Saber常见电路仿真实例

合集下载

Saber仿真实例共享

Saber仿真实例共享

Saber仿真实例共享Saber仿真软件作为一种设计工具对电源工程师是非常重要的,现在发起此帖,请大家把自己已经调试成功的Saber仿真实例放论坛让大家共享,相互学习提高。

每个实例请注明:仿真电路主题(电路来源)、Saber软件的版本号、仿真条件(时间End Time、步长Time Step等)先放第一个实例:PFC芯片L6561仿真实例,Saber2007,L6561数据手册电路,End Time=20m、Time Step=1u其中:一个周期内输入电压电流跟踪波形:其中变压器设置情况如下:其中:电路、磁心型号EE3528、匝数24:2、气隙1.8mm 等数据来源于控制芯片L6561数据手册磁心材质"3C8"(相当于PC40), 截面84.8u(平方米), 磁路长69.7m(米), 数据来源于EE3528磁心数据手册. 原边绕组电阻10m(欧姆), 副边绕组电阻1m(欧姆),是大致估计,完了修正.L6561.rar临时.bmp∙回复 ∙ 分享 ∙ 2010-03-27 20:37∙∙ 1楼∙ simon009∙ | 本网技工 (119) | 发消息 太感谢了!!!!!∙回复 ∙∙ 2010-03-27 20:41 ∙ 2楼∙nc965∙| 副总工程师 (2001) | 发消息simon 20:44:48请问下,ETD29是你自己搭建的模型吗?清风 20:44:58不是simon 20:45:15貌似saber里面没有哟。

清风 20:46:01非线形2绕组变压器模型,里面输参数即可∙回复∙∙2010-03-27 20:46∙22楼∙yunyun∙| 助理工程师 (373) | 发消息感谢!!!!∙回复∙∙2010-03-31 12:15∙3楼∙nc965∙| 副总工程师 (2001) | 发消息PWM芯片SG3845仿真实例,Saber2007,Time Step=1u3845.rar∙回复∙∙2010-03-27 22:20∙4楼∙nc965∙| 副总工程师 (2001) | 发消息6KW移相全桥准谐振软开关电焊电源Saber2007,Time Step=1u单管电压\电流\损耗波形bumingsunhao.rar∙回复∙∙2010-03-27 22:38∙5楼∙jamenyang∙| 本网技师 (219) | 发消息楼主的电源仿真设置是怎样的,我感觉设置很重要,几年前能仿真的线路,早几天拿出来仿真,就出错,总是说非线性错误,什么的,麻烦到死。

整流电路仿真saber

整流电路仿真saber

实验要求:整流电路,输入电压220V,50Hz;输出电压311V DC(相控和斩控输出电压250V)。

输出功率:500W。

(saber)一、仿真分析:单相桥式整流电路,带大电容滤波,4700uF。

比较分析不控整流,相控整流,PWM整流电路的输入电流THD和输入功率因数。

1.二极管不控整流电路硬件电路图搭建如下:输出电压波形如下:输入电压、电流波形:输入电流FFT分析:PF值计算如下:先求出电压电流相位差α,通过saber中的delay来观察从上图可以分析出,电压、电流基波相位基本一致cosα约为1,所以功率因数主要由THD决定。

由20lg(THD)=THD(SABER)得THD=1.93cosPF=α=0.462.相控整流电路硬件电路搭建如下:通过改变clock里面的start_delay时间来实现移相控制驱动信号波形:相控触发角模拟30°输出电压波形输入电压电流波形:输入电流FFT分析:PF值计算如下:由20lg(THD)=THD(SABER)得THD=1.99cosPF=α=0.448为了使输出电压达到250V,输出功率为500W,将电容改为120uF,负载变成125Ω输出电压如下:输入电压电流波形:输入电流FFT分析:PF值计算如下:由20lg(THD)=THD(SABER)得THD=0.92PF=α=0.74cos3.PWM整流电路硬件电路搭建如下:驱动PWM信号:输出电压波形如下:输入电压电流波形如下:输入电流FFT分析如下:PF值计算如下:由20lg(THD)=THD(SABER)得THD=0.419cosPF=α=0.923为了使输出电压达到250V,输出功率为500W,将电容改为120uF,负载变成125Ω输出电压如下:驱动PWM信号:输入电压电流波形:输入电流FFT分析:PF值计算如下:由20lg(THD)=THD(SABER)得THD=0.418cosPF=α=0.923二、仿真分析:单相不控整流电路,比较分析带大电容滤波和LC滤波电路下的输入功率因数。

Saber仿真电源案例详解

Saber仿真电源案例详解

file://E:\设计相关\saber专辑\Saber Power.htm
2006-3-19
Saber Power
页码,3/5
电源变压器设计的三种解决方案:
·器件模型法:Saber软件自带大量的变压器模型,以适应不同的磁心材料 (如3c2、3c6、3c8 等)、
磁心形状 (如EC、EP、EI、POT、SQUARE、TOROID、UI、UU、ETD等) 以及线圈的不同端口数目。
协同仿真功能:
Saber 的协同仿真器将 Saber 的混合信号分析同 Mentor Graphics 公司 ModelSim、Mo delSim/PLUS 或 Cadence 的 Verilog-XL 的纯数字仿真能力结合起来。这个接口使得 Avant! 的 Saber 仿真器拥有同其它设计环境中用的工业标准 VHDL 及 Verilog 仿真器协同仿真的优势。 这些设计环境包括 Avant!的 SaberSketch、Mentor Graphics、Cadence 和 Innoveda 等。 仿真输出的结果在 SaberScope 波形分析器中按时间排列起来,这使你更容易观察并对照模拟及 数字信号的数据。
模拟/数字边界的接口:
Saber 混合仿真产品在模拟/数字边界应用了 Avant!特殊的 Hypermodel 接口模型来使设计 的数字部分在数模接口处有着正确的电路特性。Hypermodel 是在网表产生时自动加到设计中去 的,使得同模拟器件相连的数字管脚具有精确的模拟电路仿真特性。对于 TTL,CMOS,ECL 等 各种不同工艺的标准逻辑管脚,Saber 提供给您至少 3500 多种 Hypermodel。这些 Hypermo del 可以被修改来同用户自定义的数字特性相匹配。Hypermodel 都是用 MAST 语言来完成的(而 不象其竞争产品一样将数模接口写死在设计中),这就意味着如果库中不存在,你可以创建自己的 Hypermodel 库。

各种拓扑在SABER中的仿真资料

各种拓扑在SABER中的仿真资料

世纪电源网一位版主“拒绝变帅”的帖子,基本拓扑在saber中的仿真,旨在让大家扎实基础,对全面找工作不无帮助。

先从BUCK谈起吧,如图所示:输入20V,占空比0.5,CCM模式。

基本的:开关导通时,输入电源给电感充电,同时也提供一部分能量给负载。

开关断开时,电感的能量向负载释放,此时没Vin什么事了。

仿真结果图:输出电压纹波:仿真文件:buck.rar时间:5ms 步长:1us给这个图是为了与交错buck的输出纹波进行比较。

交错的好处:1,减小输入输出纹波;2,热量分散开,易于散热;3,可以用小容量的MOS和小体积的磁芯;4,减小输出端电容;5,。

(大家补充)下面同时仿了下交错buck,两路驱动信号相位相差180°。

电路图:输出电压纹波比较:上为交错的,下为单路的,很明显,交错之后,在同样的输出电容下,具有更小的纹波,也可以看作与原来同样纹波的情况下,可以减小输出电容。

电感电流波形:从图上可以看出,电感电流波形是错开的,起到相互抵消的作用。

也相当于使纹波频率加倍,这样有利于EMI滤波器的设计,所以说交错对EMI也是好处。

交错buck仿真文件:buck2.rarbuck比较简单,也不涉及到难的问题,就先到这里。

上面仿真我取的占空比是0.5,开环仿真,这里提两个问题供讨论:1,占空比与输出纹波有什么关系?2,闭环仿真中,交错的两路是否可以共用一个控制回路,也就是说仅在产生的PWM后作处理去驱动另一路,前面共用误差放大器和比较器?下面继续BOOST电路~BOOST电路:开关NO:此时电感储能,输出电容向负载功能。

开关OFF:此时Vin和电感共同向负载提供能量。

在OFF期间,Vin也提供能量,这个是boost 与后面要说的buck-boost的关键区别。

下面是仿真,参数:Vin=20V,D=0.5,f=100kHZ,CCM模式。

输出纹波大小:上面boost的仿真原文件:boost.rar下面看看交错boost的效果,前面已介绍了交错的好处,这里不再说明了。

Saber常见电路仿真实例介绍

Saber常见电路仿真实例介绍

Saber常见电路仿真实例一稳压管电路仿真 (2)二带输出钳位功能的运算放大器 (3)三5V/2A的线性稳压源仿真 (4)四方波发生器的仿真 (7)五整流电路的仿真 (10)六数字脉冲发生器电路的仿真 (11)七分频移相电路的仿真 (16)八梯形波发生器电路的仿真 (17)九三角波发生器电路的仿真 (18)十正弦波发生器电路的仿真 (20)十一锁相环电路的仿真 (21)一稳压管电路仿真稳压管在电路设计当中经常会用到,通常在需要控制电路的最大输入、输出或者在需要提供精度不高的电压参考的时候都会使用。

下面就介绍一个简单例子,仿真电路如下图所示:在分析稳压管电路时,可以用TR分析,也可以用DT分析。

从分析稳压电路特性的角度看,DT分析更为直观,它可以直接得到稳压电路输出与输入之间的关系。

因此对上面的电路执行DT分析,扫描输入电压从9V到15V,步长为0.1V,分析结果如下图所示:从图中可以看到,输入电压在9~15V变化,输出基本稳定在6V。

需要注意的是,由于Saber仿真软件中的电源都是理想电源,其输出阻抗为零,因此不能直接将电源和稳压管相连接,如果直接连接,稳压管将无法发挥作用,因为理想电源能够输出足以超出稳压管工作范围的电流。

二带输出钳位功能的运算放大器运算放大器在电路设计中很常用,在Saber软件中提供了8个运放模板和大量的运放器件模型,因此利用Saber软件可以很方便的完成各种运方电路的仿真验证工作.如下图所示的由lm258构成的反向放大器电路,其放大倍数是5,稳压二极管1N5233用于钳位输出电压.对该电路执行的DT分析,扫描输入电压从-2V->2V,步长为0.1V,仿真结果如下图所示:从仿真结果可以看出,当输入电压超出一定范围时,输出电压被钳位.输出上限时6.5V,下限是-6.5V.电路的放大倍数A=-5.注意:1.lm258n_3是Saber中模型的名字,_3代表了该模型是基于第三级运算放大器模板建立的.2.Saber软件中二极管器件级模型的名字头上都带字母d,所以d1n5233a代表1n5233的模型.三5V/2A的线性稳压源仿真下图所示的电路利用78L05+TIP33C完成了对78L05集成稳压器的扩展,实现5V/2A 的输出能力。

使用Saber仿真的数字全桥开关主电路模拟

使用Saber仿真的数字全桥开关主电路模拟

使用Saber仿真的数字全桥开关主电路模拟
使用Saber仿真的数字全桥开关主电路模拟
Saber可以说是在电子电路设计中最常用的一种模拟仿真软件。

设计者们经常使用这款软件来对各种设计方式进行建模和仿真分析。

本文就将介绍一款数字控制的全桥软开关电源仿真主电路部分。

感兴趣的朋友快来看一看吧。

开关电源技术发展到现如今的阶段,数字化已经成为一种趋势。

它可以实现快速、灵活的控制设计,改善电路的瞬态响应性能,使之速度更快、精度更高,可靠性更强。

因此,本文基于Saber仿真软件对采用数字控制的大功
率移相控制全桥ZVS电源系统(12V/5000A)进行了建模、仿真,并对仿真结果进行了分析。

主电路的建模
移相控制全桥ZVS2PWM变换器电路实现简单、工作可靠,而且充分利用了器件的寄生参数,不需要加入辅助电路,比较适合大功率低压大电流的应用场合,其主电路结构如图1所示。

图1移相控制全桥ZVS2PWM电源系统主电路
图2IGBT等效结构图
Saber软件提供了功率器件建模工具ModelAr2chitect,如图2所示为该工
具提供的IGBT等效电路模型,根据实际器件的参数调整图2中的各个参数
值即可完成建模。

本系统采用IGBT的型号为CM400HA-24E,其额定参数为1200V/400A。

电容c1~c4为外接谐振电容,其中c1=c3,c2=c4。

高频变压器采用两个单元变压器串并联的组合方式,它可以使并联的输出。

LED电路仿真设计-Saber篇

LED电路仿真设计-Saber篇

学习曲线陡峭
Saber软件功能强大但操作复杂, 需要设计师具备一定的专业知识 和技能。
资源占用较大
Saber软件的仿真过程需要占用较 大的计算资源,对于小型项目可 能存在一定的性能挑战。
成本较高
Saber软件是一款商业软件,购买 和维护成本较高,可能不适合小 型项目或个人用户。
THANKS
感谢观看
仿真精度设置
用户可以根据需要设置仿真的精度, 如采样点数、仿真步长等。
Saber软件的仿真结果分析
波形分析
参数优化
通过Saber软件的波形分析功能,用户可以 观察LED电路的输入输出波形,了解电路的 工作状态和性能表现。
根据仿真结果,用户可以对元件参数进行 优化,以提高LED电路的性能指标。
可靠性分析
05
LED电路仿真设计的挑战与展望
LED电路仿真设计的挑战
高精度模拟需求
LED电路的特性要求高精度模拟,以准确预测其性能和行为。
复杂的光学效应
LED的光学效应(如散射、反射和干涉)增加了电路仿真的复杂性。
材料特性的多样性
不同LED材料的电气和光学特性差异大,增加了仿真的难度。
热效应的考量
LED在工作时会产生热量,热效应对LED性能有显著影响,需要纳入仿真设计。
总结词
LED照明电路仿真设计能够预测实际照明 效果,优化照明质量和能效,降低设计 和制作成本。
VS
详细描述
LED照明电路的设计需要考虑照明的均匀 性、颜色和亮度等参数。通过仿真设计, 可以预测不同电路参数下的照明效果,从 而优化电路设计,提高照明质量和能效。 此外,仿真设计还可以帮助设计师快速评 估不同方案的成本和性能,为实际制作提 供可靠的依据。

SABER实践教程(关于saber在电源仿真中的几个技巧)

SABER实践教程(关于saber在电源仿真中的几个技巧)

1,知道了传递函数,如何得出bode图?2,如何测量波形的THD、PF值以及各次谐波?3,测电压、电流各种方法小结。

4,实现变压器的功能:耦合电感的用法。

(技巧分享就到此了,有什么问题可留言,推荐去看看107楼的内容)刚才Q上有人问我关于混合仿真的,这里增加个:5,控制系统与模拟系统下的混合仿真。

比如说现在要画下面传递函数的bode图:首先,在saber的搜索栏里输入“tf_rat”,出来如下图:可以选择第一个:两个串联即可,如下图:这样就实现了上面的传递函数。

这里的source需要用到控制系统下的,可搜“c_sin”,选择第一个,如下:当然了,不一定非要这个,因为可以通过接口转换来实现,这是后话。

关于tf_rat的设置如下:这样就实现了函数:1/(s+1)最后的连接图:先netlist再DC分析然后小信号分析,看下面设置:最后的bode图:至此,bode图已经画出来了,很简单哈,剩下的就是自己去分析了~这里附上上面仿的附件,方便下载。

双击轴线,AXIS ATTRIBUTE对话框里的GRID increment可以调制轴线等分间距!!路径中不能有中文,要在全英文下看波形可以放大的,选中托一下即可。

要恢复回来,按下面按钮:不错,既然你仿出来了,你再试试这个传递函数哈:怎么跟上图差不多呢关于区别,你看看:这样看就出来区别了,哈哈怎么把两个波形放在同一个图中的?讲讲波形计算器吧,比如如何把某一个电流扩大十倍,电压扩大十倍便找个简单的电流扩大十20倍的小例子这是一个电流波形,点出计算器来点击图形右侧的电流标号i(l.lr),标号呈现白色表示选中,然后在计算器光标处左键按一下,右键再按一下,至此i(l.lr)添加到计算器中了。

其次在光标处输出20*,再次输入内容的话,以前的内容自动清除,从而计算器自动生成了i(l.lr)*20,这样计算器完成了计算。

计算其中delete为删除键。

最后点击Δ左边的绿色波形图,电流扩大十倍后如下图所示在saber,常用的电容就一种,可以不分极性的,如下:,如何测量波形的THD、PF值以及各次谐波在PFC的仿真以及并网逆变中,经常需要测量波形的THD,PF值,看各次谐波的大小。

LED电路仿真设计__Saber篇

LED电路仿真设计__Saber篇

三、 SABER 的仿真分析
Saber用下列方法来调节设计参数,如设计中的元件数值 及容限等: Vary:用Vary可以对设计或元件的一系列设定的参数进行 描述,对每个参数都进行一系列的分析。 Monte Carlo:用蒙特卡诺分析对设计或元件参数随机变化 ,进行各种分析,对模拟结果进行评估。 Sensitivity:对不同设计或元件的参数的改变,性能测量的 敏感度。 Stress:在精确的DC、DC传输或瞬态分析中,分析元件是 否会过应力。
绘图工具 设计工具
Saber RT (Simulator Real Time) Model Architect 报告
测试
选择器件 命令行
宏记录器
saber sktech 基本操作——绘制电路原理图
点击进入saber sketch,然 后选择file— > new— >schematic, 进入原理图 绘制画面, 如下图所示 :
一、SABER 软件概述
1.3 模型库 Saber拥有市场上最大的电气、混合信号、混 合技术模型库,它具有很大的通用模型库和较为 精确的具体型号的器件模型,其元件模型库中有 4700多种带具体型号的器件模型,500多种通用模 型,能够满足航空、汽车、船舶和电源设计的需 求。Saber模型库向用户提供了不同层次的模型, 支持自上而下或自下而上的系统仿真方法,这些 模型采用最新的硬件描述语言(HDL),最大限度地 保证了模型的准确性,支持模型共享。
Saber Sktech 基本操作--修改器件参数
按照上述方法 把器件的参数 设置为:电压 源12V,基极电 阻为10K,集电 极电阻为1K。 电路图如图所 示:
三、Saber simulator仿真界面简介

saber仿真实例

saber仿真实例

稳压管电路仿真稳压管在电路设计当中经常会用到,通常在需要控制电路的最大输入、输出或者在需要提供精度不高的电压参考的时候都会使用。

下面就介绍一个简单例子,仿真电路如下图所示:在分析稳压管电路时,可以用TR分析,也可以用DT分析。

从分析稳压电路特性的角度看,DT分析更为直观,它可以直接得到稳压电路输出与输入之间的关系。

因此对上面的电路执行DT分析,扫描输入电压从9V到15V,步长为0.1V,分析结果如下图所示:从图中可以看到,输入电压在9~15V变化,输出基本稳定在6V。

需要注意的是,由于Saber仿真软件中的电源都是理想电源,其输出阻抗为零,因此不能直接将电源和稳压管相连接,如果直接连接,稳压管将无法发挥作用,因为理想电源能够输出足以超出稳压管工作范围的电流。

带输出钳位功能的运算放大器运算放大器在电路设计中很常用,在Saber软件中提供了8个运放模板和大量的运放器件模型,因此利用Saber软件可以很方便的完成各种运方电路的仿真验证工作.如下图所示的由lm258构成的反向放大器电路, 其放大倍数是5,稳压二极管1N5233用于钳位输出电压.对该电路执行的DT分析,扫描输入电压从-2V-> 2V , 步长为0.1V, 仿真结果如下图所示:从仿真结果可以看出,当输入电压超出一定范围时, 输出电压被钳位. 输出上限时6.5V, 下限是-6.5V. 电路的放大倍数A=-5.注意:1. lm258n_3 是Saber中模型的名字, _3代表了该模型是基于第三级运算放大器模板建立的.2. Saber软件中二极管器件级模型的名字头上都带字母d, 所以d1n5233a代表1n5233的模型.5V/2A的线性稳压源仿真下图所示的电路利用78L05+TIP33C完成了对78L05集成稳压器的扩展,实现5V/2A 的输出能力。

为了考察电路的负载能力,可以在Saber软件中使用DT分析,扫描变化负载电流,得出输出电压与输出电流的关系,也就可以得到该电路的负载调整率了。

saber下MOSFET驱动仿真实例

saber下MOSFET驱动仿真实例

saber 下MOSFET 驱动仿真实例设计中,根据IXYS 公司IXFN50N80Q2 芯片手册中提供的ID-VDS,ID-VGS 和Cap-VDS 等特性曲线及相关参数,利用saber 提供的Model Architect 菜单下Power MOSFET Tool 建立IXFN50N80Q2 仿真模型,图5-1 所示MOSFET DC CharacterisTIcs 设置,图5-2 所示MOSFET Capacitance CharacterisTIcs 设置,Body Diode 参数采用默认设置。

首先验证Rg、Vgs、Vds 关系,仿真电路如图这里电路中加入了一定的电感Lg,仿真电路寄生电感,取值是0.05uH,有没有什幺依据?我当时是想导线计算电感的时候好像是要加上0.05u,就放了个0.05u。

仿真过程是,Rg 分别取1 欧姆,到10 欧姆,到100 欧姆。

验证Rg 取值对驱动波形Vgs 和开关导通特性Vds 影响。

结果如下图:可以看出,不同Rg 阻值对MOSFET IXFN50N80Q2 的影响。

设计中,取Rg=10,取Rg=1,担心过冲击穿Vgs,取100,上升沿速度太慢,不满足高速应用。

下边讨论MOSFET 串联问题。

仿真电路如图:仿真电路中两路驱动,只有Rg 参数不一致,其他均一致。

Q2 的驱动电路中Rg=15,Q1 的驱动电路中Rg=10,这样的目的是在讨论驱动电路中等效电阻的不一致(可能来自Rg 本身不一致,也可能是线路不同,器件不同而造成的不一致)情况下,对串联MOSFET 导通过程影响。

观察Vd1 和Vd2 两点的波形,如图:从图中可以明显看到,由于驱动电路参数不一致Rg1一般MOSFET 串联都需要动态和静态均压。

静态均压见图中的MOSFET 两端并联电阻,取值可以参考MOSFET 手册中关断状态的漏电流,通过静态电阻的漏电流是通过MOSFET 静态漏电流的6 倍左右,太大会加大电阻静态损耗。

Saber常见电路仿真实例

Saber常见电路仿真实例

Saber常见电路仿真实例一稳压管电路仿真 (2)二带输出钳位功能的运算放大器 (3)三5V/2A的线性稳压源仿真 (4)四方波发生器的仿真 (7)五整流电路的仿真 (10)六数字脉冲发生器电路的仿真 (11)七分频移相电路的仿真 (16)八梯形波发生器电路的仿真 (17)九三角波发生器电路的仿真 (18)十正弦波发生器电路的仿真 (20)十一锁相环电路的仿真 (21)一稳压管电路仿真稳压管在电路设计当中经常会用到,通常在需要控制电路的最大输入、输出或者在需要提供精度不高的电压参考的时候都会使用。

下面就介绍一个简单例子,仿真电路如下图所示:在分析稳压管电路时,可以用TR分析,也可以用DT分析。

从分析稳压电路特性的角度看,DT分析更为直观,它可以直接得到稳压电路输出与输入之间的关系。

因此对上面的电路执行DT分析,扫描输入电压从9V到15V,步长为0.1V,分析结果如下图所示:从图中可以看到,输入电压在9~15V变化,输出基本稳定在6V。

需要注意的是,由于Saber仿真软件中的电源都是理想电源,其输出阻抗为零,因此不能直接将电源和稳压管相连接,如果直接连接,稳压管将无法发挥作用,因为理想电源能够输出足以超出稳压管工作范围的电流。

二带输出钳位功能的运算放大器运算放大器在电路设计中很常用,在Saber软件中提供了8个运放模板和大量的运放器件模型,因此利用Saber软件可以很方便的完成各种运方电路的仿真验证工作.如下图所示的由lm258构成的反向放大器电路,其放大倍数是5,稳压二极管1N5233用于钳位输出电压.对该电路执行的DT分析,扫描输入电压从-2V->2V,步长为0.1V,仿真结果如下图所示:从仿真结果可以看出,当输入电压超出一定范围时,输出电压被钳位.输出上限时6.5V,下限是-6.5V.电路的放大倍数A=-5.注意:1.lm258n_3是Saber中模型的名字,_3代表了该模型是基于第三级运算放大器模板建立的.2.Saber软件中二极管器件级模型的名字头上都带字母d,所以d1n5233a代表1n5233的模型.三5V/2A的线性稳压源仿真下图所示的电路利用78L05+TIP33C完成了对78L05集成稳压器的扩展,实现5V/2A 的输出能力。

(整理)Saber 仿真实例.

(整理)Saber 仿真实例.

Saber 仿真开关电源中变压器的Saber仿真辅助设计 (2)一、Saber在变压器辅助设计中的优势 (2)二、Saber 中的变压器 (3)三、Saber中的磁性材料 (7)四、辅助设计的一般方法和步骤 (9)1、开环联合仿真 (9)2、变压器仿真 (10)3、再度联合仿真 (11)五、设计举例一:反激变压器 (12)五、设计举例一:反激变压器(续) (15)五、设计举例一:反激变压器(续二) (19)Saber仿真实例共享 (26)6KW移相全桥准谐振软开关电焊电源 (27)问答 (28)开关电源中变压器的Saber仿真辅助设计经常在论坛上看到变压器设计求助,包括:计算公式,优化方法,变压器损耗,变压器饱和,多大的变压器合适啊?其实,只要我们学会了用Saber这个软件,上述问题多半能够获得相当满意的解决。

一、Saber在变压器辅助设计中的优势1、由于Saber相当适合仿真电源,因此对电源中的变压器营造的工作环境相当真实,变压器不是孤立地被防真,而是与整个电源主电路的联合运行防真。

主要功率级指标是相当接近真实的,细节也可以被充分体现。

2、Saber的磁性材料是建立在物理模型基础之上的,能够比较真实的反映材料在复杂电气环境中的表现,从而可以使我们得到诸如气隙的精确开度、抗饱和安全余量、磁损这样一些用平常手段很难获得的宝贵设计参数。

3、作为一种高性能通用仿真软件,Saber并不只是针对个别电路才奏效,实际上,电力电子领域所有电路拓扑中的变压器、电感元件,我们都可以把他们置于真实电路的仿真环境中来求解。

从而放弃大部分繁杂的计算工作量,极大地加快设计进程,并获得比手工计算更加合理的设计参数。

saber自带的磁性器件建模功能很强大的,可以随意调整磁化曲线。

但一般来说,用mast模型库里自带的模型就足够了。

二、Saber 中的变压器我们用得上的 Saber 中的变压器是这些:(实际上是我只会用这些分别是:xfrl 线性变压器模型,2~6绕组xfrnl 非线性变压器模型,2~6绕组单绕组的就是电感模型:也分线性和非线性2种线性变压器参数设置(以2绕组为例):其中:lp 初级电感量ls 次级电感量np、ns 初级、次级匝数,只是显示用,不是真参数,可以不设置rp、rs 初级、次级绕组直流电阻值,默认为0,实际应该是该绕组导线的实测或者计算电阻值,在没有得到准确数据前,建议至少设置一个非0值,比如1p(1微微欧姆)k 偶合(互感)系数,建议开始设置为1,需要考虑漏感影响时再设置为低于1的值。

saber仿真实例之稳压管

saber仿真实例之稳压管

Saber仿真实例-稳压管
一,稳压电路仿真
稳压管U-I曲线:
稳压管好坏判定标准,依据动态电阻来判断:
变化越小的r,稳压管性能越好。

稳压管的动态电阻是随工作电流变化的,工作电流越大,动态电阻越小。

因此,为使稳压效果好,工作电流要选得合适。

工作电流选得大些,可以减小动态电阻,但不能超过管子的最大允许电流(或最大耗散功率)。

各种型号管子的工作电流和最大允许电流,可以从手册中查到。

稳压管的设置:
在saber model里面更改设置,其中Vzt是稳压值,其他参数可自行百度。

一DC Operating Point:
选择results—back annotation,将结果标在原理图上:
二DC Transfer:
选择要分析的独立源,v_dc1,然后按stepby设置扫描方式和范围。

下面是Vout和Vin的变化:
从测试波形来看,输出Vout基本稳定不变。

三vary分析Vout随负载电阻变化输出Vout基本不随负载电阻Rload变化。

整流电路仿真saber

整流电路仿真saber

实验要求:整流电路,输入电压220V,50Hz;输出电压311V DC(相控和斩控输出电压250V)。

输出功率:500W。

(saber)一、仿真分析:单相桥式整流电路,带大电容滤波,4700uF。

比较分析不控整流,相控整流,PWM整流电路的输入电流THD和输入功率因数。

1.二极管不控整流电路硬件电路图搭建如下:输出电压波形如下:输入电压、电流波形:输入电流FFT分析:PF值计算如下:先求出电压电流相位差α,通过saber中的delay来观察从上图可以分析出,电压、电流基波相位基本一致cosα约为1,所以功率因数主要由THD决定。

由20lg(THD)=THD(SABER)得THD=1.93cosPF=α=0.462.相控整流电路硬件电路搭建如下:通过改变clock里面的start_delay时间来实现移相控制驱动信号波形:相控触发角模拟30°输出电压波形输入电压电流波形:输入电流FFT分析:PF值计算如下:由20lg(THD)=THD(SABER)得THD=1.99cosPF=α=0.448为了使输出电压达到250V,输出功率为500W,将电容改为120uF,负载变成125Ω输出电压如下:输入电压电流波形:输入电流FFT分析:PF值计算如下:由20lg(THD)=THD(SABER)得THD=0.92PF=α=0.74cos3.PWM整流电路硬件电路搭建如下:驱动PWM信号:输出电压波形如下:输入电压电流波形如下:输入电流FFT分析如下:PF值计算如下:由20lg(THD)=THD(SABER)得THD=0.419cosPF=α=0.923为了使输出电压达到250V,输出功率为500W,将电容改为120uF,负载变成125Ω输出电压如下:驱动PWM信号:输入电压电流波形:输入电流FFT分析:PF值计算如下:由20lg(THD)=THD(SABER)得THD=0.418cosPF=α=0.923二、仿真分析:单相不控整流电路,比较分析带大电容滤波和LC滤波电路下的输入功率因数。

saber反激变换器仿真实例

saber反激变换器仿真实例

为大家介绍一个开关电源仿真的实例。

由于开关电源具有很强的非线性,并且经常是双环乃至多环反馈,因此无论用哪种仿真工具,对其进行仿真分析都是一件很困难的事情,相信用Saber进行开关电源分析的网友,也有过类似的经验。

这个仿真实例中使用了TI的UC3844做为控制器,实现一个反激电路。

验证电路源于TI公司的UC3844 数据手册(data sheet) 第七页所提供的反激变换器设计电路,如下图所示:在SaberSketch根据对该原理图进行适当修改,具体修改情况如下:1.输出由双路±12V/0.3A 的负载改为24V/0.6A负载.2.输出滤波电容C12/C13 由2200u 改为141u. C11 由4700u 改为3000u3.去掉负载绕组供电的复杂滤波网络, 改为RC充电模式, 其中R=10, C=C2=100u.4.将输出部分的滤波器由π 型改为电容直接滤波.5.去掉MOSFET (UFN833)的缓冲电路( SNUBBER).6.对部分Saber中没有模型的器件进行替换:a. POWER MOSFET UFN833->mtp4n80eb. Current Sense R10=0.33->R10=0.55c. Output Rectifier USD945->mbr2545ct UFS1002->ues704d. T1采用xfrl3 template 使用电感量控制变比, L1=1m, L2=10.7u, L3=216.7u, L4=66.9u.在完成以上修改后,在各种负载条件下,对该电路进行仿真分析。

测试条件:Vacin = 117V,Vout = 5V/4A (Rload =1.25)Vout = 24V/0.6A (Rload=40)分析结果如下:如上图图所示,额定负载情况下,Vout = 5.0019V/23.933V。

如上图所示,额定负载情况下输出频率为: FOSC= 39.383KHz , 占空比D=0.26761, 输入直流电压Vdc=144.31V。

saber-三相整流和逆变电路的仿真

saber-三相整流和逆变电路的仿真

三相半波电路
三相半波共阴极整流电路
1、三相半波共阴
极整流电路的特点。 2、三相半波共阴 极 整 流 电 路 的 Saber模型。 3、三相半波整流 电路的仿真。
特点 模型 仿真
三相半波共阴极整流电路的特点
1、它只对半波整流。 2 、晶闸管的阴极连接在一起,然后再与
负载相连。 3、负载电路是通过“地”构成回路。
触发角的设置 返回 触发角的修改
三相电路触发角为00的定义

晶闸管的触发时刻 为电路的自然换相 点,则称晶闸管的 触发角为00。对于 三相共阴极半波整 流电路而言,晶闸 管触发角的00定义 为电压值大于 0 的 电路自然换相点。
三相半波整流电路
三相整流电路触发角的设置
对三相共阴极(共阳极有相似的结论)半波整流
触发角为60度时的仿真结果
触发角为60度时的Fourier分析
晶闸管触发角改为 600
后并没有改变输出的 基本特征,3次谐波的 幅 值 最 大 , 但 比 较 00 和 600 的输出直流电压 可以发现随着触发角 的加大直流输出电压 将减小。
触发角为30度时的仿真结果
作业
完成三相半波共阴极整流电路的设计,输入电
三相整流和逆变电路的仿真
三相整流电路的应用范围和类型
单相整流电路的输出电压较低,给负载提供的容量 较小,输出电压的谐波分量较大。当整流负载容量 较大,或要求直流电压脉动小、易滤波,或要求快 速控制时,通常情况采用对电网来说是平衡的三相 整流装置。 三相整流电路的类型很多,包括三相半波、三相全 控桥式、三相半控桥式、双反星形以及由此发展起 来的适用于大功率的12相整流电路等。但最基本的 电路还是三相半波整流电路,其余类型的电路都可 以看作是三相半波电路以不同方式串联或并联组成 的。

Saber仿真实例共享

Saber仿真实例共享

Saber仿真实例共享Saber仿真软件作为一种设计工具对电源工程师是非常重要的,现在发起此帖,请大家把自己已经调试成功的Saber仿真实例放论坛让大家共享,相互学习提高。

每个实例请注明:仿真电路主题(电路来源)、Saber软件的版本号、仿真条件(时间End Time、步长Time Step等)先放第一个实例:PFC芯片L6561仿真实例,Saber2007,L6561数据手册电路,End Time=20m、Time Step=1u其中:一个周期内输入电压电流跟踪波形:其中变压器设置情况如下:其中:电路、磁心型号EE3528、匝数24:2、气隙1.8mm 等数据来源于控制芯片L6561数据手册磁心材质"3C8"(相当于PC40), 截面84.8u(平方米), 磁路长69.7m(米), 数据来源于EE3528磁心数据手册. 原边绕组电阻10m(欧姆), 副边绕组电阻1m(欧姆),是大致估计,完了修正.L6561.rar临时.bmp∙回复 ∙ 分享 ∙ 2010-03-27 20:37∙∙ 1楼∙ simon009∙ | 本网技工 (119) | 发消息 太感谢了!!!!!∙回复 ∙∙ 2010-03-27 20:41 ∙ 2楼∙nc965∙| 副总工程师 (2001) | 发消息simon 20:44:48请问下,ETD29是你自己搭建的模型吗?清风 20:44:58不是simon 20:45:15貌似saber里面没有哟。

清风 20:46:01非线形2绕组变压器模型,里面输参数即可∙回复∙∙2010-03-27 20:46∙22楼∙yunyun∙| 助理工程师 (373) | 发消息感谢!!!!∙回复∙∙2010-03-31 12:15∙3楼∙nc965∙| 副总工程师 (2001) | 发消息PWM芯片SG3845仿真实例,Saber2007,Time Step=1u3845.rar∙回复∙∙2010-03-27 22:20∙4楼∙nc965∙| 副总工程师 (2001) | 发消息6KW移相全桥准谐振软开关电焊电源Saber2007,Time Step=1u单管电压\电流\损耗波形bumingsunhao.rar∙回复∙∙2010-03-27 22:38∙5楼∙jamenyang∙| 本网技师 (219) | 发消息楼主的电源仿真设置是怎样的,我感觉设置很重要,几年前能仿真的线路,早几天拿出来仿真,就出错,总是说非线性错误,什么的,麻烦到死。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Saber常见电路仿真实例一稳压管电路仿真 (2)二带输出钳位功能的运算放大器 (3)三5V/2A的线性稳压源仿真 (4)四方波发生器的仿真 (7)五整流电路的仿真 (10)六数字脉冲发生器电路的仿真 (11)七分频移相电路的仿真 (16)八梯形波发生器电路的仿真 (17)九三角波发生器电路的仿真 (18)十正弦波发生器电路的仿真 (20)十一锁相环电路的仿真 (21)一稳压管电路仿真稳压管在电路设计当中经常会用到,通常在需要控制电路的最大输入、输出或者在需要提供精度不高的电压参考的时候都会使用。

下面就介绍一个简单例子,仿真电路如下图所示:在分析稳压管电路时,可以用TR分析,也可以用DT分析。

从分析稳压电路特性的角度看,DT分析更为直观,它可以直接得到稳压电路输出与输入之间的关系。

因此对上面的电路执行DT分析,扫描输入电压从9V到15V,步长为0.1V,分析结果如下图所示:从图中可以看到,输入电压在9~15V变化,输出基本稳定在6V。

需要注意的是,由于Saber仿真软件中的电源都是理想电源,其输出阻抗为零,因此不能直接将电源和稳压管相连接,如果直接连接,稳压管将无法发挥作用,因为理想电源能够输出足以超出稳压管工作范围的电流。

二带输出钳位功能的运算放大器运算放大器在电路设计中很常用,在Saber软件中提供了8个运放模板和大量的运放器件模型,因此利用Saber软件可以很方便的完成各种运方电路的仿真验证工作.如下图所示的由lm258构成的反向放大器电路,其放大倍数是5,稳压二极管1N5233用于钳位输出电压.对该电路执行的DT分析,扫描输入电压从-2V->2V,步长为0.1V,仿真结果如下图所示:从仿真结果可以看出,当输入电压超出一定范围时,输出电压被钳位.输出上限时6.5V,下限是-6.5V.电路的放大倍数A=-5.注意:1.lm258n_3是Saber中模型的名字,_3代表了该模型是基于第三级运算放大器模板建立的.2.Saber软件中二极管器件级模型的名字头上都带字母d,所以d1n5233a代表1n5233的模型.三5V/2A的线性稳压源仿真下图所示的电路利用78L05+TIP33C完成了对78L05集成稳压器的扩展,实现5V/2A 的输出能力。

为了考察电路的负载能力,可以在Saber软件中使用DT分析,扫描变化负载电流,得出输出电压与输出电流的关系,也就可以得到该电路的负载调整率了。

DT分析参数设置为:Independent source=i_dc.iloadsweep from0.01to2by0.1.。

分析结果如下图所示:从上图可以看出,在整个范围内(0.01A<Iload<2A),输出电压满足4%的控制精度。

问题:该电路的输入调制率(Line in Regulation)是多少?如何得到?(假定输入电压范围是9V~20V)。

有兴趣的网友可以去试试。

半桥推挽电路的开环仿真推挽电路拓扑在电源设计里常用,这里介绍一个简单的推挽电路开环仿真的例子,可以直观的理解推挽电路的工作原理。

电路如下图所示:对该电路进行TR分析,end time=200u,time step=10n,仿真结果如下所示。

1.输出电压2.驱动电压3.变压器原边波形4.变压器负边波形Saber中仿真用的原理图文件四方波发生器的仿真在电路设计的时候,经常会需要设计脉冲发生电路,下图是一个由lm339比较器构成的方波发生器:其基本工作原理如下:1.假设lm339输出为高,则inp电压为(2/3)vcc,并且vcc通过r5、r3向c1充电,inm 端电压逐渐上升;2.当inm端电压高于Vinp时,lm339输出为低,则inp端电压跳变为(1/3)vcc,此时电容c1通过电阻r3向vout端放电,inm端电压逐渐下降;3.当inm端电压低于Vinp时,lm339输出为高,开始重复过程1。

过程1到3反复重复,导致lm339输出端vout在vcc和gnd直接跳变,产生方波输出,方波频率主要有r3和c1决定(r5=4.7k<<r3=100k)。

在sabersketch中对该电路执行TR分析,end time=10m,time step=10n,分析结果如下所示。

1.lm339两个输入管脚inp和inm波形2.lm339输出管脚vout波形五整流电路的仿真整流电路在电源设计中会经常用到,这里介绍一个单相整流电路仿真示例。

如下图所示:四个二极管D1N4148构成整流桥,直流滤波电容C1=100u,负载电阻RL=1k。

交流输入为正弦电压,峰值电压为17V,频率为50Hz。

对该电路执行TR分析,设置end time=200m,time step=1u。

其分析结果如下图所示:从上图可以看出,仿真结果正确。

问题:1.如何测试输出电压Vout的纹波电压?2.如何修改电路参数,可以使得Vout输出有下图的效果?有兴趣的网友可以试试六数字脉冲发生器电路的仿真脉冲电路在电路设计中会经常碰到,这里介绍一个简单的仿真示例。

如下图所示:电路由与非门和阻容网络组成,其基本工作原理如下:(a)假设上电瞬间节点in的电压对于非门来说为低电平,则节点mid电压为高电平,而节点out的电压为低电平。

(b)由于mid为高电平,则会通过2k电阻向电容C充电,n_67节点电压逐渐上升。

而非门的输入阻抗极高,所以in节点的电压基本与n_67节点一致,导致in节点的电压也上升。

(c)当in节点电压高于与非门的输入高门限时,非门输出反转,mid为低电平,导致out节点电压反转,输出为高电平。

(d)电容C通过2k电阻向mid节点放电,n_67节点电压下降,in节点电压也跟着下降。

当in节点电压低于非门的输入低门限时,输出再次反转,mid为低电平,导致节点out输出反转为高电平。

整个电路在a~d四个过程中往复运行,out节点上产生振荡方波。

需要注意的是,这个振荡电路的仿真和以前的不一样,电路的没有直接的参考地。

那么,这个电路的仿真能正确吗?在Sabersketch中建立图1所示的原理图,然后选择DC,TR分析,End Time=100m,Time Step=100n,仿真器输出结果如下图所示。

从上图可以观察到,电路的运行方式与前面分析的一致,表明这个电路在没有直接参考地的情况下,也能够正确仿真。

而一般普通的模拟电路如果没有参考地,没法进行仿真分析。

造成这种情况的原因在于saber软件仿真混合信号电路的方法,saber 软件在为原理图产生网表时,会自动在数字和模拟管脚连接的地方,插入一种被称为hypermodel的模板,以实现模拟到数字或者数字到模拟的过渡。

关于Hypermodel 的概念和使用,可参考Saber软件自带的帮助文档,这里紧紧举个例子,便于大家观察Hypermodel的使用。

选择Edit菜单下的Saber/Netlister Settings命令,会出现如下图所示的对话框:按照上图所示设置Hypermodel栏,然后保存设置并重新执行Netlist命令。

然后对电路进行DC、TR分析,设置和以前一致,仿真结果如下图所示:和前面的仿真结果比较,其输出的高低电平发生变化,这主要和使用的Hypermodel 有关。

问题:为什么在改变hypermodel设置以后,要执行netlist命令,而不直接进行分析?译码电路在数字电路设计中会经常碰到,这里介绍一个简单的仿真示例。

如下图所示:为一个三八译码器电路,三路数字时钟输入的频率分别为1kHz,2kHz,4kHz,其中C路输入信号代表高位,A路代表低位。

在Sabersketch中建立该电路的原理图,然后选择TR分析,设置end time=1m,time step=1u。

其分析结果如下图所示:从上图可以观察到,译码电路工作正常。

七分频移相电路的仿真在数字电路设计时,经常会有对某个信号进行分频或者移相的要求。

如下图所示的电路:输入时钟频率为200kHz,通过计数器进行分频,其输出控制一个多路选择开关,从多路开关中输出六路信号,分别控制三个RS触发器的复位置位动作,实现三路信号的移相。

对该电路执行TR分析,设置end time=60,ime step=1n其分析结果如下图所示:从上图可以观察到,这个电路对输入时钟进行了6分频,并移相为三路互差120°的信号输出。

八梯形波发生器电路的仿真这里介绍一个例子,在Saber软件环境中对梯形波发生器电路进行分析验证。

如下图图所示:从上图可以看出,电路由计数器、触发器、门电路、和电阻网络组成,输入时钟为500kHz。

其核心思想是控制计数器的输出,其输出电压经过电阻网络分压以后成阶梯上升和阶梯下降。

在Sabersketch中对该电路执行DC,TR分析,End Time=100u,Time Step=1n,仿真器输出结果如下图所示:从上图可以观察到,输出电压在0~2V之间的梯形波。

问题:1.修改VCC电压,能够改变输出电压波形吗?为什么?2.这个电路在实际设计时真的能使用吗?九三角波发生器电路的仿真这里介绍一个Saber软件环境中实现对方波发生器电路进行分析验证的例子,设计示例如下图所示:如上图所示电路由两个ne5532a构成,第一级ne5532a在vo1节点上输出方波,然后通过Rin和C2构成的积分电路,使得第二级ne5532a的输出为对方波积分的结果-三角波,并通过电阻R2反馈到第一级ne5532a的输出端,这样就形成了自激振荡的输出。

在Sabersketch中对该电路执行DC,TR分析,仿真器输出结果如下图所示:从上图可以看出,输出端没有任何振荡波形输出,但实际电路是能够振荡的,其原因与振荡器的工作原理以及saber时域仿真算法有关系。

这里主要介绍一种解决振荡器仿真的方法。

在执行TR分析的时候,减小截断误差的值,具体情况如下图所示:默认的Truncation Error参数为0.005,现在将其改为1u;默认的Sample Point Density 1,现在将其改为2。

其他设置与前面一致,其分析结果如下图所示。

从上图可以看出,电路输出实现自激振荡,频率为2387Hz。

十正弦波发生器电路的仿真今天介绍一个在Saber软件环境中对正弦波发生器电路进行仿真验证的例子,电路如下图所示:在Sabersketch中设置电容C2的ic=6,然后选择DC,TR分析,End Time=50m,Time Step=10n,仿真器输出结果如下图所示:从上图可以看出,输出为正弦输出电压,频率约为930Hz,峰峰值约为20V。

问题:为什么要设置C2的ic=6?不设置ic值仿真结果会怎样?有兴趣的网友可以去试试。

十一锁相环电路的仿真在电路设计时,会碰到需要与某个输入信号同步的要求,在这种情况下,通常需要设计锁相环电路来实现对输入信号频率和相位的锁定。

相关文档
最新文档