6概率的基本性质

合集下载

概率的基本性质

概率的基本性质
(2)从6名学生中选出4人参加数学竞赛, 共有15种可能情况;
(3)“A没被选中”包含下列5个基本事 件: (B,C,D,E ),(B,C,D,F ), (B,C,E,F ),(B,D,E,F ),
(C,D,E,F )
有关集合知识:
1、集合之间的包含关系:
A B
BA
2、集合之间的运算: (1)交集: A∩B
(2)投掷一颗骰子,掷出的点数不为3, 5.
5、互斥事件
若A∩B为不可能事件( A∩B = ),那么称事 件A与事件B互斥。
事件A与事件B互斥的含义是:这两个事件在任 何一次试验中都不会同时发生,可用图表示为:
A={出现4点} B={出现6点} M={出现的点数为偶数}
B
A
N={出现的点数为奇数}
解:(1)Ω ={(正,正,正), (反,正,正),
(正,反,正), (正,正,反), (正,反,反),
(反,正,反),(反,反,正),(反,反,反)};
解:(1)Ω ={(正,正,正), (反,正,正),
(正,反,正), (正,正,反), (正,反,反), (反,正,反),(反,反,正),(反,反,反)};
基本事件空间:所有基本事件构成的集合 称为基本事件空间。基本事件空间常用大 写希腊字母Ω表示。
例如,掷一枚硬币,观察落地后哪一 面向上,这个试验的基本事件空间就是 集合{正面向上,反面向上}。
即 Ω = {正面向上,反面向上}.
或简记为Ω ={正,反}.
掷一颗骰子,观察掷出的点数,这个事 件的基本事件空间是
解:(1)这个试验的基本事件空间是: Ω={(A,B,C,D ),(A,B,C,E ),(A,B,C,F ),
(A,B,D,E ),(A,B,D,F ),(A,B,E,F ),

概率的定义和基本性质

概率的定义和基本性质
(1)A1 没有红球; (2) A2 恰好有两个红球; (3) A3 至少有两个红球;
(4) A4 至多有两个红球; (5) A5 颜色相同的球;
12
(2) 有放回地摸球(有放回抽样)
例2 一个口袋中装有10个外形相同的球,其中6个是白球, 4个是红球."有放回"地从袋中取出3个球(所谓"有放回"是指 第一次取出一个球,记录下这个球的颜色后,再把这个球放回 袋中,然后再去任取一个球,依次类推), 求下述事件发生的概率.
这个稳定值从本质上反映了事件在试验中出现 可能性的大小.它就是事件发生的概率.
6
定义(概率的统计定义)
在一组不变的条件S下, 独立地重复做n次试验.
当试验次数n很大时,如果A的频率fn A稳定地在某一数值p
附近摆动; 而且一般来说随着试验次数的增多, 这种摆动的 幅度会越来越小, 则称数值p为事件A在条件组S下发生的概率.
3
实验者
德.摩根 蒲丰 K.皮尔逊 K.皮尔逊
n
2048 4040 12000 24000
nH
1061 2048 6019 12012
f 0.5181 0.5069 0.5016 0.5005
f (H ) n的增大 1 . 2
4
性质
设 A 是随机试验 E 的任一事件,则当试验次数n 固定时,事件A的频率满足
21
作业(12-27)
P176 2. 4. 5. 6. 7.
22
排列组合的几个定理
1. 加法原理 定理 1 设完成一件事有n类方法,只要选择任何一类中 的一种方法,这件事就可完成.若第一类方法有m1种, 第二类 方法有m2种, ,第n类方法有mn种,并且这些方法里, 任何两种 方法都不相同,则完成这件事就有m1 m2 mn种方法.

正态分布6西格玛概率 解释说明以及概述

正态分布6西格玛概率 解释说明以及概述

正态分布6西格玛概率解释说明以及概述1. 引言1.1 概述引言部分将对文章的主题进行概述和介绍。

在本文中,我们将探讨正态分布六西格玛概率的解释说明以及概述。

正态分布是一种重要的统计分布,它具有许多优秀的性质和应用领域。

而六西格玛原理则是基于正态分布而发展起来的一种质量管理方法,它通过计算事件发生在六个标准差之内的概率来评估过程或产品是否稳定。

1.2 文章结构本文共分为五个部分进行论述。

首先,在第二部分我们将介绍正态分布的定义与性质,同时探讨其常见应用领域以及参数估计与假设检验方法。

然后,在第三部分中,我们将回顾六西格玛原理的背景和发展历程,并详细解释其核心概念和特点。

此外,还将深入研究六西格玛在不同应用场景中的优势和实际价值。

在第四部分中,我们将系统地介绍正态分布六西格玛概率计算方法。

具体包括Z-score转化与标准化方法以及六西格玛事件发生概率计算步骤的详细介绍。

通过实例分析和案例研究,我们将进一步展示如何应用这些方法来评估潜在风险并进行决策。

最后,在结论部分,我们将总结本研究的重要成果,并对正态分布六西格玛概率在实际应用中的前景进行展望。

1.3 目的本文旨在提供关于正态分布六西格玛概率的全面说明和概述。

通过对正态分布和六西格玛原理进行深入探讨,读者将能够了解到这两个领域的基本定义、性质以及应用方法。

同时,通过具体案例和实证研究的呈现,读者还将获得运用这些方法进行质量管理、风险评估和决策制定方面的指导思路。

通过本文的阅读,读者将更加深入地理解正态分布与六西格玛原理之间的关系,并能够灵活运用相关计算方法来解决实际问题。

希望本文能为读者提供有益的信息,并促进相关领域的学术研究和实践应用。

2. 正态分布:正态分布,又称高斯分布或钟形曲线,是概率论和统计学中最为重要的连续型概率分布之一。

它的特点是对称且呈现钟形曲线状,由于具有良好的性质与广泛的应用领域,被广泛地使用于数据建模、参数估计以及假设检验等方面。

高中数学必修二课件:概率的基本性质

高中数学必修二课件:概率的基本性质

一次购物 1至4件 5至8件

9至 12件
13至 16件
顾客数(人)
x
30
25
ቤተ መጻሕፍቲ ባይዱ
y
结算时间
1
1.5
2
2.5
(分钟/人)
已知这100位顾客中一次购物量超过8件的顾客占55%.
17件 及以上
10
3
①确定x,y的值,并求顾客一次购物的结算时间的平均值;
②求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率).
错解:因为P(A)=36=12,P(B)=36=12, 所以P(A∪B)=P(A)+P(B)=1. 错因分析:由于事件A与事件B不是互斥事件,更不是对立事件,因此 P(A∪B)=P(A)+P(B)不成立.因此解答此题应从“A∪B”这一事件出发求解. 答:因为A∪B包含4种结果,即出现1,2,3和5,所以P(A∪B)=46=23.
②由于A,AB型血不能输给B型血的人,故“任找一个人,其血不能输给小 明”为事件A′+C′,根据互斥事件的概率加法公式,得P(A′+C′)=P(A′) +P(C′)=0.28+0.08=0.36.
(2)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集
了在该超市购物的100名顾客的相关数据,如下表所示.
(2)某商场在元旦举行购物抽奖促销活动,规定顾客从装有编号为0,1,2, 3,4的五个相同小球的抽奖箱中一次任意摸出两个小球,若取出的两个小球的 编号之和等于7,则中一等奖,等于6或5,则中二等奖,等于4,则中三等奖, 其余结果不中奖.
①求中二等奖的概率; ②求不中奖的概率.
【解析】 从五个小球中一次任意摸出两个小球,不同的结果有(0,1), (0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共 10种.记两个小球的编号之和为x.

随机事件及其概率(知识点总结)

随机事件及其概率(知识点总结)

随机事件及其概率一、随机事件1、必然事件在一定条件下,必然会发生的事件叫作必然事件.2、不可能事件在一定条件下,一定不会发生的事件叫作不可能事件.3、随机事件在一定条件下,可能发生,也可能不发生的事件叫作随机事件,一般用大写字母A,B,C来表示随机事件.4、确定事件必然事件和不可能事件统称为相对于随机事件的确定事件.5、试验为了探索随机现象发生的规律,就要对随机现象进行观察或模拟,这种观察或模拟的过程就叫作试验.【注】(1)在一定条件下,某种现象可能发生,也可能不发生,事先并不能判断将出现哪种结果,这种现象就叫作随机现象. 应当注意的是,随机现象绝不是杂乱无章的现象,这里的“随机”有两方面意思:①这种现象的结果不确定,发生之前不能预言;②这种现象的结果带有偶然性. 虽然随机现象的结果不确定,带有某种偶然性,但是这种现象的各种可能结果在数量上具有一定的稳定性和规律性,我们称这种规律性为统计规律性. 统计和概率就是从量的侧面去研究和揭示随机现象的这种规律性,从而实现随机性和确定性之间矛盾的统一.(2)必然事件与不可能事件反映的是在一定条件下的确定性现象,而随机事件反映的则是在一定条件下的随机现象.(3)随机试验满足的条件:可以在相同条件下重复进行;所有结果都是明确可知的,但不止一个;每一次试验的结果是可能结果中的一个,但不确定是哪一个. 随机事件也可以简称为事件,但有时为了叙述的简洁性,也可能包含不可能事件和必然事件.二、基本事件空间1、基本事件在试验中不能再分的最简单的随机事件,而其他事件都可以用它们进行描述,这样的事件称为基本事件.2、基本事件空间所有基本事件构成的集合称为基本事件空间,常用大写字母Ω来表示,Ω中的每一个元素都是一个基本事件,并且Ω中包含了所有的基本事件.【注】基本事件是试验中所有可能发生的结果的最小单位,它不能再分,其他的事件都可以用这些基本事件来表示;在写一个试验的基本事件空间时,应注意每个基本事件是否与顺序有关系;基本事件空间包含了所有的基本事件,在写时应注意不重复、不遗漏.三、频率与概率1、频数与频率在相同条件S下进行了n次试验,观察某一事件A是否出现,则称在n次试验中事件A 出现的次数A n 为事件A 出现的频数;事件A 出现的比例()A n n f A n =为事件A 出现的频率.2、概率对于给定的随机事件A ,如果随着试验次数n 的增加,事件A 发生的频率()n f A 稳定在某个常数上,则把这个常数称为事件A 的概率,简称为A 的概率,记作()P A .3、频率与概率的关系(1)频率虽然在一定程度上可以反映事件发生的可能性的大小,但频率并不是一个完全确定的数. 随着试验次数的不同,产生的频率也可能不同,所以频率无法从根本上刻画事件发生的可能性的大小,但人们从大量的重复试验中发现:随着试验次数的无限增加,事件发生的频率会稳定在某一固定的值上,即在无限次重复试验下,频率具有某种稳定性.(2)概率是一个常数,它是频率的科学抽象. 当试验次数无限多时,所得到的频率就会近似地等于概率. 另外,概率大,并不表示事件一定会发生,只能说明事件发生的可能性大,但在一次试验中却不一定会发生.四、事件的关系与运算1、包含关系一般地,对于事件A 与事件B ,如果事件A 发生时,事件B 一定发生,则我们称 事件B 包含事件A (或称事件A 包含于事件B ),记作B A ⊇(或A B ⊆).2、相等关系一般地,对于事件A 与事件B ,如果事件A 发生时,事件B 一定发生,并且如果事件B 发生时,事件A 一定发生,即若B A ⊇且A B ⊇,则我们称事件A 与事件=.B相等,记作A B3、并事件如果某事件发生当且仅当事件A或事件B发生,则我们称该事件为事件A与事件⋃(或A B+).B的并事件(或和事件),记作A B4、交事件如果某事件发生当且仅当事件A发生且事件B也发生,则我们称该事件为事件A 与事件B的交事件(或积事件),记作A B⋂(或A B⋅).5、互斥事件如果事件A与事件B的交事件A B⋂=∅),则我们称事⋂为不可能事件(即A B件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中都不会同时发生.6、对立事件如果事件A与事件B的交事件A B⋂=∅),而事件A与⋂为不可能事件(即A B事件B的并事件A B⋃=Ω),则我们称事件A与事件B互⋃为必然事件(即A B为对立事件,其含义是:事件A与事件B在任何一次试验中有且仅有一个发生.【注】事件的关系与运算可以类比集合的关系与运算. 例如,事件A包含事件B 类比集合A包含集合B;事件A与事件B相等类比集合A与集合B相等;事件A 与事件B的并事件类比集合A与集合B的并集;事件A与事件B的交事件类比集合A与集合B的交集……五、互斥事件与对立事件互斥事件与对立事件是今后考察的重点,因此关于互斥事件与对立事件,我们很有必要再作进一步的说明.1、互斥事件与对立事件的关系互斥事件与对立事件都反映的是两个事件之间的关系. 互斥事件是不可能同时发生的两个事件,而对立事件除了要求这两个事件不同时发生以外,还要求这两个事件必须有一个发生. 因此,对立事件一定是互斥事件,而互斥事件不一定是对立事件. 例如,掷一枚骰子,事件:“出现的点数是1”与事件:“出现的点数是偶数”是互斥事件,但不是对立事件;而事件:“出现的点数是奇数”与事件:“出现的点数是偶数”既是互斥事件,也是对立事件.2、互斥事件的概率加法公式(1)两个互斥事件的概率之和如果事件A 与事件B 互斥,那么()()()P A B P A P B ⋃=+;(2)有限多个互斥事件的概率之和一般地,如果事件1A ,2A ,…,n A 两两互斥,那么事件“12n A A A ⋃⋃⋃发生”(指事件1A ,2A ,…,n A 中至少有一个发生)的概率等于这n 个事件分别发生的概率之和,即1212()()()()n n P A A A P A P A P A ⋃⋃⋃=+++.【注】上述这两个公式叫作互斥事件的概率加法公式. 在运用互斥事件的概率加法公式时,一定要首先确定各事件是否彼此互斥(如果这个条件不满足,则公式不适用),然后求出各事件分别发生的概率,再求和.3、对立事件的概率加法公式对于对立的两个事件A 与B 而言,由于在一次试验中,事件A 与事件B 不会同时发生,因此事件A 与事件B 互斥,并且A B ⋃=Ω,即事件A 或事件B 必有一个发生,所以对立事件A 与B 的并事件A B ⋃发生的概率等于事件A 发生的概率与事件B 发生的概率之和,且和为1,即()()()()1P P A B P A P B Ω=⋃=+=,或()1()P A P B =-.【注】上述这个公式为我们求事件A 的概率()P A 提供了一种方法,当我们直接求()P B,再运用公式P A有困难时,可以转化为先求其对立事件B的概率()P A.=-即可求出所要求的事件A的概率()()1()P A P B4、求复杂事件的概率的方法求复杂事件的概率通常有两种方法:一种是将所求事件转化为彼此互斥的事件的和,然后再运用互斥事件的概率加法公式进行求解;另一种是先求其对立事件的概率,然后再运用对立事件的概率加法公式进行求解. 如果采用方法一,一定要准确地将所求事件拆分成若干个两两互斥的事件,不能有重复和遗漏;如果采用方法二,一定要找准所求事件的对立事件,并准确求出对立事件的概率.六、概率的基本性质1、任何事件的概率都在01之间,即对于任一事件A,都有0()1≤≤.P A2、必然事件的概率为1,不可能事件的概率为0.3、若事件A与事件B互斥,则()()()⋃=+.P A B P A P B4、两个对立事件的概率之和为1,即若事件A与事件B对立,则()()1+=.P A P B。

(最新整理)概率的基本性质6

(最新整理)概率的基本性质6
事件A与事件B有且只有一个发生.
2021/7/26
12
思考11:事件A与事件B的和事件、积事 件,分别对应两个集合的并、交,那么 事件A与事件B互为对立事件,对应的集 合A、B是什么关系?
集合A与集合B互为补集.
思考12:若事件A与事件B相互对立,那
么事件A与事件B互斥吗?反之,若事件A
与事件B互斥,那么事件A与事件B相互对
2021/7/26
6
思考3:一般地,对于事件A与事件B,如 何理解事件B包含事件A(或事件A包含于 事件B)?特别地,不可能事件用Ф表示, 它与任何事件的关系怎样约定?
如果当事件A发生时,事件B一定发生,
则B A ( 或A B );
任何事件都包含不可能事件.
2021/7/26
7
思考4:分析事件C1与事件D1之间的包含 关系,按集合观点这两个事件之间的关 系应怎样描述?
思考5:一般地,当两个事件A、B满足 什么条件时,称事件A与事件B相等?
若B A,且A B,则称事件A与事件B
相等,记作A=B.
思考6:如果事件C5发生或C6发生,就意
味着哪个事件发生?反之成立吗?
2021/7/26
8
思考7:事件D2称为事件C5与事件C6的并事 件(或和事件),一般地,事件A与事件B 的并事件(或和事件)是什么含义?
少?
P(C)=P(A∪B)= P(A)+P(B)
=0202.1/75/26,P(D)=1- P(C)=0.5.
22
例5 袋中有12个小球,分别为红球、
黑球、黄球、绿球,从中任取一球,已
知 球 也
的得 是概到1 5 2 率红,是球试1的求5 2 概得,率到得是到黑黄球13 球、,或得黄绿球到球黑、的球绿概或球率黄的

概率的基本性质(614)

概率的基本性质(614)

P244-练习10 :抛掷一红一绿两颗质地均匀的六面体骰子,记下骰子朝上面的点数,若用x表示红色 骰子的点数,用y表示绿色骰子的点数,用(x,y)表示一次试验的结果,设A=“两个点数之和等 于8”,B=“至少有一颗骰子的点数为5”,C=“红色骰子上的点数大于4” (1)求事件A,B,C的概率;(2)求 A B, A B 的概率.
(4)统计某班同学们的数学测试成绩,事件“所有同学的成绩都大于60分”
的对立事件为“所有同学的成绩都小于60分”. ( × )
(5)若P(A)+P(B)=1,则事件A与B为对立事件. ( × )
掷骰子:A={1,2,3},B={1,3,5} A,B既不互斥也不对立
巩固——概率性质的运用
P241-例12.为了推广一 种饮料,某饮料生产企业开展了有奖促销活动:
能中奖的样本数为18个, P(能中奖) 18 3. 30 5
巩固——概率性质的运用
P242-1.已知, (1)若B⊆A,则P(A∪B)=_____,P(AB)=_______.
命中 环数
6
7
8
9 10
(2)若A,B互斥,则(A∪B)=_____,P(AB)=__0_____.
频率 0.1 0.15 0.25 0.3 0.2
P244-13 某射击运动员平时训练成绩的统计结果如下:
如果这名运动员只射击一次,以频率作为概率,求下列事件的概率;(1)命中
10环;(2)命中的环数大于8环;(3)命中的环数小于9环;(4)命中的环数
不超过5环.
分析:事件为命中某一 环数互斥
解:用x表示命中的环数,由频率表可得.
1 P(x 10) 0.2
解:样本空间可表示为 {(x, y) | x, y {1, 2,3, 4,5,6}} . ,n 36

高三数学概率的基本性质

高三数学概率的基本性质

例3 一个袋子里装有大小均匀的5个红球, 3个白球4个绿球和n个黑球,记A=摸出红球, B=摸出白球, C=摸出绿球, D=摸出黑球,如 果随机摸出一球是黑球的概率为1/7. (1)求n; (2)求摸出的球是红球或白球或绿球的概率.
小结
• 1事件的关系与运算:
• (1)包含事件 (2)相等事件
• (3)并事件
nA n
随着实验次数的增加,频率 fn (A)稳定 在某一个常数上,我们把这个常数称 为事件A的概率,记为P(A)
在条件S下,一定发生的事件,叫 做相对于条件S下的必然事件;
在条件S下,一定不发生的事件,叫做 相对于条件S下的不可能事件;
在条件S下,可能发生也可能不发生 的事件,叫做相对于条件S下的随机 事件.
用语,【瞠】chēnɡ〈书〉瞪着眼看:~目。 【病况】bìnɡkuànɡ名病情。【菜点】càidiǎn名菜肴和点心:风味~|宫廷~|西式~。②〈书〉婉 辞,泛指防御工事。 ~用文言成分比较多。 ②名指月亮:千里共~。①那个和这个;【簸箩】bò?没有规矩。②名“我”的谦称:其中道理, 上端连胃 ,【玻璃砖】bō?两腿交替上抬下踩,②扑上去抓:狮子~兔。②用布、手巾等摩擦使干净:~汗|~桌子|~玻璃◇~亮眼睛。处理:~家务|这件事由 你~。左右对称。捉拿绑匪。【层峦】cénɡluán名重重叠叠的山岭:~叠翠。 【惭颜】cányán〈书〉名羞愧的表情。 【荜路蓝缕】bìlùlánlǚ同
个事件相等,记作C1=D1
• 一般地,若 B A, A B, 那么
事件A与事件B相等,记作A=B。
练习
• 1.如果某人在某种比赛(假设这种比 赛无“和局”出现)中赢的概率是 0.3,那么,他输的概率是多少?
• 2.利用简单随机抽样的方法抽查了某 校200名学生,其中戴眼镜的学生有 100人,若在这个学校随机调查一名 学生,问他戴眼镜的概率的近似值 是多少?

概率的基本性质

概率的基本性质

描述事件发生的可能性大小的量度,记作 P(E),其中E为事件。
必然事件
不可能事件
指在一定条件下,一定发生的事件。其概 率为1。
指在一定条件下,一定不发生的事件。其 概率为0。
概率的公理化定义
公理化定义
基于公理体系的定义方式,通 过公理化方法,将概率定义为 一种满足特定性质的数学对象

可数性公理
所有的可能结果都是可数的, 即可以列出所有可能的结果。
04
CATALOGUE
概率的乘法规则
独立事件的乘法规则
定义
如果两个事件A和B相互独立,那么 P(A∩B) = P(A)P(B)。
解释
如果事件A和B是独立的,那么事件A 的发生与否不会影响事件B的发生,反 之亦然。因此,两个独立事件的概率 乘积等于它们各自的概率。
互斥事件的乘法规则
定义
如果两个事件A和B互斥,那么P(A∩B) = 0 。
02
CATALOGUE
概率的基本性质
非负性
总结词
所有概率值都是非负的。
详细描述
根据概率的定义,任何事件的概率值都是非负的,即大于等于零。这是因为概 率被定义为事件发生的次数除以所有可能事件的次数,因此其值不可能为负数 。
规范性
总结词
所有事件的概率总和为1。
详细描述
在一个有限概率空间中,所有事件的概率总和等于1。这是概率的规范性性质,它确保了所有可能的后果被完全 考虑在内,并且每个后果的概率都被正确地分配。
方差的性质
方差的大小取决于随机变量的取值范围和分布形状 ,方差越小,随机变量的取值越集中,分布越稳定 。
方差的计算公式
方差是每个样本点与均值的差的平方的平均 值。

第六章__概率分布

第六章__概率分布
面积的95%;正负2.58个标准差之间,包含总面积的 99%;正负3个标准差之间,包含总面积的99.74%。
二、正态分布表的编制与使用
• (一)正态分布表的编制与结构
• 正态分布表的结构一般包括三栏
• 第一栏:Z分数单位;
• 第二栏:密度函数或比率数值(y);
• 第三栏:概率值(p)。
• (二)正态分布表的使用
2
3
• 当g2=0时,正态分布的峰度;g2>0时,分布的峰度 比正态分布的峰度低阔;g2<0时,表明分布的峰度比 正态分布的峰度高狭。当N>1000时,g2值才比较可 靠。
• (三)累加次数曲线法
• 正态分布概率曲线和样本的累加频率曲线完全重
合说明样本分布为正态;若偏离,则不符合。
• 四、正态分布理论在测验中的应用
-0.84 -0.525 0 0.84 1.645 2.33
4.160 4.475 5.000 5.840 6.645 7.330
• (三)在能力分组或等级评定时确定人数
• ①将6个标准差除以分组的或等级的数目,做到Z
分数等距;
• ②查正态分布表,从Z求p,即各等级或各组在等
距的情况下应有的比率; • ③将比率乘以欲分组的人数,便得到各等级或分 组该有的人数。
• (二)二项分布
• 二项分布:试验仅有两种不同性质结果的概率分布。也称 两个对立事件的概率分布。
• 二项分布同二项定理有着密切的关系:
n 1 n1 n1 n1 n n (p+q)n =C0 p +C p q + +C pq +C n n n nq
x x n x (p +q)n = Cn pq n

概率基本知识

概率基本知识

概率基本知识
概率基本知识包括概率的统计定义、概率的性质、条件概率、独立性、概率计算方法等。

1. 概率的统计定义:表示某事件发生的次数与总实验次数的比值。

2. 概率的性质:包括概率的非负性、概率的归一性、概率的有限可加性等。

3. 条件概率:表示在某一事件B已经发生的条件下,另一事件A发生的概率。

计算公式为P(A|B) = P(AB)/P(B)。

4. 独立性:表示两个事件之间没有相互影响,一个事件的发生与否不会影响另一个事件的发生概率。

5. 概率计算方法:包括直接计算法、排列组合法、二项式定理、几何概型等。

以上是概率基本知识的简单介绍,如需了解更多信息,建议查阅概率论相关书籍或咨询概率论专业人士。

概率统计复习提纲(百度文库)解析

概率统计复习提纲(百度文库)解析

《概率论与数理统计》总复习提纲第一块随机事件及其概率内容提要基本内容:随机事件与样本空间,事件的关系与运算,概率的概念和基本性质,古典概率,几何概率,条件概率,与条件概率有关的三个公式,事件的独立性,贝努里试验.1、随机试验、样本空间与随机事件(1)随机试验:具有以下三个特点的试验称为随机试验,记为.1)试验可在相同的条件下重复进行;2)每次试验的结果具有多种可能性,但试验之前可确知试验的所有可能结果;3)每次试验前不能确定哪一个结果会出现.(2)样本空间:随机试验的所有可能结果组成的集合称为的样本空间记为Ω;试验的每一个可能结果,即Ω中的元素,称为样本点,记为.(3)随机事件:在一定条件下,可能出现也可能不出现的事件称为随机事件,简称事件;也可表述为事件就是样本空间的子集,必然事件(记为)和不可能事件(记为).2、事件的关系与运算(1)包含关系与相等:“事件发生必导致发生”,记为或;且.(2)互不相容性:;互为对立事件且.(3)独立性:(1)设为事件,若有,则称事件与相互独立. 等价于:若().(2)多个事件的独立:设是n个事件,如果对任意的,任意的,具有等式,称个事件相互独立.3、事件的运算(1)和事件(并):“事件与至少有一个发生”,记为.(2)积事件(交):“事件与同时发生”,记为或.(3)差事件、对立事件(余事件):“事件发生而不发生”,记为称为与的差事件;称为的对立事件;易知:.4、事件的运算法则1) 交换律:,;2) 结合律:,;3) 分配律:,;4) 对偶(De Morgan)律:,,可推广5、概率的概念(1)概率的公理化定义:(2)频率的定义:事件在次重复试验中出现次,则比值称为事件在次重复试验中出现的频率,记为,即.(3)统计概率:称为事件的(统计)概率.在实际问题中,当很大时,取(4)古典概率:若试验的基本结果数为有限个,且每个事件发生的可能性相等,则(试验对应古典概型)事件发生的概率为:.(5)几何概率:若试验基本结果数无限,随机点落在某区域g的概率与区域g的测度(长度、面积、体积等)成正比,而与其位置及形状无关,则(试验对应几何概型),“在区域中随机地取一点落在区域中”这一事件发生的概率为:.(6)主观概率:人们根据经验对该事件发生的可能性所给出的个人信念.6、概率的基本性质(1)不可能事件概率零:=0.(2)有限可加性:设是n个两两互不相容的事件,即=,(),则有=+.(3)单调不减性:若事件,且.(4)互逆性:且.(5)加法公式:对任意两事件,有-;此性质可推广到任意个事件的情形.(6)可分性:对任意两事件,有,且7、条件概率与乘法公式(1)条件概率:设是两个事件,即,则称为事件发生的条件下事件发生的条件概率.(2)乘法公式:设且则称为事件的概率乘法公式.8、全概率公式与贝叶斯(Bayes)公式(1)全概率公式:设是的一个划分,且,,则对任何事件,有称为全概率公式.(2)贝叶斯(Bayes)公式:设是的一个划分,且,则对任何事件,有称为贝叶斯公式或逆概率公式.9、贝努里(Bernoulli)概型(1)只有两个可能结果的试验称为贝努里试验,常记为.也叫做“成功—失败”试验,“成功”的概率常用表示,其中=“成功”.(2)把重复独立地进行次,所得的试验称为重贝努里试验,记为.(3)把重复独立地进行可列多次,所得的试验称为可列重贝努里试验,记为.以上三种贝努里试验统称为贝努里概型.(4)中成功次的概率是:其中.疑难分析1、必然事件与不可能事件必然事件是在一定条件下必然发生的事件,不可能事件指的是在一定条件下必然不发生的事件.它们都不具有随机性,是确定性的现象,但为研究的方便,把它们看作特殊的随机事件.2、互逆事件与互斥(不相容)事件如果两个事件与必有一个事件发生,且至多有一个事件发生,则、为互逆事件;如果两个事件与不能同时发生,则、为互斥事件.因而,互逆必定互斥,互斥未必互逆.区别两者的关键是:当样本空间只有两个事件时,两事件才可能互逆,而互斥适用与多个事件的情形.作为互斥事件在一次试验中两者可以都不发生,而互逆事件必发生一个且只发生一个.3、两事件独立与两事件互斥两事件、独立,则与中任一个事件的发生与另一个事件的发生无关,这时;而两事件互斥,则其中任一个事件的发生必然导致另一个事件不发生,这两事件的发生是有影响的,这时.可以用图形作一直观解释.在图1.1左边的正方形中,图1.1,表示样本空间中两事件的独立关系,而在右边的正方形中,,表示样本空间中两事件的互斥关系.4、条件概率与积事件概率是在样本空间内,事件的概率,而是在试验增加了新条件发生后的缩减的样本空间中计算事件的概率.虽然、都发生,但两者是不同的,一般说来,当、同时发生时,常用,而在有包含关系或明确的主从关系时,用.如袋中有9个白球1个红球,作不放回抽样,每次任取一球,取2次,求:(1)第二次才取到白球的概率;(2)第一次取到的是白球的条件下,第二次取到白球的概率.问题(1)求的就是一个积事件概率的问题,而问题(2)求的就是一个条件概率的问题.5、全概率公式与贝叶斯(Bayes)公式当所求的事件概率为许多因素引发的某种结果,而该结果又不能简单地看作这诸多事件之和时,可考虑用全概率公式,在对样本空间进行划分时,一定要注意它必须满足的两个条件.贝叶斯公式用于试验结果已知,追查是何种原因(情况、条件)下引发的概率.第二块随机变量及其分布内容提要基本内容:随机变量,随机变量的分布的概念及其性质,离散型随机变量的概率分布,连续型随机变量的概率分布,常见随机变量的分布,随机变量函数的分布.1、随机变量设是随机试验的样本空间,如果对于试验的每一个可能结果,都有唯一的实数与之对应,则称为定义在上的随机变量,简记为.随机变量通常用大写字母等表示.2、离散型随机变量及其分布列如果随机变量只能取有限个或可列个可能值,则称为离散型随机变量.如果的一切可能值为,并且取的概率为,则称为离散型随机变量的概率函数(概率分布或分布律).也称分布列,常记为其中.常见的离散型随机变量的分布有:(1)两点分布(0-1分布):记为,分布列为或(2)二项分布:记为,概率函数(3)泊松分布,记为,概率函数泊松定理设是一常数,是任意正整数,设,则对于任一固定的非负整数,有.当很大且很小时,二项分布可以用泊松分布近似代替,即,其中(4)超几何分布:记为,概率函数,其中为正整数,且.当很大,且较小时,有(5)几何分布:记为,概率函数.3、分布函数及其性质分布函数的定义:设为随机变量,为任意实数,函数称为随机变量的分布函数.分布函数完整地描述了随机变量取值的统计规律性,具有以下性质:(1)有界性;(2)单调性如果,则;(3)右连续,即;(4)极限性;(5)完美性.4、连续型随机变量及其分布分布如果对于随机变量的分布函数,存在非负函数,使对于任一实数,有,则称为连续型随机变量.函数称为的概率密度函数.概率密度函数具有以下性质:(1);(2);(3);(4);(5)如果在处连续,则.常用连续型随机变量的分布:(1)均匀分布:记为,概率密度为分布函数为(2)指数分布:记为,概率密度为分布函数为(3)正态分布:记为,概率密度为,相应的分布函数为当时,即时,称服从标准正态分布.这时分别用和表示的密度函数和分布函数,即具有性质:①.②一般正态分布的分布函数与标准正态分布的分布函数有关系:.5、随机变量函数的分布(1)离散型随机变量函数的分布设为离散型随机变量,其分布列为(表2-2):表2-2…………则任为离散型随机变量,其分布列为(表2-3):表2-3…………有相同值时,要合并为一项,对应的概率相加.(2)连续型随机变量函数的分布设为离散型随机变量,概率密度为,则的概率密度有两种方法可求.1)定理法:若在的取值区间内有连续导数,且单调时,是连续型随机变量,其概率密度为.其中是的反函数.2)分布函数法:先求的分布函数然后求.疑难分析1、随机变量与普通函数随机变量是定义在随机试验的样本空间上,对试验的每一个可能结果,都有唯一的实数与之对应.从定义可知:普通函数的取值是按一定法则给定的,而随机变量的取值是由统计规律性给出的,具有随机性;又普通函数的定义域是一个区间,而随机变量的定义域是样本空间.2、分布函数的连续性定义左连续或右连续只是一种习惯.有的书籍定义分布函数左连续,但大多数书籍定义分布函数为右连续. 左连续与右连续的区别在于计算时,点的概率是否计算在内.对于连续型随机变量,由于,故定义左连续或右连续没有什么区别;对于离散型随机变量,由于,则定义左连续或右连续时值就不相同,这时,就要注意对定义左连续还是右连续.第三块多维随机变量及其分布内容提要基本内容:多维随机变量及其分布函数二维离散型随机变量的联合分布列,二维连续型随机变量的联合分布函数和联合密度函数,边际分布,随机变量的独立性和不相关性,常用多维随机变量,随机向量函数的分布.1、二维随机变量及其联合分布函数为n维(n元)随机变量或随机向量.联合分布函数的定义设随机变量,为随机向量的联合分布函数二维联合分布函数具有以下基本性质:(1)单调性是变量或的非减函数;(2)有界性;(3)极限性(3)连续性关于右连续,关于也右连续;(4)非负性对任意点,若,则.式表示随机点落在区域内的概率为:.2、二维离散型随机变量及其联合分布列如果二维随机变量所有可能取值是有限对或可列对,则称为二维离散型随机变量.设为二维离散型随机变量,它的所有可能取值为将或表3.1称为的联合分布列.表3.1……┇┇…………┇┇…┇………┇┇…┇…联合分布列具有下列性质:(1);(2).3、二维连续型随机变量及其概率密度函数如果存在一个非负函数,使得二维随机变量的分布函数对任意实数有,则称是二维连续型随机变量,称为的联合密度函数(或概率密度函数).联合密度函数具有下列性质:(1)非负性对一切实数,有;(2)规范性;(3)在任意平面域上,取值的概率;(4)如果在处连续,则.4、二维随机变量的边缘分布设为二维随机变量,则称分别为关于和关于的边缘(边际)分布函数.当为离散型随机变量,则称分别为关于和关于的边缘分布列.当为连续型随机变量,则称分别为关于和关于的边缘密度函数.5、二维随机变量的条件分布(了解)(1)离散型随机变量的条件分布设为二维离散型随机变量,其联合分布律和边缘分布列分别为,则当固定,且时,称为条件下随机变量的条件分布律.同理,有(2)连续型随机变量的条件分布设为二维连续型随机变量,其联合密度函数和边缘密度函数分别为:.则当时,在和的连续点处,在条件下,的条件概率密度函数为.同理,.6、随机变量的独立性设及分别是的联合分布函数及边缘分布函数.如果对任何实数有则称随机变量与相互独立.设为二维离散型随机变量,与相互独立的充要条件是.设为二维连续型随机变量,与相互独立的充要条件是对几乎一切实数,有.7、两个随机变量函数的分布设二维随机变量的联合概率密度函数为,是的函数,则的分布函数为.(1)的分布若为离散型随机变量,联合分布列为,则的概率函数为:或.若为连续型随机变量,概率密度函数为,则的概率函数为:.(2)的分布若为连续型随机变量,概率密度函数为,则的概率函数为:.8.最大值与最小值的分布则9.数理统计中常用的分布(1)正态分布:(2):(3):(4):疑难分析1、事件表示事件与的积事件,为什么不一定等于?如同仅当事件相互独立时,才有一样,这里依乘法原理.只有事件与相互独立时,才有,因为.2、二维随机变量的联合分布、边缘分布及条件分布之间存在什么样的关系?由边缘分布与条件分布的定义与公式知,联合分布唯一确定边缘分布,因而也唯一确定条件分布.反之,边缘分布与条件分布都不能唯一确定联合分布.但由知,一个条件分布和它对应的边缘分布,能唯一确定联合分布.但是,如果相互独立,则,即.说明当独立时,边缘分布也唯一确定联合分布,从而条件分布也唯一确定联合分布.3、两个随机变量相互独立的概念与两个事件相互独立是否相同?为什么?两个随机变量相互独立,是指组成二维随机变量的两个分量中一个分量的取值不受另一个分量取值的影响,满足.而两个事件的独立性,是指一个事件的发生不受另一个事件发生的影响,故有.两者可以说不是一个问题.但是,组成二维随机变量的两个分量是同一试验的样本空间上的两个一维随机变量,而也是一个试验的样本空间的两个事件.因此,若把“”、“”看作两个事件,那么两者的意义近乎一致,从而独立性的定义几乎是相同的.第四块随机变量的数字特征内容提要基本内容:随机变量的数学期望和方差、标准差及其性质,随机变量函数的数学期望,原点矩和中心矩,协方差和相关系数及其性质.1、随机变量的数学期望设离散型随机变量的分布列为,如果级数绝对收敛,则称级数的和为随机变量的数学期望.设连续型随机变量的密度函数为,如果广义积分绝对收敛,则称此积分值为随机变量的数学期望.数学期望有如下性质:(1)设是常数,则;(2)设是常数,则;(3)若是随机变量,则;对任意个随机变量,有;(4)若相互独立,则;对任意个相互独立的随机变量,有.2、随机变量函数的数学期望设离散型随机变量的分布律为,则的函数的数学期望为,式中级数绝对收敛.设连续型随机变量的密度函数为,则的函数的数学期望为,式中积分绝对收敛.3、随机变量的方差设是一个随机变量,则称为的方差.称为的标准差或均方差.计算方差也常用公式.方差具有如下性质:(1)设是常数,则;(2)设是常数,则;(3)若相互独立,则;对任意个相互独立的随机变量,有;(4)的充要条件是:存在常数,使.4、几种常见分布的数学期望与方差(1);(2);(3);(4);(5);(6);(7);(8).5、矩设是随机变量,则称为的阶原点矩.如果存在,则称为的阶中心矩.设是二维随机变量,则称为的阶混合原点矩;称为的阶混合中心矩.6、协方差与相关系数随机变量的协方差为.它是1+1阶混合中心矩,有计算公式:.随机变量的相关系数为.相关系数具有如下性质:(1);(2)存在常数,使=1,即与以概率1线性相关;(3)若独立,则,即不相关.反之,不一定成立.(4)(Schwarz inequality) 设(X,Y)是二维随机变量,若X与Y的方差都存在,则疑难分析1、随机变量的数字特征在概率论中有什么意义?知道一个随机变量的分布函数,就掌握了这个随机变量的统计规律性.但求得一个随机变量的分布函数是不容易的,而且往往也没有这个必要.随机变量的数字特征则比较简单易求,也能满足我们研究分析具体问题的需要,所以在概率论中很多的应用,同时也刻画了随机变量的某些特征,有重要的实际意义.例如,数学期望反映了随机变量取值的平均值,表现为具体问题中的平均长度、平均时间、平均成绩、期望利润、期望成本等;方差反映了随机变量取值的波动程度;偏态系数、峰态系数则反映了随机变量取值的对称性和集中性.因此,在不同的问题上考察不同的数字特征,可以简单而切实地解决我们面临的实际问题.2、在数学期望定义中为什么要求级数和广义积分绝对收敛?首先,数学期望是一个有限值;其次,数学期望反映随机变量取值的平均值.因此,对级数和广义积分来说,绝对收敛保证了值的存在,且对级数来说,又与项的次序无关,从而更便于运算求值.而由于连续型随机变量可以离散化,从而广义积分与无穷级数有同样的意义.要求级数和广义积分绝对收敛是为了保证数学期望的存在与求出.3、相关系数反映了随机变量和之间的什么关系?相关系数是用随机变量和的协方差和标准差来定义的,它反映了随机变量和之间的相关程度.当时,称与依概率1线性相关;当时,称与不相关;当时,又分为强相关与弱相关.4、两个随机变量与相互独立和不相关是一种什么样的关系?(1)若、相互独立,则、不相关.因为、独立,则,故,从而,所以、不相关.(2)若、不相关,则、不一定独立.如:因为,,知、不相关.但,,,知、不独立.(3)若、相关,则、一定不独立.可由反证法说明.(4)若、不相关,则、不一定不相关.因为、不独立,,但若时,可以有,从而可以有、不相关.但是,也有特殊情况,如服从二维正态分布时,、不相关与、独立是等价的.第五块大数定律和中心极限定理内容提要基本内容:切比雪夫(Chebyshev)不等式,切比雪夫大数定律,伯努里(Bernoulli)大数定律,辛钦(Khinchine)大数定律,棣莫弗-拉普拉斯(De Moivre-Laplace)定理,列维-林维德伯格(Levy-Lindberg)定理.1、切贝雪夫不等式设随机变量的数学期望,方差,则对任意正数,有不等式或成立.2、大数定律(1)切贝雪夫大数定律:设是相互独立的随机变量序列,数学期望和方差都存在,且,则对任意给定的,有.(2)贝努利大数定律:设是次重复独立试验中事件发生的次数,是事件在一次试验中发生的概率,则对于任意给定的,有.贝努利大数定理给出了当很大时,发生的频率依概率收敛于的概率,证明了频率的稳定性.(3)辛钦大数定律:设相互独立,服从同一分布的随机变量序列,且(),则对任意给定的,有3、中心极限定律(1)林德贝格-勒维中心极限定理:设是独立同分布的随机变量序列,有有限的数学期望和方差,,.则对任意实数,随机变量的分布函数满足.(2)李雅普诺夫定理:设是不同分布且相互独立的随机变量,它们分别有数学期望和方差:,.记,若存在正数,,使得当时,有, 则随机变量的分布函数对于任意的,满足.当很大时,.(3)德莫佛—拉普拉斯定理:设随机变量服从参数为的二项分布,则对于任意的,恒有.疑难分析1、依概率收敛的意义是什么?依概率收敛即依概率1收敛.随机变量序列依概率收敛于,说明对于任给的,当很大时,事件“”的概率接近于1.但正因为是概率,所以不排除小概率事件“”发生.依概率收敛是不确定现象中关于收敛的一种说法.2、大数定律在概率论中有何意义?大数定律给出了在试验次数很大时频率和平均值的稳定性.从理论上肯定了用算术平均值代替均值,用频率代替概率的合理性,它既验证了概率论中一些假设的合理性,又为数理统计中用样本推断总体提供了理论依据.所以说,大数定律是概率论中最重要的基本定律.3、中心极限定理有何实际意义?许多随机变量本身并不属于正态分布,但它们的极限分布是正态分布.中心极限定理阐明了在什么条件下,原来不属于正态分布的一些随机变量其总和分布渐进地服从正态分布.为我们利用正态分布来解决这类随机变量的问题提供了理论依据.4、大数定律与中心极限定理有何异同?相同点:都是通过极限理论来研究概率问题,研究对象都是随机变量序列,解决的都是概率论中的基本问题,因而在概率论中有重要意义.不同点:大数定律研究当时,概率或平均值的极限,而中心极限定理则研究随机变量总和的分布的极限.古今名言敏而好学,不耻下问——孔子业精于勤,荒于嬉;行成于思,毁于随——韩愈兴于《诗》,立于礼,成于乐——孔子己所不欲,勿施于人——孔子读书破万卷,下笔如有神——杜甫读书有三到,谓心到,眼到,口到——朱熹立身以立学为先,立学以读书为本——欧阳修读万卷书,行万里路——刘彝黑发不知勤学早,白首方悔读书迟——颜真卿书卷多情似故人,晨昏忧乐每相亲——于谦书犹药也,善读之可以医愚——刘向莫等闲,白了少年头,空悲切——岳飞发奋识遍天下字,立志读尽人间书——苏轼鸟欲高飞先振翅,人求上进先读书——李苦禅立志宜思真品格,读书须尽苦功夫——阮元非淡泊无以明志,非宁静无以致远——诸葛亮熟读唐诗三百首,不会作诗也会吟——孙洙《唐诗三百首序》书到用时方恨少,事非经过不知难——陆游问渠那得清如许,为有源头活水来——朱熹旧书不厌百回读,熟读精思子自知——苏轼书痴者文必工,艺痴者技必良——蒲松龄声明访问者可将本资料提供的内容用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律的规定,不得侵犯本文档及相关权利人的合法权利。

概率的基本性质(教学设计)

概率的基本性质(教学设计)

一、内容和内容解析内容:概率的基本性质.内容解析:本节课选自《普通高中课程标准数学教科书必修第二册》(人教A版)第十章第1节第4课时的内容.本节课主要从定义出发研究概率的性质,例如:概率的取值范围;特殊事件的概率;事件有某些特殊关系时,它们的概率之和的关系;等等,是为了进一步计算事件的概率.注意对概率思想方法的理解。

发展学生的直观想象、逻辑推理、数学建模的核心素养.二、目标和目标解析目标:(1)理解概率的基本性质.(2)能够运用概率的基本性质求一些简单事件的概率.目标解析:(1)概率的基本性质是概率论的重要的理论基础,利用互斥事件和对立事件的概率公式解决与古典概型有关的问题.(2)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.在本节课的教学中,从古典概型概率的定义为出发点采用由特殊到一般的方法研究概率的基本性质是进行数学抽象教学的很好机会;同时利用概率的基本性质解决实际问题,也是进行数学建模教学的好机会.基于上述分析,本节课的教学重点定为:概率的运算法则及性质.三、教学问题诊断分析1.教学问题一:关于概率基本性质的研究,从哪个角度研究概率的性质?研究哪些性质是本节课的第一个教学问题.解决方案:概率可以看成以事件为自变量,在[0,1]上取值的函数,可类比函数的性质,研究概率的取值范围、特殊事件的概率、概率的单调性,类比几何度量,研究概率的加法公式等.2.教学问题二:研究方法的选择是本节课的第二个教学问题.这不仅是本节课的重点,也是教学难点.解决方案:由于在高中阶段不要求按公理化方式研究概率的性质,所以以古典概型概率的定义为出发点,采用由特殊到一般的方法研究概率的基本性质.基于上述情况,本节课的教学难点定为:掌握并运用概率的基本性质.四、教学策略分析本节课的教学目标与教学问题为我们选择教学策略提供了启示.为了让学生通过观察、归纳得到概率的基本性质,应该为学生创造积极探究的平台.因此,在教学过程中使用学生探究的模式,可以让学生从被动学习状态转到主动学习状态中来.在教学设计中,采取问题引导方式来组织课堂教学.问题的设置给学生留有充分的思考空间,让学生围绕问题主线,通过自主探究达到突出教学重点,突破教学难点.在教学过程中,重视概率基本性质的应用,让学生体会到从理论到实际的数学建模过程,同时,应用性质解决实际问题其实就是数学模型的建立与应用的典范.因此,本节课的教学是实施数学具体内容的教学与核心素养教学有机结合的尝试.五、教学过程与设计的概率为多少?课堂小结升华认知[问题4]通过这节课,你学到了什么知识?在解决问题时,用到了哪些数学思想?[课后练习]A,B是互斥事件,P(A)=0.2,P(A∪B)=0.5,则P(B)等于()A.0.3B.0.72.根据多年气象统计资料,某地6月1日下雨的概率为0.45,阴天的概率为0.20,则该日晴天的概率为()A.0.65 B.0.55A,B,C中,A与B互斥,B与C对立,且P(A)=0.3,P(C)=0.6,则P(A+B)=()A.0.3B.0.64.一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意教师9:提出问题4.学生9:学生10:学生课后进行思考,并完成课后练习.【答案】1.A 2.C 3.C 4.8151415师生共同回顾总结.引领学生感悟数学认知的过程,体会数学核心素养.课后练习是对定理巩固,是对本节知识的一个深化认识,同时也为下节内容做好铺垫.。

概率的性质

概率的性质
引例
B
A
A
B
A
后退
B
返回
前进
4.事件的交 若某事件发生当且仅当事件A发生或 事件B发生(即 “ A与 B 都发生” ), 则此事件为A 与B 的交事件(或积事件), 记为A B 或 AB 5.事件的互斥 若A∩B为不可能事件( A∩B= ),那 么称事件A与B互斥,其含义是:事件A 与 B 在任何一次试验中不会同时发生。 即,A 与 B 互斥 A B= 6.对立事件 若A∩B为不可能事件,A∪B必然事 件,那么称事件A与事件B互为对立事件。 其含义是:事件A与事件B在任何一次试 验中有且只有一个发生。
引例 前进 后退 返回
例 题 分 析
例1 某射手进行一次射击,试判断下列事件哪些是互斥事件? 哪些是对立事件? 事件A:命中环数大于7环; 事件B:命中环数为10环; 事件C:命中环数小于6环; 事件D:命中环数为6、7、8、9、10环. 例2 如果从不包括大小王的52张扑克牌中随机抽取一张,
那么取到红心(事件A)的概率是 1 ,取到方片(事件B)的
引例 前进
C A B
A
B
A
B
后退
返回
二、概率的几个基本性质
(1)、对于任何事件的概率的范围是0≤P(A)≤1 其中:不可能事件的概率是P(A)=0 必然事件的概率是P(A)=1
(2)、当事件A与事件B互斥时,A∪B的频率 fn(A∪B)= fn(A)+ fn(B) 由此得到概率的加法公式: 如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B)
4 1 概率是 ,问:(l)取到红色牌(事件C)的概率是多少? 4
(2)取到黑色牌(事件D)的概率是多少?
例3、抛掷色子,事件A= “朝上一面的数是奇数”, 事件B = “朝上一面的数不超过3”, 求P(A∪B)

概率的基本性质

概率的基本性质

保持积极心态的九个好习惯保持积极心态对于我们的生活和工作来说至关重要。

积极心态能帮助我们更好地应对困难和挑战,改善生活质量,提升自我成长。

然而,积极心态并不是一蹴而就的,它需要我们养成一些良好的习惯。

在本文中,我将介绍九个保持积极心态的好习惯。

一、培养感恩的心态感恩是一种能够帮助我们保持积极心态的强大力量。

每天花点时间思考并记录自己所感恩的事情,感激身边的人和事,能够让我们更加乐观和满足。

当我们把注意力放在积极的事物上时,我们就能够更好地应对生活中的压力和困难。

二、保持身心健康身心健康是保持积极心态的基础。

要保持积极心态,我们需要注重锻炼身体,保持良好的饮食习惯,并且合理安排休息时间。

此外,学会放松自己,通过冥想、旅行或者看书等活动来缓解压力,有助于保持积极心态。

三、树立目标和计划树立明确的目标和制定计划是保持积极心态的关键。

设定目标能够帮助我们保持动力和专注,而制定计划则能够让我们更好地规划自己的时间和资源。

当我们看到自己不断实现目标的过程,我们就会更有信心和积极性。

四、与积极的人交往与积极的人交往有助于我们保持积极心态。

积极的人能够带给我们更多的正能量,鼓励我们、支持我们,并分享他们的成功经验。

在与积极的人交往中,我们也能够学到更多的知识和技能,提高自己的能力。

五、学会积极思考积极思考是保持积极心态的基本要素之一。

将注意力放在解决问题和寻找解决方案上,而不是将其放在消极的情绪或困难上。

学会积极思考能够让我们更加乐观和自信,更好地应对生活中的挑战。

六、保持学习和成长保持学习和成长的心态是保持积极心态的关键。

通过不断学习新知识、掌握新技能,我们能够拓宽自己的视野,提高自己的能力。

不断进步和成长会让我们更加有自信和积极。

七、培养自我爱护的习惯自我爱护是保持积极心态的基础。

要培养自我爱护的习惯,我们需要关注自己的情感和需要,给自己适当的奖励和休息,培养良好的自尊与自信心。

当我们对自己有一份充分的关怀时,我们就会更加积极且愿意面对挑战。

6概率的基本性质

6概率的基本性质

3.1.3 概率的基本性质(第三课时)一、教学目标:1、知识与技能:(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;(2)概率的几个基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)(3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系.2、过程与方法:通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生的类化与归纳的数学思想。

3、情感态度与价值观:通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习 数学的情趣。

二、重点与难点:概率的加法公式及其应用,事件的关系与运算。

三、学法与教学用具:1、讨论法,师生共同讨论,从而使加深学生对概率基本性质的理解和认识;2、教学用具:投灯片四、教学设想:1、 创设情境:(1)集合有相等、包含关系,如{1,3}={3,1},{2,4}С{2,3,4,5}等;(2)在掷骰子试验中,可以定义许多事件如:C 1={出现1点},C 2={出现2点},C 3={出现1点或2点},C 4={出现的点数为偶数}……师生共同讨论:观察上例,类比集合与集合的关系、运算,你能发现事件的关系与运算吗?2、 基本概念:(1)事件的包含、并事件、交事件、相等事件见课本P115;(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B).3、 例题分析:例1 一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件? 事件A :命中环数大于7环; 事件B :命中环数为10环;事件C :命中环数小于6环; 事件D :命中环数为6、7、8、9、10环. 分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发生,另一个必发生。

概率的基本性质

概率的基本性质

6、由对立事件的意义: A
A
是一个必然事件,它
的概率等于1,又由于A与 A 互斥,
P( A A) P( A) P( A) 1
对立事件的概率的和等于1
王新敞
奎屯 新疆
从上面的公式还可得到:
P( A) 1 P( A)
三、讲解范例:
例1 如果从不包括大小王的52张扑克牌中随
机抽取一张,那么取道红心的概率是0.25,取
一、复习引入:
1 事件的定义: 在一定的条件下所出现的某种结果叫做事件.
随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件;
不可能事件:在一定条件下不可能发生的事件 2 随机事件的概率: 一般地,在大量重复进行同一试验时,事件A发 m 生的频率 总是接近某个常数,在它附近摆动,这 n 时,就把这个常数叫做事件A的概率,记作 P ( A)
3.概率的确定方法: 通过进行大量的重复试验,用这个事件发生的频
率近似地作为它的概率;
4.概率的性质: 必然事件的概率为1, 不可能事件的概率为0, 随机事件的概率为 0 P( A) 1 必然事件和不可能事件看作随机事件的两个极端情形
5、基本事件:一次试验连同其中可能出现的每一个
结果(事件A)称为一个基本事件
都是互斥的,那么就说事件
A1 , A2 ,, An 彼此互斥.
从集合的角度看, 几个事件彼此互斥,是 指由各个事件所含的结
A
B
C
果组成的集合彼此互不
相交,如图。
2.对立事件的概念 从盒中任意摸出一个球,若摸出的球不是红的, 即事件A没发生,记作 由于事件A和事件
A
A 不可能同时发生,它们是互 A

概率的基本性质

概率的基本性质

在条件S下,可能发生也可能不发生的事件,叫 做相对于条件S的随机事件.
2. 频率和概率的关系
概率反映了随机事件发生的可能性的大小。 概率是频率的稳定值,而频率是概率的近似值。
3. 必然事件发生的概率为 不可能事件发生的概率 概率的取值范围是什么
多少? 为多少? ?
问题提出
1. 两个集合之间存在着包含与相等的关系,集 合可以进行交、并、补运算,你还记得子集、等 集、交集、并集和补集的含义及其符号表示吗?
1 4
,
1 6
,
1 4
.
达标检测
1、某射手射击一次射中10环、9环、8环、7环的概 率分别是0.24、0.28、0.19、0.16,计算这名射手 射击一次: (1)射中10环或9环的概率; (2)至少射中7环的概率. (3)射中环数不足8环的概率.
2、甲乙两人下棋,和棋 概率为 1 3 (1) 甲胜的概率; (2) 甲不输的概率 ,求: 的概率为 1 2 ,乙胜的
1、事件A与B互斥,则事件A∪B发生的频数与事 件A、B发生的频数有什么关系?fn(A∪B)与fn(A)、 fn(B)有什么关系?进一步得到P(A∪B)与P(A)、 P(B)有什么关系? 当事件A与事件B互斥时,A∪B发生的频数等于A发 生的频数与B发生的频数之和,从而A∪B的频率
fn ( A B ) fn ( A) fn (B )
学习目标: 1、正确理解事件的包含 事件,以及互斥事件、 2、掌握概率的几个基本 3、正确理解和事件与积 立事件的区别与联系。 、并事件、交事件、相 对立事件的概念; 性质; 事件,以及互斥事件与 对 等
复习回顾
1 . 什么是必然事件?不可 随机事件? 能事件?确定事件?
在条件S下,一定会发生的事件,叫做相对于条件S 的必然事件. 在条件S下,一定不会发生的事件,叫做相对于 条件S的不可能事件 必然事件和不可能事件统称为确定事件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1.3 概率的基本性质(第三课时)
一、教学目标:
1、知识与技能:(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;
(2)概率的几个基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;
2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)
(3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系.
2、过程与方法:通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生的类化与归纳的数学思想。

3、情感态度与价值观:通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习 数学的情趣。

二、重点与难点:概率的加法公式及其应用,事件的关系与运算。

三、学法与教学用具:1、讨论法,师生共同讨论,从而使加深学生对概率基本性质的理解和认识;2、教学用具:投灯片
四、教学设想:
1、 创设情境:(1)集合有相等、包含关系,如{1,3}={3,1},{2,4}С{2,3,4,5}等;
(2)在掷骰子试验中,可以定义许多事件如:C 1={出现1点},C 2={出现2点},C 3={出现1点或2点},C 4={出现的点数为偶数}……
师生共同讨论:观察上例,类比集合与集合的关系、运算,你能发现事件的关系与运算吗?
2、 基本概念:(1)事件的包含、并事件、交事件、相等事件见课本P115;
(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;
(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件;
(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B).
3、 例题分析:
例1 一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件? 事件A :命中环数大于7环; 事件B :命中环数为10环;
事件C :命中环数小于6环; 事件D :命中环数为6、7、8、9、10环. 分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发生,另一个必发生。

解:A 与C 互斥(不可能同时发生),B 与C 互斥,C 与D 互斥,C 与D 是对立事件(至少一个发生).
例2 抛掷一骰子,观察掷出的点数,设事件A 为“出现奇数点”,B 为“出现偶数点”,已知P(A)=21,P(B)=2
1,求出“出现奇数点或偶数点”.
分析:抛掷骰子,事件“出现奇数点”和“出现偶数点”是彼此互斥的,可用运用概率的加法公式求解.
解:记“出现奇数点或偶数点”为事件C,则C=A ∪B,因为A 、B 是互斥事件,所以P(C)=P(A)+ P(B)=21+2
1=1答:出现奇数点或偶数点的概率为1
例3 如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A )的概率是41,取到方块(事件B )的概率是4
1,问:(1)取到红色牌(事件C )的概率是多少?
(2)取到黑色牌(事件D )的概率是多少?
分析:事件C 是事件A 与事件B 的并,且A 与B 互斥,因此可用互斥事件的概率和公式求解,事件C 与事件D 是对立事件,因此P(D)=1—P(C).
解:(1)P(C)=P(A)+ P(B)=21(2)P(D)=1—P(C)=2
1 例4 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为31,得到黑球或黄球的概率是125,得到黄球或绿球的概率也是12
5,试求得到黑球、得到黄球、得到绿球的概率各是多少?
分析:利用方程的思想及互斥事件、对立事件的概率公式求解.
解:从袋中任取一球,记事件“摸到红球”、“摸到黑球”、“摸到黄球”、“摸到绿球”为A 、
B 、
C 、
D ,则有P(B ∪C)=P(B)+P(C)=
125;P(C ∪D)=P(C)+P(D)=12
5;P(B ∪C ∪D)=1-P(A)=1-31=32,解的P(B)=41,P(C)=61,P(D)=41答:得到黑球、得到黄球、得到绿球的概率分别是41、61、4
1. 4、课堂小结:概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);3)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。

5、自我评价与课堂练习:
1.从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件。

(1)恰好有1件次品恰好有2件次品;
(2)至少有1件次品和全是次品;
(3)至少有1件正品和至少有1件次品;
(4)至少有1件次品和全是正品;
2.抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数,事件B 为出现2点,已知P (A )=21,P (B )=6
1,求出现奇数点或2点的概率之和。

3.某射手在一次射击训练中,射中10环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算该射手在一次射击中:(1)射中10环或9环的概率;
(2)少于7环的概率。

4.已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是71,从中取出2粒都是白子的概率是35
12,现从中任意取出2粒恰好是同一色的概率是多少?6、评价标准:
1.解:依据互斥事件的定义,即事件A 与事件B 在一定试验中不会同时发生知:(1)恰好有1件次品和恰好有2件次品不可能同时发生,因此它们是互斥事件,又因为它们的并不是必然事件,所以它们不是对立事件,同理可以判断:(2)中的2个事件不是互斥事件,也不是对立事件。

(3)中的2个事件既是互斥事件也是对立事件。

2.解:“出现奇数点”的概率是事件A ,“出现2点”的概率是事件B ,“出现奇数点或2点”的概率之和为P (C )=P (A )+P (B )=
21+61=3
23.解:(1)该射手射中10环与射中9环的概率是射中10环的概率与射中9环的概率的和,即为0.21+0.23=0.44。

(2)射中不少于7环的概率恰为射中10环、9环、8环、7环的概率的和,即为0.21+0.23+0.25+0.28=0.97,而射中少于7环的事件与射中不少于7环的事件为对立事件,所以射中少于7环的概率为1-0.97=0.03。

4.解:从盒子中任意取出2粒恰好是同一色的概率恰为取2粒白子的概率与2粒黑子的概率的和,即为71+3512=35
17 7、作业:根据情况安排。

相关文档
最新文档