实验二-连续时间系统的频率响应

合集下载

信号与系统仿真作业

信号与系统仿真作业

nGDOU-B—11—112广东海洋大学学生实验报告书(学生用表)课程名称课程号学院(系)信息学院专业班级学生姓名学号实验地点04002 实验日期实验一连时间信号的MATLAB表示和连续时间LTI系统的时域分析一、实验目的1.掌握MA TLAB产生常用连续时间信号的编程方法,并熟悉常用连续时间信号的波形和特性;2.运用MATLAB符号求解连续系统的零输入响应和零状态响应;3.运用MATLAB数值求解连续系统的零状态响应;4.运用MATLAB求解连续系统的冲激响应和阶跃响应;5.运用MATLAB卷积积分法求解系统的零状态响应。

二、实验原理1. 连续信号MATLAB实现原理从严格意义上讲,MA TLAB数值计算的方法并不能处理连续时间信号.然而,可用连续信号在等时间间隔点的取样值来近似表示连续信号,即当取样时间间隔足够小时,这些离散样值能够被MATLAB处理,并且能较好地近似表示连续信号.MATLAB提供了大量生成基本信号的函数.比如常用的指数信号、正余弦信号等都是MATLAB的内部函数。

为了表示连续时间信号,需定义某一时间或自变量的范围和取样时间间隔,然后调用该函数计算这些点的函数值,最后画出其波形图.三、实验内容1.实例分析与验证根据以上典型信号的MA TLAB函数,分析与验证下列典型信号MA TLAB程序,并实现各信号波形图的显示,连续信号的图形显示使用连续二维图函数plot().(1)正弦信号:用MA TLAB命令产生正弦信号2sin(2/4)ππ+,并会出时间0≤t≤3的波形图。

程序如下:K=2;w=2*pi ;phi=pi/4;t=0:0.01:3;ft=K*sin (w*t+phi );plot(t,ft ),grid on ;axis ([0,3,-2。

2,2.2])title (’正弦信号’)(2) 抽样信号:用MA TLAB 中的sinc(t)函数命令产生抽样信号Sa(t),并会出时间为66t ππ-≤≤的波形图。

系统的频域分析

系统的频域分析

6 系统的频域分析 p 5
Yzs (jw)= H(jw) F(jw)
Yzs ( jw ) 或 : H ( jw ) H ( jw ) e j (w ) F ( jw )
如果信号不存在傅氏变换时,不可以用频域分析方法。 在本教材中,没有特别提示时,涉及到H(jw) 的求解, 都指满足IR条件的LTI因果系统,即不考虑初始状态的影响, 即满足:
4/RC
w
随着频率的增加,系统的幅度响应|H(jw)|不断减小,说明信号 的频率越高,信号通过该系统的损耗也就越大,即低通。 由于|H(j(1/RC))|=0.707,所以把wc=1/RC称为该系统的3db截频。
6 系统的频域分析 p 13
连续信号通过系统响应的频域分析
在此就是求零状态响应。又称:零状态响应的频域分析法
H ( jw ) FT[h(t )]
1 1 jw 1 jw 2 1 ( jw ) 2 3( jw ) 2
6 系统的频域分析 p 9
例 LTI系统,输入 f(t)=e –t u(t),输出 y(t)= e-tu(t) + e2tu(t) ,求频率响应H(jw)和h(t)。
部分分式展开
1 3( jw ) 3 jw 44 Yzs ( jw ) Fzs ( jw ) H ( jw ) jw ) 22 jw 2 (jw 3 1)((jw )(3 jw 3)
1 -t 5 - 3t - 2t y zs (t ) FT [Yzs ( jw )] [ e 2e - e ]u (t ) 2 2
j wC
由Fourier反变换,得系 统的冲激响应h(t)为:
6 系统的频域分析 p 12
1 -(1 / RC)t h(t ) e u(t ) RC

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。

本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。

2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。

傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。

具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。

3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。

频率响应是系统对不同频率输入信号的响应情况。

通过系统函数H(ω)可以计算系统的频率响应。

系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。

4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。

通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。

常用的频域分析方法包括功率谱密度估计、谱线估计等。

5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。

通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。

6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。

通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。

进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。

7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。

频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。

总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。

频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。

实验二--连续时间信号的频域分析

实验二--连续时间信号的频域分析

实验二连续时间信号的频域分析专业班级通信1601 姓名宁硕学号 20 评分:实验日期: 2017 年 12 月 13日指导教师: 张鏖峰一、实验目的1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法;2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;3、掌握连续时间傅里叶变换的分析方法及其物理意义;4、掌握各种典型的连续时间非周期信号的频谱特征以及傅里叶变换的主要性质;5、学习掌握利用MATLAB语言编写计算CTFS、CTFT和DTFT的仿真程序,并能利用这些程序对一些典型信号进行频谱分析,验证CTFT、DTFT的若干重要性质。

基本要求:掌握并深刻理傅里叶变换的物理意义,掌握信号的傅里叶变换的计算方法,掌握利用MATLAB编程完成相关的傅里叶变换的计算。

以看得很清楚。

二、实验原理及方法任何一个周期为T1的正弦周期信号,只要满足狄利克利条件,就可以展开成傅里叶级数。

其中三角傅里叶级数为:2.1或:2.2指数形式的傅里叶级数为:2.3其中,为指数形式的傅里叶级数的系数,按如下公式计算:2.4傅里叶变换在信号分析中具有非常重要的意义,它主要是用来进行信号的频谱分析的。

傅里叶变换和其逆变换定义如下:2.52.6连续时间傅里叶变换主要用来描述连续时间非周期信号的频谱。

按照教材中的说法,任意非周期信号,如果满足狄里克利条件,那么,它可以被看作是由无穷多个不同频率(这些频率都是非常的接近)的周期复指数信号ejt的线性组合构成的,每个频率所对应的周期复指数信号ejt称为频率分量(frequency component),其相对幅度为对应频率的|X(j)|之值,其相位为对应频率的X(j)的相位三、实验内容和要求Q2-1 编写程序Q2_1,绘制下面的信号的波形图:其中,0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos(0t)、cos(30t)、cos(50t) 和x(t) 的波形图,给图形加title,网格线和x 坐标标签,并且程序能够接受从键盘输入的和式中的项数。

北航信号与系统第一次实验报告超级详细版【范本模板】

北航信号与系统第一次实验报告超级详细版【范本模板】

信号与系统实验一连续时间系统卷积的数值计算实验目的1 加深对卷积概念及原理的理解;2 掌握借助计算机计算任意信号卷积的方法.实验原理()()()tototftoftf d21⎰∞∞--=卷积实验流程图源程序#include 〈stdio。

h〉float u(float t){while(t〉=0)return(1);while(t<0)return(0);}float f1(float t){return(u(t+2)—u(t-2));}float f2(float t){return(t*(u(t)-u(t-2))+(4-t)*(u(t-2)—u(t-4)));}main(){float t,i,j,result=0;for(i=—2;i<=6;i=i+0.1){result=0;for(j=0;j<=4;j=j+0.1)result+=f2(j)*f1(i—j)*0。

1;printf("%.1f\t%.2f\t",i,result);}printf ("\n”);}实验数据—2。

0 0。

00 —1.9 0.01 —1.8 0。

03 —1。

7 0.06 -1。

6 0.10—1。

5 0.15 -1。

4 0。

21 —1.3 0。

28 -1。

2 0。

36 —1.1 0。

45-1.0 0.55 -0.9 0.66 -0。

8 0。

78 -0.7 0。

91 -0。

6 1。

05-0.5 1.20 -0.4 1。

36 -0.3 1.53 -0。

2 1.71 —0。

1 1.90 0.0 2.10 0。

1 2。

29 0。

2 2.47 0。

3 2。

64 0。

4 2。

800。

5 2。

95 0。

6 3.09 0.7 3.22 0。

8 3。

34 0.9 3。

451。

0 3。

55 1。

1 3。

64 1.2 3。

72 1.3 3.79 1。

4 3.85 1。

5 3。

90 1.6 3.94 1.7 3。

[精品]连续时间LTI系统的频率特性及频域分析

[精品]连续时间LTI系统的频率特性及频域分析

[精品]连续时间LTI系统的频率特性及频域分析连续时间LTI系统(Linear Time-Invariant System)是指可用于描述各种物理和工程系统运动规律的动态系统。

它们由一对连续时变系统(如模型、结构和控制)和一对线性运算符构成,其具有因变量(响应)和自变量(输入)之间的线性关联性、时间不变性、结构连续的性质,并且在响应上呈现出定义的平稳性,因而它们在描述众多系统运动规律中被广泛应用。

对于连续时间LTI系统的频域特性的研究,则涉及这些系统的相位特性、幅频特性、切趾特性等。

同时,也要探讨系统中不同频率分量的传输特性,因为有不同频率分量的信号既可以幅频分析也可以相位分析,可以衡量系统不同频率下的相应响应。

由于连续时间LTI系统在有限频率通道内传播信号时发生了部分信号丢失,因此我们引入了频域分析得到系统频响阻抗。

这样一来,它就可以用来测量系统频带上的增益,系统的模态表现,以及系统的传播属性和可控特性。

在频域分析过程中,由于信号可以被分解为离散频率分量,所以对于单个频率分量来说,有关连续时间LTI系统的分析可以比较容易地完成。

一般情况下,每一个频率分量的传播特性由一个线性系数连接,称之为频响函数,可以衡量一个系统的频率响应情况。

总的来说,对于连续时间LTI系统,研究其频率特性及频域分析具有重要的意义。

他可以提供一个系统的相位特性、幅频特性、切趾特性等详细的分析,而且由于信号可以分解为离散频率分量,因此可以很容易地实现频域分析,并衡量一个系统的频率响应情况。

此外,还可以利用频域分析来测量系统的增益,模态表现,以及系统的传播属性和可控特性,进而提高系统的性能,实现性能的优化。

系统的频率响应函数

系统的频率响应函数

系统的频率响应函数系统的频率响应函数是描述系统输入与输出之间的频率关系的数学函数。

它通常表示为H(ω),其中H是频率响应函数的符号,ω表示频率。

频率响应函数可以是连续时间系统的拉普拉斯变换,也可以是离散时间系统的Z变换。

在以下的讨论中,我们将主要关注连续时间系统的频率响应函数。

频率响应函数对系统的稳态性能和滤波特性具有重要的影响,因此对于系统的设计和分析来说是非常关键的。

下面我们将介绍一些关于系统频率响应函数的重要概念和性质。

1.频率响应函数的定义:频率响应函数是系统的输出与输入之间的幅度和相位关系的数学表示。

在连续时间系统中,频率响应函数H(ω)可以表示为系统的拉普拉斯变换:H(ω)=G(jω)其中,G(s)是系统的传递函数,s是复变量,j是虚数单位。

2. 幅频特性:系统的幅频特性是频率响应函数的幅度分布关系。

它决定了系统对不同频率的输入信号的放大或衰减程度。

通常用幅度特性曲线表示,可以是Bode图、奈奎斯特图等。

幅频特性的分析可以帮助我们了解系统的增益衰减情况和频率选择性能。

3.相频特性:系统的相频特性是频率响应函数的相位分布关系。

它决定了系统对不同频率的输入信号的相位变化。

相频特性也通常用相位特性曲线表示。

相频特性的分析可以帮助我们了解系统的相位延迟和相位失真情况。

4.幅相特性的分离:频率响应函数可以分解为幅度响应函数和相位响应函数的乘积形式:H(ω)=,H(ω),*ϕ(ω)其中,H(ω),表示幅度响应函数,ϕ(ω)表示相位响应函数。

幅相特性的分离可以使系统的分析更加方便和直观。

5.系统的稳定性:频率响应函数对系统的稳态性能具有重要影响。

当频率响应函数在所有ω值处有界时,系统是稳定的。

稳态性能的分析可以通过频率响应函数的幅值来进行,以确定系统的增益补偿。

6.频率响应函数的设计:频率响应函数的设计可以通过选择适当的系统传递函数来实现。

通常,需要根据特定的系统要求和设计目标来选择合适的传递函数,以达到所需的频率响应特性。

信号与系统连续时间系统的频率响应

信号与系统连续时间系统的频率响应

实验报告实验名称:连续时间系统的频率响应一、实验目的:1 加深对连续时间系统频率响应理解;2 掌握借助计算机计算任意连续时间系统频率响应的方法。

二、实验原理:连续时间系统的频率响应可以直接通过所得表达式计算,也可以通过零极点图通过用几何的方法来计算,而且通过零极点图可以迅速地判断系统的滤波特性。

根据系统函数H(s)在s平面的零、极点分布可以绘制频响特性曲线,包括幅频特性 H(jw) 曲线和相频特性?(w)曲线。

这种方法的原理如下:假定,系统函数H(s)的表达式为当收敛域含虚轴时,取s = jw,也即在s平面中,s沿虚轴从- j∞移动到+ j∞时,得到容易看出,频率特性取决于零、极点的分布,即取决于Zj 、Pi 的位置,而式中K是系数,对于频率特性的研究无关紧要。

分母中任一因子(jw- Pi )相当于由极点 p 引向虚轴上某点 jw的一个矢量;分子中任一因子(jw-Zj)相当于由零点Zj引至虚轴上某点 jw的一个矢量。

在右图示意画出由零点Zj和极点 Pi 与 jw点连接构成的两个矢量,图中Nj、Mi 分别表示矢量的模,ψj、θi 表示矢量的辐角(矢量与正实轴的夹角,逆时针为正)。

对于任意零点Zj 、极点Pi ,相应的复数因子(矢量)都可表示为:于是,系统函数可以改写为当ω延虚轴移动时,各复数因子(矢量)的模和辐角都随之改变,于是得出幅频特性曲线和相频特性曲线。

这种方法称为s 平面几何分析。

通过零极点图进行计算的方法是: 1 在S 平面上标出系统的零、极点位置;2 选择S 平面的坐标原点为起始点,沿虚轴向上移动,计算此时各极点和零点与该点的膜模和夹角;3 将所有零点的模相乘,再除以各极点的模,得到对应频率处的幅频特性的值;4 将所有零点的幅角相加,减去各极点的幅角,得到对应频率处的相角。

三、实验内容用 C 语言编制相应的计算程序进行计算,要求程序具有零极点输入模块, 可以手工输入不同数目的零极点。

计算频率从0~5频段的频谱,计算步长为0.1,分别计算上面两个系统的幅频特性和相频特性,将所得结果用表格列出,并画出相应的幅频特性曲线和相频特性曲线。

实验二 测试系统的时域响应和频域响应

实验二  测试系统的时域响应和频域响应

实验一测试系统的时域响应【实验目的】1.了解MATLAB软件的基本特点和功能,熟悉其界面、菜单和工具条,熟悉MATLAB程序设计结构及M文件的编制;2.掌握线性系统模型的计算机表示方法;3.掌握求线性定常连续系统时域输出响应的方法,求得系统的时域响应曲线;4. 了解Simulink 的使用。

【实验指导】一、模型的建立:在线性系统理论中,一般常用的数学模型形式有:(1)传递函数模型;(2)状态空间模型;(3)零极点增益模型这些模型之间都有着内在的联系,可以相互进行转换.1、传递函数模型若已知系统的传递函数为:对线性定常系统,式中s的系数均为常数,且an不等于零,这时系统在MATLAB中可以方便地由分子和分母系数构成的两个向量唯一地确定出来,这两个向量分别用num和den表示.num=[cm,c,m-1,…,c1,c0]den=[an,an-1,…,a1,a0]注意:它们都是按s的降幂进行排列的.则传递函数模型建立函数为:sys=tf(num,den).2、零极点增益模型(略)3、状态空间模型(略)二、模型的转换在一些场合下需要用到某种模型,而在另外一些场合下可能需要另外的模型,这就需要进行模型的转换.三、模型的连接1、并联:parallel[num,den]=parallel(num1,den1,num2,den2)%将并联连接的传递函数进行相加.2、串联:series[num,den]=series(num1,den1,num2,den2)%将串联连接的传递函数进行相乘.3、反馈:feedback[num,den]=feedback(num1,den1,num2,den2,sign)%可以得到类似的连接,只是子系统和闭环系统均以传递函数的形式表示.当sign=1时采用正反馈;当sign= -1时采用负反馈;sign缺省时,默认为负反馈.4、闭环:cloop(单位反馈)[numc,denc]=cloop(num,den,sign)%表示由传递函数表示的开环系统构成闭环系统,sign意义与上述相同.四、线性连续系统的时域响应1 求取线性连续系统的阶跃响应函数为(step) 基本格式为:step(sys) step(num,den)【实验内容】1. 典型一阶系统的传递函数为 11)(+=s s G τ;τ为时间常数,试绘出当τ=0.5、1、 2、4、6、8、时该系统的单位阶跃响应曲线。

实验2连续时间系统的模拟

实验2连续时间系统的模拟

信号与系统实验指导书编写:高玉芹、丁洪影、朱永红信电工程学院2014-7-11前言“信号与系统”是无线电技术、自动控制、通信工程、生物医学电子工程、信号图象处理、空间技术等专业的一门重要的专业基础课,也是国内各院校相应专业的主干课程。

当前,科学技术的发展趋势既高度综合又高度分化,这要求高等院校培养的大学生,既要有坚实的理论基础,又要有严格的工程技术训练,不断提高实验研究能力、分析计算能力、总结归纳能力和解决各种实际问题的能力。

21世纪要求培养“创造型、开发型、应用型”人才,即要求培养智力高、能力强、素质好的人才。

由于该课程核心的基本概念、基本理论和分析方法都非常重要,而且系统性、理论性很强,为此在学习本课程时,开设必要的实验,对学生加深理解深入掌握基本理论和分析方法,培养学生分析问题和解决问题的能力,以及使抽象的概念和理论形象化、具体化,对增强学习的兴趣有极大的好处,做好本课程的实验,是学好本课程的重要教学辅助环节。

目录实验一信号的时域表示及变换 (1)实验二连续信号的卷积 (4)实验三阶跃响应与冲激响应 (8)实验四连续系统的频域分析 (12)实验五抽样定理与信号恢复 (23)实验六连续系统的s域分析 (30)实验七连续系统零极点分析 (33)实验一信号的时域表示及变换一、实验目的1. 掌握用matlab软件产生基本信号的方法。

2. 应用matlab软件实现信号的加、减、乘、反褶、移位、尺度变换及卷积运算。

二、实验原理(一)产生信号波形的方法利用Matlab软件的信号处理工具箱(Signal Processing Toolbox)中的专用函数产生信号并绘出波形。

1.产生正弦波t=0:0.01:3*pi;y=sin(2*t);plot(t,y)图1-1 图1-22.产生叠加随机噪声的正弦波t=0:0.01:3*pi;y=10*sin(2*t);s=y+randn(size(t));plot(t,s)3. 产生周期方波t=0:0.01:1;y=square(4*pi*t);plot(t,y)4. 产生周期锯齿波t=(0:0.001:2.5);y=sawtooth(2*pi*30*t);plot(t,y),axis([0 0.2 -1 1])图1-3 图1-45.产生Sinc函数x=linspace(-5,5);y=sinc(x);plot(x,y)图1-5 图1-6 6.产生指数函数波形x=linspace(0,1,100);(或x=0:0.01:1;)y=exp(-x);plot(x,y)(二)信号的运算1.加(减)、乘运算:要求二个信号序列长度相同例1-1t=0:0.01:2;f1=exp(-3*t);f2=0.2*sin(4*pi*t);f3=f1+f2;f4=f1.*f2;subplot(2,2,1);plot(t,f1);title('f1(t)');subplot(2,2,2);plot(t,f2);title('f2(t)');subplot(2,2,3);plot(t,f3);title('f1+f2');subplot(2,2,4);plot(t,f4);title('f1*f2');图1-72.用matlab的符号函数实现信号的反褶、移位、尺度变换由f(t)到f(-at+b)(a>0)步骤:b)atf(b)f(atb)f(tf(t)反褶尺度移位+-−−→−+−−→−+−−→−例1-2:已知f(t)=sin(t)/t,试通过反褶、移位、尺度变换由f(t)的波形得到f(-2t+3) 的波形。

信号与系统 连续时间LTI系统的频率响应

信号与系统  连续时间LTI系统的频率响应
an ( j )n Y (n ) a1 ( j )Y ( ) a0Y ( ) [an ( j ) a1 ( j ) a0 ]Y ( ) mbm ( j ) m b1 ( j ) b0 ] X ( ) [ bm ( j ) X ( ) b1 ( j ) X ( ) b0 X ( )
信号与系统
三、频率响应的计算
从而得幅频响应为
H ω 1 2 ω RC
2
相频特性为
( )
π arctan CRω 2
H j ω
1

2
0
j ω



2

信号与系统
有始信号通过线性电路的瞬态分析
例:已知 e(t ) 2 u t u t ,求零状态响应u0 t
( ) ( )
信号与系统
二、频率响应的性质
(3) 一个具有有理函数频率响应的因果系统是一个物理可实 现系统。(物理可实现性)。 佩利—维纳准则: 幅频响应为 H ( ) 的系统可实现的必要条件为
ln H ( ) 1
2



d
而且幅频特性必须平方可积,即

信号与系统
一、连续时间LTI系统频率响应的定义
综上所述,系统频率响应有以下几种等价的定义。 (1)频率响应 H(ω) 是系统零状态响应与系统激励信号的傅 里叶变换之比,即 Y ( ) H ( ) X ( ) (2) 频率响应 H(ω) 是系统冲激响应的傅里叶变换,即
h(t ) H ( )
当系统的激励为复指数信号 e j t ( t ) 时,系统的零 状态响应由卷积积分可得

实验二 画频谱图

实验二   画频谱图

实验二、连续时间系统的频域分析一、实验目的(1) 理解周期信号的傅里叶分解,掌握傅里叶系数的计算方法;(3) 熟悉傅里叶变换的性质,并能应用其性质实现信号的幅度调制;(4) 理解连续时间系统的频域分析原理和方法,掌握连续系统的频率响应求解方法,并画出相应的幅频、相频响应曲线。

二、实验原理(1) 周期信号的傅里叶分解设有连续时间周期信号,它的周期为T,角频率,且满足狄里赫利条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。

傅里叶级数有三角形式和指数形式两种。

1.三角形式的傅里叶级数:式中系数,称为傅里叶系数,可由下式求得:1.指数形式的傅里叶级数:式中系数称为傅里叶复系数,可由下式求得:周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。

在Matlab 中有多种进行数值积分运算的方法,我们采用quadl函数,它有两种其调用形式。

(1) y=quadl(‘func’, a, b)。

其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。

(2) y=quadl(@myfun, a, b)。

其中“@”符号表示取函数的句柄,myfun表示所定义函数的文件名(具体使用方法参见示例1)。

(2) 周期信号的频谱周期信号经过傅里叶分解可表示为一系列正弦或复指数信号之和。

为了直观地表示出信号所含各分量的振幅,以频率(或角频率)为横坐标,以各谐波的振幅或虚指数函数的幅度为纵坐标,可画出幅度-频率关系图,称为幅度频谱或幅度谱。

类似地,可画出各谐波初相角与频率的关系图,称为相位频谱或相位谱。

在计算出信号的傅里叶分解系数后,就可以直接求出周期信号的频谱并画出其频谱图。

二.实验内容:画周期为20,脉宽为2的方波信号的频谱。

试验程序三.实验结果:四.结论:通过读懂程序,自己修改程序。

实现了实验目的。

也进一步了解了matlab的一些指令。

2010信号与系统实验2

2010信号与系统实验2

实验二:连续和离散系统的频域分析一:实验目的1:学习傅里叶正变换和逆变换,理解频谱图形的物理含义2:了解连续和离散时间系统的单位脉冲响应3:掌握连续时间系统的频率特性二:实验原理1. 傅里叶正变换和逆变换公式 正变换:()()j t F f t e dt ωω∞--∞=⎰逆变换:1()()2j t f t F e d ωωωπ∞-∞=⎰2. 频域分析t j tj e d d e t e ωωωπωωωπ⎰⎰∞∞-∞∞-E =E =)(21)(21)(将激励信号分解为无穷多个正弦分量的和。

⎰∞∞-H E =ωωωπωd e t r tj zs )()(21)(,R(ω)为)(t r zs 傅里叶变换;πωωd )(E 各频率分量的复数振幅 激励单位冲激响应时的零状态响应→ )(t δ)(t h单位阶跃响应时的零状态响应激励→)(t u )(t g3 各函数说明:(1)impulse 冲激响应函数:[Y ,X,T]=impulse(num,den);)1()2()1()1()2()1()()()(11++++++++==--n a s a s a m b s b s b s A s B s H n n m m num 分子多项式系数; num=[b(1) b(2) … b(n+1)]; den 分母多项式系数; den=[a(1) a(2) … a(n+1)];Y ,X,T 分别表示输出响应,中间状态变量和时间变量; 如:352)(2+++=s s s s H ,等价于)(2)()(3)(5)(t e t e t r t r t r +=++ 定义den=[1 5 3];num=[1 2]; [Y ,X,T]=impulse(num,den);(2)step 阶跃响应函数:[Y,X,T]=step(num,den);num 分子多项式;den 分母多项式 Y ,X,T 分别表示输出响应,中间状态变量和时间变量;如:352)(2+++=s s s s H ,den=[1 5 3];num=[1 2];[Y ,X,T]= step (num,den);(3)impz 数字滤波器的冲激响应 [h,t] = impz(b,a,n) b 分子多项式系数;a 分母多项式系数;n 采样样本h 离散系统冲激响应;t 冲激时间,其中t=[0:n-1]', n=length(t)时间样本数(4)freqs 频域响应 [h,w] = freqs(b,a,f) b,a 定义同上,f 频率点个数 h 频域响应,w 频域变量)1()2()1()1()2()1()()()(11++++++++==--m a s a s a n b s b s b s A s B s H m m n n三.实验内容1 周期信号傅里叶级数 已知连续时间信号()()2/8cos 3/4coscos )(321ππ++++=t A t A wt A t x ,其中321,,A A A 取值如下:(X 为学号的后两位)]10,1[,5.02321∈⎪⎩⎪⎨⎧===X X A X A X A ]20,11[,55321∈⎪⎩⎪⎨⎧+==-=X X A XA X A ⎪⎩⎪⎨⎧=-=-=X A X A X A 32151020,>X 要求画出信号的时域波形和频域波形(幅度谱和相位谱)。

连续时间系统实验报告(3篇)

连续时间系统实验报告(3篇)

第1篇一、实验目的1. 理解连续时间系统的基本概念和特性。

2. 掌握连续时间系统建模和仿真方法。

3. 熟悉连续时间系统的分析方法。

4. 培养实验操作能力和数据分析能力。

二、实验原理连续时间系统是指系统中各物理量随时间连续变化的系统。

连续时间系统在工程应用中广泛存在,如电路、信号处理、控制系统等。

本实验主要研究连续时间系统的建模、仿真和分析方法。

三、实验仪器与设备1. 连续时间系统实验箱2. 示波器3. 信号发生器4. 信号分析仪5. 计算机及仿真软件(如MATLAB)四、实验内容及步骤1. 连续时间系统建模(1)根据实验要求,选择合适的连续时间系统,如一阶滤波器、二阶滤波器等。

(2)根据系统特性,确定系统的输入信号和输出信号。

(3)利用实验箱提供的元器件搭建实验电路。

(4)根据元器件参数,推导出系统的传递函数。

2. 连续时间系统仿真(1)利用MATLAB软件,根据推导出的传递函数,建立系统的仿真模型。

(2)设置仿真参数,如采样时间、初始条件等。

(3)运行仿真,观察系统输出波形。

3. 连续时间系统分析(1)分析系统输出波形,观察系统的稳定性和频率响应特性。

(2)根据实验数据,计算系统的幅频特性和相频特性。

(3)分析系统在实际应用中的优缺点。

五、实验结果与分析1. 实验结果(1)根据实验数据和仿真结果,绘制系统输出波形图。

(2)根据实验数据和仿真结果,计算系统的幅频特性和相频特性。

2. 实验分析(1)通过实验和分析,验证了连续时间系统建模和仿真方法的有效性。

(2)分析了系统在实际应用中的优缺点,为实际工程提供了参考。

六、实验结论1. 本实验成功地实现了连续时间系统的建模、仿真和分析。

2. 通过实验,掌握了连续时间系统的基本概念、特性和分析方法。

3. 培养了实验操作能力和数据分析能力。

4. 为今后在实际工程中的应用奠定了基础。

七、实验注意事项1. 实验过程中,注意安全操作,防止触电、短路等事故发生。

2. 实验数据要准确记录,便于后续分析。

实验二-LTI系统的频域分析

实验二-LTI系统的频域分析

实验2:——连续LTI 系统的频域特性及频域分析实验性质:提高性 实验级别:必做开课单位:机械电子工程学院 学 时:2一、实验目的1、掌握连续时间信号的傅里叶变换和傅里叶逆变换的实现方法。

2、掌握傅里叶变换的数值计算方法和绘制信号频谱的方法。

二、实验设备计算机,MATLAB 软件三、实验原理1、 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。

图1中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到: )()()(ωωωj H j X j Y =(1) 或者: )()()(ωωωj X j Y j H = (2) )(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。

即⎰∞∞--=dt e t h j H t j ωω)()( (3) 由于H(j )实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是图1 连续时间LTI 系统的时域及频域系统LTI )(t h )(ωj H )(t y )(ωj X )(ωj Y )(t x绝对可积(Absolutly integrabel )的话,那么H(j )一定存在,而且H(j )通常是复数,因此,也可以表示成复数的不同表达形式。

在研究系统的频率响应时,更多的是把它表示成极坐标形式: )()()(ωϕωωj e j H j H = (4) 上式中,)j (ωH 称为幅度频率响应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。

信号与系统matlab实验报告

信号与系统matlab实验报告

信号与系统matlab实验报告信号与系统MATLAB实验报告引言信号与系统是电子工程、通信工程和控制工程等领域中的重要基础课程。

通过实验,我们可以更好地理解信号与系统的概念和基本原理,并掌握使用MATLAB进行信号与系统分析的方法。

本报告将介绍我们在信号与系统实验中的实验过程、结果和分析。

实验一:连续时间信号的采样与重构在这个实验中,我们研究了连续时间信号的采样与重构。

首先,我们通过MATLAB生成了一个连续时间信号,并使用采样定理确定了采样频率。

然后,我们对连续时间信号进行采样,并通过重构方法将采样信号还原为连续时间信号。

最后,我们通过观察重构信号与原始信号的相似性来评估重构的效果。

实验二:线性时不变系统的频率响应在这个实验中,我们研究了线性时不变系统的频率响应。

首先,我们通过MATLAB生成了一个输入信号,并设计了一个线性时不变系统。

然后,我们通过将输入信号输入到系统中,并记录输出信号的幅度和相位,从而得到系统的频率响应。

最后,我们绘制了系统的幅频特性和相频特性曲线,并对其进行了分析和讨论。

实验三:离散时间信号的采样与重构在这个实验中,我们研究了离散时间信号的采样与重构。

首先,我们通过MATLAB生成了一个离散时间信号,并使用采样定理确定了采样周期。

然后,我们对离散时间信号进行采样,并通过重构方法将采样信号还原为离散时间信号。

最后,我们通过观察重构信号与原始信号的相似性来评估重构的效果,并讨论了离散时间信号的采样与重构的特点。

实验四:离散时间系统的差分方程在这个实验中,我们研究了离散时间系统的差分方程。

首先,我们通过MATLAB生成了一个输入信号,并设计了一个离散时间系统。

然后,我们通过将输入信号输入到系统中,并根据系统的差分方程计算输出信号。

最后,我们对输入信号和输出信号进行了分析和比较,并讨论了离散时间系统的差分方程的特点和应用。

实验五:连续时间信号的傅里叶变换在这个实验中,我们研究了连续时间信号的傅里叶变换。

连续时间信号与系统的频域分析实验报告(共9篇)

连续时间信号与系统的频域分析实验报告(共9篇)

连续时间信号与系统的频域分析实验报告(共9篇)信号与系统实验五__连续时间信号的频域分析实验名称:连续时间信号的频域分析报告人:姓名班级学号一、实验目的1、熟悉傅里叶变换的性质;2、熟悉常见信号的傅里叶变换;3、了解傅里叶变换的MATLAB实现方法。

二、实验内容及运行结果1、编程实现下列信号的幅度频谱:(1)求出f(t)=u(2t+1)-u(2t-1)的频谱函数F(w);请与f1(t) u(2t+1)-u(2t-1)的频谱函数F1(w)进行比较,说明两者的关系。

%(1)f(t)=u(2t+1)-u(2t-1)与f(t)=u(t+1)-u(t-1) syms t w t1 w1Gt=sym(&#39;Heaviside(2*t+1)-Heaviside(2*t-1)&#39;);Gt1=sym(&#39;Heaviside(t1+1)-Heaviside(t1-1)&#39;);Fw=fourier(Gt,t,w);Fw1=fourier(Gt1,t1,w1);FFw=maple(&#39;convert&#39;,Fw,&#39;piecewise&#39;);FFw1=maple(&#39;convert&#39;,Fw1,&#39;piecewise&#39;);FFP=abs(FFw);FFP1=abs(FFw1);subplot(2,1,1);ezplot(FFP,[-10*pi 10*pi]);axis([-10*pi 10*pi 0 1.5]);subplot(2,1,2);ezplot(FFP1,[-10*pi 10*pi]);grid;axis([-10*pi 10*pi 0 2.2]);不同点:F1(w)的图像在扩展,幅值是F(w)的两倍。

(2)三角脉冲f2(t)=1-|t|;|t|=1;ft=sym(&#39;(1+t)*Heaviside(t+1)-2*t*Heaviside(t)+(t-1)*Heaviside( t-1)&#39;);Fw=fourier(ft);subplot(211)ezplot(abs(Fw)); g2)&#39;);ft=ifourier(Fw,w,t)ft =exp(-4*t)*heaviside(t)-exp(4*t)*heaviside(-t)(2)F(w)=((i*w)+5*i*w-8)/((i*w)+6*i*w+5)syms t wFw=sym(&#39;((i*w)+5*i*w-8)/((i*w)+6*i*w+5)&#39;);ft=ifourier(Fw,w,t)ft =dirac(t)+(2*exp(-5*t)-3*exp(-t))*heaviside(t)三、讨论与总论通过本实验,掌握了信号的傅里叶变换的性质以及方法,对傅里叶变换的性质有进一步的提高。

信号与系统实验教程

信号与系统实验教程

信号与系统实验教程信号与系统实验教程信号与系统是电子信息类专业中的重要基础课程之一,通过实验的方式可以帮助学生更好地理解信号与系统的概念和原理。

本文将介绍一个针对信号与系统实验的教程,帮助学生深入了解这门课程。

一、实验目的本实验旨在通过实际操作和实验观测,使学生对信号与系统的基本概念和原理有更深入的了解,提高学生的动手实践能力和解决问题的能力。

二、实验内容1. 实验一:时域信号的分析本实验要求学生使用示波器和信号发生器等仪器,观察不同频率、不同幅值的正弦信号和方波信号,并利用傅里叶级数分析方法对其进行分析和合成。

2. 实验二:线性时不变系统的特性本实验要求学生了解线性时不变系统的特性,设计实验来验证系统的线性性和时不变性,并观察系统的冲激响应和单位阶跃响应。

3. 实验三:连续时间系统的频率特性本实验要求学生使用信号发生器、示波器和频谱仪等仪器,观察连续时间系统的幅频特性和相频特性,并通过实验数据分析系统的频率响应。

4. 实验四:离散时间系统的频率特性本实验要求学生使用数字信号发生器、示波器和频谱仪等仪器,观察离散时间系统的幅频特性和相频特性,并通过实验数据分析系统的频率响应。

5. 实验五:系统的冲激响应与单位阶跃响应本实验要求学生通过输入不同的冲激信号和单位阶跃信号,观察系统的冲激响应和单位阶跃响应,并通过实验数据分析系统的特性。

三、实验步骤1. 准备实验所需的仪器和材料。

2. 根据实验内容和要求进行仪器连接和调试。

3. 进行实验操作和观测,记录实验数据。

4. 分析实验数据,验证实验原理和概念。

5. 撰写实验报告,总结实验结果和心得。

四、实验注意事项1. 实验过程中要注意使用仪器的正确操作方法,避免损坏仪器或造成伤害。

2. 实验数据应准确记录,并根据实验要求进行数据处理和分析。

3. 在实验操作中要注意安全,遵守实验室的规章制度,防止出现危险情况。

五、实验评估学生可以根据实验报告的撰写质量、实验数据的准确性和分析的深度进行评估。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二连续时间系统的频率响应37022613 张士龙一、实验目的1、加深对连续时间系统频率响应理解;2 、掌握借助计算机计算任意连续时间系统频率响应的方法。

二、实验原理连续时间系统的频率相应可以直接通过所得的表达式计算,也可以通过零极点图通过几何的方法来计算,而且通过零极点图可以迅速的判断系统的滤波特性。

1、在S平面上标出系统的另几点位置:2、选择S平面的坐标原点为起点,沿虚轴向上移动,计算此时各极点和零点与该点的模和夹角:3、与所有零点的模相乘,再除以各极点模,得到对应频率出的幅频特性值;4、将所有零点的幅角相加,减去各极点的幅角,得到对应频率处的相角。

三、实验内容1、流程图2、源程序#include <stdio.h>#include <math.h>main(){double rz[100], iz[100], rp[100], ip[100], m[50], n[50], h[50], mol1[100], mol2[100];double a[50],b[50],c[50],w[50],angle1[100],angle2[100];double g=1.0;int i,j,k;int z=0,p=0;float temp=0;printf("please input the zero point's number:");scanf("%d",&z);printf("please input the zero point's real part:");for(i=0;i<z;i++){scanf("%f",&temp);rz[i]=temp;}printf("please input the zero point's i part:");for(i=0;i<z;i++){scanf("%f",&temp);iz[i]=temp;}printf("please input the polar point's number:");scanf("%d",&p);printf("please input the polar point's real part:");for(i=0;i<p;i++){scanf("%f",&temp);rp[i]=temp;}printf("please input the polar point's i part:");for(i=0;i<p;i++){scanf("%f",&temp);ip[i]=temp;}w=0.0;for(i=1;i<=49;i++){w[i]=w[i-1]+0.1;}printf("the mol is:");for(i=0;i<50;i++){if(i%5==0)printf("\n");printf("z=%d,",z);g=1.0;for(k=0;k<z;k++){g*=sqrt(rz[k]*rz[k]+(w[i]-iz[k])*(w[i]-iz[k]));}m[i]=g;g=1;mol2[i]=1.0;for(k=0;k<p;k++){g=g*sqrt(rp[k]*rp[k]+(w[i]-ip[k])*(w[i]-ip[k]));}n[i]=g;if(p>=1){h[i]=(100*m[i])/(100*n[i]);printf("h[%d]=%f \n ,",i[i]);}}printf("the angle is:");for(i=0;i<50;i++){if(i%5==0)printf("\n");g=0;for(k=0;k<z;k++){angle1[k]=atan((iz[k]-w[i])/(rz[k]-0.000000001));if(rz[k]>0){if(w[i]>iz[k])angle1[k]=angle1[k]+3.1415936;elseangle1[k]=angle1[k]-3.1415936;}if(k>1)g=g+angle1[k];elseg=angle1[k];}a[i]=g;g=0;for(k=0;k<p;k++){angle2[k]=atan((ip[k]-w[i])/(rp[k]+0.));if(rp[k]>0){if(w[i]>ip[k])angle2[k]=angle2[k]+3.1415936;elseangle2[k]=angle2[k]-3.1415936;}if(k>1)g=g+angle2[k];elseg=angle2[k];b[i]=g;}b[i]=g;c[i]=(a[i]-b[i])*57.3;printf("%f\n",c[i]);}}3、实验结果系统一:幅频特性结果:0.0000.050 0.100 0.150 0.199 0.2480.2950.3400.3810.4170.4470.4710.4870.4960.5000.4980.4930.4840.4730.4600.4470.4340.4200.4070.3940.3810.3690.3570.3460.3350.3250.3160.3070.2980.2900.2820.2750.2670.2610.2540.2480.2420.2370.2310.2260.2210.2160.2120.2080.20345.00 41.99 38.66 34.99 30.97 26.5721.8016.7011.315.710.00-5.71-11.31-16.70-21.80-26.57-30.97-34.99-38.66-41.99-45.00-47.73-50.20-52.44-54.47-56.31-58.00-59.54-60.95-62.25-63.44-64.54-65.56-66.51-67.39-68.20-68.97-69.68-70.35-70.98-71.57-72.13-72.65-73.15-73.62-74.06-74.48-74.88-75.26-75.62分析计算可得:此系统为带通滤波器,相应的3dB带宽的起始频率和终止频率分别为0.7339和2.7177。

2、系统二:0.8240.8280.8380.8540.8690.8760.8670.8310.7700.6910.6080.5290.4590.4000.3500.3090.2750.2460.2220.2020.1840.1690.1560.1450.1350.1260.1180.1110.1040.0980.0930.0880.0840.0790.0750.0720.0690.0650.0620.0600.0570.0550.0520.0500.0480.0460.0440.0430.0410.040 197.61188.75179.05168.29156.23142.78128.05112.5597.1182.5269.3157.6047.2838.1429.9522.5415.759.463.58-1.96-7.21-12.21-16.98-21.56-25.95-30.17-34.23-38.14-41.90-45.52-49.01-52.37-55.61-58.72-61.72-64.60-67.37-70.04-72.60-75.07-77.45-79.73分析算可得:此系统为低通滤波器,相应的3dB带宽的终止频率为1。

相关文档
最新文档