《几何概型(第一课时)》的教学设计
几何概型教学设计
几何概型(第一课时)设计者:福建龙岩二中郭小峰一.教学内容分析:本课时教材选自人教A版数学必修3第三章概率部分第3.3节的内容.几何概型是概率必修章节的收尾篇,共有两个课时,本节课为第一课时,它是继古典概型之后学习的另一类等可能概型;是教材新增加的内容,对它的要求仅限于初步体会几何概型的意义.几何概型的研究,是古典概型的拓广,将古典概型试验结果有限个拓广到无限个;课本介绍几何概型主要是为了更广泛地满足随机模拟的需要.概率教学的核心问题是让学生了解随机现象与概率的意义,运用数学方法去研究不确定现象的规律,让学生初步形成用随机的观念去观察、分析、研究客观世界的态度,并获取认识世界的初步知识和科学方法.二.学生学习情况分析:学生前面已经学习了随机事件的概率和古典概型,初步学会了用古典概型公式解决概率题,大多数学生对于概率的学习以及概率试验产生了浓厚的兴趣,逐渐会把一些问题模型化.但是学生在探究问题的能力,应用数学的意识等方面发展不够均衡,尚有待加强.三.设计思想:建构主义学习理论认为,建构就是认知结构的组建,其过程一般是引导学生从身边的、生活中的实际问题出发,发现问题,思考如何解决问题,进而联系所学的旧知识,首先明确问题的实质,然后总结出新知识的有关概念和规律,形成知识点,把知识点按照逻辑线索和内在联系,串成知识线,再由若干条知识线形成知识面,最后由知识面按照其内容、性质、作用、因果等关系组成综合的知识体。
也就是以学生为主体,强调学生对知识的主动探索、主动发现以及学生对所学知识意义的主动建构.基于以上理论,本节课遵循引导发现、循序渐进的思路,采用问题探究式教学,让学生在观察分析、自主探索、合作交流的过程中建构几何概型的概念以及归纳出几何概型公式,运用实物、多媒体、投影仪辅助,倡导“自主、合作、探究”的学习方式.具体流程如下:→→→四.教学目标:知识与技能目标:通过实例,让学生了解几何概型的概念以及几何概型与古典概型的区别.会计算简单的几何概型事件,并解决实际问题.过程与方法目标:让学生经历概念的建构这一过程,进一步体会从特殊到一般的思想;通过实际应用,培养学生数形结合的能力,以及把实际问题抽象成数学问题的能力和学以致用的数学应用意识.情感与态度目标:通过创设情境激发学生学习数学的情趣,培养其积极探索的精神.通过实际应用让学生体会到数学在现实生活中的价值,增强了学生学习数学的自信心.五.教学重点与难点:重点:理解几何概型的定义、特点、及几何度量的寻找,会用公式计算几何概率.难点:从实际问题的背景中找几何度量.六.教学过程设计:(一)情景引入问题1我们前面都学过哪些求概率的方法?(本节课的问题和题目都用多媒体幻灯片展示)问题2下面事件的概率能否用古典概型的方法求解?[情景一]教师取一根长度为60厘米的绳子,拉直后在任意位置剪断,使得剪出的两段的长都不小于绳子长度1/3(记为事件A),求此事件发生的概率.师生共同探究:此试验中,从每一个位置剪断都是一个试验结果,剪断位置可以是绳子上任一点,试验的可能结果为无限个,发现不是古典概型,不可以用古典概型的方法求解.探索:如图所示,把绳子三等分,于是当剪断位置在中间一段时,事件A发生,于是1 ()3 P A中间线段长度=整条线段长度教师:这个模型就是我们今天要学习的几何概率模型,简称几何概型.[情景二]教师用多媒体展示商场里面的抽奖场景视频, 拿出如图中的两个转盘,规定当指针指向B区域时顾客就中奖了;问题3在两种情况下某顾客中奖的概率分别是多少?学生思考并回答,可见在图(1)中,顾客中奖的概率为二分之一,图(2)中顾客中奖的概率为五分之三.[情景三]一只苍蝇在一棱长为60cm的正方体笼子里飞.问题4苍蝇距笼边大于10cm的概率是多少?教师实物展示正方体框架,在里面嵌套一个小正方体框架.学生思考并回答该问题.问题5同学们观察对比,找出三个情景的共同点与不同点?问题6同学们能否根据自己的理解说说什么是几何概型?学生进行小组讨论,以小组为单位发言,对回答问题的同学通过摇转盘的形式发给小奖品,场面气氛活跃.【设计意图】三个情景设置让学生发现试验的结果有无限个,因此发现它们不是古典概型, 无法用古典概型的方法求解,然后师生探索此问题怎样解决,最后教师点题:这就是我们今天要学习的几何概型.情境一的设计是从长度方面考虑问题,是为了引入概念,情境二、三的设计从面积和体积方面考虑问题,是为了让学生全面了解几何概型的概念,并且渗透数形结合的数学思想方法.小组的讨论是为了培养学生的合作意识和团队精神,用转盘的形式发奖品,让学生亲身体验概率游戏的乐趣.(1) (2)(二)概念形成在问题情景的铺垫下,教师引导学生用自己的语言描述几何概型的概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.A 发生的概率的计算公式为:A ()P A 构成事件的区域长度(面积或体积)全部结果所构成的区域长度(面积或体积)【设计意图】通过用表格列出相同和不同点,既体现了数学中类比的思想又能让学生更好的了解几何概型,从而突出教学重点.通过递进式地设置问题,使学生将实际问题转化成数学概念,体验到了探寻数学规律的乐趣,加深了学生对概念的了解和对公式的探究,突出教学重点.(三)实际应用例1某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率.此例首先让学生独立思考,然后教师再画龙点睛的分析并求解.解完此例题后归纳求解几何概型问题的步骤:1判断该概率模型是不是几何概型.2如果是,把实际问题中的度量关系转化成长度、面积、体积等形式.3根据几何概型计算公式求出概率.思考延伸:能否设计一个实验,来模拟例1?请一位同学说一说他的模拟实验,教师引导学生一起分析其可行性.例2一海豚在水中自由游弋,水池为长30m ,宽20m 的长方形,求此刻海豚嘴尖离岸边超过2m 的概率.变式:一海豚在水中自由游弋,水池为长30m ,宽20m ,深40米的长方体,求此刻海豚嘴尖离岸边离水面、水底都不超过2m 的概率.此例可让学生将答案做在作业纸上,挑选几个有代表性的解答用实物投影展出,请一些同学进行点评,教师进行总结.例3:假设你家订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00—8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少?课堂训练:1.某公共汽车站每隔5分钟有一辆公共汽车通过,乘客到达汽车站的任一时刻都是等可能的,求乘客等车不超过3分钟的概率.2.如图,假设你在每个图形上随机撒一粒黄豆,分别计算它落到阴影部分的概率.3.在1L 高产小麦种子中混入了一粒带麦锈病的种子,从中随机取出10mL,含有麦锈病种子的概率是多少?4.在半径为1的圆上随机地取两点,连成一条线,则其长超过圆内接等边三角形的边长的概率是多少?【设计意图】实际应用部分有问题,有例题,也有学生的训练,问题7的设计是为了让学生认识到数学源于生活,又应用于生活,生活中处处有数学;三道例题的设置让学生对几何概型的题目有了更深刻的理解,认识到几何概型主要是要把概率问题与几何问题完美的结合,几何度量中到底是长度、面积还是体积呢?我们要认真加以判断,要学会用数形结合的思想解决概率问题.(四)课堂反思教师引导学生反思:本节课我们学了什么?学会了什么?还有哪些问题没有解决?该环节让学生归纳讨论,教师将结果梳理写于黑板上.1.几何概型的特点:无限性、等可能性.2.几何概型的计算公式3.度: 线段的度是长度;平面图形的度是面积;立体图形的度是体积.【设计意图】学生自己梳理本节所学知识,以便于对知识有一个系统的理解与认识;同时让学生学会反思,是一个非常良好的学习习惯的养成,也是学生将来处理工作生活问题的一个很好的习惯.(五)作业布置必做题:教科书P142A 组1,2选做题:教科书P142B 组1,2探究题:1. 平面上画了彼此相距为2a 的平行线,把一枚半径为()0r r a <<的硬币任意掷在平面上,求硬币不与任意条平行线相碰的概率.2.上网搜索阅读“贝特朗(Bertrand)问题”,谈谈阅读后的感想.注:几何概型在概率的发展中起到了非常重大的作用,在19世纪,人们一度认为任何概率问题都有唯一的解答,然而Bertrand 在1888年提出的一个问题改变了人们的想法.“贝特朗(Bertrand)问题”:在半径为1的圆内随机取一条弦,问其长度超过该圆内接等边三角形边长(3)的概率是多少?参考:http://www .charlesgao .com/?p=130【设计意图】对课后书面作业实施分层设置,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦.分层布置作业使数学教育既面向了全体学生,人人都能获得必需的数学,又使不同的人在数学上得到不同的发展,充分体现了课改精神.七.教学小结与反思:本节课的几个亮点:1.用实物演示,加深学生对学习内容的印象,让学生在做中学,增强了学生学习数学的兴趣.2.颇具特色的情景引入,让学生很自然地把实际问题演变成数学概念,体验到了探寻数学规律的乐趣,符合新课改精神.3.转盘游戏寓教于乐,活跃了课堂气氛,使学生能够轻松愉悦地接受新知识.4.两次的小组讨论学习,培养了学生的合作意识和团队精神,尝试到了合作的乐趣提高了学习的主动性.5.例题的设置从长度、面积、体积三种几何度量设置题目, 由浅入深,覆盖面广,符合学生的认知规律.6.例题2的处理让学生来批改解答作业,学会发现错误,发现解题的不足之处,有利于学生自觉地养成良好的学习习惯.7.本节课充分使用了多媒体、实物演示、影片剪辑,声情并茂,活跃了课堂的气氛,让数学课堂如此的生动有趣.8.课后书面作业实施分层设置,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,使不同的人在数学上得到不同的发展,充分体现了课改精神.9.采用问题式教学, 发挥了学生的主观能动性.本节课的特色:1.注重加强数学应用意识,本课时在情境选择、问题设置、作业布置等方面都注重与实际生活紧密联系,让学生体会到数学的应用价值,通过师生互动,实现了概念的意义建构.2.注重知识的探求与发现,本课时在形成概念、推导公式、实际应用等教学环节中,突出体现了以学生能力的发展为主线,应用启发式、讲述式引导学生层层深入,培养学生自主探索以及发现问题、分析问题和解决问题的能力.3.注重数学思想方法的渗透,本课时的教学中,每一个细节都别具匠心,多次渗透了数形结合、随机模拟、从特殊到一般等数学思想方法.。
几何概型第一课时教案
几何概型教学设计(高中数学必修3第三章第3节第一课时)东方市民族中学罗艳妹一、教材分析教材的地位和作用“几何概型”是继“古典概型”之后的第二类等可能概率模型,在概率论中占有相当重要的地位,是等可能事件的概念从有限向无限的延伸,是为更广泛的满足随机模拟的需要而新增加的内容,这充分体现了数学与实际生活的紧密关系。
《几何概型》共安排2课时,本节课是第1课时,注重概念的建构和公式的应用,为第二课时的几何概型的应用以及体会随机模拟中的统计思想打下基础。
教学重点与难点重点:掌握几何概型的判断及几何概型中概率的计算公式。
难点:在几何概型中把实验的基本事件和随机事件与某一特定的几何区域及其子区域对应,确定适当的几何测度。
通过数学建模解决实际问题。
[理论依据]本课是一节概念新授课,因此把掌握几何概型的判断及几何概型中概率的计算公式作为教学重点。
教学难点是在几何概型中把实验的基本事件和随机事件与某一特定的几何区域及其子区域对应,确定适当的几何测度。
此外,学生通过数学建模解决实际问题也较为困难,因此也是本节课的难点。
二、教学目标[知识与技能目标](1)体会几何概型的意义。
(2)了解几何概型的概率计算公式[过程与方法目标]通过转盘游戏,将有限个等可能结果推广到无限个等可能结果,让学生经历概念的建构这一过程,感受数学的拓广过程。
通过实际应用,培养学生把实际问题抽象成数学问题的能力,感知用图形解决概率问题的方法。
[情感与态度目标]体会概率在生活中的重要作用,感知生活中的数学,激发提出问题和解决问题的勇气,培养其积极探索的精神。
三、教学方法,教学模式,教学手段本节课采用以引导发现为主的教学方法,以归纳启发式作为教学模式,结合多媒体辅助教学。
四、教学过程教学环节教学内容设计意图提出问题引入课题一、复习旧知巩固旧知回顾古典概型的特征和概率公式二、提出问题引入课题口答1:在区间[0,9]上任取一个整数a,则]3,0[∈a的概率为 .提出问题2:在区间[0,9]上任取一个实数a ,则]3,0[∈a的概率为 .通过学生回顾古典概型的特征和概率公式,从学生熟悉并且容易解决的一个古典概型问题,稍加修改,转变成为一个几何概型的问题,学生思考后仍然解决不了,从而引出课题.以境激情建构概念三、创设情境构建概念转盘游戏:如图所示,规定指针指向金额区域表示中奖问题1:图1中转盘中奖的概率是多少?(图1)问题2:若换成图2的转盘,中奖概率是多少?(蓝红区域面积比为3:2)(图2)问题3:再换成图3的转盘,中奖概率是多少呢?(图3)中奖的概率与奖金所在区域的位置有关系吗?若没有,那么中奖的概率与什么有关?通过等分猜想引入几何概型,学生猜想依次得到概率。
[优选]《几何概型》(第1课时)教学设计案例
《几何概型》(第1课时)教学设计案例1 教材分析.⑴从在教材中的地位和作用来看。
概率这一章的核心是运用数学方法去研究不确定现象的规律,让学生初步形成用科学的态度、辩证的思想、随机的观念去观察、分析.研究客观世界的态度,寻求并获取认识世界的初步知识和科学方法。
⑵从学生认知角度看。
从学生的思维特点看,很容易把本节内容与古典概型的特点、计算方法等方面进行类比,因为两者有联系,这是积极因素,教师应该因势利导,但几何概型的计算方法与古典概型有着本质的区别,这对学生的思维是一个突破。
⑶学情分析.。
本班基础很差,在由古典概型向几何概型的过渡和实际背景如何转化为几何区域时会遇到一定的困难,为了调动学生的学习兴趣,加深对知识的理解与应用,问题情境和例题习题的选用,应尽可能选择那些与日常生活息息相关的例子。
2 目标定位⑴了解几何概型基本特点及与古典概型的异同点;会进行简单的几何概型计算。
⑵重点:几何概型的基本特点及三种不同“测度”的几何概型的简单运算。
难点:如何在实际背景中找出几何区域及如何确定该区域的“测度”。
3 教学案例一、问题情境先复习古典概型的特点和计算公式:师:当随机试验的基本事件有无限多个时,概率如何求?来看两个例子。
问题情境1:教科书上的射箭比赛问题情境2:取一根长度为3米的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1米的概率有多大?(画图)二、学生活动,建构数学师:在学习古典概型之前我们是怎么去研究一个随机事件的概率的?师:那么我们也来做这样的两个试验,去计算两个事件的频率,然后去估计这两个事件的概率。
射箭试验:用几何画板课件进行演示,模仿试验的过程,要求学生数出射中黄心的次数,由此估计出射中黄心的概率。
师:这个概率问题与古典概型有什么区别?师:将射箭中靶面上的每一个点作为一个基本事件,由于靶面上有无数多个点,因此就有无限多个基本事件,这是和古典概型不一样的地方。
师:那么有没有和古典概型一样的地方呢?师:大家认为我们要是求此题的概率的话,这个概率会和什么有关。
几何概型(第一课时)教学设计
几何概型(第一课时)教学设计一、教学内容解析2.【内容解析】:本节课是人教A版教材必修三第三章第三节的内容。
“几何概型”这个章节内容是安排在“古典概型”之后的第二类概率类型,是对古典概型的内容的进一步拓展,是等可能事件的概念从有限向无限的延伸。
此节内容也是新课本中增加的。
这是与以往教材安排上的最大的不同之处,这充分体现了数学与实际生活的紧密联系,来源生活,又高于生活。
同时也暗示了它在概率论中的重要作用,在高考中题型的转变。
本章主要学习概率问题的基本概念、基本原理、基本方法,所以在教学中要求应适当,难度要控制,同时要贴近生活。
二、教学目标设置1.【知识与技能】:(1)掌握几何概型的特点。
(2)明确几何概型与古典概型的区别。
(3)掌握几何概型概率计算公式的应用。
2.【过程与方法】:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理水平;(2)通过实物直观感知,培养学生从生活中发现模型,回归生活的习惯。
3.【情感、态度与价值观】:通过对几何概型的教学,协助学生树立科学的世界观和辩证的思想,养成合作交流的习惯,初步形成建立数学模型的水平。
三、教学重点与难点:【重点】:1、初步体会几何概型概率的意义,几何概型的概念和公式的应用,注意几何概型与古典概型的区别与联系.2、利用几何图形,把问题转化为几何概型问题.【难点】:准确判断几何概型并求出概率。
四、学生学情分析通过前面的学习,学生已经在掌握部分一般性的随机事件即概率的统计性定义的基础上,又学习了古典概型。
在由古典概型向几何概型过渡以及实际背景如何转化为测度时,会有一些困难,但只要引导得当,理解几何概型,完成教学目标是切实可行的。
基于本节课内容的特点和学生的心理及思维发展的特征,在教学中选择问题引导,实例讨论和归纳总结相结合的教学方法,与学生建立平等融洽的互动关系,营造合作交流的学习氛围,在引导学生观察,分析,抽象、概括,练习,巩固,提升各个环节通过实物展示,增强直观性,提升教学效率,激发学生的学习兴趣。
3_3_1几何概型详案 (1)
3.3.1 几何概型(第一课时)【学习目标】1.了解几何概型的概念与基本特点;2.掌握简单的几何概型的概率运算.【重点与难点】重点:几何概型概念的建构.难点:几何概率模型中基本事件的确定,几何“测度”的选择;将实际问题转化为几何概型.【方法与手段】本节课以直观观察为主线,采用“引导发现、归纳猜想”为主的教学方法;以“课题性问题和导向性问题解决”作为教学路径,利用多媒体辅助教学手段.【活动方案】活动一:复习引入【以境激情,引出新知】试验1(幸运卡片)【设计意图】拉近师生距离,复习古典概型.班上有9位同学持有卡片,其中3张写着数学家的名言,老师随机选一张,恰好挑到写有名言的卡片的概率是多少?古典概型的特点:(1)所有的基本事件只有有限个;(有限性)(2)每个基本事件的发生都是等可能的.(等可能性)试验2(剪绳试验)【设计意图】丰富感性认知,表现长度测度.取一根长度为30cm的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于10cm的概率有多大?分析:一个基本事件:取到线段AB上某一点所有基本事件形成的集合:线段AB(除两端外)随机事件A(剪得两段的长度都不小于10cm)对应的集合:线段CD随机事件A发生(剪断位置处在中间一段CD上)的概率:试验3(射箭比赛)【设计意图】丰富感性认知,表现面积测度.射箭比赛的箭靶涂有五个彩色的分环.从外向内为白色、黑色、蓝色、红色,靶心是金色,金色靶心叫“黄心”.奥运会的比赛靶面直径为122cm,黄心直径为12.2cm.运动员在70m外射箭,假设每箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率是多少?分析:一个基本事件:在大圆面内取某一点所有基本事件形成的集合:直径为122cm的大圆面随机事件A(射中黄心)对应的集合:直径为12.2cm的小圆面随机事件A发生(中靶点落在黄心内)的概率:思考:【设计意图】引发认知冲突,引入几何概型.1.试验1是什么概率模型?有什么特点?是古典概型(有限性,等可能性)2.(1)试验2和试验3的一个基本事件是什么?试验2的基本事件:从每一个位置剪断都是1个基本事件,剪断位置能够是长度为30cm的绳子上除两端外的任意一点.(取到线段AB上某一点)试验3的基本事件:射中靶面上每一点都是1个基本事件,这个点能够是靶面直径为122cm的大圆内的任意一点.(在大圆面内取某一点)(2)试验2、试验3与试验1的本质区别是什么?有什么特点?试验1的基本事件是有限个,试验2、3的基本事件是无限个;每个试验的基本事件的发生都是等可能的.【互动交流,建构新知】活动二:了解几何概型的定义、特点及求解方法1.几何概型的特点:(1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等.2.几何概型的概念:设D是一个可度量的区域(例如线段、平面图形、立体图形等),每个基本事件能够视为从区域D内随机地取一点,区域D内的每一点被取到的机会都一样;随机事件A的发生能够视为恰好取到区域D内的某个指定区域d中的点.这时,事件A发生的概率与d的测度(长度、面积、体积等)成正比,与d的形状和位置无关.我们把满足这样条件的概率模型称几何概型.3.几何概型的概率计算公式:的测度的测度DdAP=)(思考:【设计意图】即时回扣情境,完成新知建构结合“打靶问题”,若让你改造箭靶,你将如何设置黄色区域,仍使击中黄色区域的概率为1001呢?事件A 发生的概率与d 的测度(长度、面积、体积等)成正比,与d 区域的形状和位置无关.活动三:掌握简单的几何概型概率的求解例1:取一个边长为2a 的正方形及其内切圆(如图),随机地向正方形内丢一粒豆子,求豆子落入圆内的概率.分析:基本事件:随机地向正方形内丢一粒豆子(在正方形内任取一点);区域D :正方形;区域d :内切圆.("测度"为面积)解:记“豆子落入圆内”为事件A ,因为是随机地丢豆子,故认为豆子落入正方形内任一点的机会都是均等的,可将边长为2a 的正方形看作区域D ,其内切圆为区域d .22()44a P A a ππ===圆面积正方形面积. 答:豆子落入圆内的概率为4π. 小结:试归纳解决几何概型问题的一般步骤:(1)设定事件A ;(2)判断是否为几何概型;(3)确定几何区域D 和d 的测度;(4)利用几何概型的概率计算公式;(5)应用题要作答.【设计意图】明晰思维路径,明确答题规范。
高中数学几何概型教案
高中数学几何概型教案一、教学目标1. 让学生理解几何概型的概念,掌握几何概型的基本性质和特点。
2. 培养学生运用几何概型解决实际问题的能力。
3. 通过对几何概型的学习,提高学生的逻辑思维能力和空间想象能力。
二、教学内容1. 几何概型的定义与特点2. 几何概型的分类3. 几何概型的概率计算方法4. 几何概型在实际问题中的应用三、教学重点与难点1. 重点:几何概型的概念、特点和概率计算方法。
2. 难点:几何概型在实际问题中的应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究几何概型的相关知识。
2. 利用多媒体课件,辅助教学,增强学生对几何概型的空间想象力。
3. 结合实际例子,让学生感受几何概型在生活中的应用。
五、教学过程1. 导入新课:通过一个简单的抽奖活动,引导学生思考抽奖活动的概率问题,从而引入几何概型的概念。
2. 自主学习:让学生阅读教材,理解几何概型的定义与特点。
3. 课堂讲解:讲解几何概型的分类和概率计算方法。
4. 课堂练习:让学生完成一些有关几何概型的练习题,巩固所学知识。
5. 应用拓展:结合实际例子,让学生运用几何概型解决实际问题。
六、教学评价1. 评价学生对几何概型的概念、特点和概率计算方法的掌握程度。
2. 评价学生运用几何概型解决实际问题的能力。
3. 评价学生在课堂练习中的表现,包括解题速度和正确率。
4. 评价学生在小组讨论中的参与程度和合作能力。
七、教学资源1. 教材:高中数学几何概型相关内容。
2. 多媒体课件:用于展示几何概型的图形和实例。
3. 练习题库:用于课堂练习和课后作业。
4. 实际案例:用于引导学生将几何概型应用于实际问题。
八、教学进度安排1. 第一课时:介绍几何概型的概念和特点。
2. 第二课时:讲解几何概型的分类和概率计算方法。
3. 第三课时:课堂练习和应用拓展。
九、教学反思1. 反思教学内容是否适合学生的认知水平。
2. 反思教学方法是否有效,是否能够激发学生的兴趣和参与度。
2019-2020年高中数学 几何概型 第一课时 教案新人教B版必修3
2019-2020年高中数学几何概型第一课时教案新人教B版必修3教学目标一、知识与技能目标(1)通过学生对几个几何概型的实验和观察,了解几何概型的两个特点。
(2)能识别实际问题中概率模型是否为几何概型。
(3)会利用几何概型公式对简单的几何概型问题进行计算。
二、过程与方法让学生通过对几个试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,并在解决问题中,给学生寻找发现、讨论交流、合作分享的机会。
教学重点几何概型的特点,几何概型的识别,几何概型的概率公式。
教学难点建立合理的几何模型求解概率。
教学过程一、创设情境引入新课师:上节课我们共同学习了概率当中的古典概型,请同学们回想一下其中所包含的主要内容,并依据此举一个生活当中的古典概型的例子。
生甲:掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。
师:请同学们判断这个例子是古典概型吗?你判断的依据是什么?生乙:是古典概型,因为此试验包含的基本事件的个数是有限个,并且每个基本事件发生的可能性相等。
师:非常好,下面允许老师也举一个例子,请同学们作以判断。
如图:把一块木板平均分成四部分,小球随机的掉到木板上,求小球掉在阴影区域内的概率。
生丙:此试验不是古典概型,因为此试验包含的基本事件的个数有无数多个。
师:非常好,此试验不是古典概型,由此我们可以看到,在我们的生活中确实存在着诸如这样的不是古典概型的实际问题,因此我们有必要对这样的问题作进一步更加深入的学习和研究。
今天这节课我们在学习了古典概型的基础上再来学习几何概型。
那到底什么是几何概型,它和古典概型有联系吗?在数学里又是怎样定义的呢?为此,我们接着来看刚才这个试验。
试验一师:请同学们根据我们的生活经验回答此试验发生的概率是多少?生丁:四分之一师:很好,那你是怎样得到这个答案的呢?生丁:就是用阴影的面积比上总面积。
师:非常好,下面我们再来看图中的右边这种情形,现在阴影的面积仍是总面积的四分之一,只不过阴影的形状及其位置发生了变化,那么此时小球落在阴影区域内的概率又是多少?生丁:仍是四分之一,还是用阴影的面积比上总面积。
高中数学《几何概型》第一课时教学设计
《几何概型》第一课时教学设计一、教学内容解析:本节课是人教版普通高中课程标准试验教科书数学(必修3)第三章第三节几何概型(第一课时)。
概率这章的核心是运用数学方法去研究不确定现象的规律,让学生初步形成科学的态度,辩证的思想,随机的观念去观察分析研究客观世界的态度寻求并获取认识世界的初步知识和科学方法。
本节课是第1课时,注重几何概型概念的建构,是一节概念新授课,也是为更广泛的满足随机模拟的统计思想需要而新增加的内容,同时也为应用数学解决实际问题提供了新的思想和方法。
由于概率统计的应用性强,在数学课程中,加强概率统计的份量成为必然,是学生已掌握一般型随机事件及概率的统计定义,以及古典概型的基础上的进一步发展,是等可能事件从有限向无限的延伸。
对学生去全面系统的掌握概率知识以及辨证思想的进一步形成具有良好的作用。
二、教学目标设置:由于本节内容极能体现新课程理念,可以成为“知识与技能、过程与方法及情感态度价值观”三个目标有机融合的重要载体,从而实现三位一体的课程功能。
根据上述分析,我确定本节课的三维教学目标如下:(一)知识与技能:(1)体会几何概型的意义。
(2)了解几何概型的基本特点与古典概型的异同点、会进行简单的几何概型计算。
(二)过程与方法:学生通过自主探究,讨论交流,经历概念产生与发展的过程,进一步培养学生观察、分析、类比等逻辑推理能力,通过对本节知识的探究与学习,感知用图形解决概率问题的方法,渗透化归、数形结合等思想方法。
(三)情感、态度与价值观:本节课选材取例均来源于生活,学生积极参与探究,进一步树立数学是来源于生活而又服务于生活的意识,让学生感受生活中处处有数学,体会数学对自然与社会所产生的作用,使学生充分认识数学的价值,习惯用数学的眼光解决生活中的问题。
为了达到上面的教学目标和根据课程标准的要求,因此把学生能够正确区分几何概型及古典概型两者的区别和学生初步掌握并运用几何概型解决有关概率的基本问题作为教学重点。
《几何概型》的教学设计
《几何概型》的教学设计教学设计:几何概型一、教学目标:1.知识与技能:能够了解和掌握几何概型的基本概念和判定方法,能够应用几何概型解决实际问题。
2.过程与方法:培养学生的几何推理和问题解决的能力,提高学生的观察和思维能力。
3.情感态度与价值观:培养学生的几何思维和几何美感,培养学生的耐心和细致观察事物的能力。
二、教学内容:几何概型的概念和判定方法,几何概型的应用。
三、教学重难点:1.重点:几何概型的概念和判定方法。
2.难点:几何概型的应用。
四、教学过程:第一节:引入与导入(10分钟)2.通过讨论,引出几何概型的概念,介绍几何概型在日常生活中的应用。
第二节:几何概型的概念与判定方法(40分钟)1.教师通过示例,解释几何概型的定义和基本性质。
2.让学生观察和总结,提出几何概型的判定方法,并通过示例进行讲解。
第三节:几何概型的应用(40分钟)1.教师出示一些实际问题,让学生尝试用几何概型进行解答。
2.学生分组或个人解答,教师进行点评和指导,引导学生考虑更多的解法和思路。
3.学生展示自己的解答,与其他同学进行互动和讨论。
第四节:拓展与实践(30分钟)1.学生进行一些拓展性的练习,巩固和扩充所学的知识与技能。
2.学生进行一些实际问题的解答和探究,体验几何概型的应用和价值。
第五节:总结与评价(10分钟)1.教师对学生的学习情况进行总结和评价。
2.学生回顾所学的知识和技能,提出问题和建议。
五、教学手段:1.多媒体展示。
2.小组合作学习。
3.问题解决和讨论。
六、教学资源:1.课件和多媒体设备。
2.教材和练习册。
3.实物模型和示意图。
七、教学评价:1.学生的参与度和表现。
2.学生的回答能力和解决问题的能力。
3.学生的课堂笔记和练习册。
4.教师的观察和评价。
八、教学反思:几何概型作为数学课程的一部分,是学生进行几何推理和问题解决的重要内容。
通过本次教学设计,采用多种教学手段提高学生的学习兴趣和思维能力,培养学生的几何思维和几何美感。
几何概型第1课时教案
几何概型(第1课时)
一、学情分析:在前面学习了古典概型的基础上进一步完善概率的基础知识体系,由古典概型的相关内容学生更容易学习几何概型
二、学习目标
【学习目标】:掌握几何概型的概念;会用几何几何概型的概率计算公式解决实际的概率问题
【重点难点】重点:掌握几何概型的判断及几何概型的概率计算公式
难点:利用几何概型的概率公式解决实际问题
【学法指导】:自主探究与合作交流相结合
三、自主学习导问题:
1、什么叫几何概型?
2、几何概型的特点是什么?
3、几何概型的公式是什么?
4、填空
四、深入拓展导探究:
探究点一:某人午觉醒来,发现表停了,他打开收音机想听电台整点报时,求他等待的时间不多于10分钟的概率.
古典概型几何概型共同点
不同点
探究点二:一只蚂蚁在一边长为6的正方形区域内随机地爬行,则其恰在离四个顶点距离都大于3的地方的概率是多少?
探究点三:一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终与正方体的6个面的距离均大于1 ,称其为“安全飞行”,那么蜜蜂安全飞行的概率为多少?
巩固练习:
1、x的取值是区间[1,4]的整数,任取一个x的值,求“取值大于等于2”的概率
2、如图,边长为2 的正方形中有一封闭曲线围成的阴影区域,在正方形中随机
撒一粒豆子,他落在阴影区域内的概率为2
3
,则阴影区域面积为多少?
五、小结拓展导结论
C。
《几何概型》教案1新人教B版
《几何概型》教案1(新人教B版必修3)几何概型教案一.教学目标依据高中数学新课程标准的要求、本课教材的特点、学生的实际情况等方针,我认为这一节课要达到的学习目标可确定为:1.知识与技能目标了解几何概型的意义,会求简单的几何概型事件与概率。
2.能力目标通过学习运用几何概型的过程,初步体会几何概型的含义,体验几何概型与古典概型的联系与区别。
3.情感、态度与价值观通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流的习惯。
4.教学重、难点教学重点:根据教材以及学生的实际,确定本课时重点如下:几何概型的基本特点及"测度"为长度的运算。
教学难点:依据重点、学生的实际、教学中可能出现的问题,确定本课时难点如下:无限过渡到有限;实际背景如何转化长度。
二、教法设计问题情境一取一根长度为3米的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1米的概率有多大?(演示绳子)分析计算过程和结果:记"剪得两段绳子都不小于1m"为事件A。
把绳子三等分,于是当剪断位置处在中间一段上时,事件A发生。
由于中间一段的长度等于绳长的1/3,于是事件A发生的概率P(A)=1/3。
问题情境二:射箭比赛的箭靶涂有五个彩色得分环?从外向内为白色、黑色、蓝色、红色,靶星是金色。
金色靶心叫"黄心"。
奥运会的比赛靶面直径为122cm,靶心直径为12.2cm.运动员在70m外射箭。
假设射箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率为多少?分析计算过程和结果:记"射中黄心"为事件B,由于中靶点随机地落在面积为(1/4)×π×1222cm2的黄心内时,而当中靶点落在面积为(1/4)×π×12.22cm2的黄心内时,事件B发生,于是事件B发生的概率概率=满足条件的测度(长度、面积)÷总测度几何概型对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点。
《几何概型》(第1课时)教学设计案例
本课选自苏教版(必修3)第三章《概率》中第三 节《几何概型》的第一课时.概率这一章的核心是运 用数学方法去研究不确定现象的规律,让学生初步 形成用科学的态度、辩证的思想、随机的观念去观 察、分析研究客观世界的态度,寻求并获取认识世界 的初步知识和科学方法.
师:那么我们也来做这样的两个试验,去计算这 两个事件的频率,然后去估计这两个事件的概率.
射箭试验:用几何画板课件进行演示,模仿试验 的过程.要求学生数出射中黄心的次数,由此估计出 射箭中黄心的概率.(学生活动)
图3
师:(问题5)这个概率问题与古典概型有什么 区别?
生:古典概型中基本事件个数是事先知道的,而 在这个问题中基本事件的个数是无限多个.
师:(教师解释)将射箭中靶面上的每一个点作 为一个基本事件,由于靶面上有无数多个点,因此就 有无限多个基本事件,,这是和古典概型不一样的地 方.
(问题6)那么有没有和古典概型一样的地方 呢?
生:(一起回答)每个基本事件的发生都是等可 能的.
师:大家认为我们要是去求此题的概率的话,这 个概率会和什么有关?
A发生的概率为P(A)=揣.测度的意义依 “该点落在其内部一个区域d内”为事件A,则事件
D而定,当D分别是线段、平面图形和立体图形时, 相应的“测度”分别是长度、面积和体积等.
师:得到了几何概型的概念和计算公式后,我们 再来看刚才提出的那两个问题情境,即射箭试验和剪 绳子试验.首先是射箭试验(链接到几何画板课件)
(问题8)这是一个什么概型,为什么? 生:(齐声回答)几何概型.(教师提示:基本事 件有无限多个,每个基本事件的发生是等可能的,满 足几何概型的基本特点.) 师:根据几何概型的概率的计算方法,先找出两 个区域来.区域D是什么呢?区域d是什么呢? 生:(齐声回答)区域D是整个靶面,区域d是黄
几何概型第一课时优秀教案
课时首页第 1 页教学流程第 2 页全部结果所构成的区域长度(面积或体积)于:【50,,60】时间段内发生616010整个圆的弧长A所在扇形的弧长P(A)=== 法三:利用【50,60】时间段所占的圆心角。
事件A 恰好是打开收音机的时刻位【50,,60】时间段内发生616010整个圆的圆心角A所在扇形的圆心角P(A)===解完此例题后归纳求解几何概型问题的步骤【归纳】: 1判断该概率模型是不是几何概型. 2如果是,把实际问题中的度量关系转化成长度、面积、体积等形式.3根据几何概型计算公式求出概率. 【训练1】1.两根相距8m 的木杆上系一根拉直绳子,并在绳子上挂一盏灯,求灯与两端距离都大于3m 的概率.例2. 取一个长为2a 的正方形及其内切圆,随机向正方形内丢一粒豆子,求豆子落入圆内的概率。
【训练2】边长为6cm 的正方形内,有此例可让学生将答案做在作业纸上,挑选几个有代表性的解答用实物投影展出,请一些同学进行点评,教师进行总结. 学生学生独立完成,按转盘的形式提问学生思考作答学生独立完成,按转盘的形式提问一个不规则图形,随机向正方形内扔一粒豆子,豆子落入圆内的概率为0.6,求不规则 图形的面积。
(三) 课堂反思1、你今天学到的知识点2、你今天学到的思想方法3、情感方面你有哪些收获教师实物展示正方体框架,在里面嵌套一个小正方体框架.预设 生:1、几何概型的概念以及会用几何概型的概率公式求解简单随机事件的概率2、数学建模,数形结合3、数学是有用的,探究精神,团队合作精神【设计意图】学生自己梳理本节所学知识,以便于对知识有一个系统的理解与认识;同时让学生学会反思,是一个非常良好的学习习惯的养成,也是学生将来处理工作生活问题的一个很好的习惯.【设计意图】学生自己梳理本节所学知识,以便于对知识有一个系统的理解与认识;同时让学生学会反思,是一个非常良好的学习习惯的养成,也是学生将来处理工作生活问题的一个很好的习惯.。
几何概型教学设计
几何概型(第一课时)▲▲学情与教材分析《几何概型》这节课是在学生学习了两种计算随机事件发生的概率方法:随机模拟试验、古典概型的方法的基础上进行的,学生的学习兴趣较浓,很想一鼓作气学完概率计算的方法,学习障碍是分析能力、思维能力不够,判别某种概型是几何概型较难,因此在教学中要结合[创设情境]、[问题探究]进行深入讨论,让学生自主参与探究学习活动,充分向学生展示几何概型概念形成的过程,利用回顾、猜想、对比等手段来帮助学生解决问题,让学生真正体会到判断几何概型的特点以及重要性。
而通过对本节知识的探究与学习,感知用图形解决无限多个试验结果的概率问题的方法,掌握数学思想与逻辑推理的数学方法,它是后面继续学习概率统计的重要基础。
▲▲设计理念几何概型的教学应避免简单直接地呈现概念,而应利用以旧引新、猜想验证、对比迁移、知识运用等方式,将概型的研究从有限个基本事件过渡到无限多个基本事件,让学生充分体会概念的形成过程,并通过列举大量的几何概型的实例与数学模型让学生去概括、理解、深化几何概型的两个特征及计算公式。
同时使学生能够把一些实际问题转化为几何概型,并能够合理利用随机、统计、化归、数形结合等数学思想方法有效解决相关问题。
本节课教学方法主要采用“以学生为主体,教师为主导”的探究性教学模式。
教学中提供必要的概率统计数学基础; 激发学生的数学学习兴趣,形成积极主动的学习方式;学生成为课堂学习的主体,教师成为课堂上的主持人,把思考,讨论,研究的时间还给学生,成为独具慧眼的发现者,善于发现学生的长处,成为热情的观众,精彩时报以掌声,给予充分的肯定,失误时,评论切磋,提出中肯的意见。
▲▲教学目标【知识与技能】1正确理解几何概型的概念;2掌握理解几何概型的概率公式;3会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型。
【过程与方法】通过解决具体问题的实例去感受几何概型的概念,掌握基本事件等可能性的判断方法。
《几何概型(第一课时)》的教学设计
《几何概型(第一课时)》教学设计黔西一中施启军教材分析:本节课选自普通高中课程标准实验教科书《数学》(人教A版)必修3第3章《概率》第3节内容,几何概型第一课时,几何概型的学习是在古典概型之后学习,是对古典概型内容的进一步拓展,是等可能事件的概念从有限向无限的延伸。
在现实生活中,常常会遇到很多游戏的所有可能结果有无穷多的情况,这时我们就可以用几何概型来计算事件发生的概率,这充分体现了数学源于生活,数学与生活的紧密联系,同时也说明数学在概率论中有重要作用。
概率在选修模块的系列2中还将继续学习概率的其他内容,因此,本章在高中阶段概率的学习中,起了承前启后的作用.本节的核心素养是从生活中的转盘游戏抽象、建模转化为数学问题,运用数学方法去研究不确定现象的规律,让学生初步形成从直观想象到建模的逻辑思维的思想、随机的观念去观察、分析研究客观世界的态度,并获取认识世界的初步知识.学情分析:本小节是在学生已经掌握一般性的随机事件即概率的统计定义的基础上,继古典概型后对另一常见概型的学习,让学生通过观察、推断、归纳过度到几何概型的概念,有效提高学生直觉思维能力,对学生辩证思想的进一步形成具有促进的作用.三维目标:知识与技能:了解几何概型的意义,会用几何概型的概率计算公式求简单的几何概型事件的概率.过程与方法:通过学习几何概型的过程,初步体会几何概型的含义,从有限到无限的推广,体验几何概型与古典概型的区别与联系.情感、态度与价值观:通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流、独立思考的习惯.教学重点:几何概型的基本特点及几何概型的概率公式及运用.教学难点:从实际背景中观察、推断、归纳出几何概型概率公式.课时安排1课时教学过程一、创设情境,导入新课问题情境一:拿出制作好的转盘,让学生亲自体验转盘游戏,体验游戏中中奖的可能性的大小及游戏的公平性。
(设计意图:让学生亲自体验游戏并给适当的奖品,激发学生的学习兴趣和强烈的求知欲望,自然地进入本节课的主题“几何概型”)上述试验的可能结果个数有多少个? 它是古典概型吗?有无数多个结果,不是古典概型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《几何概型(第一课时)》教学设计黔西一中施启军教材分析:本节课选自普通高中课程标准实验教科书《数学》(人教A版)必修3第3章《概率》第3节内容,几何概型第一课时,几何概型的学习是在古典概型之后学习,是对古典概型内容的进一步拓展,是等可能事件的概念从有限向无限的延伸。
在现实生活中,常常会遇到很多游戏的所有可能结果有无穷多的情况,这时我们就可以用几何概型来计算事件发生的概率,这充分体现了数学源于生活,数学与生活的紧密联系,同时也说明数学在概率论中有重要作用。
概率在选修模块的系列2中还将继续学习概率的其他内容,因此,本章在高中阶段概率的学习中,起了承前启后的作用.本节的核心素养是从生活中的转盘游戏抽象、建模转化为数学问题,运用数学方法去研究不确定现象的规律,让学生初步形成从直观想象到建模的逻辑思维的思想、随机的观念去观察、分析研究客观世界的态度,并获取认识世界的初步知识.学情分析:本小节是在学生已经掌握一般性的随机事件即概率的统计定义的基础上,继古典概型后对另一常见概型的学习,让学生通过观察、推断、归纳过度到几何概型的概念,有效提高学生直觉思维能力,对学生辩证思想的进一步形成具有促进的作用.三维目标:知识与技能:了解几何概型的意义,会用几何概型的概率计算公式求简单的几何概型事件的概率.过程与方法:通过学习几何概型的过程,初步体会几何概型的含义,从有限到无限的推广,体验几何概型与古典概型的区别与联系.情感、态度与价值观:通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流、独立思考的习惯.教学重点:几何概型的基本特点及几何概型的概率公式及运用.教学难点:从实际背景中观察、推断、归纳出几何概型概率公式.课时安排1课时教学过程一、创设情境,导入新课问题情境一:拿出制作好的转盘,让学生亲自体验转盘游戏,体验游戏中中奖的可能性的大小及游戏的公平性。
(设计意图:让学生亲自体验游戏并给适当的奖品,激发学生的学习兴趣和强烈的求知欲望,自然地进入本节课的主题“几何概型”)上述试验的可能结果个数有多少个?它是古典概型吗?有无数多个结果,不是古典概型。
在现实生活中,常常会遇到试验的所有可能结果是无穷多的情况,这时就不能用古典概型来计算事件发生的概率.我们必须学习新的方法来解决这类问题.为此,我们今天学习几何概型探究几何概型的概念1.图中有两个转盘.甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?以转盘(1)为游戏工具时,甲获胜的概率为 以转盘(2)为游戏工具时,甲获胜的概率为事实上,甲获胜的概率与字母B所在扇形区域的圆弧的长度(面积或圆心角的大小)有关,而与字母B 所在区域的位置无关.因为转转盘时,指针指向圆弧上哪一点都是等可能的.不管这些区域是相邻,还是不相邻,甲获胜的概率是不变的(设计意图:这个问题都来自于日常生活中,学生们会跃跃欲试,情境具有暗示作用,在暗示作用下,学生不知不觉地参与了情境中的角色,这样他们的学习积极性和思维活动就会被极大的调动起来.)二、师生互动,意义建构经过分析,在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”,但是显然不能用古典概型的方法求解.教师提问:由以上的问题,你觉得此类问题与古典概型相比有何特点?如何求此类问题的概率?(设计意图:让学生讨论,教师适当点拨.由学生总结几何概型的概念、基本特点、概率计算公式,之后要加以说明,以便学生理解与记忆.帮助学生弄清其形式和本质,明确其内涵和外延.)几何概型概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.几何概型的特点:(1)试验中所有可能出现的结果(基本事件)有无限多个;(提醒学生与古典概型的区别) (2)每个基本事件出现的可能性相等.(与古典概型的联系)对于一个随机试验,如果我们将每个基本事件理解为从某个特定的几何区域内随机地抽取一点,而该区域内每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域内的点.这样就可以把随机事件与几何区域联系在一起.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.探究:几何概型的概率计算公式1.与长度有关的几何概型的概率的求法取一根长度为3米的绳子,拉直后在任意位置随机剪断,那么剪得的两段绳子的长度都不小于1米的概率有多大?解:设事件A 为“剪得两段绳子的长度都不小于1米”,用线段M N表示3 m 的绳子,E 、F 为M N的两个三等分点.1.23.5因为EF=1 m,所以P(A)=例:某人午觉醒来,发现表停 了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率.解:设A ={等待的时间不多于10分钟},事件A 恰好是打开收音机的时刻位于[50,60]时间段内,因此由几何概型的求概率的公式得即“等待报时的时间不超过10分钟”的概率为1/6。
(设计意图:通过引例培养学生运用数学知识独立解决问题的能力) 2.与面积有关的几何概型的概率的求法天舟一号货运飞船在2017年4月20人19时41分成功发射,假设在飞船返回地面时,有主着陆场、次着陆场两部分。
主着陆场为边长为1200m的正方形区域,着陆场总面积为边长为2000m的正方形区域.求飞船在主着陆场内着陆的概率?解:设“飞船在主着陆场内着陆”为事件A,则 所以飞船在主着陆场内着陆的概率9/25 拓展训练某人向一个半径为6的圆形标靶射击,假设他每次射击必定会中靶,且射中靶内各点是随机的,则此人射击中靶点与靶心的距离小于2的概率为( )1.360501().606P A -==25920001200)(22==A p 1111A.B. C. D.13942解:靶点与靶心的距离小于2的区域是以靶心为圆心以2为半径的圆的内部,故所求概率为(设计意图:让学生通过实例,从解决实例的问题中去归纳总结出几何概型概率的计算公式,有利于培养学生梳理能力)在几何概型中,事件A的概率的计算公式:三、自我检测1、取一个边长为2a 的正方形及其内切圆,随机向正方形内丢一粒豆子,求豆子落入圆内的概率.分析 由于是随机丢豆子,故可认为豆子落入正方形内任一点的机会都是均等的(符合几何概型),于是豆子落入圆中的概率应等于圆面积与正方形面积的比.解 记“豆子落入圆内”为事件A,则22()44圆面积=正方形面积a P A a ππ==答 豆子落入圆内的概率为4π. 2、如图所示,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为 则阴影区域的面积为( )A. B.C .D .无法计算 41P .369π==π构成事件A 的区域长度(面积或体积)P (A )=试验的全部结果所构成的区域长度(面积或体积)2,3238343解:由几何概型知: 故4、某汽车站每隔15分钟就有一辆汽车到达,乘客到达车站的时刻是任意的,那么一位乘客到达车站后等车时间大于10分钟的概率是多少?(设计意图:学生练习时,教师巡查,观察学情,及时从中获取反馈信息.对学生练习中出现的独到解法提出表扬和鼓励,对其中偶发性错误进行辨析、指正.通过形成性练习,培养学生的应变和举一反三的能力,逐步形成技能)四、小结本节课我有什么收获?(由学生进行总结) (1)几何概型的概念及基本特点; (2)几何概型中概率的计算公式;(3)在生活不要去参与一些赌博的游戏,(设计意图:通过学生的总结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力;)五、布置作业(1)课本第103页习题3.3 必做题:A组 第1,2,3题;选做题:B 组 第1题教学反思:由于几何概型是在学习了古典概型之后,将等可能事件的概念从有限向无限的延伸,因S2.S3=阴正方形228S 2.33=⨯=阴3.在区间[-2,3]上随机选取一个数X,则X ≤1的概率为( )A.45B.35C.25D .15此,在引出几何概型之后,将几何概型的特点与古典概型的特点进行比较,总结它们的相同的地方和不同的地方.根据几何概型中最常见的形式:长度、面积、设置典型例题。
例题本身属于几何概型及概率计算公式的直接应用、简单应用,目的是加强对几何概型的理解;帮助学生明确解题步骤,规范解题格式.因此,例题的解决中:主要由学生去完成,以学生为中心,解答过程强调书写的规范性。
此外,为了进一步突出本节课的重点与化解难点,同时也是为了与下一节课衔接,例题设置有拓展引申,绝大部分学生在单独处理例题1时是不用费多大劲的,但是当面对例1的拓展时,大部分学生很有可能感觉无从下手,原因何在?在于学生找不到本题中的时间与长度有关,——这恰好是本节课的难点,因此本题的教学对本节课的难点的突破至关重要,课堂上,教师不急于讲解,先让学生讨论,哪怕是争论,让学生参与进来,使得本节课的重点、难点得以突破,而且学生的数学思维的深刻性、广阔性等逻辑思维品质就得到了提高,思维品质提高了,思维能力也就提高了.这样,这节课的教学目标就基本上都达到了.例题处理后,设置一组形成性练习,作为对本节课的实时检测.4个练习是按由易到难、由简单到复杂的认识规律和心理特征设计的,有利于提高学生的积极性,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力,进一步完成教学目标。
在本节课中也存在一些不足之处,希望各位同仁提出宝贵的意见和建议。