判断氧化还原反应进行方向查标准电极电势表得共74页

合集下载

电极电势与氧化还原反应的关系

电极电势与氧化还原反应的关系

电极电势与氧化还原反应的关系1. 电极电势的概念电极电势是指电化学反应中电子在电极上移动所产生的电场势能。

它是一个重要的物理量,可以用来描述化学反应的进行方向和速率。

2. 电极电势的测定电极电势可以通过电池或电化学电池进行测定。

在电池的正极和负极之间产生的电势差就是电极电势。

3. 电极电势与氧化还原反应的关系氧化还原反应指的是物质失去电子(氧化)和物质获得电子(还原)的过程。

这些过程会伴随着电化学反应产生电势。

不同的氧化还原反应具有不同的电极电势。

4. 电极电势的计算根据化学反应生成或消耗的电子数目,可以利用法拉第定律和纳迪尔方程来计算电极电势。

这些定律和方程可以帮助我们理解电化学反应中电势的变化。

5. 电极电势与标准电极电势标准电极电势是指在标准状态下(通常指气压为 1 atm,溶液浓度为1 M)测定的电极电势。

它是一种用来比较不同氧化还原反应电势大小的物理量,常用标准氢电极作为参比电极。

6. 电极电势与电化学反应动力学电极电势可以影响氧化还原反应的进行速率。

通常情况下,电极电势越大,氧化还原反应越容易进行,速率越快。

7. 应用电极电势的研究在多个领域有着广泛的应用,例如在燃料电池、电化学传感器、电镀和金属腐蚀等方面都有重要的作用。

通过对电极电势的理解和控制,可以提高这些应用的效率和性能。

总结:电极电势作为电化学领域中的重要物理量,与氧化还原反应有着密切的关系。

通过对电极电势的测定、计算和应用,可以深入理解和控制氧化还原反应的进行和速率,从而推动电化学领域的发展,并促进相关应用的进步和改进。

8. 电极电势与溶液中的化学平衡在电化学反应中,溶液中的化学平衡也会影响电极电势的大小。

根据化学平衡原理,不同物质的浓度对于电极电势也会产生影响。

在有些氧化还原反应中,溶液中的氧化物或还原物质的浓度变化会导致电极电势的变化。

在研究电极电势的时候,需要考虑到溶液中的化学平衡对电极电势的影响,这可以通过应用“Nernst方程”来描述。

氧化还原反应与电极电势

氧化还原反应与电极电势
第九章 氧化还原反应与电极电势
redox reaction and electrode potential
第九章 氧化还原反应与电极电势
review
第一节 原电池 一种表示方法 五种电极类型
一种电层理论
第二节
电极电势
一种电极电势
第九章 氧化还原反应与电极电势
contents
第三节 电极电势的Nernst 方程式及影响因素 第四节 电势法测定溶液pH 第五节 传感器
K

K=106时,反应基本完成.
nE lg K 0.05916

第九章 氧化还原反应与电极电势
第三节 电极电势Nernst方程式及影响因素
求298K下,Zn+Cu2+=Cu+Zn2+反应的标准平 实 衡常数,并判断反应是否进行完全。 例 分 解:查表得: (Cu 2 / Cu ) 0.3419V , 析 4 2

5
1
第九章 氧化还原反应与电极电势
第三节 电极电势Nernst方程式及影响因素
0.05916 pH 2 / 100 (H / H 2 ) lg 2 c2H 0.05916 100 / 100 0.0000 lg 0.2810V 5 2 2 (1.76 10 ) ( Pb2 / Pb) 0.1262V
(Zn / Zn) 0.7618V ,
2
E (Cu / Cu) (Zn / Zn)
2



0.3419 (0.7618) 1.1037V
第九章 氧化还原反应与电极电势
第三节 电极电势Nernst方程式及影响因素
nE 2 1.1037 lg K 37.3124 0.05916 0.05916

氧化还原反应与电极电势

氧化还原反应与电极电势

2Fe2++Sn4+
22
第三节 电极电势
一、电极电势的产生 把金属插入含有该金属离子的溶液中,当金 属的溶解速率与金属离子的沉积速率相等时, 建立了如下平衡:
M(s)
2019/1/7
溶解 沉积
M (aq)+ne23
n+
电极表面双电层(doublecharge layer)结构 影响电极电势的因素: 氧化态还原态得失电子的能力,浓度,温度
2019/1/7
ZnSO4+Cu Zn2+ + Cu
18
Zn + Cu2+
原电池
(-) Zn│ZnSO4(c) ‖CuSO4(c') │Cu (+)
4.原电池组成式书写原则: (1)原电池的负极写在左边,正极写在右边,两电极以盐桥相 连,用“‖”表示,在盐桥两侧是两个电极的电解质溶液。 (2)电极板与电极其余部分(电解质溶液)的界面用 “∣”分开。 同一相中不同物质之间,及电极中其它相界面用“,”分开。 (3)当气体或液体不能直接与普通导线相连时,应以不活泼的 惰性金属(如铂)或石墨作电极板起导电作用。 (4)纯气体、纯液体和固体,如H2(g)、O2(g)、I2(s)、Br2(l), 需紧靠电极板,并注明以何种状态存在。 (5)溶液注明浓度,气体注明分压。标准状态下浓度表示为cθ。 标准状态下的铜锌原电池的电池符号表示为:
在单质或化合物中假设把每个化学键中的电子指定给所连接的两原子中电负性较大的一个原子这样所得的某元素一个原子的电荷数就是该元素的氧化数即氧化数是某元素一个原子的形式荷电数表观荷电数apparentchargenumber这种荷电数由假设把每个化学键中的电子指定给电负性更大的原子而求得

化学反应的氧化还原反应与电极电势

化学反应的氧化还原反应与电极电势

化学反应的氧化还原反应与电极电势化学反应是物质之间发生相互转化的过程,而氧化还原反应则是其中一种最常见且重要的反应类型。

氧化还原反应是指物质中的原子、离子或分子失去或获得电子的过程。

在氧化还原反应中,物质可以被氧化剂接受电子而被氧化,同时也可以作为还原剂给予电子而被还原。

在这种反应中,电子的转移导致了反应的进行。

在氧化还原反应中,电极电势的概念十分重要。

电极电势是指在电池中,电极上电子供体和电子受体之间转移电子的能力。

由于电子流是从电子供体流向电子受体,因此电子供体在电极上为负电势,而电子受体在电极上为正电势。

电极电势的差异驱动着氧化还原反应的进行。

氧化还原反应中的电极分为两类:氧化电极和还原电极。

氧化电极是指在反应过程中发生氧化反应的电极,而还原电极则是指发生还原反应的电极。

在氧化电极上,物质失去电子并被氧化,而在还原电极上,物质获得电子并被还原。

电极电势的测量往往以标准氢电极为参照。

标准氢电极的电势被定义为零电势,其他电极的电势则相对于标准氢电极来进行测量。

标准氢电极由酸性溶液中的氢气和可溶于溶液中的氯化铂电极构成。

该电极下的氧化还原反应为:2H⁺ + 2e⁻ → H₂其中,酸性溶液中的氢离子被还原成氢气。

标准氢电极被用作电势参照是因为其电位极其稳定,并且在实验中易于操作。

在氧化还原反应中,电极电势的差异决定着反应的进行方向。

如果两个电极的电势差大于零,即氧化电极的电势高于还原电极的电势,那么反应将自发地进行。

反之,如果两个电极的电势差小于零,则反应不会自发地进行。

氧化还原反应的方向也可以通过研究标准电势来预测。

电极电势可以通过测量电池中两个电极的电势差来获得。

标准电势是在标准状态下测量得到的,与物质的浓度、温度等因素无关。

标准电势可以用于判断不同氧化还原对的强弱关系。

根据标准电势,可以把氧化还原反应分为两类:正电势反应和负电势反应。

正电势反应是指具有正标准电势的氧化还原对,其电势差大于零,反应自发进行。

氧化还原反应和电极电势课件

氧化还原反应和电极电势课件
第七章 氧化还原反应和电极电势
第一节 第二节 第三节 第四节 第五节
氧化还原反应的基本概念 原电池 电极电势 电极电势的应用 元素标准电极电势图和电势-pH图
氧化还原反应和电极电势
第一节 氧化还原反应的基本概念
一、氧化值 二、氧化剂和还原剂 三、氧化还原电对 四、氧化还原反应方程式的配平
氧化还原反应和电极电势
(3)利用最小公倍数确定氧化剂和还原剂的 化学计量数。
(4)配平氧化值没有变化的元素原子,并将 箭号改成等号。
例题
氧化还原反应和电极电势
(二)离子-电子法
先将两个半反应配平, 再将两个半反应合并 为氧化还原反应的方法称为离子-电子法。 离子电子法的配平步骤如下:
(1) 写出氧化还原反应的离子方程式; (2) 将氧化还原反应分为两个半反应; (3) 分别配平两个半反应; (4) 将两个半反应分别乘以相应系数,使其 得、失电子数相等,再将两个半反应合并为一个 配平的氧化还原反应的离子方程式。 最后,在配平的离子方程式中添加不参与反
原电池由两个半电池组成。半电池又称电极, 每一个电极都是由电极导体和电解质溶液组成。
分别在两个半电池中发生的氧化反应或还原 反应,称为半电池反应或电极反应。原电池的两 极所发生的总的氧化还原反应称为电池反应。
氧化还原反应和电极电势
氧化还原反应和电极电势
在原电池中,流出电子的电极称为负极, 负极发生氧化反应;流入电子的电极称为正极, 正极发生还原反应。
(1) 在半电池中用“ | ”表示电极导体与电解 质
溶液之间的界面。
(2) 原电池的负极写在左侧,正极写在右侧, 并用“+”、“-”标明正、负极, 把正极与负极 用盐桥连接,盐桥用“ ”表示, 盐桥两侧是两个 电极的电解质溶液。若溶液中存在几种离子时,离 子间用逗号隔开。

氧化还原反应与电极电势

氧化还原反应与电极电势

实验六氧化还原反应与电极电势一、实验目的1.熟悉电极电势与氧化还原反应的关系。

2.了解浓度、酸度、温度对氧化还原反应的影响。

3.了解原电池的装置和原理。

二、实验原理氧化还原反应的实质是物质间电子的转移或电子对的偏移。

氧化剂、还原剂得失电子能力的大小,即氧化还原能力的强弱,可根据它们相应电对的电极电势的相对大小来衡量。

电极电势的数值越大,则氧化态的氧化能力越强,其氧化态物质是较强的氧化剂。

电极电势的数值越小,则还原态的还原能力越强,其还原态物质是较强的还原剂。

只有较强的氧化剂和较强的还原剂之间才能够发生反应,生成较弱的氧化剂和较弱的还原剂,故根据电极电势可以判断反应的方向。

= φ+-φ-,根据能斯利用氧化还原反应产生电流的装置称原电池。

原电池的电动势E池特方程,当氧化型或还原型物质的浓度、酸度改变时,电极电势的数值会随之发生改变。

本实验利用伏特计测定原电池的电动势来定性比较浓度、酸度等因素对电极电势及氧化还原反应的影响。

三、仪器和试药仪器:试管、烧杯、表面皿、培养皿、U形管、伏特计、水浴锅、导线、砂纸、鳄鱼夹。

试药:HCl (2mol·L-1)、HNO3 (1mol·L-1, 浓)、H2SO4 (1, 3mol·L-1)、HAc (3mol·L-1)、H2C2O4 (0.1mol·L-1)、NH3·H2O (浓)、NaOH (6 mol·L-1, 40%)、ZnSO4 (1mol·L-1)、CuSO4 (1mol·L-1)、KI (0.1mol·L-1)、KBr (0.1mol·L-1)、AgNO3 (0.1, 0.5mol·L-1)、FeCl3 (0.1mol·L-1)、Fe2(SO4)3 (0.1mol·L-1)、FeSO4(0.4,1mol·L-1)、K2Cr2O7(0.4mol·L-1)、KMnO4(0.001mol·L-1)、Na2SO3 (0.1mol·L-1)、Na3AsO3 (0.1mol·L-1)、MnSO4 (0.1mol·L-1)、KSCN (0.1mol·L-1)、溴水(Br2)、碘水(I2)、CCl4、NH4F (1mol·L-1、固体)、KCl(饱和溶液)、SnCl2 (0.5mol·L-1)、CuCl2 (0.5mol·L-1)、(NH4)2C2O4 (饱和溶液)、锌粒、小锌片、小铜片、琼脂、电极(锌片、铜片、铁片、碳棒)、红色石蕊试纸。

氧化还原反应与标准电极电势

氧化还原反应与标准电极电势
化合价降低, 得到e-,失去氧,被还原,发生还原反应
+2 -2
0
0
+1 -2
CuO +
氧化剂[氧化性]
还H原2 剂=[=还=原=性=]=
Cu +
还原产物
H氧2化O产物
化合价升高, 失去e-,得到氧,被氧化,发生氧化反应
归 氧化剂→氧化性→得电子→化合价降低→被还原→还原反应→还原产物 纳 还原剂→还原性→失电子→化合价升高→被氧化→氧化反应→氧化产物 总 氧化还原反应的特征(判断方法):化合价升降 结 氧化还原反应的实质:电子的转移(得失、偏移)
1、标准氢电极
电极组成式:
Pt | H2(100kPa) | H+(c) 电极反应:
2H+(aq) + 2e
H2(g)
氧化还原电对:H+/H2
标准电极电势:
E(H+/H2)=0.0000V
标准氢电极装置图
2.标准电极电势的测定
将待测电极在标准态下与标准氢电极组成一
个原电池,测出该电池的标准电动势(E),就可
三 影响电极电势的因素
(一)能斯特方程
对于任一电极反应:
Ox+ne-
Re
使用能斯特方程应注意: *适用于任意状态,标准状态和非标准状态; *若电极反应中除了[Ox]和[Red]外还有其他物质, 则必须将其考虑进去; *纯固体、纯液体物质和溶剂不写入方程; *若为气体,气体的分压须除以100kPa。 (二)浓度对电极电势的影响 (三)酸度对电极电势的影响
归 氧化剂→氧化性→得电子→氧化值降低→被还原→还原反应→还原产物 纳 还原剂→还原性→失电子→氧化值升高→被氧化→氧化反应→氧化产物 总 氧化还原反应的特征(判断方法):氧化值升降 结 氧化还原反应的实质:电子的转移(得失、偏移)

氧化还原反应和电极电势(hwn)

氧化还原反应和电极电势(hwn)
电解质浓度减小,电极电势减小
与上述相反,电解质浓度的减小会使离子浓度减小,离子间的相互碰撞次数减少 ,使得电子的传递速率减慢。同时,电解质浓度的减小也会使得物质中的电子离 域能增加,使得电子更难从物质中逸出,从而使得电极电势减小。
电极材料的影响
电极材料性质影响电极电势
电极材料的性质如导电性、化学稳定性等都会影响电极电势。一般来说,导电性好、化学稳定性高的电极材料具 有较低的电极电势。
还原态
02
物质在氧化还原反应中获得电子的状态。
确定氧化态和还原态的方法
03
根据元素周期表中的金属活动性顺序,判断物质在反应中的得
失电子情况。
电极电势在氧化还原反应中的应用
01
电极电势是衡量氧化还原反应进行方向的重要参数。
02
电极电势高代表该物质具有较高的氧化能力,电极电势低则代
表该物质具有较高的还原能力。
氧化还原反应和电极电势(HWN)
目 录
• 氧化还原反应概述 • 电极电势的基本概念 • 氧化还原反应与电极电势的关系 • 电极电势的影响因素 • 氧化还原反应和电极电势的应用实例
01 氧化还原反应概述
定义与特点
定义
氧化还原反应是一种电子转移过程, 其中原子或分子获得电子成为还原剂, 而另一些原子或分子失去电子成为氧电极电势可以用于预测和控制电化学反应的可能性、速率和方向。
电池设计
电极电势可以用于设计电池,以实现高效的能量转换和储存。
环境监测
电极电势可以用于监测水体、土壤等环境中的重金属离子污染情况。
03 氧化还原反应与电极电势 的关系
氧化态与还原态的确定
氧化态
01
物质在氧化还原反应中失去电子的状态。

无机化学-氧化还原反应与电极电势

无机化学-氧化还原反应与电极电势

腐蚀类型
包括均匀腐蚀、点蚀、缝 隙腐蚀和应力腐蚀等。
防护措施
采用涂层、电镀、合金化 等手段,降低金属与环境 之间的反应速率,延长金 属使用寿命。
电池的工作原理
原电池
将化学能转化为电能的装置,由正负两个电极和 电解质组成。
电解池
将电能转化为化学能的装置,通过外电源迫使电 子和离子分别在正负电极上聚集。
氧化还原反应基础
氧化与还原的定义
氧化
失去电子的过程,物质从较低氧化态变为较高氧化态。
还原
得到电子的过程,物质从分子在氧化还原反应中的氧化态。
规则
单质中各元素的氧化数为0;在化合物中,氢的氧化数为+1,氧的氧化数为-2;在 化合物中,正价元素取正值,负价元素取负值。
02
判断氧化还原反应 的方向
电极电势的相对大小可以用来判 断氧化还原反应自发进行的方向。
03
计算电子转移数
根据电极电势的变化,可以计算 氧化还原反应中电子转移的数量。
电极电势与反应自发性的关系
电极电势差值决定反应方向
当电极电势差值大于0时,反应自发向正向进行;当电极电势 差值小于0时,反应自发向逆向进行。
电极电势与反应速率的关系
电极电势的大小影响氧化还原反应的速率,电极电势越高, 反应速率越快。
04
氧化还原反应的配平与计算
氧化还原反应的配平方法
观察法
通过观察反应物和生成物的化合 价变化,找出化合价变化的原子 个数,从而确定反应物和生成物 的系数。
离子-电子法
适用于溶液中的氧化还原反应, 通过列出反应物和生成物的离子 方程式,根据得失电子守恒原则 配平。
电池种类
包括干电池、铅酸蓄电池、锂离子电池等,每种 电池的工作原理和特点不同。

氧化还原反应和电极电势

氧化还原反应和电极电势

在生物领域的应用
生物氧化还原反应
生物体内的氧化还原反应是维持生命活动的基础,如呼吸作用和 光合作用等。
药物合成
许多药物合成过程中涉及到氧化还原反应,如某些抗生素和抗癌药 物的合成。
生物传感器
利用氧化还原反应的原理制备生物传感器,用于检测生物体内的物 质含量或环境中的有害物质。
谢谢
THANKS
热能是氧化还原反应中伴 随能量释势的影响因素
CHAPTER
温度的影响
温度升高,电极电势增大
随着温度的升高,分子运动速度加快, 离子迁移率提高,导致电极电势增大。
VS
温度降低,电极电势减小
随着温度的降低,分子运动速度减慢,离 子迁移率降低,导致电极电势减小。
电解质浓度的影响
电极表面的粗糙度影响电极电势
粗糙的电极表面可以提供更多的反应活性位点,从而提高电极电势。
05 氧化还原反应的实际应用
CHAPTER
在能源领域的应用
01
02
03
燃料电池
燃料电池利用氢气和氧气 之间的氧化还原反应产生 电能,具有高效、清洁的 优点。
金属-空气电池
金属-空气电池利用金属与 氧气之间的氧化还原反应 产生电能,具有高能量密 度和环保的优点。
氧化还原反应和电极电势
目录
CONTENTS
• 氧化还原反应 • 电极电势 • 氧化还原反应与电极电势的关系 • 电极电势的影响因素 • 氧化还原反应的实际应用
01 氧化还原反应
CHAPTER
定义与特性
定义
氧化还原反应是一种化学反应,其中 电子在反应过程中从一个原子或分子 转移到另一个原子或分子。
太阳能电池
太阳能电池利用光能激发 电子进行氧化还原反应产 生电能,具有可再生、无 污染的优点。

氧化还原反应和电极电势φBr2/Br

氧化还原反应和电极电势φBr2/Br

电池电动势的测定: (1) 饱和甘汞点击接参比电极接线柱 (2) 选择+mV档,调节仪器读数为0mV。将饱和甘汞电极 和指示电极组装成原电池,可测得该原电池的电动势。 如果是负值,调换原电池的正负极即可。
主要内容
• 实验目的 • 实验原理 • 实验仪器与药品 • 实验内容
实验目的
掌握pSH-2型酸度计测量电池的电动势的方 法
掌握原电池、电极反应、电池反应、电池符 号
了解浓度对电极电势的影响 了解电极电势的应用
实验原理
氧化还原反应是物质得失电子的过程。电极电势 是判断氧化剂和还原剂相对强弱的标准,并可用 以确定氧化还原反应进行的方向。电极电势表是 各物质在水溶液中进行氧化还原反应规律性的总 结,溶液的浓度、温度均影响电极电势的数值。 一般来说,在表中电极电势数值小的还原态是较 强的还原剂,电极电势数值大的氧化态是较强的 氧化剂。
结论
Na2SO3、H+ KMnO4
酸性 (强)
Na2SO3、H2O KMnO4
中性
Na2SO3、 NaOH
KMnO4
碱性 (强)
紫红色褪 去
棕色↓
溶液呈绿 色
2MnO4-+5SO32-+6H+= 2Mn2++5SO42-+3H2O
2MnO4-+3SO32-+H2O= 2MnO2↓+3SO42-+2OH-
选择的 氧化剂
I- KMnO4 + FeCl3 +
Br- Cl- 2MnO4-+10X-+16H+=2Mn2++X2 酸性介质
+ + +8H2O
( X- = I- ,Br- ,Cl- ) (pH>9,I2 岐

氧化还原和电极电势

氧化还原和电极电势
(1)海绵状铂黑作电 极导体;
(2)H2压力维持 100kPa;
(3)H+活度为1 (1.184mol·L-1);
(4) EθH+/ H2 =0.0000V
15
(5)标准氢电极的组成式
标准氢电极的组成式可表示为: Pt,H2(100kPa)∣H+(a=1)
16
3、标准电极电势
(1)定义 处于标准态下的电极的电势称为该电极
差。 2、表示
电池电动势 E= E+ - EE+ ─ 某时刻正极的电势, E- ─ 某时刻负极的电势。
11
第三节 电极电势
一、电极电势的产生
1、电极的双电层结构
+++++ +++++
+++++ +++++
----- -----
-----
---
(a)溶解>沉积

(b)沉积>溶解
图-2 双电层的形成
由于在金属与溶液间的界面处形成双电层结构,电 极电势产生了。
其次,找出标准电极电势高的电对中的氧化态 (Br2 ), 和标准电极电势低的电对中的还原态 (Fe2+ ),此二者应是该自发反应的反应物。
故该反应正向(向右)自发进行。
19
第四节 影响电极电势的因素—Nernst方程式 一、 Nernst方程式及浓度对EOx/Red及E的影响 标准电极电势:只考虑电极本性的影响,故只
EΘ值愈低,表示该电对中还原剂失电子的 能力愈强,是较强的还原剂。
34
例12 要选择一种氧化剂能使Cl-和Br-的混合溶液中的Br氧化成Br2,但Cl-不变化,试确定在常用的氧化剂 KMnO4和K2Cr2O7中,选择何种为宜? 解:查标准电极电势表

氧化还原反应的电位差与标准电极电位

氧化还原反应的电位差与标准电极电位

氧化还原反应的电位差与标准电极电位氧化还原反应是化学中重要的反应类型之一,它涉及物质的电子转移与能量变化。

在氧化还原反应中,电位差的大小与标准电极电位有密切关系。

本文将探讨氧化还原反应的电位差与标准电极电位之间的关系,并分析它们在化学中的重要性。

一、氧化还原反应的电位差氧化还原反应涉及物质的电子转移,可以将其分为两个半反应:氧化半反应与还原半反应。

在氧化半反应中,物质失去电子,被氧化为更高的氧化态;而在还原半反应中,物质获得电子,被还原为更低的氧化态。

电位差为氧化半反应的标准电位减去还原半反应的标准电位。

电位差的正负决定了反应的方向,正值表示反应是自发进行的,负值表示反应无法自发进行。

二、标准电极电位标准电极电位是指在标准状态下,半电池的电位与标准氢电极(SHE)的电位之间的差值。

标准氢电极的电位被定义为0V,其他半电池的电位则相对于标准氢电极进行测量。

标准电极电位是物质在标准状态下的固有性质,与溶液中物质的浓度、温度等因素无关。

三、关系与重要性氧化还原反应的电位差与标准电极电位之间存在一定的关系。

在反应进行时,电位差等于产生电流的电势差,即反应在外部电路上产生的能量变化。

标准电极电位的大小决定了氧化还原反应的方向和强度,越大的标准电极电位意味着更强的氧化或还原能力。

反之,较小的标准电极电位则表示较弱的氧化或还原能力。

在化学中,电位差与标准电极电位的研究对于理解和预测氧化还原反应具有重要意义。

通过测量氧化还原反应的电位差,可以了解到某一物质相对于标准氢电极的氧化或还原能力。

这对于研究电化学反应、电池的性能以及催化剂的选择都具有指导意义。

此外,电位差与标准电极电位还与溶液中物质的浓度和温度有关。

在非标准条件下,需要引入修正项来修正标准电极电位,以计算得到准确的电位差。

综上所述,氧化还原反应的电位差与标准电极电位密切相关,标准电极电位决定了反应的方向和强度。

电位差与标准电极电位的研究对于理解氧化还原反应以及在化学中的应用具有重要意义。

氧化还原电极

氧化还原电极

H2O2(aq) + 2H+(aq) + 2e == 2H2O (H2O2/H2O) = 1.776V O2(g) + 2H+(aq) + 2e == H2O2(aq)


上一页
下一页


24
4.2.2 电极电势的能斯特方程式
对于任意给定的电极,电极反应通式为
a(氧化态)+ne-
b(还原态)
离子浓度对电极电势的影响,可从热力学推导而得如 下结论: RT [c(氧化态) / c ]a ln (4.4a) b
φ (Br2/Br-)=1.066V, φ (I2/I-)=0.5355V。 可知:Cl2氧化性较强,而I-还原性较强。
首 页 上一页 下一页 末 页 22

(2) φ 代数值与电极反应中化学计量数的选配无关
φ 代数值是反映物质得失电子倾向的大小,它与 物质的数量无关。 如:Zn2++2e- = Zn 与 2Zn2++4e- = 2Zn φ 数值相同 (3) φ 代数值与半反应的方向无关。 IUPAC规定,表中电极反应以还原反应表示(故 有称之谓“还原电势”),无论电对物质在实际反应 中的转化方向如何,其φ 代数值不变。 如Cu2++2e- = Cu与Cu = Cu2++2e φ 数值相同
氧化还原电极 Fe3+/Fe2+


上一页
下一页


11
4.1.2 原电池的热力学
1.电池反应的△Gm与电动势E的关系 对电动势为E的电池反应: Cu2++Zn→Zn2++Cu

氧化还原反应与电极电势

氧化还原反应与电极电势
MnO4- + 8H+ + 5e- = Mn2+ + 4H2O ×2 + ) SO32- + H2O - 2e- = SO42- + 2H+ ×5 2MnO4- + 5SO32- + 6H+ = 2Mn2+ + 5SO42- + 3H2O 例2:配平反应 FeS2 + HNO3 → Fe2(SO4)3 + NO2 解: 改写成离子方程式:
IUPAC1970年严格定义:氧化值是某元素一个 原子的荷电数(即原子所带的净电荷数). (假设把每个键中的电子指定给电负性更大的原子) 确定氧化值的规则: 单质中元素的氧化值为零;如:H2中H的氧化值为0. 氢的氧化值一般为+1,在金属氢化物中为-1;
如:NaH中H的氧化值为-1. 氧的氧化值一般为-2;在过氧化物中为-1;在氧的氟 化物中为+1或+2 .
一个氧化还原反应由两个半反应组成:
reducer的氧化反应:如上例中:Fe2+ - e- → Fe3+
oxidant的还原反应:如:H2O2 + 2e- + 2H+ → 2H2O (3)氧化还原反应的实质: 氧化还原电对(oxidation-reduction couples):
由同一种元素的氧化态物质和其对应的还原态 物质所构成的整体.一般以Ox/Red表示.
MnO4- + SO32- → Mn2+ + SO42拆分为氧化、还原两个半反应,并使左右两边 相同元素的原子数目相等.
2019/12/5
休息
9
6.1.1氧化还原反应
MnO4- + 8H+ → Mn2+ + 4H2O SO32- + H2O → SO42- + 2H+ 据溶液的酸碱性加上H+, OH-, H2O; 加减电子数,使左右两边电荷数相等.乘以适当系 数后相加,整理.

7-6 氧化还原反应方向和程度的判断,特殊平衡常数的求算

7-6 氧化还原反应方向和程度的判断,特殊平衡常数的求算

第7 讲电化学基础知行合一、经世致用7.6 氧化还原反应方向和程度的判断,特殊平衡常数的求算7.6 Judgment of REDOX reaction direction and limit, Special equilibrium constant calculation本次课主要内容:氧化还原反应的方向的判断氧化还原反应的程度的判断特殊平衡常数的求算氧化还原反应方向的判断1. 标准态下氧化还原反应方向的判断-决定氧化还原反应方向的本质因素是吉布斯自由能变化ΔG,若在标准态下,则为ΔGӨ。

标准态下:ΔGӨ= –nFEӨ•若ΔGӨ <0,则EӨ >0时,反应自发。

-故标准态下,氧化还原反应方向的判断规则为:EӨ>0 反应正向自发进行EӨ=0 反应处于平衡状态EӨ<0反应逆向自发进行而EӨ>0 ,即EӨ=EӨ氧化剂–EӨ还原剂>0 。

-当给定的反应物中氧化剂电对的EӨ大于给定的反应物中还原剂电对的EӨ时,反应才能正向自发进行。

-这样,就可用标准电极电势EӨ 表的对角线规则来直接判断标准态下氧化还原反应自发进行的方向。

2. 非标准态下氧化还原反应方向的判断非标准态下:ΔG= –nFE•若ΔG<0,则E>0时,反应自发。

-故非标准态下,氧化还原反应方向的判断规则为:E>0 反应正向自发进行E=0 反应处于平衡状态E<0反应逆向自发进行而E>0 ,即E=E氧化剂–E还原剂>0 。

-当给定的反应物中氧化剂电对的E大于给定的反应物中还原剂电对的E时,反应才能正向自发进行。

而非标准态下的E 值,则必须用能斯特方程计算。

在电化学中,判断非标准态下氧化还原反应的方向,有没有更简便的方法呢?对于非标准态下的反应,有个粗略判断方法,即:-若EӨ> 0.2V,一般可认为E> 0,反应正向进行;-若EӨ< –0.2V,一般可认为E< 0,反应逆向进行;-若–0.2V < EӨ< 0.2V,则只能根据能斯特方程计算出E的实际大小来进行判断。

化学物质的氧化还原反应与电化学反应类型与电极电势差

化学物质的氧化还原反应与电化学反应类型与电极电势差

化学物质的氧化还原反应与电化学反应类型与电极电势差化学物质的氧化还原反应是一种重要的化学反应类型,它涉及物质的电子转移过程。

同时,氧化还原反应也与电化学反应密切相关,其中电极电势差是反应进行的驱动力之一。

本文将探讨氧化还原反应的类型以及电化学反应中的电极电势差。

一、氧化还原反应类型1. 氧化与还原在氧化还原反应中,氧化是指物质失去电子,而还原则是指物质获得电子。

简而言之,氧化是电子的流失,还原是电子的获得。

2. 氧化剂与还原剂氧化剂是可以氧化其他物质的物质,它自身同时还原。

还原剂则是可以还原其他物质的物质,它自身同时氧化。

氧化剂和还原剂在氧化还原反应中起到催化剂的作用,驱动反应向前进行。

3. 氧化态与还原态在氧化还原反应中,发生氧化的物质的氧化态增加,而发生还原的物质的还原态增加。

通过观察物质的氧化态和还原态的变化,可以确定氧化还原反应的类型。

二、电化学反应类型电化学反应是指在化学反应过程中伴随着电荷的转移。

根据电荷的转移方向,电化学反应可以分为两种类型:电解反应和电池反应。

1. 电解反应电解反应是指通过外加电源将化学物质分解为阴阳离子的过程。

在电解反应中,阳极是发生氧化的地方,阴极则是发生还原的地方。

通过电解反应,可以将化合物分解为其组成离子,用于生产纯度高的物质以及电解质溶液的电导。

2. 电池反应电池反应是指通过化学反应将化学能转化为电能的过程。

电池反应包括两种反应,即正极反应和负极反应。

正极反应发生氧化,负极反应发生还原。

电极与电解质之间的电荷转移产生了电流,从而驱动化学反应进行。

三、电极电势差电极电势差是电解质溶液中两个电极之间的电势差。

它是电化学反应进行的驱动力之一,反映了氧化还原反应的进行程度。

通常情况下,电极电势差越大,反应进行越快,因为它提供了足够的能量促使电荷的转移。

根据电极电势差的大小,可以将电池反应分为两种类型:可逆反应和不可逆反应。

可逆反应指的是电极电势差接近零,反应达到平衡状态的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档