物理化学在食品中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理化学在食品中的应用
引言:多年来,人们一直寻求各学科的理论和方法来深入理解和研究食品的性质及其在加工和贮藏中的变化规律。这种努力使得今天的食品加工技术呈现出更多的科学内涵。这也促进了食品专业在教学与研究领域的改革。特别是在食品化学领域,国内外先后出版和再版了许多优秀的教材和参考书。这反映了该领域知识对食品工业的重要性,也说明了该领域的知识更新和研究进展是十分迅速的。摘要:将物理技术应用于食品果蔬的杀菌保鲜、加工,为食品贮藏、保鲜和加工工作开辟了一条新的途径,大量实验表明应用辐射场、静电场、高压脉冲电场、微波等物理技术处理食品果蔬可在不破坏食品的营养结构与原有风味的基础上起到杀虫、灭菌、防腐保鲜的作用.文章综述了近年来物理技术在食品杀菌、保鲜和加工方面取得的研究与应用成果,并对其未来的发展方向作了初步展望.
关键词:食品贮藏和加工物理技术果蔬保鲜杀菌(The preservation of fruits and vegetables, sterilization of food ,storage and processing of physics and technology)
1.1食品超高压杀菌技术
根据杀菌时温度不同,杀菌可分为热杀菌和冷杀菌。其中冷杀菌又根据使用手段不同分为物理杀菌和化学杀菌。冷杀菌中的物理杀菌是目前杀菌技术发展的趋势。物理杀菌克服了热杀菌和化学杀菌的不足之处,是运用物理方法,如高压、场(包括电尝磁场)、电子、光等的单一作用或两种以上的共同作用,在低温或常温下达到杀菌的目的。
超高压技术是90年代由日本明治屋食品公司首创的杀菌方法,它是将食品密封于弹性容器或置于无菌压力系统中,经100Mpa(约为987个大气压)以上超高压处理一段时间,从而达到加工保藏食品的目的。其特点是超高压技术进行食
品加工具有的独特之处在于它不会使食品的温度升高,而只是作用于非共价键,共价键基本不被破坏,所以食品原有的色、香、味及营养成分影响较校在食品加工过程中,新鲜食品或发酵食品由于自身酶的存在,产生变色变味变质使其品质受到很大影响,这些酶为食品品质酶如过氧化氢酶、多酚氧化酶、果胶甲基质酶、脂肪氧化酶、纤维素酶等,通过超高压处理能够激活或灭活这些酶,有利于食品的品质。超高压处理可防止微生物对食品的污染,延长食品的保藏时间,延长食品味道鲜美的时间。
自1991年4月日本首次将高压产品果酱投放市场,其独到风味立即引起了发达国家政府、科研机构及企业界的高度重视。超高压处理技术涉及食品工艺学、微生物学、物理学、传感器、自动化技术等学科,由于设备成本高、投资巨大,目前国内的食品超高压处理技术还处于研究阶段,还没有成熟的超高压灭菌技术投入食品工业生产,但超高压食品极符合21世纪新型食品的简便、安全、天然、营养的消费需求,相信它有着巨大的潜在市场和广阔的发展前景。
1.2高压脉冲电场灭菌机理
高压脉冲电场杀菌,一种新型的食品冷杀菌技术,简称PEF。上个世纪六十年代,在美国就已经开始研究,到九十年代中后期我国才开始这方面的研究,由于设备的限制,研究水平已经相对比较落后,特别是在产业化方面。目前,对于它的杀菌机理尚不明确。多数学者认为高压脉冲电场的杀菌原理包括场的作用和电离作用两种。场的作用:脉冲电场产生磁场,磁场和电场的交替作用使细胞膜振荡加剧,膜强度减弱,使膜内物质溢出,膜外物质易渗入,细胞膜的保护作用减弱甚至消失。电离作用:电极附近物质电离产生的离子与膜内物质作用,阻断了膜内外生化反应和新陈代谢的进行。同时,液体介质产生强氧化物质如O3,
与细胞内物质发生反应从而影响细胞正常功能的发挥。
高压脉冲电场杀菌特点:①杀菌时间短、效率高、能耗远小于热处理法;②脉冲电场杀菌在常温常压下进行,与加热法相比更能有效地保持食品原有的色、香、味及营养成分,对热敏性物料尤其适用。
1.3微波加热技术在食品加工中的应用
食品加工主要是利用了微波的热效应。微波透人物料内,与物料的极性分子相互作用,使其极性取向随着外电磁场的变化而变化,致使分子急剧摩擦、碰撞,使物料内各部分在同一瞬间获得热量而升温。这种具有使物体整体成为热源的加热方式称为微波加热。微波加热是通过微波透入物料内,与物料的极性分子相互作用,使其极性取向随着外电磁场的变化而变化,致使分子急剧摩擦、碰撞,使物料内各部分在同一瞬间获得热量而升温。微波加热具有选择性和即时性,加热效率高、节约能源,穿透性好等特点。但是由于被加工食品的表面温度低,不足以在表面产生褐变反应,不能在食品表面产生人们所希望的发色。此外,微波加热所需要时间极短,l-2min误差就可能导致意想不到的后果,使食品加工过度,因而对于加工过程的参数设定特别重要。
微波杀菌机理主要包括热效应理论和非热效应理论。热效应理论认为微波具有高频特性,当它穿透介质时,水、蛋白质、核酸等极性分子受交变电场的作用而取向运动,相互摩擦产生热量,从而导致温度升高,使微生物的蛋白质、核酸分子改性或失活,从而杀灭微生物。
非热效应理论主要有细胞膜离子通道模型和蛋白质变性模型。前者认为微波对细菌的生物反应是微波电场改变细胞膜断面的电子分布,影响细胞膜周围电子和离子浓度,从而改变细胞膜的通透性能,细菌结构功能紊乱,生长发育受到抑
制而死去。后者认为,微生物中的蛋白质、核酸物质和水等极性分子在高频率、强电场的微波场中随着微波极性的改变而引起蛋白质分子团的旋转或振动,使其蛋白质分子变性,从而达到杀菌目的。
1.4可食性食品涂膜
为了防止食品变质,延长贮藏期,保持其应有的色、香、味、形及营养成分,用淀粉、低聚糖、防腐剂、抗氧化剂等材料.用涂布或喷雾等方法,在食品周围形成一层弹性薄膜,隔离了食品与外界的联系,防止了微生物的再污染及营养成份的挥发。加上膜本身具有杀菌作用,能杀死食品表面的腐败菌,从而有效地延长了食品的贮藏期。可食性膜是以天然可食性物质(如多糖、蛋白质、脂类等)为原料,添加可食性的增塑剂、交联剂等,通过不同分子间相互作用,并以包裹,涂布,微胶囊等形式覆盖于食品表面,以阻隔水气、氧气或各种溶质的渗透,起保护作用的薄层。可食性涂膜保鲜的机理有以下几个方面,第一,减少物料表面与空气的接触降低干果所含的脂肪氧化的速度以及果蔬类酶促褐变的速度;第二,减少外界微生物对食品原料的污染;第三,降低水分传递的速度,减少果蔬失水及干果类吸潮;第四,降低果蔬类的呼吸强度。
五、臭氧杀菌及其在食品工业中的应用
臭氧(O3)是一种强氧化剂、消毒剂、精制剂、催化剂。自本世纪初法国用臭氧对饮用水杀菌处理以来,它的杀菌应用越来越广泛。在食品杀菌方面,最早在1909 年法国的科隆市用于冷冻肉的保存。⑴臭氧很容易同细菌的细胞壁中的脂蛋白或细胞膜中的磷脂质、蛋白质发生化学反应,从而使细菌的细胞壁和细胞受到破坏(即所谓的溶菌作用),细胞膜的通透性增加,细胞内物质外流,使