最新一元二次方程单元综合测试题(含答案)
一元二次方程单元综合测试题(含答案)

一元二次方程单元综合测试题(含答案)精心整理,用心做精品2第二章 一元二次方程单元综合测试题 一、填空题(每题2分,共20分)1.方程12x (x -3)=5(x -3)的根是_______.2.下列方程中,是关于x 的一元二次方程的有________.(1)2y 2+y -1=0;(2)x (2x -1)=2x 2;(3)21x -2x=1;(4)ax 2+bx+c=0;(5)12x 2=0.3.把方程(1-2x )(1+2x )=2x 2-1化为一元二次方程的一般形式为________.4.如果21x -2x -8=0,则1x 的值是________.5.关于x 的方程(m 2-1)x 2+(m -1)x+2m -1=0是一元二次方程的条件是________.6.关于x 的一元二次方程x 2-x -3m=0•有两个不相等的实数根,则m•的取值范围是定______________.7.x 2-5│x │+4=0的所有实数根的和是________. 8.方程x 4-5x 2+6=0,设y=x2,则原方程变形_________ 原方程的根为________.9.以-1为一根的一元二次方程可为_____________(写一个即可).10.代数式12x2+8x+5的最小值是_________.二、选择题(每题3分,共18分)11.若方程(a-b)x2+(b-c)x+(c-a)=0是关于x的一元二次方程,则必有().A.a=b=c B.一根为1 C.一根为-1 D.以上都不对12.若分式22632x xx x---+的值为0,则x的值为().A.3或-2 B.3 C.-2 D.-3或213.已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为().A.-5或1 B.1 C.5 D.5或-114.已知方程x2+px+q=0的两个根分别是2和-3,则x2-px+q可分解为().A.(x+2)(x+3) B.(x-2)(x-3)C.(x-2)(x+3) D.(x+2)(x-3)15已知α,β是方程x2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值为().A.1 B.2 C.3 D.416.三角形两边长分别为2和4,第三边是方程x2-6x+8=0的解,•则这个三角形的周长是().精心整理,用心做精品3A.8 B.8或10 C.10 D.8和10三、用适当的方法解方程(每小题4分,共16分)17.(1)2(x+2)2-8=0;(2)x(x-3)=x;(3)2=6x(4)(x+3)2+3(x+3)-4=0.四、解答题(18,19,20,21题每题7分,22,23题各9分,共46分)18.如果x2-10x+y2-16y+89=0,求xy的值.19.阅读下面的材料,回答问题:解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0 ①,解得y1=1,y2=4.精心整理,用心做精品4当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.(1)在由原方程得到方程①的过程中,利用___________法达到________的目的,•体现了数学的转化思想.(2)解方程(x2+x)2-4(x2+x)-12=0.20.如图,是丽水市统计局公布的2000~2003年全社会用电量的折线统计图.填写统计表:2000~2003年丽水市全社会用电量统计表:(2)根据丽水市2001年至2003年全社会用电量统计数据,求这两年年平均增长的百分率(保留两个有效数字).精心整理,用心做精品5精心整理,用心做精品621.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元? (2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.22.设a ,b ,c 是△ABC 的三条边,关于x 的方程12x 2b x+c -12a=0有两个相等的实数根,•方程3cx+2b=2a 的根为x=0. (1)试判断△ABC 的形状.(2)若a ,b 为方程x 2+mx -3m=0的两个根,求m 的值.精心整理,用心做精品723.已知关于x 的方程a2x2+(2a -1)x+1=0有两个不相等的实数根x1,x2.(1)求a 的取值范围;(2)是否存在实数a ,使方程的两个实数根互为相反数?如果存在,求出a 的值;如果不存在,说明理由.解:(1)根据题意,得△=(2a -1)2-4a2>0,解得a<14.∴当a<0时,方程有两个不相等的实数根.(2)存在,如果方程的两个实数根x1,x2互为相反数,则x1+x2=-21a a =0 ①,解得a=12,经检验,a=12是方程①的根.∴当a=12时,方程的两个实数根x1与x2互为相反数.上述解答过程是否有错误?如果有,请指出错误之处,并解答.24、如图,A 、B 、C 、D 为矩形的4个顶点,AB =16cm ,BC =6cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3cm/s 的速度向点B 移动,一直到达点B 为止;点Q 以2cm/s 的速度向点B 移动,经过多长时间P 、Q 两点之间的距离是10cm?QPBDAC精心整理,用心做精品825、如图,在△ABC 中,∠B =90°,BC =12cm ,AB =6cm ,点P 从点A 开始沿AB 边向点B 以2cm/s 的速度移动(不与B 点重合),动直线QD 从AB 开始以2cm/s 速度向上平行移动,并且分别与BC 、AC 交于Q 、D 点,连结DP ,设动点P 与动直线QD 同时出发,运动时间为t 秒,(1)试判断四边形BPDQ 是什么特殊的四边形?如果P 点的速度是以1cm/s ,则四边形BPDQ 还会是梯形吗?那又是什么特殊的四边形呢?(2)求t 为何值时,四边形BPDQ 的面积最大,最大面积是多少?1、如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点的时间为t 秒,(1)当t 为何值时,△APQ 与△AOB 相似?(2)当t 为何值时,△APQ 的面积为524个平方单位?CA BP QD←↑精心整理,用心做精品92、有一边为5cm 的正方形ABCD 和等腰三角形PQR ,PQ =PR =5cm ,QR =8cm ,点B 、C 、Q 、R 在同一直线l 上,当C 、Q 两点重合时,等腰三角形PQR 以1cm/s 的速度沿直线l 按箭头方向匀速运动,(1)t 秒后正方形ABCD 与等腰三角形PQR 重合部分的面积为5,求时间t ; (2)当正方形ABCD 与等腰三角形PQR 重合部分的面积为7,求时间t ;3、如图所示,在平面直角坐标中,四边形OABC 是等腰梯形,CB ∥OA ,OA=7,AB=4,∠COA=60°,点P 为x 轴上的—个动点,点P 不与点0、点A 重合.连结CP ,过点P 作PD 交AB 于点D ,(1)动什么位置时,△OCP 为等腰三角形,求这时点P 么位置时,使得∠CPD=∠OAB ,且58BD BA ,求这时点P 的坐标;C BQ RADlP答案:1.x1=3,x2=102.(5)点拨:准确掌握一元二次方程的定义:即含一个未知数,未知数的最高次数是2,整式方程.3.6x2-2=04.4 -2 点拨:把看做一个整体.5.m≠±16.m>-112点拨:理解定义是关键.7.0 点拨:绝对值方程的解法要掌握分类讨论的思想.8.y2-x2=,x4=9.x2-x=0(答案不唯一)10.-2711.D 点拨:满足一元二次方程的条件是二次项系数不为0.12.A 点拨:准确掌握分式值为0的条件,同时灵活解方程是关键.13.B 点拨:理解运用整体思想或换元法是解决问题的关键,同时要注意x2+y2式子本身的属性.14.C 点拨:灵活掌握因式分解法解方程的思想特点是关键.精心整理,用心做精品1015.D 点拨:本题的关键是整体思想的运用.16.C 点拨:•本题的关键是对方程解的概念的理解和三角形三边关系定理的运用.17.(1)整理得(x+2)2=4,即(x+2)=±2,∴x1=0,x2=-4(2)x(x-3)-x=0,x(x-3-1)=0,x(x-4)=0,∴x1=0,x2=4.(36x=0,x2-,由求根公式得,.(4)设x+3=y,原式可变为y2+3y-4=0,解得y1=-4,y2=1,即x+3=-4,x=-7.由x+3=1,得x=-2.∴原方程的解为x1=-7,x2=-2.18.由已知x2-10x+y2-16y+89=0,得(x-5)2+(y-8)2=0,∴x=5,y=8,∴xy=58.19.(1)换元降次(2)设x2+x=y,原方程可化为y2-4y-12=0,解得y1=6,y2=-2.由x2+x=6,得x1=-3,x2=2.由x2+x=-2,得方程x2+x+2=0,b2-4ac=1-4×2=-7<0,此时方程无解.所以原方程的解为x1=-3,x2=2.20.(1)(2)设2001年至2003年平均每年增长率为x,则2001年用电量为14.73亿kW·h,2002年为14.73(1+x)亿kW·h,2003年为14.73(1+x)2亿kW·h.则可列方程:14.73(1+x)2=21.92,1+x=±1.22,∴x1=0.22=22%,x2=-2.22(舍去).则2001~2003年年平均增长率的百分率为22%.21.(1)设每件应降价x元,由题意可列方程为(40-x)·(30+2x)=1200,解得x1=0,x2=25,当x=0时,能卖出30件;当x=25时,能卖出80件.根据题意,x=25时能卖出80件,符合题意.故每件衬衫应降价25元.(2)设商场每天盈利为W元.W=(40-x)(30+2x)=-2x2+50x+1200=-2(x2-25x)+1200=-2(x-12.5)2+1512.5当每件衬衫降价为12.5元时,商场服装部每天盈利最多,为1512.5元.22.∵12x+c-12a=0有两个相等的实数根,∴判别式=)2-4×12(c-12a)=0,整理得a+b-2c=0 ①,又∵3cx+2b=2a的根为x=0,∴a=b ②.把②代入①得a=c,∴a=b=c,∴△ABC为等边三角形.(2)a,b是方程x2+mx-3m=0的两个根,所以m2-4×(-3m)=0,即m2+12m=0,∴m1=0,m2=-12.当m=0时,原方程的解为x=0(不符合题意,舍去),∴m=12.23.上述解答有错误.(1)若方程有两个不相等实数根,则方程首先满足是一元二次方程,∴a2≠0且满足(2a-1)2-4a2>0,∴a<14且a≠0.(2)a不可能等于1 2.∵(1)中求得方程有两个不相等实数根,同时a的取值范围是a<14且a≠0,而a=12>14(不符合题意)所以不存在这样的a值,使方程的两个实数根互为相反数.。
一元二次方程单元测试题及答案

一元二次方程单元测试题及答案一、选择题1. 一元二次方程的一般形式是:A. ax^2 + bx + c = 0B. ax^2 + bx = 0C. ax^2 + c = 0D. ax + b = 0答案:A2. 下列哪个方程不是一元二次方程?A. x^2 - 3x + 2 = 0B. x^2 - 5 = 0C. 2x + 5 = 0D. 3x^2 - 7x = 0答案:C3. 一元二次方程 ax^2 + bx + c = 0 的判别式是:A. b^2 - 4acB. b^2 + 4acC. a^2 - 4bcD. a^2 + 4bc答案:A二、填空题4. 解一元二次方程 x^2 - 5x + 6 = 0,其判别式为 _______ 。
答案:15. 如果一元二次方程的根是 x1 = 2 和 x2 = 3,那么这个方程可以写成 _______ 。
答案:x^2 - 5x + 6 = 0三、解答题6. 解一元二次方程 2x^2 - 7x + 3 = 0。
解:首先计算判别式Δ = b^2 - 4ac = (-7)^2 - 4 * 2 * 3 = 49 - 24 = 25。
由于Δ > 0,方程有两个不相等的实数根。
根据求根公式 x = (-b ± √Δ) / (2a),我们得到:x1 = (7 + √25) / 4 = (7 + 5) / 4 = 12 / 4 = 3,x2 = (7 - √25) / 4 = (7 - 5) / 4 = 2 / 4 = 0.5。
7. 已知方程 x^2 + 4x + k = 0 的一个根是 x = -2,求 k 的值。
解:将 x = -2 代入方程,得到 (-2)^2 + 4 * (-2) + k = 0。
简化得 4 - 8 + k = 0,解得 k = 4。
四、应用题8. 一个长方形的长是宽的两倍,面积是 24 平方米,求这个长方形的长和宽。
解:设宽为 x 米,长为 2x 米。
(完整版)_一元二次方程单元测试题(含答案)

第二章一元二次方程测试题(1)姓名学号一、选择题(每题 3 分,共 30 分)1.以下方程属于一元二次方程的是().( A )( x2- 2)·x=x 2 (B ) ax2 +bx+c=01( D )x2=0 ( C)x+ =5x2.方程 x( x-1 ) =5( x-1 )的解是().(A)1 (B)5 (C)1或 5 ( D)无解3.已知 x=2 是对于 x 的方程 3 x2- 2a=0 的一个根,则2a-1 的值是().2(A)3(B)4(C)5(D)64.把方程 x2-4x-6=0 配方,化为( x+m )2=n 的形式应为().( A)( x-4 )2=6 ( B)( x-2 )2=4 ( C)( x-2 )2=0 (D)( x- 2)2=10 5.以下方程中,无实数根的是().( A) x2+2x+5=0 ( B) x2-x-2=0 ( C) 2x2+x-10 =0 ( D) 2x2-x-1=06.今世数式 x2+3x+5 的值为 7 时,代数式3x2+9x-2 的值是().(A)4 (B)0 (C)-2 (D)-47.方程( x+1)( x+2) =6 的解是().( A )x =- 1, x =- 2 ( B )x =1, x =- 4 ( C) x =- 1, x =4 ( D) x =2 , x =31 2 1 2 1 2 1 28.假如对于 x 的一元二次方程 2 的两根分别为 1 2 ,?那么这个一元二次x +px+q=0 x =3 ,x =1 方程是().( A )x2+3x+4=0 ( B) x2-4x+3= 0 ( C) x2+4x-3= 0 (D ) x2+3x -4=09.某市计划经过两年时间,绿地面积增添44% , ?这两年均匀每年绿地面积的增添率是().(A ) 19% ( B) 20% ( C)21% (D ) 22% 10.在一幅长80cm,宽 50cm 的矩形景色画的周围镶一条金色纸边, ?制成一幅矩形挂图,如下图.假如要使整个挂图的面积是 5 400cm2,设金色纸边的宽为 xcm, ?那么 x 知足的方程是().( A) x2+130x-1 40 0=0 ( B) x2+65x-350=0( C) x2-130x-1 400=0 ( D) x2-65x-350=0二、填空题(每题 3 分,共 24 分)11.方程 2x2-x-2=0 的二次项系数是 ________,一次项系数是 ________, ?常数项是 ________.12.若方程ax2+bx+c=0 的一个根为 -1 ,则 a-b+c=_ ______.13.已知 x2-2x-3与x+7的值相等,则x 的值是 ________.14.请写出两根分别为-2 , 3 的一个一元二次方程_________.15.假如( 2a+2b+1)( 2a+2b-1 ) =63,那么 a+b 的值是 ________.16.已知 x2+y2-4x+6y+13=0 , x, y 为实数,则x y=_________.17.已知三角形的两边分别是 1 和 2,第三边的数值是方程2x2 -5x+3=0 的根,则这个三角形的周长为 _______.18.若 -2 是对于 x 的一元二次方程(k2-1 ) x2+2kx+4=0 的一个根,则k=________ .三、解答题(共46 分)19.解方程:8x2=24x(x+2) 2=3x+6(7x-1) 2 =9x2(3x-1)2=10x2+6x=1-2x2+13x-15=0 .x2 2 2x 2 2 x21x 136 2 20.(此题 8 分)李先生计入银行 1 万元,先存一个一年按期,?一年后将本息自动转存另一个一年按期,两年后共得本息 1.045 5 万元.存款的年利率为多少?(?不考虑利息税)21.(此题 8 分)现将进货为 40 元的商品按 50 元售出时,就能卖出 500 件. ?已知这批商品每件涨价 1 元,其销售量将减少 10 个.问为了赚取 8 000 元收益,售价应定为多少?这时应进货多少件?第二章一元二次方程测试题(2)一、选择题(每题 3 分,共 30 分)1 .方程( y+8)2 =4y+(2y-1 )2 化成一般式后 a,b,c 的值是()A .a=3,b=-16 ,c=-63;B . a=1,b=4,c=(2y-1 )2C .a=2,b=-16 ,c=-63;D . a=3,b=4,c=(2y-1 )22 .方程 x2-4x+4=0 根的状况是()A .有两个不相等的实数根 ;B .有两个相等的实数根 ;C .有一个实数根 ;D .没有实数根3 .方程 y2+4y+4=0 的左侧配成完整平方后得()A .(y+4)2 =0B .(y-4 )2 =0C .(y+2)2=0D .( y-2 )2=04 .设方程 x2+x-2=0 的两个根为α,β,那么(α -1 )(β -1 )的值等于()A.-4B.-2 C .0 D .25 .以下各方程中,无解的方程是()A . x 2 =-1B . 3( x-2 )+1=0C .x2-1=0D .x=2 x 16 .已知方程 x x 3 =0,则方程的实数解为()A.3 B.0 C.0,1 D .0,37 .已知 2y 2+y-2 的值为 3,则 4y 2+2y+1 的值为( ) 8 A .10 B .11 C .10或 11 D .3或 11) .方程 x 2有两个不相等的实根,则 , 知足的关系式是( +2px+q=0 p q A .p 2-4q>0 B .p 2-q ≥0 C .p 2-4q ≥ 0 D . p 2-q>09 .已知对于 x 的一元二次方程( m-1)x 2+x+m 2+2m-3=0的一个根为 0,则 m 的值为( )A .1B .-3C .1 或-3D .不等于 1 的随意实数10 .已知 m 是整数,且知足2m1 0,则对于 x 的方程 m 2x 2-4x-2= ( m+2)5 2m 1x 2+3x+4 的解为( )6D .x 13 或 A .x 1 , 2=- 3 B .x 1 , 2 = 3 C . x=- , 2=-2 x 2 =2 x 2=-2x =27x=673 分,共 30 分)二、填空题(每题11.一元二次方程 x 2+2x+4=0的根的状况是 ________.12.方程 x 2( x-1 )( x-2 )=0 的解有 ________个. 13.假如( 2a+2b+1)( 2a+2b-2) =4,那么 a+b 的值为 ________.14.已知二次方程 3x 2-(2a-5 )x-3a-1=0 有一个根为 2,则另一个根为 ________. 15.对于 x 的一元二次方程 x 2 +bx+c=0的两根为 -1 ,3,则 x 2+bx+c?分解因式的结果为 _________.16.若方程 x 2-4x+m=0有两个相等的实数根,则 m 的值是 ________. 17.若 b (b ≠0)是方程 x 2+cx+b=0 的根,则 b+c 的值为 ________.18.一元二次方程( 1-k )x 2-2x-1=?0? 有两个不相等的实根数, ?则 k?的取值范围是 ______.19.若对于 x 的一元二次方程 x 2+bx+c=0 没有实数根,则切合条件的一组 b , c 的实数值能够是 b=______,c=_______.20.等腰三角形 ABC 中, BC=8,AB , AC 的长是对于 x 的方程 x 2-10x+m=0 的两根,则 m?的值是 ________. 三、解答题21.(12 分)采用适合的方法解以下方程:(1)(x+1)( 6x-5 ) =0; ( 2) 2x 2+ 3 x-9=0 ;(3)2(x+5)2=x ( x+5);(4) 2 x 2-4 3 x-2 2 =0.22.(5 分)不解方程,鉴别以下方程的根的状况:(1)2x 2+3x-4=0;(2)16y 2+9=24y ;(3) 3 x 2- 2 x+2=0;(4)3t 2-3 6 t+2=0 ;(5)5(x 2+1) -7x=0 .23.(4 分)已知一元二次方程 ax 2+bx+c=0(a ≠0)的一个根是 1,且 a ,b 满 足 b= a 2 + 2 a -3 ,?求对于 y 的方程 1y 2-c=0 的根.424.(4 分)已知方程 x 2+kx-6=0 的一个根是 2,求它的另一个根及 k 的值. 25.(4 分)某村的粮食年产量,在两年内从 60 万千克增添到 72.6 万千克,问 均匀每年增添的百分率是多少?26.(5 分)为了合理利用电力资源,缓解用电紧张状况,我市电力部门出台了 使用“峰谷电”的政策及收费标准(见表) .已知王老师家 4 月份使用“峰谷 电”95kMh ,缴电费 43.40 元,问王老师家 4 月份“峰电”和“谷电”各用了 多少 kMh ?峰电 08:00 —22:00 元 /kWh 谷电 22:00 —08:00元 /kWh27.(6 分)印刷一张矩形的张贴广告(如图) ,?它的印刷面积是 32dm 2,?上 下空白各 1dm ,两边空白各,设印刷部分从上到下的长是 xdm ,周围空白处的面积为 Sdm 2.( 1)求 S 与 x 的关系式;2( 2)当要求周围空白的面积为 18dm 时,求用来印刷这张广告的纸张的长和宽各是多少?。
一元二次方程单元检测题(含参考答案)

九年级数学阶段质量监测题(一)(一元二次方程)测试时间:90分钟第Ⅰ卷 [基础测试卷]一、单项选择题(每小题2分,共20分)1.下列方程是一元二次方程的是 ( )A.y x =-12B.562=xC.xx 12=D.2)2)(1(x x x =++ 2.一元二次方程122=-x x 的常数项为 ( ) A.-1 B.1 C.0 D.1± 3.若方程013)2(=+++mx xm m是关于x 的一元二次方程,则 ( )A.2±=mB.2=mC.2-=mD.2±≠m4.在方程)0(02≠=++a c bx ax 中,若有0=+-c b a ,则方程必有一根为 ( )A.1B.1-C.1±D.05.一元二次方程032=+x x 的根为 ( ) A.-3 B.0,3 C.0,-3 D.36.将方程0462=+-x x 配方,其正确的结果是 ( )A.9)3(2=-xB.5)3(2=-xC.13)3(2=-xD.5)3(2=+x7.已知关于x 的一元二次方程0122=++x mx 有两个不相等的实数根,则m 的取值范围是 ( ) A.1-<m B.1>m C.1<m 且0≠m D.1->m 且0≠m8.若方程0132=--x x 的两根为1x 、2x ,则1211x x +的值为 ( ) A.3 B.-3 C.13D.13-9. 已知一个三角形的两边长分别为3和6,第三边的长是方程0862=+-x x 的一个根,则这个三角形的周长是 ( ) A.11 B.13 C.11或13 D.11和1310.关于x 的方程0)2(222=+++k x k x 的两实数根之和不小于-4,则k 的取值范围是( )A.1->kB.0<kC.01<<-kD.01≤≤-k 二、填空题(每小题2分,共20分) 1.关于x 的方程03)3(12=+---x x m m是一元二次方程,则=m .2.一元二次方程x x 6122=-的一般式是 ,其中一项系数是 . 3.方程032=-x x 的根是 ,方程0)2)(1(=-+x x 的是 . 4. 关于x 的一元二次方程02=+-k x x 的一个根是2,则k = ,另一个根为 . 5.已知一元二次方程的两根分别是2和﹣3,则这个一元二次方程是 . 6.关于x 的一元二次方程032=--m x x 有两个不相等的实数根,则m 的取值范围是______________.7.小华在解一元二次方程042=-x x 时,只得出一个根是x =4,则被他漏掉的另一个根是x = .8.如果21x x 、是方程0482=-+x x 的两个根,那么21x x += ,2221x x += . 9.直角三角形两条直角边长分别为1+x ,3+x ,斜边长为x 2,那么x = . 10.在实数范围内定义一种运算“*”,其规则为22b a b a -=*,根据这个规则,方程05)2(=*+x 的解是 .三.按指定的方法解方程(每小题4分,共16分)1.4)1(2=-x (直接开平方法); 2.0542=-+x x (配方法);3.0652=+-x x (因式分解法);4.012222=+-x x (公式法).四.用适当的方法解方程(每小题4分,共8分)1.x x x =-)3(;2.06)32(2=++-x x .五.解答题(每小题6分,共18分)1.已知2+3是方程042=+-c x x 的一个根,求方程的另一个根及c 的值.2.若关于x 的方程0342=+-+a x x 有实数根. (1)求a 的取值范围;(2)当a 为符合条件的最小整数,求此时方程的根.3.设a 、b 、c 是△ABC 的三条边,关于x 的方程021212=-++a c x b x 有两个相等的实数根,方程a b cx 223=+的根为0=x .(1)试判断△ABC 的形状;(2)若a 、b 为方程032=-+m mx x 的两个根,求m 的值.六、应用题(每小题6分,共18分)1.某城2014年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2016年底增加到363公顷,求平均每年的增长率.2.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1 200元,每件衬衫应降价多少元?3.如图,A,B,C,D为矩形的四个顶点,AB=16 cm,BC=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,点Q以2 cm/s的速度向点D移动.当点P 运动到点B停止时,点Q也随之停止运动.问几秒时点P和点Q的距离是10 cm?第Ⅱ卷[实践操作卷]一、猜一猜,算一算(10分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?二、想一想,试一试(10分)今要对一块长60m、宽40m的矩形荒地ABCD进行绿化和硬化,设计方案如图所示,已知矩形P,Q为两块绿地,其余为硬化路面,P,Q两块绿地周围的硬化路面宽都相等.若使两块绿地面积的和为矩形ABCD面积的14,求P,Q两块绿地周围的硬化路面的宽.九年级数学阶段质量监测题(一)参考答案第Ⅰ卷一、选择题:二、填空题:1. 3-;2.01622=--x x ,-6;3.0或3,-1或2;4.-2,-1;5.062=-+x x ;6. 41->m ;7.0; 8.8-,72; 9.5;10.-7或3. 三、1.3或-1;2.1或-5;3.2或3;4.2221==x x . 四、1.0,4;2.2,3.五、1.1=c ,另一根为32-;2.(1)1-≥a ,(2)221-==x x ;3.(1)△ABC 是等边三角形,(2)12-=m .六、1.10%;2.每件衬衫应降价20元.3.85s 或245s . 第Ⅱ卷一、m 20==BC AB .二、两块绿地周围的硬化路面的宽都为10m.。
最新一元二次方程单元综合测试题(含答案)

方圆学校九年级第21章一元二次方程单元综合测试题一、填空题(每题2分,共20分)1.方程lx (x —3) =5 (x —3)的根是22.下列方程中,是关于x的一元二次方程的有 .(1) 2y2+y—1=0; (2) x (2x-1) =2x2; (3)2x=1; (4) ax2 3 4 5+bx+c=0; (5) x 1x2=0.23.把方程(1—2x) (1+2x) =2x2- 1化为一元二次方程的一般形式为 .4.如果4—2— 8=0,则-的值是. x x x5.关于x的方程(m2—1)x2+(nn- 1)x+2m- 1=0是一元二次方程的条件是 .6.关于x的一元二次方程x2—x —3m=?有两个不相等的实数根,则m?的取值范围是定:7. x2- 5 | x | +4=0的所有实数根的和是.8.方程x4—5x2+6=0,设y=x2,则原方程变形原方程的根为.9.以一1为一根的一元二次方程可为 (写一个即可).10.代数式1x2+8x+5的最小值是.2二、选择题(每题3分,共18分)11.若方程(a—b) x2+ (b —c) x+ (c—a) =0是关于x的一元二次方程,则必有().A. a=b=c B . 一根为1 C , 一根为—1 D .以上都不对212.若分式1x 6 * B的值为0,则x的值为().x -3x 2A . 3或—2B . 3C . —2D . —3或213.已知(x2+y2+1) (x2+y2+3) =8,贝U x2+y2的值为().A.—5或1 B . 1 C . 5 口.5或—114.已知方程x2+px+q=0的两个根分别是2和—3,则x2—px+q可分解为()., 、 一, 一、2 一 一17 . (1) 2 (x+2) —8=0;(4) (x+3) 2+3 (x+3) —4=0.四、解答题(18, 19, 20, 21题每题7分,22, 23题各9分,共46分)18 .如果 x 2- 10x+y 2—16y+89=0,求♦的值.y19 .阅读下面的材料,回答问题:解方程x 4- 5x 2+4=0,这是一个一元四次方程,根据该方程的特点,它的解 法通常是:设x 2=y,那么x 4=y 2,于是原方程可变为y 2—5y+4=0①,解得y 1二1, y 2=4. 当 y=1 时,x 2=1,「.x=±1; 当 y=4 时,x 2=4, x= ±2;「•血方程有四个根:x 〔二1, x 2=- 1, x 3=2, x 4=-2. (1)在由原方程得到方程①的过程中,利用 ______________ 法达到 的目的,?体现了数学的转化思想. (2)解方程(x 2+x) 2—4 (x 2+x) —12=0.20.如图,是丽水市统计局公布的 2000〜2003年全社会用电量的折线统计I(1)填写统计表:(2)根据丽水市2001年至2003年全社会用电量统计数据,求这两年年平 均增(2) x (x —3) =x;(3) J3x 2=6x —不;长的百分率(保留两个有效数字).用电敬1亿kW , h)21. 922000 2001 2002 2003 年份21.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.22.设a, b, c是△ ABC的三条边,关于x的方程1x2+T b x+c—1a=0有两个相2 2等的实数根,?方程3cx+2b=2a的根为x=0.(1)试判断△ ABC的形状.(2)若a, b为方程x2+mx- 3m=0的两个卞求m的值.23.已知关于x的方程a2x2+ (2a-1) x+1=0有两个不相等的实数根x b x2. (1) 求a的取值范围;(2)是否存在实数a,使方程的两个实数根互为相反数?如果存在,求出a的值;如果不存在,说明理由.解:(1)根据题意,得乙=(2a-1) 2-4a2>0,解得a」.4・•・当a<0时,方程有两个不相等的实数根.2a —1(2)存在,如果万程的两个实数根x1, x2互为相反数,则x1+x2=—三」=0 a ①,解得a=1,经检验,a=1是方程①的根.1・•・当a=l时,万程的两个实数根x1与x2互为相反数.2上述解答过程是否有错误?如果有,请指出错误之处,并解答.24、如图,A 、B 、G D 为矩形的4个顶点,AB= 16cm, BC= 6cm,动点P 、Q 分 别从点A 、C 同时出发,点P 以3cm/s 的速度向点B 移动,一直到达点B 为止; 点Q 以2cm/s 的速度向点B 移动,经过多长时间P 、Q 两点之间的距离是10cm?25、如图,在^ ABC 中,/ B= 90° , BO 12cm, AB= 6cm,点 P 从点 A 开始沿 AB 边向点B 以2cm/s 的速度移动(不与B 点重合),动直线QD 从AB 开始以2cm/s 速度向上平行移动,并且分别与 BC AC 交于Q D 点,连结DP 设动点P 与动 直线QD 同时出发,运动时间为t 秒,(1)试判断四边形BPDQ1什么特殊的四边形?如果 P 点的速度是以1cm/s, 则四边形BPD 斑会是梯形吗?那又是什么特殊的四边形呢?(2)求t 为何值时,四边形BPDQ 勺面积最大,最大面积是多少?1、如图,在平面直角坐标系内,已知点 A(0, 6)、点B(8, 0), 开始在线段AO 上以每秒1个单位长度的速度向点 O 移动,同时动点B Q 从点用 始在线段BA 上以每秒2个单位长度的速度向点 A 移动,设点P 、Q 辂动的日丽] 为t 秒,八A(1)当t 为何值时,△ APQf AAOBf 目似?24P(2)当t 为何值时,△ APQ 勺面积为一个平万单位?52、有一边为5cm 的正方形ABC 前等腰三角形PQR PQ= PR= 5cm, QR= 8cm,点 B 、C 、Q R 在同一直线l 上,当C 、Q 两点重合时,等腰三角形PQR^ 1cm/s 的 速度沿直线l 按箭头方向匀速运动,(1) t 秒后正方形ABCS 等腰三角形PQFS 合部分白面积为5,求时间t; (2)当正方形ABCDf 等腰三角形PQR1合部分白面积为7,求时间t;QD呵:P 从内AAB x3、如图所示,在平面直角坐标中,四边形OABC是等腰,$形,CB// OA OA=7 AB=4 /COA=60,点P为x轴上的一个动点,点P不与点0、点A重合.连结CP,过点P作PD交AB于点D, (1)求点B的坐标;(2)当点P运动什么位置时,△ OC斯等腰三角形,求这时点P的坐标;(3)当点P运动什么位置时,使得/CPDW OAB且BD = 5,求这时点P的坐标;BA 8答案:1.x i=3, X2=102.(5) 点拨:准确掌握一元二次方程的定义:即含一个未知数,未知数的最高次数是2,整式方程.3.6x2—2=0 .... 1 一“,.4.4 — 2点按:把一看做一个整体.X5.mr^ ± 11-6.m》一点拨:理解定义是关键.127.0点拨:绝对值方程的解法要掌握分类讨论的思想.8.y2-5y+6=0 x i=四,X2=— 22 , X3=有,X4=一曲9.x2—x=0 (答案不唯一)10.— 2711.D点拨:满足一元二次方程的条件是二次项系数不为0.12.A点拨:准确掌握分式值为0的条件,同时灵活解方程是关键.13.B点拨:理解运用整体思想或换元法是解决问题的关键,同时要注意x2+y2式子本身的属性.14.C点拨:灵活掌握因式分解法解方程的思想特点是关键.15.D点拨:本题的关键是整体思想的运用.16.C点拨:?本题的关键是对方程解的概念的理解和三角形三边关系定理的运用.17.(1)整理得(x+2)2=4,即(x+2)=±2,1)x1=0, x2=—42)) x (x — 3) — x=0,x (x—3 —1) =0,x (x —4) =0,1-x1=0, x2=4.(3)整理得J3x2+J3 — 6x=0,x 2—2 君x+1=0,由求根公式得x1=J3 + J2, x2二逐一J2 .(4)设x+3=y,原式可变为y2+3y- 4=0,解得y1=-4, y2=1 ,即x+3=— 4, x= — 7.由x+3=1 ,得x= — 2.「.原方程的解为x1=—7, x2=—2.18.由已知x2-10x+y2-16y+89=0,得(x— 5) 2+ (y — 8) 2=0,x 5•• x=5, y=8, . •一= 一 .y 819.(1)换元降次(2)设x2+x=y,原方程可化为y2- 4y- 12=0, 解得y1=6, y2= —2.由x2+x=6,得x1 = — 3, x2=2.由x2+x= —2,得方程x2+x+2=0 ,b — 4ac=1 — 4X 2= — 7<0,此时方程无解.所以原方程的解为X i=—3, X2=2.20.(1)(2)设2001年至2003年平均每年增长率为X,则2001年用电量为14.73亿kW h,2002 年为14.73 (1+x)亿kW- h,2003 年为14.73 (1+x) 2亿kW・ h.则可列方程:14.73 ( 1+x) 2=21.92, 1+x=±1.22, .•.X1=0.22=22%, x2=- 2.22 (舍去).则2001〜2003年年平均增长率的百分率为22%21.(1)设每件应降价x元,由题意可列方程为(40—x) • (30+2x) =1200,解得x1=0, x2=25,当x=0时,能卖出30件;当x=25时,能卖出80件.根据题意,x=25时能卖出80件,符合题意.故每件衬衫应降价25元.(2)设商场每天盈利为W元.W= (40 —x) (30+2x) =-2x2+50x+1200=-2 (x2—25x) +1200=- 2 (x— 12.5 ) 2+1512.5 当每件衬衫降价为12.5元时,商场服装部每天盈利最多,为1512.5元.22.丁1x2+7b x+c—1a=0有两个相等的实数根,2 2「•判别式=(bb ) — 4X — (c—— a) =0,整理得a+b—2c=0 ①,又「3cx+2b=2a 的根为x=0, a=b ②.把②代入①得a=c,a=b=c, ABC为等边三角形.(2)a, b是方程x2+mx— 3m=0的两个根,所以ni — 4X (— 3倒=0,即n i+12m=0, m=0, m)=— 12.当m=0时,原方程的解为x=0 (不符合题意,舍去),m=1223.上述解答有错误.(1)若方程有两个不相等实数根,则方程首先满足是一元二次方程,•• a w 0 且满足(2a — 1) — 4a >0, a< 一且aw 0.41(2) a不可能等于一.2••• (1)中求得方程有两个不相等实数根,同时a的取值范围是a<」且aw。
(完整版)一元二次方程单元综合测试题(含答案)

21.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大
销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.
〔1〕假设商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?
〔3〕
3
2
-
3
;
2
〔x+3
〕-4=0.
x=6x
〔4〕〔x+3〕+3
四、解答题〔18,19,20,21题每题7分,22,23题各9分,共46分〕
x
18.如果x2-10x+y2-16y+89=0,求y的值.
19.阅读下面的材料,答复以下问题:鉀鈍鰩砻膿鞯滲饴諑败顯桠條繽恼。
-2-
解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:
3、如下列图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,
∠COA=60°,点P为x轴上的—个动点,点P不与点0、点A重合.连结CP,过点P作
PD交AB于点D,(1)求点B的坐标;(2)当点P运动什么位置时,△OCP为等腰三角形,
求这时点P的坐标;(3)当点P运动什么位置时,使得∠CPD=∠OAB,
3.把方程〔1-2x〕〔1+2x〕=2x2-1化为一元二次方程的一般形式为________.
1
2
1
4.如果x2
-x
-8=0,那么x的值是________.
5.关于x的方程〔m2-1〕x2+〔m-1〕x+2m-1=0是一元二次方程的条件是________.
(完整版)一元二次方程全章测试及答案

一元二次方程全章测试及答案一、填空题1 •一元二次方程X2—2X+ 1 = 0的解是______ •2. ____________________________________________________________若x= 1是方程x2—mx+ 2m= 0的一个根,则方程的另一根为______________________________ •3. 小华在解一元二次方程x2—4x= 0时,只得出一个根是x= 4,则被他漏掉的另一个根是x = ______ .4. __________ 当a ______________________________________ 时,方程(x—b)2=—a有实数解,实数解为______________________________________________ •5. ____________________________________________________________已知关于x的一元二次方程(m2—1)x m 2+ 3mx— 1 = 0,贝V m= ______________________________________ .6. ____________________________________________________________若关于x的一元二次方程x2+ ax+ a = 0的一个根是3,贝V a= _____________________________.7. _____________________________________________ 若(x2—5x+ 6)2+| x2+ 3x—10 |= 0,贝V x= ___________________________________________________________ .&已知关于x的方程x2—2x+ n— 1 = 0有两个不相等的实数根,那么| n —2|+ n+ 1的化简结果是 ____________ .二、选择题9.方程x2—3x+ 2= 0的解是().A . 1 和2B . —1 和一2C . 1 和一2 D. —1 和210 .关于x的一元二次方程x2—mx+ (m—2)= 0的根的情况是().A .有两个不相等的实数根B .有两个相等的实数根C.没有实数根11 .已知a,b,c分别是三角形的三边,A.没有实数根C.有两个不相等的实数根12 .如果关于x的一元二次方程x2A . 0B . 1D.无法确定则方程(a+ b)x2+ 2cx+ (a + b)= 0的根的情况是().B .可能有且只有一个实数根D .有两个不相等的实数根k2x —0没有实数根,那么k的最小整数值是().13 .关于x的方程x2+ m(1 —x)—2(1 —x)= 0,下面结论正确的是().A . m不能为0,否则方程无解B . m为任何实数时,方程都有实数解C. 当2<m<6时,方程无实数解D. 当m取某些实数时,方程有无穷多个解三、解答题14 .选择最佳方法解下列关于x的方程:(1)(x+ 1)2= (1 —2x)2.(2) x2—6x+ 8= 0 .⑶ x22、、2x 2 0. (4)x(x+ 4) = 21 .⑸一2x2+ 2x+ 1 = 0. (6) x2—(2a—b)x+ a2—ab= 0 .15. 应用配方法把关于 x 的二次三项式2X 2— 4x + 6变形,然后证明:无论 x 取任何实数值,二次三项式的值都是正数.16. 关于x 的方程x 2— 2x + k — 1 = 0有两个不等的实数根.(1) 求k 的取值范围;(2)若k + 1是方程x 2— 2x + k — 1 = 4的一个解,求k 的值.17•已知关于x 的两个一兀二次方程:2213 方程:x 2(2k 1)x k 22k① 229 方程:x 2 (k 2)x 2k0 ②4(1) 若方程①、②都有实数根,求 k 的最小整数值;(2) 若方程①和②中只有一个方程有实数根;则方程①,②中没有实数根的方程是_____ (填方程的序号),并说明理由;(3) 在(2)的条件下,若k 为正整数,解出有实数根的方程的根.18.已知a , b , c 分别是△ ABC 的三边长,当 m>0时,关于x 的一元二次方程 c(x 2ABCD 中,AC , BD 交于 O , AC = 8m , BD = 6m ,动点 M 从 A 出发沿 AC C,动点N 从B 出发沿BD 方向以1m/s 匀速直线运动到 D ,m) b(x 2m) 2 , max 0有两个相等的实数根,试说明厶ABC - -定是 直角三角形.若M , N 同时出发,问出发后几秒钟时,△MON 的面积为-m 24R19.如图,菱形方向以2m/s 匀速直线运动到答案与提示儿一次方程全章测试1. X1=X2= 1. 2.—2. 3. 0.5. 4. 6. 97. 2. 8. 3. 49. A.10. A.11 . A.12. D 4. 13 .14. (1)x i = 2, X2= 0; (2)x i = 2,0,x b , a.C.X2=4;⑶为X2 .2;(4)X1 = —7, X2= 3; (5) X1 1 .32 , X2(6)x1 = a,X2= a—b.15. 变为2(x—1)2+ 4,证略.16.17.(1)k<2 ; (2)k =—3.(1)7;(2)①;2— 1 =(k—4)2+ 4>0,若方程①、②只有一个有实数根,则8 、. 7X1 =18 .(3)k= 5时,方程②的根为xi X2 -; k= 6时,方程②的根为2=4m(a2+ b2—c2) = 0,「. a2+ b2= c2.1419•设出发后X秒时,S MON(1)当x<2时,点M在线段AO 上,点1N在线段BO上.—(422x)(3 x),X2解得X1,X25 2-^-(s) x 2, X 宁(S);⑵当2<x<3时,点M在线段0C上,点N在线段BO上, -(2x24)(3 X)解得X-! X25(s);1⑶当x>3时,点M在线段OC上,点N在线段OD上,—(2x 4)(x2解得X冷Z(s).综上所述,出发后或-s时,△ MON的面积为-m2.2 2 4 2>0> 1 ;8 ,72~。
一元二次方程单元练习题(含答案)

第二十一章自主检测(满分:120分时间:100分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.关于x的一元二次方程(a2-1)x2+x-2=0是一元二次方程,则a满足( )A.a≠1 B.a≠-1 C.a≠±1 D.为任意实数2.用配方法解方程x2-2x-5=0时,原方程应变形为( ) A.(x+1)2=6 B.(x-1)2=6 C.(x +2)2=9 D.(x-2)2=93.若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则k的取值范围是( ) A.k>-1 B.k>-1且k≠0 C.k<1 D.k<1且k≠04.若关于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,则2013-a-b的值是( ) A.2018 B.2008 C.2014 D. 20125.方程x2-9+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为( ) A.12 B.12或15 C.15 D.不能确定6.对于任意实数k,关于x的方程x2-2(k+1)x-k2+2k-1=0的根的情况为( )A.有两个相等的实数根 B.没有实数根C.有两个不相等的实数根 D.无法确定7.已知函数y=kx+b的图象如图21-1,则一元二次方程x2+x+k-1=0根的存在情况是( )A.没有实数根B.有两个相等的实数根 C.有两个不相等的实数根 D.无法确定8.已知实数a,b分别满足a2-6a+4=0,b2-6b+4=0,且a≠b,则ba+ab的值是( )A.7 B.-7 C.11 D.-119.如图21-2,在长为100 m,宽为80 m的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644 m2,则道路的宽应为多少米?设道路的宽为x m,则可列方程为( )A.100×80-100x-80x=7644 B.(100-x)(80-x)+x2=7644 C.(100-x)(80-x)=7644 D.100x+80x=35610.图21-3是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为( )图21-3A.32 B.126 C.135 D.144二、填空题(本大题共6小题,每小题4分,共24分) 11.一元二次方程x2-3=0的解为________________.12.把一元二次方程(x-3)2=4化为一般形式为:________________,二次项为:________,一次项系数为:________,常数项为:________.13.已知2是关于x的一元二次方程x2+4x-p=0的一个根,则该方程的另一个根是__________.14.已知x1,x2是方程x2-2x-1=0的两个根,则1x1+1x2=__________.15.若|b-1|+a-4=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是________.16.一个长100 m,宽60 m的游泳池扩建成一个周长为600 m的大型水上游乐场,把游泳池的长增加x m,那么x等于多少时,水上游乐场的面积为20 000 m2?列出方程__________________________.三、解答题(一)(本大题共3小题,每小题6分,共18分) 17.用公式法解方程:2x2-4x-5=0.18.用配方法解方程:x2-4x+1=0.19.用因式分解法解方程:(y-1)2+2y(1-y)=0.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.若a,b,c是△ABC的三条边,且a2-6a+b2-10c+c2=8b-50,判断此三角形的形状.21.如图21-4,在宽为20 m,长为32 m的矩形耕地上,修筑同样宽的三条道路(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570 m2,道路应为多宽?图21-422.在实数范围内定义一种新运算“”,其规则为:ab=a2-b2,根据这个规则:(1)求43的值;(2)求(x+2)5=0中x的值五、解答题(三)(本大题共3小题,每小题9分,共27分) 23.已知:关于x的方程x2-2(m +1)x+m2=0. (1)当m取何值时,方程有两个实数根?(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.24.已知下列n(n为正整数)个关于x的一元二次方程: x2-1=0, x2+x-2=0, x2+2x -3=0,…x2+(n-1)x-n=0.(1)请解上述4个一元二次方程;(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.25.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?第二十一章自主检测1.C 2.B 3.B 4.A 5.C 6.C 7.C 8.A 9.C 10.D 11.x=±3 12.x2-6x+5=0 x2 -6 5 13.-6 14.-2 15.k≤4,且k≠0 16.(x+100)(200-x)=20 00017.解:∵a=2,b=-4,c=-5,∴b2-4ac=(-4)2-4×2×(-5)=56>0.∴x=4±562×2=4±2 144.∴x1=2+142,x2=2-142. 18.解:∵x2-4x+1=0,∴x2-4x+4=4-1,即(x-2)2=3. ∴x1=2+3,x2=2-3.19.解:∵(y-1)2+2y(1-y)=0,∴(y-1)2-2y(y-1)=0.∴(y-1)(y-1-2y)=0. ∴y-1=0或y-1-2y=0.∴y1=1,y2=-1.20.解:将a2-6a+b2-10c+c2=8b-50变形为a2-6a+9+b2-8b+16+c2-10c+25=0,∴(a-3)2+(b-4)2+(c-5)2=0.∴a-3=0,b-4=0,c-5=0.∴a=3,b=4,c=5. ∵32+42=52,∴△ABC为直角三角形. 21.解:设道路宽为x m, (32-2x)(20-x)=570, 640-32x-40x+2x2=570, x2-36x+35=0, (x-1)(x-35)=0, x1=1,x2=35(舍去).答:道路应宽1 m.22.解:(1)4△3=42-32=16-9=7. (2)∵(x+2)△5=0,即(x+2)2-52=0,∴x1=-7,x2=3.23.解:(1)当Δ≥0时,方程有两个实数根,∴[-2(m+1)]2-4m2=8m+4≥0.∴m≥-12. (2)取m=0时,原方程可化为x2-2x=0,解得x1=0,x2=2.(答案不唯一)24.解:(1)x2-1=(x+1)(x-1)=0,∴x1=-1,x2=1. x2+x-2=(x+2)(x-1)=0,∴x1=-2,x2=1. x2+2x-3=(x+3)(x-1)=0,∴x1=-3,x2=1. …x2+(n-1)x-n=(x+n)(x-1)=0,∴x1=-n,x2=1.(2)共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根;两根之和等于一次项系数的相反数.25.解:(1)设每千克应涨价x元,则(10+x)(500-20x)=6000. 解得x=5或x=10.为了使顾客得到实惠,所以x=5. (2)设涨价x元时总利润为y,则 y=(10+x)(500-20x) =-20x2+300x+5000=-20(x-7.5)2+6125 当x=7.5时,取得最大值,最大值为6125. 答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元.(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.。
《一元二次方程》 单元测试卷 (含答案)

《一元二次方程》单元检测题一、选择题(每小题只有一个正确答案)1. 把方程23402x x ++=左边配成一个完全平方式后,所得方程是( ). (A )2355()416x += (B )2315()24x +=- (C )2315()24x += (D )2355()416x +=- 2.已知方程260x x q -+=可以配方成2()7x p -=的形式, 那么262x x q -+=可以配方成下列的 ( )(A) 2()5x p -= (B) 2()9x p -=(C) 2(2)9x p -+= (D) 2(2)5x p -+=3.一元二次方程2230x x --=的两个根分别为( ).(A)X l =1, x 2=3 (B)X l =1, x 2=-3(C)X 1=-1,X 2=3 (D)X I =-1, X 2=-34. 若2222()(1)60m n m n +--+=,则22m n +的值为( ).(A )3 (B )-2 (C )3或-2 (D )-3或25. 方程(3)x x x +=的根是( ).(A )-2 (B )0 (C )无实根 (D )0或-2 6. 已知x 满足方程2310x x -+=,则1x x+的值为( ). (A )3 (B )-3 (C )32 (D )以上都不对 7. 要使分式2544x x x -+-的值为0,x 等于( ). (A )1 (B )4或1 (C )4 (D )-4或-18. 关于x 的方程22(2)0a a x ax b --++=是一元二次方程的条件是( ).(A )2a ≠-且1a = (B )2a ≠ (C )2a ≠-且1a =- (D )1a =-二、填空题 9. 222(_____)[(____)]3y y y -+=+.10. x =__________.11. 若代数式2713x x -+的值为31,则x =_________________.12.用公式法解方程2815x x =--,其中24b ac -=__________,1x =__________,2x =_______________.13. 一元二次方程x 2-2x-1=0的根是__________.14. 若方程x 2-m=0的根为整数,则m 的值可以是________(只填符合条件的一个即可)15. 若(2x+3y )2+3(2x+3y )-4=0,则2x+3y 的值为_________.16. 请写出一个根为x= 1, 另一根满足-1< x< 1 的一元二次方程_______.三、计算题17.用配方法解下列方程:(1)210257x x -+=; (2)261x x +=;(3)23830x x +-=;(4)2310x x -+=.18.用公式法解下列方程:(1)27180x x --=;(2)22980x x -+=;(3)29610x x ++=;(4)21683x x +=.19.用因式分解法解下列方程:(1)(41)(57)0x x -+=; (2)3(1)22x x x -=-;(3)2(23)4(23)x x +=+; (4)222(3)9x x -=-.20. 阅读材料,解答问题:材料:为解方程(x 2-1)2-5(x 2-1)+4=0我们可以将x 2-1视为一个整体,然后设x 2-1=y ,•则(x 2-1)2=y 2,原方程可化为y 2-5y+4=0,解得y 1=1,y 2=4,当y=1时,x 2-1=1,∴x 2=2,∴x=;当y=4时,x 2-1=4,∴x 2=5,∴x=x 1,x 2,x 3x 4解答问题:(1)填空,在解原方程得到①的过程中利用_________法达到了降次的目的,体现了_______•数学思想;(2)利用上述方法解方程x 4-x 2-6=0.21. 若规定两数a 、b 通过“※”运算,得到4ab ,即a ※b=4ab ,例如2※6=4•×2•×6=48(1)求3※5的值;(2)求x ※x+2※x-2※4=0中x 的值;(3)若无论x 是什么数,总有a ※x=x ,求a 的值.参考答案:一、选择题1.D ;2.B ;3.C ;4.A ;5.D ;6.A ;7.A ;8.C ;二、填空题 9. 19,13-; 10. -5或3;11.9或-2;12.4,-3,-5;13. x 1;x 2;14.如4 , 提示:m 应是一个整数的平方,此题可填的数字很多.15. -•4或1;16.略;三计算题17.(1)15x =25x =(2)13x =-23x =-(3)113x =,23x =-;(4)132x +=,2x =; 18.(1)19x =,22x =-;(2)194x +=,294x =; (3)1213x x ==-; (4)114x =,234x =-; 19.(1)175x =-,214x =;(2)12 3x=-,21x=;(3)13 2x=-,21 2x=;(4)13x=,29x=.20. (1)换元,转化;(2)x=21. (1)3※5=4×3×5=60,(2)由x※x+2※x-2※4=0得4x2+8x-32=0,即x2+2x-8=0,∴x1=2,x2=-4,(3)由a*x=x得4ax=a,无论x为何值总有4ax=x,∴a=14.。
初中数学一元二次方程单元综合测试题(含答案)

初中数学一元二次方程单元综合测试题(含答案)一、填空题(每题2分,共20分)1.方程12x (x -3)=5(x -3)的根是_______.2.下列方程中,是关于x 的一元二次方程的有________.(1)2y 2+y -1=0;(2)x (2x -1)=2x 2;(3)21x-2x=1;(4)ax 2+bx+c=0;(5)12x 2=0. 3.把方程(1-2x )(1+2x )=2x 2-1化为一元二次方程的一般形式为________.4.如果21x -2x -8=0,则1x的值是________.5.关于x 的方程(m 2-1)x 2+(m -1)x+2m -1=0是一元二次方程的条件是________. 6.关于x 的一元二次方程x 2-x -3m=0•有两个不相等的实数根,则m•的取值范围是定______________.7.x 2-5│x │+4=0的所有实数根的和是________. 8.方程x 4-5x 2+6=0,设y=x 2,则原方程变形_________ 原方程的根为________.9.以-1为一根的一元二次方程可为_____________(写一个即可).10.代数式12x 2+8x+5的最小值是_________.二、选择题(每题3分,共18分)11.若方程(a -b )x 2+(b -c )x+(c -a )=0是关于x 的一元二次方程,则必有( ).A .a=b=cB .一根为1C .一根为-1D .以上都不对12.若分式22632x x x x ---+的值为0,则x 的值为( ).A .3或-2B .3C .-2D .-3或2 13.已知(x 2+y 2+1)(x 2+y 2+3)=8,则x 2+y 2的值为( ). A .-5或1 B .1 C .5 D .5或-1 14.已知方程x 2+px+q=0的两个根分别是2和-3,则x 2-px+q 可分解为( ). A .(x+2)(x+3) B .(x -2)(x -3) C .(x -2)(x+3) D .(x+2)(x -3)15已知α,β是方程x2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值为().A.1 B.2 C.3 D.416.三角形两边长分别为2和4,第三边是方程x2-6x+8=0的解,•则这个三角形的周长是().A.8 B.8或10 C.10 D.8和10三、用适当的方法解方程(每小题4分,共16分)17.(1)2(x+2)2-8=0;(2)x(x-3)=x;(3)2=6x;(4)(x+3)2+3(x+3)-4=0.四、解答题(18,19,20,21题每题7分,22,23题各9分,共46分)18.如果x2-10x+y2-16y+89=0,求xy的值.19.阅读下面的材料,回答问题:解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.(1)在由原方程得到方程①的过程中,利用___________法达到________的目的,•体现了数学的转化思想.(2)解方程(x2+x)2-4(x2+x)-12=0.20.如图,是丽水市统计局公布的2000~2003年全社会用电量的折线统计图.(1)填写统计表:2000~2003年丽水市全社会用电量统计表:年份2000 2001 2002 2003全社会用电量(单位:亿kW·h)13.33(2)根据丽水市2001年至2003年全社会用电量统计数据,求这两年年平均增长的百分率(保留两个有效数字).21.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.22.设a,b,c是△ABC的三条边,关于x的方程12x2b x+c-12a=0有两个相等的实数根,•方程3cx+2b=2a的根为x=0.(1)试判断△ABC 的形状.(2)若a ,b 为方程x 2+mx -3m=0的两个根,求m 的值. 23.已知关于x 的方程a 2x 2+(2a -1)x+1=0有两个不相等的实数根x 1,x 2.(1)求a 的取值范围;(2)是否存在实数a ,使方程的两个实数根互为相反数?如果存在,求出a 的值;如果不存在,说明理由.解:(1)根据题意,得△=(2a -1)2-4a 2>0,解得a<14.∴当a<0时,方程有两个不相等的实数根.(2)存在,如果方程的两个实数根x 1,x 2互为相反数,则x 1+x 2=-21a a=0①,解得a=12,经检验,a=12是方程①的根.∴当a=12时,方程的两个实数根x 1与x 2互为相反数.上述解答过程是否有错误?如果有,请指出错误之处,并解答.24、如图,A 、B 、C 、D 为矩形的4个顶点,AB =16cm ,BC =6cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3cm/s 的速度向点B 移动,一直到达点B 为止;点Q 以2cm/s 的速度向点B 移动,经过多长时间P 、Q 两点之间的距离是10cm?25、如图,在△ABC 中,∠B =90°,BC =12cm ,AB =6cm ,点P 从点A 开始沿AB 边向点B 以2cm/s 的速度移动(不与B 点重合),动直线QD 从AB 开始以2cm/s 速度向上平行移动,并且分别与BC 、AC 交于Q 、D 点,连结DP ,设动点P 与动直线QD 同时出发,运动时间为t 秒,(1)试判断四边形BPDQ 是什么特殊的四边形?如果P 点的速度是以1cm/s ,则四边形BPDQ 还会是梯形吗?那又是什么特殊的四边形呢?(2)求t 为何值时,四边形BPDQ 的面积最大,最大面积是多少?C QP B D A C1、如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点时间为t 秒,(1)当t为何值时,△APQ 与△AOB 相似?(2)当t 为何值时,△APQ 的面积为524个平方单位?2、有一边为5cm 的正方形ABCD 和等腰三角形PQR ,PQ =PR =5cm ,QR =8cm ,点B 、C 、Q 、R 在同一直线l 上,当C 、Q 两点重合时,等腰三角形PQR 以1cm/s 的速度沿直线l 按箭头方向匀速运动,(1)t 秒后正方形ABCD 与等腰三角形PQR 重合部分的面积为5,求时间t ; (2)当正方形ABCD 与等腰三角形PQR 重合部分的面积为7,求时间t ;3、如图所示,在平面直角坐标中,四边形OABC 是等腰梯形,CB ∥OA ,OA=7,AB=4,∠COA=60°,点P 为x 轴上的—个动点,点P 不与点0、点A 重合.连结CP ,过点P 作PD 交AB 于点D ,(1)求点B 的坐标;(2)当点P 运动什么位置时,△OCP 为等腰三角形,求这时点P 的坐标;(3)当点P 运动什么位置时,使得∠C PD=∠OAB, 且58BD BA ,求这时点P 的坐标;C BQ R A D lP参考答案:1.x1=3,x2=102.(5)点拨:准确掌握一元二次方程的定义:即含一个未知数,未知数的最高次数是2,整式方程.3.6x2-2=04.4 -2 点拨:把1x看做一个整体.5.m≠±16.m>-112点拨:理解定义是关键.7.0 点拨:绝对值方程的解法要掌握分类讨论的思想.8.y2-5y+6=0 x1x2=,x3x4=9.x2-x=0(答案不唯一)10.-2711.D 点拨:满足一元二次方程的条件是二次项系数不为0.12.A 点拨:准确掌握分式值为0的条件,同时灵活解方程是关键.13.B 点拨:理解运用整体思想或换元法是解决问题的关键,同时要注意x2+y2式子本身的属性.14.C 点拨:灵活掌握因式分解法解方程的思想特点是关键.15.D 点拨:本题的关键是整体思想的运用.16.C 点拨:•本题的关键是对方程解的概念的理解和三角形三边关系定理的运用.17.(1)整理得(x+2)2=4,即(x+2)=±2,∴x1=0,x2=-4(2)x(x-3)-x=0,x(x-3-1)=0,x(x-4)=0,∴x1=0,x2=4.(326x=0,x2-x+1=0,由求根公式得x1,x2.(4)设x+3=y,原式可变为y2+3y-4=0,解得y1=-4,y2=1,即x+3=-4,x=-7.由x+3=1,得x=-2.∴原方程的解为x1=-7,x2=-2.18.由已知x2-10x+y2-16y+89=0,得(x-5)2+(y-8)2=0,∴x=5,y=8,∴xy=58.19.(1)换元降次(2)设x2+x=y,原方程可化为y2-4y-12=0,解得y1=6,y2=-2.由x2+x=6,得x1=-3,x2=2.由x2+x=-2,得方程x2+x+2=0,b2-4ac=1-4×2=-7<0,此时方程无解.所以原方程的解为x1=-3,x2=2.20(则2001年用电量为14.73亿kW·h,2002年为14.73(1+x)亿kW·h,2003年为14.73(1+x)2亿kW·h.则可列方程:14.73(1+x)2=21.92,1+x=±1.22,∴x1=0.22=22%,x2=-2.22(舍去).则2001~2003年年平均增长率的百分率为22%.21.(1)设每件应降价x元,由题意可列方程为(40-x)·(30+2x)=1200,解得x1=0,x2=25,当x=0时,能卖出30件;当x=25时,能卖出80件.根据题意,x=25时能卖出80件,符合题意. 故每件衬衫应降价25元. (2)设商场每天盈利为W 元.W=(40-x )(30+2x )=-2x 2+50x+1200=-2(x 2-25x )+1200=-2(x -12.5)2+1512.5 当每件衬衫降价为12.5元时,商场服装部每天盈利最多,为1512.5元.22.∵12x 2x+c -12a=0有两个相等的实数根,∴判别式=)2-4×12(c -12a )=0,整理得a+b -2c=0 ①,又∵3cx+2b=2a 的根为x=0, ∴a=b ②.把②代入①得a=c ,∴a=b=c ,∴△ABC 为等边三角形. (2)a ,b 是方程x 2+mx -3m=0的两个根, 所以m 2-4×(-3m )=0,即m 2+12m=0, ∴m 1=0,m 2=-12.当m=0时,原方程的解为x=0(不符合题意,舍去), ∴m=12.23.上述解答有错误.(1)若方程有两个不相等实数根,则方程首先满足是一元二次方程, ∴a 2≠0且满足(2a -1)2-4a 2>0,∴a<14且a ≠0. (2)a 不可能等于12. ∵(1)中求得方程有两个不相等实数根,同时a 的取值范围是a<14且a ≠0, 而a=12>14(不符合题意) 所以不存在这样的a 值,使方程的两个实数根互为相反数.。
《一元二次方程》单元检测试试题(含答案)

《一元二次方程》单元检测试题一、选一选,慧眼识金(每小题3分,共24分)1.在一元二次方程265x x x -=+中,二次项系数、一次项系数、常数项分别是( ).A .1、-1、5B .1、6、5C .1、-7、5D .1、-7、-5 2.用配方法解方程22x x +=,方程的两边应同时( ).A .加上14B .加上12C .减去14D .减去123.方程(x -5)( x -6)=x -5的解是( )A .x =5B .x =5或x =6C .x =7D .x =5或x =74.餐桌桌面是长160cm ,宽为100cm 的长方形,妈妈准备设计一块桌布,面积是桌面的2倍,且使四周垂下的边等宽,小刚设四周垂下的边宽为xcm ,则应列得的方程为( ). A .(160+x )(100+x )=160×100×2 B .(160+2x )(100+2x )=160×100×2 C .(160+x )(100+x )=160×100 D .(160+2x )(100+2x )=160×1005.电流通过导线会产生热量,设电流强度为I (安培),电阻为R (欧姆),1秒产生的热量为Q (卡),则有Q=0.24I 2R ,现在已知电阻为0.5欧姆的导线,1秒间产生1.08卡的热量,则该导线的电流是( ).A .2安培B .3安培C . 6安培D .9安培 6.关于x 的方程20ax bx c ++=(a ≠0,b ≠0)有一根为-1,则ba c+的值为( ) A .1 B .-1 C .2 D .-27.关于x 的一元二次方程x 2(23)20m x m --+-=根的情况是( ).A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .根的情况无法确定8.在解二次项系数为1的一元二次方程时,粗心的甲、乙两位同学解同一道题,甲看错了常数项,得到两根分别是4和5;乙看错了一次项系数,得到的两根分别是-3和-2,则方程是( )A .2960x x ++=B .2960x x -+=C .2960x x +-=D .2960x x --= 二、填一填,画龙点睛(每题3分,共18分) 9.关于x 的方程22(2)(3)20mm x m x --+--=是一元二次方程,则m 的值为_______.10.若关于x 的一元二次方程20x mx n ++=有两个相等的实数根,则符合条件的一组m ,n 的实数值可以是m =_________,n =________. 11.第二象限内一点A (1x -, x 2-3),其关于x 轴的对称点为B ,已知AB=12,则点A的坐标为__________.12.随着人们收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入了普通家庭,成为居民消费新的增长点.据某市交通部门统计,2008年底全市汽车拥有量为150万辆,而截止到2010年底,全市的汽车拥有量已达216万辆.则2008年底至2010年底该市汽车拥有量的年平均增长率为__________.13.黎明同学在演算某正数的平方时,将这个数的平方误写成它的2倍,使答案少了35,则这个数为__________. 14.将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a bc d,定义a bc dad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+ 6=,则x =______. 三、做一做,牵手成功(共58分)15.(每小题3分,共9分)用适当方法解下列方程: (1)(x -4)2-81=0;(2)3x (x -3)=2(x -3); (3)2216x x -=.16.(5分)已知213y x x =-+,25(1)y x =-,当x 为何值时,12y y =.17.(6分)飞机起飞时,要先在跑道上滑行一段路程,这种运动在物理中叫做匀加速直线运动,其公式为2012s v t at =+,若某飞机在起飞前滑行了400m 的距离,其中v 0=30m/s ,a =20m/s 2,求所用的时间t .18.(7分)阅读材料:为解方程222(1)5(1)40x x ---+=,我们可以将21x -看作一个整体,然后设21x y -=,那么原方程可化为2540y y -+=……①. 解得y 1=1,y 2=4.当1y =时,211x -=,∴22x =,∴x =;当4y =时,214x -=,∴25x =,∴x =.故原方程的解为1x =2x =22x =-,4x =解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用________法达到了解方程的目的,体现了转化的数学思想; (2)请利用以上知识解方程x 4-x 2-6=0.19.(7分)设a 、b 、c 是△ABC 的三条边,关于x 的方程220x c a ++-=有两个相等的实数根,且方程322cx b a +=的根为0. (1)求证:△ABC 为等边三角形;(2)若a 、b 为方程230x mx m +-=的两根,求m 的值.20.(7分)在国家的宏观调控下,某市的商品房成交价由今年5月份的14000元/m 2下降到7月份的12600元/ m 2(1)问6、70.95) (2)如果房价继续回落,按此降价的百分率,你预测到9月份该市的商品房成交均价是否会跌破10000元/ m 2?请说明理由.21.(8分)已知关于x 的一元二次方程22(21)0x m x m +-+=有两个实数根1x 和2x . (1)求实数m 的取值范围;(2)当22120x x -=时,求m 的值.22.(9分)如图1,在矩形ABCD 中,AB=6㎝,BC=12㎝,点P 从A 开始沿AB 边向点B 以1/cm s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2/cm s 的速度移动,如果P 、Q 分别从A 、B 同时出发. (1)经过几秒后,△PBQ 的面积等于28cm ;(2)经过几秒后,五边形APQCD 的面积最小,最小值是多少?参考答案:一、选一选,慧眼识金1.D .点拨:原方程的一般形式为2750x x --=.2.A .点拨:方程两边同时加上一次项系数一半的平方. 3.D .点拨:可利用因式分解法解方程.4.B .点拨:桌布的长为(160+2x )cm ,桌布的宽为(100+2x )cm . 5.B .点拨:根据题意得,20.240.5 1.08I ⨯=.6.A .点拨:由1x =-,得0a b c -+=,即a c b +=.7.C .点拨:[]2224(23)4(2)4(2)10b ac m m m -=----=-+>.8.B .点拨:设原方程为20x bx c ++=,则129x x b +=-=,126x x c ⋅==. 二、填一填,画龙点睛9.—2. 点拨:根据一元二次方程的定义知,222m -=且20m -≠.图110.2,1. 点拨:答案不惟一,只要满足24m n =即可.11.(-4,6).点拨:根据题意得,23x -=6,解得1x =-3,2x =3(不符合题意,舍去) 12.20%. 点拨:设该市汽车拥有量的年平均增长率为x . 根据题意,得2150(1)216x +=. 13.7.点拨:设这个正数为x ,根据题意得2235x x -=,解得1x =7,2x =-5(舍去)14.点拨: 原方程可转化为22(1)(1)6x x ++-=. 三、做一做,牵手成功15.(1)1x =13,2x =-5; (2)1x =3,223x =; (3)132x =,232x =16.根据题意得,235(1)x x x -+=-,整理得2680x x -+=,解得1x =2,2x =4.即当x =2或x =4时,12y y =. 17.根据题意得,2140030202t t =+⨯,整理得23400t t +-=, 解得1t =5,2t =-8(不符合题意,舍去).答:飞机在起飞前滑行400m 的距离所用的时间为5秒. 18.(1)换元法(2)设2x y =,那么原方程可化为260y y --=,解得13y =;22y =-.当y =3时,23x =,∴x =当y =-2时,x 2 =-2,,不符合题意,应舍去.∴原方程的解为1x 2x =.19.(1)∵方程220x c a ++-=有两个相等的实数根,∴24(2)0c a --=,化简得2a b c +=; 又∵x =0是方程322cx b a +=的根,∴a b =. ∴a b c ==,故△ABC 为等边三角形(2)由(1)知a b =,∴方程230x mx m +-=有两个相等的实数根.∴24(3)0m m -⨯-=,即2120m m +=,解得10m =,212m =-.20.(1)设6、7两月平均每月降价的百分率为x .根据题意,得214000(1)12600x -=,化简得2(1)0.9x -=. 解得10.05x ≈,2 1.95x ≈(不合题意,应舍去).答:设6、7两月平均每月降价的百分率为5%.(2)如果房价按此降价的百分率继续回落,则9月份该市的商品房成交均价为12600(1-x )2 =12600×0.9=11340>10000.答:9月份该市的商品房成交均价不会跌破10000元/m 2. 21.(1)由题意有2224(21)40b ac m m -=--≥,解得14m ≤. 即实数m 的取值范围是14m ≤. (2)由22120x x -=得,1212()()0x x x x +-=.若120x x +=,即(21)0m --=,解得12m =. ∵21>41,∴12m =不合题意,应舍去. 若120x x -=,即12x x =,∴240b ac -=,由(1)知14m =. 故当22120x x -=时,14m =. 22.(1)设经过x 秒后,△PBQ 的面积等于28cm .此时BP=(6-x )cm ,BQ=2x cm .根据题意得1(6)282x x -⋅=,解得12x =,14x =. 答:经过2秒或4秒后,△PBQ 的面积等于28cm . (2)设经过y 秒后,五边形APQCD 的面积最小. 此时BP=(6-y )cm ,BQ=2y cm ,则S △PBQ =1(6)22y y -⋅=26y y -. ∴S 五边形APQCD =S 四边形ABCD -S △PBQ =72-(26y y -)=2(3)63y -+. ∴当3y =时,S 五边形APQCD =63.答:经过3秒后,五边形APQCD 的面积最小,最小值是63cm 2.。
2024人教版数学九年级上册第一章一元二次方程单元复习卷(含答案)

第二十一章一元二次方程章末复习测试题(二)一.选择题1.一元二次方程(x﹣2)2=0的根是()A.x=2B.x1=x2=2C.x1=﹣2,x2=2D.x1=0,x2=2 2.用公式法解一元二次方程2x2+3x=1时,化方程为一般式当中的a、b、c依次为()A.2,﹣3,1B.2,3,﹣1C.﹣2,﹣3,﹣1D.﹣2,3,1 3.若关于x的一元二次方程m2x2﹣(2m﹣1)x+1=0有两个实数根,则m的取值范围是()A.m <B.m≤C.m≥D.m ≤且m≠04.已知关于x的一元二次方程x2﹣2ax+4=0的一个根是2,则a的值为()A.1B.﹣1C.2D.﹣25.方程(m﹣1)x2+2mx﹣3=0是关于x的一元二次方程,则()A.m≠±1B.m=1C.m≠﹣1D.m≠16.菱形ABCD的一条对角线长为6cm,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长等于()A.10cm B.12cm C.16cm D.12cm或16cm7.已知一元二次方程x2+2x﹣1=0的两实数根为x1、x2,则x1•x2的值为()A.2B.﹣2C.1D.﹣1 8.九江某快递公司随着网络的发展,业务增长迅速,完成快递件数从六月份的10万件增长到八月份的12.1万件.假定每月增长率相同,设为x.则可列方程为()A.10x+x2=12.1B.10(x+1)=12.1C.10(1+x)2=12.1D.10+10(1+x)=12.19.若等腰三角形一条边的边长为3,另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是()A.27B.36C.27或36D.1810.用配方法解方程x2﹣8x+5=0,将其化为(x+a)2=b的形式,正确的是()A.(x+4)2=11B.(x+4)2=21C.(x﹣8)2=11D.(x﹣4)2=112024人教版数学九年级上册第一章一元二次方程单元复习卷(含答案)11.若a,b,c满足,则关于x的方程ax2+bx+c=0(a≠0)的解是()A.1,0B.﹣1,0C.1,﹣1D.无实数根12.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.32x+2×20x﹣2x2=570B.32x+2×20x=32×20﹣570C.(32﹣2x)(20﹣x)=32×20﹣570D.(32﹣2x)(20﹣x)=570二.填空题13.一元二次方程x(x﹣2)=x﹣2的一个根为x=2,另一个根为.14.用一根20m长的绳子围成一个面积为24m2矩形,则矩形的长与宽分别是.15.今年我国生猪价格不断飙升,某超市的排骨价格由第一季度的每公斤40元上涨到第三季度的每公斤元90,则该超市的排骨价格平均每个季度的增长率为.16.若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为.17.某企业退休职工李师傅2013年月退休金为1500元,2015年达到2160元.设李师傅的月退休金从2013年到2015年年平均增长率为x,可列方程为.18.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒,若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长,设剪去的小正方形边长是xcm,根据题意可列方程,化为一般式为.三.解答题19.解下列方程.(1)(4x﹣1)2=225.(2)(x﹣5)(x﹣6)=x﹣5.20.已知:关于x的一元二次方程x2+(2m+1)x+m2+m=0.(1)求证:此方程总有两个不相等的实数根;(2)请选择一个合适的m值,写出这个方程并求出此时方程的根.21.a为实数,关于x的方程(x﹣a)2+2(x+1)=a有两个实数根x1,x2.(1)求a的取值范围.(2)若(x1﹣x2)2+x1x2=12.试求a的值.22.有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃,设花圃的一边AB为xm,面积为ym2.(1)用含有x的代数式表示y.(2)如果要围成面积为63m2的花圃,AB的长是多少?(3)能围成面积为72m2的花圃吗!如果能,请求出AB的长;如果不能,请说明理由.23.方程x2+ax+b=0与x2+bx+a=0有一个公共根,设它们另两个根为x1,x2;方程x2﹣cx+d=0与x2﹣dx+c=0有一个公共根,设它们另两个根为x3,x4.求x1x2x3x4的取值范围(a、b<0,a≠b,c、d<0,c≠d)24.2019年国庆档上映了多部优质国产影片,其中《我和我的祖国》、《中国机长》这两部影片不管是剧情还是制作,都非常值得一看.《中国机长》是根据真实故事改编的,影片中全组机组人员以自己的实际行动捍卫安全、呵护生命,堪称是“新时代的英雄”、“民航奇迹的创造者”,据统计,某地10月1日该影片的票房约为1亿,10月3日的票房约为1.96亿.(1)求该地这两天《中国机长》票房的平均增长率;(2)电影《我和我的祖国》、《中国机长》的票价分别为40元、45元,10月份,某企业准备购买200张不同时段的两种电影票,预计总花费不超过8350元,其中《我和我的祖国》的票数不多于《中国机长》票数的2倍,请求出该企业有多少种购买方案,并写出最省钱的方案及所需费用.25.为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.参考答案一.选择题1.解:(x﹣2)2=0,则x1=x2=2,故选:B.2.解:∵方程2x2+3x=1化为一般形式为:2x2+3x﹣1=0,∴a=2,b=3,c=﹣1.故选:B.3.解:由已知得:,解得:m≤且m≠0.故选:D.4.解:∵关于x的一元二次方程x2﹣2ax+4=0的一个根是2,∴22﹣2a×2+4=0,即﹣4a=﹣8解得,a=2.故选:C.5.解:根据题意得:m﹣1≠0,解得:m≠1,故选:D.6.解:解方程x2﹣7x+12=0得:x=3或4,即AB=3或4,∵四边形ABCD是菱形,∴AB=AD=DC=BC,当AD=DC=3cm,AC=6cm时,3+3=6,不符合三角形三边关系定理,此时不行;当AD=DC=4cm,AC=6cm时,符合三角形三边关系定理,即此时菱形ABCD的周长是4×4=16,故选:C.7.解:∵一元二次方程x2+2x﹣1=0的两实数根为x1、x2,所以x1•x2==﹣1.故选:D.8.解:设每月增长率为x,根据题意得:10(1+x)2=12.1.故选:C.9.解:当3为腰长时,将x=3代入原方程得9﹣12×3+k=0,解得:k=27,∴原方程为x2﹣12x+27=0,∴x1=3,x2=9,∵3+3<9,∴长度为3,3,9的三条边不能围成三角形∴k=27舍去;当3为底边长时,△=(﹣12)2﹣4k=0,解得:k=36.故选:B.10.解:x2﹣8x+5=0,x2﹣8x=﹣5,x2﹣8x+16=﹣5+16,(x﹣4)2=11.故选:D.11.解:当x=1时,a+b+c=0,当x=﹣1时,a﹣b+c=0,所以关于x的方程ax2+bx+c=0(a≠0)的解为1或﹣1.故选:C.12.解:设道路的宽为xm,则草坪的长为(32﹣2x)m,宽为(20﹣x)m,根据题意得:(32﹣2x)(20﹣x)=570.故选:D.二.填空题(共6小题)13.解:方程整理为x2﹣3x+2=0,设方程的另一个解为t,则2t=2,解得t=1,即方程的另一个解为1.故答案为1.14.解:设矩形的长为xm,则宽为m,依题意,得:x•=24,整理,得:x2﹣10x+24=0,解得:x1=6,x2=4.∵x≥,∴x≥5,∴x=6,=4.故答案为:6m,4m.15.解:设平均每个季度的增长率为x,依题意,得:40(1+x)2=90,解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).故答案为:50%.16.解:∵a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,∴a、b可看作方程x2﹣4x+1=0的两个实数解,∴a+b=4,ab=1,而a2+1=4a,b2+1=4b,∴=+=×=×=1.故答案为1.17.解:如果设李师傅的月退休金从2013年到2015年年平均增长率为x,那么根据题意得今年退休金为:1500(1+x)2,列出方程为:1500(1+x)2=2160.故答案为:1500(1+x)2=2160.18.解:设剪去的小正方形边长是xcm,则长方形纸盒的底面长为(10﹣2x)cm,宽为(6﹣2x)cm,依题意,得:(10﹣2x)(6﹣2x)=32,即x2﹣8x+7=0.故答案为:x2﹣8x+7=0.三.解答题(共7小题)19.解:(1)∵(4x﹣1)2=225,∴4x﹣1=15或4x﹣1=﹣15,解得x=4或x=﹣;(2)∵(x﹣5)(x﹣6)﹣(x﹣5)=0,∴(x﹣5)(x﹣7)=0,则x﹣5=0或x﹣7=0,解得x=5或x=7.20.(1)证明:∵△=(2m+1)2﹣4m2﹣4m=1>0,∴方程总有两个不相等的实数根;(2)解:当m=0时,方程化为x2+x=0,解得x1=0,x2=﹣1.21.解:(1)(x﹣a)2+2(x+1)=a,变形为x2﹣2(a﹣1)x+a2﹣a+2=0.根据题意得△=4(a﹣1)2﹣4(a2﹣a+2)=4a2﹣8a+4﹣4a2+4a﹣8=﹣4a﹣4≥0,解得a≤﹣1.即a的取值范围是a≤﹣1;(2)由根与系数的关系得x1+x2=2(a﹣1),x1x2=a2﹣a+2,∵(x1﹣x2)2+x1x2=12,∴(x1+x2)2﹣3x1x2=12,∴[2(a﹣1)]2﹣3(a2﹣a+2)=12,即a2﹣5a﹣14=0,解得a1=﹣2,a2=7,∵a≤﹣1,∴a的值为﹣2.22.解:(1)由题意得:y=x(30﹣3x),即y=﹣3x2+30x.(2)当y=63时,﹣3x2+30x=63.解此方程得x1=7,x2=3.当x=7时,30﹣3x=9<10,符合题意;当x=3时,30﹣3x=21>10,不符合题意,舍去;∴当AB的长为7m时,花圃的面积为63m2.(3)不能围成面积为72m2的花圃.理由如下:如果y=72,那么﹣3x2+30x=72,整理,得x2﹣10x+24=0,解此方程得x1=4,x2=6,当x=4时,30﹣3x=18,不合题意舍去;当x=6时,30﹣3x=12,不合题意舍去;故不能围成面积为72m2的花圃.23.解:∵x2+ax+b=0与x2+bx+a=0有一个公共根,∴x2+ax+b=x2+bx+a,∴(a﹣b)x=a﹣b,∵a≠b,∴x=1,∴x1=b,x2=a,∴a+b=﹣1,∴x1+x2=﹣1,∵x2﹣cx+d=0与x2﹣dx+c=0有一个公共根,∴x2﹣cx+d=x2﹣dx+c,∴﹣(d﹣c)x=d﹣c,∵c≠d,∴x=﹣1,∴x3=﹣d,x4=﹣c,∴d+c=﹣1,∴x3+x4=1,∵a、b<0,c、d<0,∴(﹣x1)+(﹣x2)≥2,x3+x4≥2,∴0<x1x2≤,0<x3x4≤,∴0<x1x2x3x4≤.24.解:(1)设该地这两天《中国机长》票房的平均增长率为x.根据题意得:1×(1+x)2=1.96解得:x1=0.4,x2=﹣2.4(舍)答:该地这两天《中国机长》票房的平均增长率为40%.(2)设购买《我和我的祖国》a张,则购买《中国机长》(200﹣a)张根据题意得:解得:130≤a≤∵a为正整数∴a=130,131,132,133∴该企业共有4种购买方案,购买《我和我的祖国》133张,《中国机长》67张时最省钱,费用为:40×133+45×67=8335(元).答:最省钱的方案为购买《我和我的祖国》133张,《中国机长》67张,所需费用为8335元.25.解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合题意,舍去).答:广场中间小路的宽为1米.11。
一元二次方程单元测试题及答案

一元二次方程测试题 【1 】一、填空题:(本大题共10小题,每小题3分,共30分)1.已知两个数的差等于4,积等于45,则这两个数为和.2.当m 时,方程()05122=+--mx x m 不是一元二次方程,当m 时,上述方程是一元二次方程. 3.用配办法解方程0642=--x x ,则___6___42+=+-x x ,所以_______,21==x x . 4.假如()4122++-x m x 是一个完整平方公式,则=m . 5.当≥0时,一元二次方程02=++c bx ax 的求根公式为.6.假如21x x 、是方程06322=--x x 的两个根,那么21x x +=,21x x ⋅=.7.若方程032=+-m x x 有两个相等的实数根,则m =,两个根分离为.8.若方程0892=+-x kx 的一个根为1,则k =,另一个根为.9.以-3和7为根且二次项系数为1的一元二次方程是.10.关于x 的一元二次方程0322=+++m m x mx 有一个根为零,那m 的值等于.二、选择题(本大题共8小题,每小题3分,共24分)1.下列方程中,一元二次方程是( ) (A ) 221x x +(B ) bx ax +2(C ) ()()121=+-x x (D ) 052322=--y xy x2.方程()()1132=-+x x 的解的情形是( )(A )有两个不相等的实数根 (B )没有实数根(C )有两个相等的实数根 (D )有一个实数根3.假如一元二次方程()012=+++m x m x 的两个根是互为相反数,那么有( ) (A )m =0 (B )m =-1 (C )m =1 (D )以上结论都不合错误4.已知21x x 、是方程122+=x x 的两个根,则2111x x +的值为( )(A )21-(B )2 (C )21(D )-2 5.不解方程,01322=-+x x 的两个根的符号为( )(A )同号 (B )异号 (C )两根都为正 (D )不克不及肯定6.已知一元二次方程()002≠=+m n mx ,若方程有解,则必须( ) A.0=n B.同号mn C.的整数倍是m n D.异号mn7.若的值为则的解为方程10522++=-+a a ,x x a ( ) A.12 B.6 C.9 D.168.某超市一月份的营业额为200万元,三月份的营业额为288万元,假如每月比上月增加的百分数雷同,则平均每月的增加率为( )A.%10B.%15C.%20D.%25三、解下列方程(本大题共4小题,每小题4分,共16分)1.0152=+-x x (用配办法)2.()()2232-=-x x x 3.052222=--x x 4.()()22132-=+y y 四、(8分)当m 为何值时,一元二次方程()()033222=-+-+m x m x 有两个不相等的实数根? 五、(10分)已知x 1x 2是方程x 2-2x-1=0的两根,则x 11+x 21是若干?六.(10分)如图,一块长和宽分离为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方厘米.求截去正方形的边长.七1.(10分)将进货单价40元的商品按50元出售,能卖出500个,已知这种商品每涨价1元,就会少发卖10个.为了赚得8000元的利润,售价应定为若干?这时应进货若干个.2.(12分)如图,在s cmB AB A p ,B ,ABC 190以向点开始沿边从点点中︒=∠∆的速度移动,与此同时,点Q 从点B 开端沿边BC 向点C 以s cm 2的速度移动.假如P.Q 分离从A.B 同时动身,经由几秒,PBQ ∆的面积等于28cm (AB=6cm,BC=8cm )汇智教导九年级第二单元一元二次方程测试卷答案一填空题1.9或-9 5或-5 Q P CBA2.等于正负1 .不等于正负13..4 4 2+102-102-4ac a acb b 242-±- 6.23-3 7.49238.1 82-4x-21=0二选择题三:解方程 1.421425x 5x 2=+- 2. ()()02x x 2x 32=--- 2215x 42125x 12+==⎪⎭⎫ ⎝⎛-()()3x 2x 0x 6x 32x 21===---2215x 2-=新课标第一网3.()482548=⨯-⨯-=∆4.()()01y 32y 22=--+ 24822x 1+=或24822x 2-=()()0y 231y 4=-+ 2322x 1+=或2322x 1-=23y 41y 21=-=, 四 解:当()m m 4322--=∆>0 时 即124912422+-+-m m m >0m <47五 解:212x ,x 02x 7x 的两个根为=--则 2x x ,7x x 2121-==+()()8x 2x 2,14x 22x 2121-==+08y 14y 2=-+六 解:21x ,x 设两根分别为()4k x x 2k 2x x 22121+=⋅--=+则()()()1621k 214k 42k 4x x 4x x x x 2x x 2221221212221-==+--=⋅-+=⋅-+以题意得七 解:(1)设售价定x 50- 元 则 售出x 10500- 有 ()()0x 10500x 10=-+10x 30x 21==,50+30=80 或 50+10=60当售价为80元时 应进200个当售价为60元时 应进400个(2)设经由x 秒则 ()()821x 6x 2=⨯-4x 2x 21==,经由2秒或4秒∆PBQ 的面积等于8CM 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方圆学校九年级第21章 一元二次方程单元综合测试题一、填空题(每题2分,共20分)1.方程12x (x -3)=5(x -3)的根是_______.2.下列方程中,是关于x 的一元二次方程的有________.(1)2y 2+y -1=0;(2)x (2x -1)=2x 2;(3)21x-2x=1;(4)ax 2+bx+c=0;(5)12x 2=0. 3.把方程(1-2x )(1+2x )=2x 2-1化为一元二次方程的一般形式为________.4.如果21x -2x -8=0,则1x的值是________.5.关于x 的方程(m 2-1)x 2+(m -1)x+2m -1=0是一元二次方程的条件是________.6.关于x 的一元二次方程x 2-x -3m=0•有两个不相等的实数根,则m•的取值范围是定______________.7.x 2-5│x │+4=0的所有实数根的和是________. 8.方程x 4-5x 2+6=0,设y=x 2,则原方程变形_________ 原方程的根为________.9.以-1为一根的一元二次方程可为_____________(写一个即可).10.代数式12x 2+8x+5的最小值是_________.二、选择题(每题3分,共18分)11.若方程(a -b )x 2+(b -c )x+(c -a )=0是关于x 的一元二次方程,则必有( ).A .a=b=cB .一根为1C .一根为-1D .以上都不对12.若分式22632x x x x ---+的值为0,则x 的值为( ).A .3或-2B .3C .-2D .-3或2 13.已知(x 2+y 2+1)(x 2+y 2+3)=8,则x 2+y 2的值为( ). A .-5或1 B .1 C .5 D .5或-1 14.已知方程x 2+px+q=0的两个根分别是2和-3,则x 2-px+q 可分解为( ). A .(x+2)(x+3) B .(x -2)(x -3) C .(x -2)(x+3) D .(x+2)(x -3)15已知α,β是方程x 2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值为( ).A .1B .2C .3D .416.三角形两边长分别为2和4,第三边是方程x 2-6x+8=0的解,•则这个三角形的周长是( ).A .8B .8或10C .10D .8和10三、用适当的方法解方程(每小题4分,共16分)17.(1)2(x+2)2-8=0;(2)x(x-3)=x;(3)3x2=6x-3;(4)(x+3)2+3(x+3)-4=0.四、解答题(18,19,20,21题每题7分,22,23题各9分,共46分)18.如果x2-10x+y2-16y+89=0,求xy的值.19.阅读下面的材料,回答问题:解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.(1)在由原方程得到方程①的过程中,利用___________法达到________的目的,•体现了数学的转化思想.(2)解方程(x2+x)2-4(x2+x)-12=0.20.如图,是丽水市统计局公布的2000~2003年全社会用电量的折线统计图.(1)填写统计表:2000~2003年丽水市全社会用电量统计表:年份2000 2001 2002 2003全社会用电量(单位:亿kW·h)13.33(2均增长的百分率(保留两个有效数字).21.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.22.设a,b,c是△ABC的三条边,关于x的方程12x2b x+c-12a=0有两个相等的实数根,•方程3cx+2b=2a的根为x=0.(1)试判断△ABC 的形状.(2)若a ,b 为方程x 2+mx -3m=0的两个根,求m 的值.23.已知关于x 的方程a 2x 2+(2a -1)x+1=0有两个不相等的实数根x 1,x 2.(1)求a 的取值范围;(2)是否存在实数a ,使方程的两个实数根互为相反数?如果存在,求出a 的值;如果不存在,说明理由.解:(1)根据题意,得△=(2a -1)2-4a 2>0,解得a<14.∴当a<0时,方程有两个不相等的实数根.(2)存在,如果方程的两个实数根x 1,x 2互为相反数,则x 1+x 2=-21a a=0①,解得a=12,经检验,a=12是方程①的根.∴当a=12时,方程的两个实数根x 1与x 2互为相反数.上述解答过程是否有错误?如果有,请指出错误之处,并解答.24、如图,A 、B 、C 、D 为矩形的4个顶点,AB =16cm ,BC =6cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3cm/s 的速度向点B 移动,一直到达点B 为止;点Q 以2cm/s 的速度向点B 移动,经过多长时间P 、Q 两点之间的距离是10cm? 25、如图,在△ABC 中,∠B =90°,BC =12cm ,AB =6cm ,点P 从点A 开始沿AB 边向点B 以2cm/s 的速度移动(不与B 点重合),动直线QD 从AB 开始以2cm/s 速度向上平行移动,并且分别与BC 、AC 交于Q 、D 点,连结DP ,设动点P 与动直线QD 同时出发,运动时间为t 秒,(1)试判断四边形BPDQ 是什么特殊的四边形?如果P 点的速度是以1cm/s ,则四边形BPDQ 还会是梯形吗?那又是什么特殊的四边形呢?(2)求t 为何值时,四边形BPDQ 1、如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0)开始在线段AO 上以每秒1个单位长度的速度向点O 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点时间为t 秒, (1)当t 为何值时,△APQ 与△AOB 相似? (2)当t 为何值时,△APQ 的面积为524个平方单位? 2、有一边为5cm 的正方形ABCD 和等腰三角形PQR ,PQ =PR 8cm ,点B 、C 、Q 、R 在同一直线l 上,当C 、Q 两点重合时,等腰三角形PQR 以1cm/s 的速度沿直线l 按箭头方向匀速运动,(1)t 秒后正方形ABCD 与等腰三角形PQR 重合部分的面积为5,求时间t ; (2)当正方形ABCD 与等腰三角形PQR 重合部分的面积为7,求时间t ;3、如图所示,在平面直角坐标中,AB=4,∠COA=60°,点P 为x 轴上的结CP ,过点P 作PD 交AB 于点D ,QPB D A C置时,△OCP为等腰三角形,求这时点P的坐标;(3)当点P运动什么位置时,使得∠C PD=∠OAB,且58BDBA,求这时点P的坐标;答案:1.x1=3,x2=102.(5)点拨:准确掌握一元二次方程的定义:即含一个未知数,未知数的最高次数是2,整式方程.3.6x2-2=04.4 -2 点拨:把1x看做一个整体.5.m≠±16.m>-112点拨:理解定义是关键.7.0 点拨:绝对值方程的解法要掌握分类讨论的思想.8.y2-5y+6=0 x1,x2=,x3x4=9.x2-x=0(答案不唯一)10.-2711.D 点拨:满足一元二次方程的条件是二次项系数不为0.12.A 点拨:准确掌握分式值为0的条件,同时灵活解方程是关键.13.B 点拨:理解运用整体思想或换元法是解决问题的关键,同时要注意x2+y2式子本身的属性.14.C 点拨:灵活掌握因式分解法解方程的思想特点是关键.15.D 点拨:本题的关键是整体思想的运用.16.C 点拨:•本题的关键是对方程解的概念的理解和三角形三边关系定理的运用.17.(1)整理得(x+2)2=4,即(x+2)=±2,∴x1=0,x2=-4(2)x(x-3)-x=0,x(x-3-1)=0,x(x-4)=0,∴x1=0,x2=4.(32-6x=0,x2-,由求根公式得x1x2.(4)设x+3=y,原式可变为y2+3y-4=0,解得y1=-4,y2=1,即x+3=-4,x=-7.由x+3=1,得x=-2.∴原方程的解为x1=-7,x2=-2.18.由已知x 2-10x+y 2-16y+89=0, 得(x -5)2+(y -8)2=0, ∴x=5,y=8,∴x y =58. 19.(1)换元 降次(2)设x 2+x=y ,原方程可化为y 2-4y -12=0, 解得y 1=6,y 2=-2.由x 2+x=6,得x 1=-3,x 2=2. 由x 2+x=-2,得方程x 2+x+2=0,b 2-4ac=1-4×2=-7<0,此时方程无解. 所以原方程的解为x 1=-3,x 2=2. 20(2)设2001年至2003年平均每年增长率为x , 则2001年用电量为14.73亿kW ·h , 2002年为14.73(1+x )亿kW ·h , 2003年为14.73(1+x )2亿kW ·h .则可列方程:14.73(1+x )2=21.92,1+x=±1.22, ∴x 1=0.22=22%,x 2=-2.22(舍去).则2001~2003年年平均增长率的百分率为22%. 21.(1)设每件应降价x 元,由题意可列方程为(40-x )·(30+2x )=1200, 解得x 1=0,x 2=25,当x=0时,能卖出30件; 当x=25时,能卖出80件.根据题意,x=25时能卖出80件,符合题意. 故每件衬衫应降价25元. (2)设商场每天盈利为W 元. W=(40-x )(30+2x )=-2x 2+50x+1200=-2(x 2-25x )+1200=-2(x -12.5)2+1512.5 当每件衬衫降价为12.5元时,商场服装部每天盈利最多,为1512.5元.22.∵12x 2x+c -12a=0有两个相等的实数根,∴判别式=)2-4×12(c -12a )=0,整理得a+b -2c=0 ①,又∵3cx+2b=2a 的根为x=0, ∴a=b ②.把②代入①得a=c ,∴a=b=c ,∴△ABC 为等边三角形.(2)a ,b 是方程x 2+mx -3m=0的两个根, 所以m 2-4×(-3m )=0,即m 2+12m=0, ∴m 1=0,m 2=-12.当m=0时,原方程的解为x=0(不符合题意,舍去),∴m=12.23.上述解答有错误.(1)若方程有两个不相等实数根,则方程首先满足是一元二次方程,∴a2≠0且满足(2a-1)2-4a2>0,∴a<14且a≠0.(2)a不可能等于12.∵(1)中求得方程有两个不相等实数根,同时a的取值范围是a<14且a≠0,而a=12>14(不符合题意)所以不存在这样的a值,使方程的两个实数根互为相反数.。