Ak Bk − AB = Ak Bk − Ak B + Ak B − AB
≤ B ⋅ Ak − A + Ak ⋅ Bk − B
由定理1和推论可知,结论成立。
性质3
n n lim Ak = A 并且 设 {Ak }k=1∈C × 中的矩阵序列,

⎛ 0.1 0.7⎞ 。 由于 A ∞ = 0.9 < 1 ,故 计算 ∑ A ,其中 A = ⎜ ⎟ k =0 ⎝ 0.3 0.6⎠ ∞ k ρ ( A ) < 1,从而 ∑ A 收敛,且有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大 连 理 工 大 学
课 程 名 称: 矩阵与数值分析 试 卷: 统一 考试类型 闭卷 授课院 (系): 数 学 系 考试日期:2010年1月12日 试卷共 8页
一、 填空与判断题(⨯或√),每空 2 分,共50分
(1) 已知2009.12a =,2010.01b =分别是按四舍五入原则得到的1x 和2x 近似
值,那么,1x a -≤ ;2x b b -≤ ;12x x ab -≤ 。

(2)[]0,1上权函
数()x x ρ=的正交多项式族中()1x φ= ;
()()1
5
350
x
x x φ+=⎰ 。

(3) 已知存在实数R 使曲线2y x =和()2
228y x R +-=相切。

求切点横坐标近似值的Newton 迭代公式为 。

(4) 设1221⎛⎫
⎪-⎝⎭
A =,则它的奇异值为 。

(5)若取1101⎡⎤
=⎢⎥⎣⎦
A ,则10
d t
e t =⎰A 。

(6) 若1<A ,则()
1
--≤I A 。

(7) 已知(),(),()f a h f a f a h -+,计算一阶数值导数的公式是:
()f a '= 2()O h +;取()f x =0.001h =,
那么,用此公式计算(2)f '的近似值时,为避免误差的危害,应该写成:
(2)f '≈ 。

姓名: 学号: 院系:
矩阵数值分析 班
主讲教师


线
(8) 已知0.2510.25⎛⎫= ⎪

⎭A ,则0k
k ∞
==∑A 。

(9) 设,n
≠∈C s 0则
()
2
T
=ss s,s 。

(10) 求解微分方程(0)2u t u
u '=-⎧⎨=⎩,的Euler 法公式为 ;
绝对稳定区间为 ;改进的Euler 公式为 。

(11) 用A (-2,-3.1)、B (-1,0.9)、C (0,1.0) 、D (1,3.1)、E (2,4.9)拟合一 直线s (x )=a +bx 的法方程组为:。

(12) 已知多项式()3234321p x x x x =+++,那么求此多项式值的秦九韶算法公为:_ ______。

(13)
则均差[1,0,1]f -= ,由数据构造出最简插值多项式
()p x = 。

(14)设⎪⎪⎪⎪


⎝⎛+=231311a A ,当a 满足条件 时, A 必有唯一的T LL 分解(其中L 是对角元为正的下三角矩阵)。

(15) 求01)(=--=x e x f x 根的Newton 迭代法至少局部平方收敛 ( ) (16) 若A 为可逆矩阵,则求解A T Ax=b 的Gauss-Seidel 迭代法收敛 ( ) (17) 分段二点三次Hermite 插值多项式∈C 2函数类 ( ) (18) 如果A 为Hermite 矩阵,则A 的奇异值是A 的特征值 ( )
二、(6分)已知A =010202⎛⎫ ⎪ ⎪ ⎪- ⎪
-⎝
⎭,求出A 的Jordan 分解以及sin t A 。

三、(6分)给定求积节点:x k =0,0.25,0.5,0.75,1,请用复化的梯形公式和
复化的Simpson 公式,计算如下定积分的近似值。

四、(8分)确定将向量()1,3,4T
=x ,变换为向量()1,0,T
t =y 的正数t 和Householder 矩阵H ,以及()2cond H ,1H 。

五、(10分)
(1) 用Schimidt 正交化方法,构造[1,1]-上以1)(≡x ρ权函数的正交多项式系:)(0x φ,)(1x φ,)(2x φ;
(2)利用所得到的结果构造()4f x x =在[1,1]-上的最佳二次平方逼近多项式;
(3)构造[1,1]-上的两点Gauss 型数值求积公式;
(4)利用(3)的结果给出1
0sin 1x
dx x
+⎰
的近似值。

六、(12分)设线性方程组: 1
312
1
23212101242
x x x x x x x -=⎧⎪
--=-⎨⎪--+=⎩ (1) 利用Gauss 消去法求上述解方程组; (2) 求系数矩阵A 的LU 分解;
(3) 写出求解上述方程组的矩阵形式的Jacobi 迭代公式和分量形式的Gauss-Seidel 迭代法公式,并讨论收敛性.
七、(10分)已知解常微分方程初值问题00()(,)
()u t f t u u t u '=⎧⎨=⎩的某线性二步法的第
一、第二特征多项式分别为:
()2413
3ρλλλ=-+,()223
σλλ=
(1) 给出此线性二步法具体表达式,并求出其局部截断误差主项; (2) 讨论其收敛性; (3) 求其绝对稳定区间。

相关文档
最新文档