超声波检测实验

合集下载

超声波检测--实验讲义

超声波检测--实验讲义

实验一超声波仪器性能的测定一. 目的:现场测试超声波仪器性能,包括垂直线性,水平线性,电噪声,动态范围和衰减器精度。

二. 实验设备:超声波探伤仪,直探头(2.5P14,2.5P20,5P14等均可) IIW1试块(或CSK-IA,1#试块等均可) 平底孔试块。

三. 实验步骤1.测定垂直线性缺陷在工件中的大小是通过缺陷回波在示波屏上的幅度大小反映的,反射回波幅度是按一定规律反映缺陷实际反射声压的大小,即为仪器的垂直线性状况,以垂直线性误差表示。

如图1所示,把与探伤仪连接的直探头平稳地耦合在平底孔试块的探测面上,仪器上的"抑制"与"深度补偿"关闭,在衰减器上应至少留有30dB的衰减余量,调节"增益",使直探头在试块上找到的最大平底孔回波高度为100%满刻度,固定探头位置与接触压力(必要时可采用专用的探头压块)。

调节衰减器,依次记下每衰减2dB时平底孔回波幅度的满刻度百分数并记入表1,并与理论值比较,取最大正偏差△+和负偏差最大绝对值|△-|之和为垂直线性误差,即:△=(|△+|+|△-|)(%) ----(1)注:理论波高值按下式计算-- △dB=20lg(H100/H)(式中H100为以100%满刻度起始的基准波高,H为每衰减2dB时理论上应达到的波高)。

最后在图2上以波高(%)为纵坐标,衰减量(dB)为横坐标绘出垂直线性理想线与实测线(按表1),再根据(1)式计算垂直线性误差。

表1图1 图22.测定水平线性缺陷在工件中的位置是通过缺陷回波在示波屏上的位置反映出来的,通过仪器有关旋钮调整能否使仪器示波屏上的水平扫描线按一定比例反映超声波在工件中所经过的距离,即为仪器的水平线性,以水平线性误差表示。

如图3所示,把直探头平稳地耦合在IIW1试块上厚度25mm的平面上(应离开边缘有一定距离以防止侧壁效应干扰),调节仪器上的"增益","衰减","水平"(或"零位","延迟"),"深度"(粗调与细调),当采用"五次底波法"时:应使示波屏上出现五次无干扰底波,在相同回波幅度(例如50%或80%满刻度)情况下,使第一次底波B1前沿对准水平刻度线的20mm刻度,第五次底波B5前沿对准水平刻度线的100mm刻度,然后依次将B2,B3,B4调节到上述相同幅度下读取第二,三,四次底波前沿与水平刻度线上的40mm,60mm和80mm刻度的偏差,填入表2,取最大偏差△max(以mm计)按下式计算水平线性误差:△=(|△max|/0。

超声波测声速实验报告

超声波测声速实验报告

超声波测声速实验报告摘要:本实验通过使用超声波的特性,利用测量声波在不同介质中传播速度的方法,来实验测量声速的准确性和可行性。

通过实验结果可以得出声速的数值,并与理论值进行比较,验证实验结果的准确性。

引言:声速是声波在介质中传播的速度,是一个重要的物理量。

测量声速的方法有许多种,其中一种方法是使用超声波。

超声波频率高,传播距离远,传播损耗小,因此被广泛应用于医学、工业、地质等领域。

本实验通过测量超声波在不同介质中传播的时间,来计算声速。

实验仪器和材料:1. 超声波发生器2. 超声波接收器3. 示波器4. 高频电缆5. 水槽6. 介质样品(例如水、酒精等)实验步骤:1. 准备工作:将超声波发生器和接收器连接至示波器,并将示波器调至适当的测量范围。

2. 将水槽填满水,并将介质样品分别倒入水槽中,确保样品平整且不产生气泡。

3. 以超声波发生器为源,将超声波发射至介质中,通过示波器观察超声波的波形。

4. 通过调节示波器的时间基准,测量超声波在不同介质中的传播时间。

5. 根据声速的计算公式,计算超声波在不同介质中的声速。

实验结果与分析:通过实验测量得到的声速数值如下:- 对于水介质,声速为1500 m/s;- 对于酒精介质,声速为1200 m/s。

通过与理论值进行比较,可以发现实验结果与理论值相符合,证明了本实验的准确性和可行性。

不同介质的声速差异是由介质的密度、弹性模量等因素决定的。

声速与介质的物理性质密切相关。

实验误差分析:在实验过程中,可能存在一些误差导致测量结果不够准确。

可能的误差来源包括:1. 实验仪器的精度限制:示波器的时间基准可能存在一定的误差,影响到测量结果的准确性。

2. 介质的温度变化:介质的温度变化会对声速产生一定影响,因此在实验过程中需要控制介质的温度稳定。

3. 实验操作的技巧:实验者的技巧和经验对实验结果可能会产生一定的影响。

结论:本实验通过测量超声波在不同介质中的传播时间,得出了水和酒精的声速数值,并验证了实验结果的准确性。

专题实验-超声波测试原理及应用

专题实验-超声波测试原理及应用

实验一、超声波的产生与传播实验方案1. 直探头延迟的测量参照附录A 连接JDUT-2型超声波实验仪和示波器。

超声波实验仪接h 直探头,并把探 头放在CSK-IB 试块的正面,仪器的射频输出与示波器第1通道相连,触发与示波器外触发 相连,示波器采用外触发方式,适半设置超声波实验仪衰减器的数值和示波器的电圧范用与 时间范闱,使示波器上看到的波形如图1.7所示。

在图1.7中,S 称为始波,t 0对应于发射超声波的初始时刻;Bl 称为图1.7直探头延迟的测虽试块的1次底面回波,h 对应于超声波传播到试块底面,并被发射回来后,被超声波探头接 收到的时刻,因此h 对应于超声波在试块内往复传播的时间:B 2称为试块的2次底面冋波, 它対应于超声波在试块内往复传播到试块的上表面后,部分超声波被上表面反射,并被试块 底面再次反射,即在试块内部往复传播两次后被接收到的超声波。

依次类推,右3次、4次 和多次底面反射回波。

从示波器上读出传播h 和t2,则直探头的延迟为(1-6)2. 脉冲波频率和波长的测量调节示波器时间范闱,使试块的1次底面回波出现在示波屏的中央,脉冲波的振幅小于 IVO 测量两个振动波峰之间的时间间隔,则得到一个脉冲周期的振动时间t,则脉冲波的频 率为^1/t :已知铝试块的纵波声速为6.32InInUS,贝IJ 脉冲波在铝试块中的波长为l=6.32t β3. 波型转换的观察与测最号时间范悅改变探头的入射角,并在改变的过程中适当移动探头的位宜,使每一个入射角 对应的R 2圆弧面的反射回波最 人。

則在探头入射角由小变人的过 程中,我们町以先后观察到回波 B 1. B 2和B3;它们分别对应于纵 波反射回波、横波反射回波和表面 波反射回波。

让探头靠近试块背而,通过调节入 射角调,使能够同时观测到回波 BI 和(如图1.9),且它们的幅 度基本相等:再让探头逐步靠近试 块正面,则又会在Bl 前面观测到一个回波bl ,参照附录B 给出铝试块的纵波声速与横波声速,通过简单测量和计算,可以确定b 、Bl 和氏对应的波型和反射面。

超声波探伤实验

超声波探伤实验

实验6—6 超声波探伤实验【实验目的】1.深入了解超声波的产生及在介质中的传播规律。

2.了解超声波探伤仪的工作原理。

3.掌握超声波探伤仪的使用方法。

4.掌握纵波探伤缺陷的识别和定位方法。

【实验原理】在超声波探伤中,很多场合都需要知道材料中声波传播的速度。

对于超声波探伤人员来说,测定声速最简单的方法是用超声波探伤仪来测定,由于现在的超声波探伤仪都是工作在脉冲波状态下,因此这种方法也可归结为脉冲测量方法。

采用这种方法测量时,可用单探头方式,也可用双探头方式;能用于纵波声速的测量,也能用于横波声速的测量,只是两者在材料中激发超声波的类型和接收超声波的方式方面有所不同。

脉冲反射法是运用最广泛的一种超声波探伤法。

它使用的不是连续波,而是有一定持续时间按一定频率间隔发射的超声脉冲。

探伤结果可以用示波器显示。

发生器在一定时间间隔内发射一个触发脉冲信号,通过专用压电换能器的作用,使得信号以相同的频率作机械振动,这个高频脉冲信号相应地在示波器荧光屏上形成一个起始脉冲信号。

当探头接触到所要探测的工件面时,超声波以一定的速度在其内部传播,当遇到缺陷或工件底面时,就会引起反射,反射后的超声波返回到探头。

此时,压电换能器又将声脉冲转换成电脉冲并将讯号再次传送到示波器,形成一个反射脉冲信号。

由于电子束在荧光屏上的移动与超声波在均匀物质中传播过程都是匀速的,所以来自缺陷或底面的反射脉冲信号距起始脉冲的距离与探头距缺陷或底面的距离是成正比的。

脉冲反射法就是根据缺陷及底面反射信号的有无,反射信号幅度的高低及其反射信号在荧光屏上的位置来判断有无缺陷、缺陷的大小以及缺陷的深度的。

脉冲反射法可以分为直接接触纵波脉冲反射法和斜角探伤法,这里我们主要介绍直接接触纵波脉冲反射法。

我们知道纵波是指材料中质点振动方向与声波传播方向一致的波型。

探伤时,当探头垂直地或以不大于第一临界角的角度耦合到工件上时,在工件内部都能获得纵波。

直接接触纵波脉冲反射法通常分为一次脉冲反射法、多次脉冲反射法及组合双探头脉冲反射法。

实验八超声波检测

实验八超声波检测

实验八超声波检测一、实验目的1、了解超声波检测的基本原理和方法;2、了解超声波检测的特点和适用范围;3、掌握斜探头横波探伤的距离-波幅(DAC)曲线制作方法。

二、实验设备器材1、ZXUD-40型数字式超声波探伤仪ZXUD-40型数字式超声波探伤仪是小型化的便携式超声波探伤仪器,特别适用于材料缺陷的评估与定位、壁厚测量等,适合各种大型工件和高分辨率测量的要求。

主要参数指标如下:采样平率:100MHz(最高)增益范围:0 ~ 110dB;0.1,1.0,2.0,6.0步进动态范围:≥35dB垂直线性:≤3%水平线性:≤0.1%探测范围:0-10m;0.1,1以及10mm步进自动设置延迟:0-500.0μS分辨率:≥40Db(5N14))灵敏度余量:≥63Db抑制:0-90%;线性探头类型:单探头,双晶探头,穿透探头声速:1000~ 16000 m/s,步进为1 m/s闸门:进波门(直方门,DAC门)、失波门报警:声光报警显示: 5.7英寸,高亮、真彩TFT显示器电池:锂聚合电池,工作时间≥10h仪器重量: 1.8Kg(带电池)环境温度:-5℃~60℃相对湿度:20~90%RH仪器外观如图一所示:图一:仪器外观本仪器采用软启动模式。

再冷机状态下,当按住键持续2s后,将开启仪器电源,进入启动屏幕此时该屏幕上将显示初仪器的软件版本号以及软件发布日期,仪器自动进入系统自检并显示自检状态。

系统自检完成后,自动进入仪器工作主界面。

在系统自检过程中,若电池电量过低,仪器会自行关机。

若在自检过程中,出现错误或用户按下任意键,那么在系统自检结束后,系统需要用户按下任意键(不包含电源按键),才进入仪器工作主界面。

在开机状态下,若用户持续2s按下,仪器将显示关机对话框,然后自动关机。

键盘及其功能本仪器包含27个按键。

这些按键分成5大类:电源键、方向键、功能菜单键,子菜单键和功能热键。

关于各按键的具体功能概述,参见表8-1。

超声波实验

超声波实验

FD-UDE-A A类超声实验********大学学号:********姓名:***学院:****专业:物理学实验时间:2015.5.8 08:00~11:30【实验目的】1.了解超声波产生和发射的机理2.用A类超声实验仪测量水中声速或测量水层厚度3.用A类超声实验仪测量固体厚度及超声无损探伤【实验原理】超声波是指频率高于20KHz的声波,与电磁波不同,它是弹性机械波,不论材料的导电性、导磁性、导热性、导光性如何,只要是弹性材料,它都可以传播进去,并且它的传播与材料的弹性有关,如果弹性材料发生变化,超声波的传播就会受到干扰,根据这个扰动,就可了解材料的弹性或弹性变化的特征,这样超声就可以很好地检测到材料特别是材料内部的信息,对某些其它辐射能量不能穿透的材料,超声更显示出了这方面的实用性。

与X射线、γ射线相比,超声的穿透本领并不优越,但由于它对人体的伤害较小,使得它的应用仍然很广泛。

产生超声波的方法有很多种,如热学法、力学法、静电法、电磁法、磁致伸缩法、激光法以及压电法等等,但应用得最普遍的方法是压电法。

压电效应:某些介电体在机械压力的作用下会发生形变,使得介电体内正负电荷中心相对位移以致介电体两端表面出现符号相反的束缚电荷,其电荷密度与压力成正比,这种由“压力”产生“电”的现象称为正压电效应;反之,如果将具有压电效应的介电体置于外电场中,电场会使介质内部正负电荷中心位移,从而导致介电体发生形变,这种由“电”产生“机械形变”的现象称为逆压电效应,逆压电效应只产生于介电体,形变与外电场呈线性关系,且随外电场反向而改变符号。

压电体的正压电效应与逆压电效应统称为压电效应。

如果对具有压电效应的材料施加交变电压,那么它在交变电场的作用下将发生交替的压缩和拉伸形变,由此而产生了振动,并且振动的频率与所施加的交变电压的频率相同,若所施加的电频率在超声波频率范围内,则所产生的振动是超声频的振动,我们把这种振动耦合到弹性介质中去,那么在弹性介质中传播的波即为超声波,这利用的是逆压电效应。

超声波检测实验

超声波检测实验

超声波检测实验一、实验目标1)了解超声波探伤仪的原理并学会使用CTS-22型超声波探伤仪2)掌握现场测试超声仪器性能的基本方法,包括:垂直线性、水平线性、探伤仪与仪器的组合性能。

3)初步学会超声波探伤二、实验仪器设备CTS-22型超声波探伤仪1台2.5MHZ直探头1只平面锻件(工件)1块ⅡW试块(荷兰试块) 1块平底孔试块(CS-1试块)1块三、实验原理1. 超声传感器结构及原理超声波传感器又称超声波探头或超声波换能器,是利用压电效应将电能转换为超声振动能,或将超声振动能转为电能的实验装置。

在实际应用中,我们利用压电效应的可逆性,也可将换能器作为“发射”或“接收”兼用。

亦即将交流电压加在压电元件上,使其向介质发射超声波,同时又利于它接收从介质反射回来的超声波,并将反射转换成电信号。

图4-1是超声波纵波换能器的结构图,压电晶片是换能器的主要元件。

压电晶体的厚度与超声波的频率成反比,如铁钛酸铅的频率厚度常数为1890KHz/mm,压电片的厚度为1mm时,固有频率为1.89MHz。

压电片的两面敷有银层,作为导电的极板,压电片的地面接地线,上面接导线引致电路中。

2. 超声检测的基本原理超声检测是一种利用超声波在介质中传播的性质来判断工件和材料是否异常的检验和测量方法。

在超声检测中,所使用的电声、声电换能器,主要是利用压电效应制作的,直探头可发射和接受纵波,主要由压电晶片和保护膜组成。

超声波是由发射电路即高频脉冲电路产生的高频电压,加在发射探头上。

发射探头将电波变成超声波,传入工件中。

超声在缺陷或介面上反射后回到接收探头,转变为电波后输入给接收电路进行放大、检波,最后加到示波管上显示出来。

通过缺陷在荧光屏上横坐标的位置,可以对缺陷定位;根据缺陷波的高度可确定缺陷的大小。

四、实验数据整理与分析1. 测试超声波探伤仪的垂直线性误差衰减dB值理论波高值(%)实测波高值(%)偏差(%)0 100 100 02 79.4 83 -3.64 63.1 68 -4.96 50.1 57 -6.98 39.8 46 -6.210 31.6 38 -6.412 25.1 30 -4.914 20 24 -416 15.8 20 -4.218 12.5 17 -4.520 10 12 -222 7.9 10 -2.1绘制衰减测量曲线:垂直线性误差:∆=++-=≤d d d[()()] 6.9%8%满足ZBY-84 标准规定2.测定水平线性底波次数B1 B2 B3 B4 B5水平刻度20 40 60 80 100max100% 1.25%2%0.8L∆∆=⨯=≤ 符合规定的水平误差范围。

超声波检测技术的实验原理和方法

超声波检测技术的实验原理和方法

实验超声波检测一、实验目的1、了解超声波检测的基本原理和方法;2、了解超声波检测的特点和适用范围;3、掌握斜探头横波探伤的距离-波幅(DAC)曲线制作方法。

二、实验设备器材1、ZXUD-40E型智能超声波探伤仪ZXUD-40E型数字式超声波探伤仪是小型化的便携式超声波探伤仪器,特别适用于材料缺陷的评估和定位、壁厚测量等,适合各种大型工件和高分辨率测量的要求。

⑴仪器外观如图9-1所示:图9-1 仪器外观当连接仅带有一个超声晶片的探头(自发自收)时,可以任意插入一个仪器上的探头连接器。

当连接带有双超声晶片的探头(一个为发射晶片,一个为接收晶片)或连接两个探头(一个发射探头,一个接收探头)时,必须注意:发射的一端接入左边一个探头连接器插孔,接收的一端接入右边一个探头连接器插孔,如图9-1所示。

⑶键盘及其功能图9-2ZXUD-40E的薄膜键盘按键排列仪器包含27个按键。

这些按键分成5大类:电源键、方向键、功能菜单键、子菜单键和功能热键。

关于各按键的具体功能概述,参见表9-1。

表9-1各按键的具体功能概述⑷参数设置规程参数设置可通过以下两种规程来完成。

有些参数设置仅遵照“方向键增减调节规程”,比如:探头类型、声程跨距等;有些参数设置又仅遵照“直接数字输入规程”,比如:探头频率、探头规格等;还有些参数设置可遵照两种规程,比如:检测范围、零位偏移等。

⑸方向键增减调节规程可按下或来增减参数设置。

⑹直接数字输入规程对于垂直菜单探伤通道设置,按下进入探伤通道设置状态,再次按下则进入直接数字输入状态;对于水平菜单,按下子菜单键选中子菜单项,再次按下子菜单键则也进入直接数字输入状态。

一旦进入直接数字输入状态,将在菜单项上出现闪烁光标,等待用户直接输入数字。

在输入的过程中,若发现先前输入的数字错误,可按下使得光标回退,删除刚才输入的错误数字。

输入完成之后,用户可按下来接受输入,也可按下来取消输入(对于水平菜单项,也可再次按下子菜单键取消输入)。

医学超声物理实验报告(3篇)

医学超声物理实验报告(3篇)

第1篇一、实验目的1. 了解超声波的基本原理及其在医学领域的应用。

2. 掌握超声波检测设备的使用方法。

3. 学习如何进行超声波成像技术操作。

4. 分析超声波在人体组织中的传播特性。

5. 通过实验,验证超声波在医学诊断中的有效性。

二、实验原理超声波是一种频率高于20000Hz的声波,其传播速度受介质密度和弹性模量等因素影响。

在医学领域,超声波广泛应用于诊断、治疗和手术等方面。

本实验主要利用超声波成像技术对人体组织进行观察和分析。

三、实验仪器与设备1. 超声波诊断仪2. 探头3. 被测物体(如:人体模型、水槽等)4. 记录纸和笔四、实验步骤1. 将探头连接到超声波诊断仪上,调整仪器参数,如:探头频率、深度等。

2. 将探头放置在被测物体表面,调整探头位置,确保探头与被测物体接触良好。

3. 开启超声波诊断仪,观察屏幕上的图像,记录图像信息。

4. 改变探头位置和角度,观察不同部位的图像,分析超声波在人体组织中的传播特性。

5. 对比不同被测物体的图像,验证超声波在医学诊断中的有效性。

五、实验结果与分析1. 实验结果显示,超声波在人体组织中的传播速度与介质密度和弹性模量有关。

在人体软组织中,超声波的传播速度约为1540m/s。

2. 通过调整探头位置和角度,可以观察到不同部位的图像,如:心脏、肝脏、肾脏等。

这些图像为临床诊断提供了重要依据。

3. 实验结果表明,超声波在医学诊断中的有效性较高,可用于检测多种疾病,如:肿瘤、心脏病、肝胆疾病等。

六、实验结论1. 超声波是一种在医学领域具有重要应用价值的声波技术。

2. 超声波成像技术能够对人体组织进行实时、无创、高分辨率的观察和分析。

3. 超声波在医学诊断中的有效性较高,可用于检测多种疾病,为临床诊断提供了重要依据。

七、实验注意事项1. 实验过程中,注意保持探头与被测物体接触良好,避免产生干扰信号。

2. 调整探头位置和角度时,要缓慢、平稳,以免影响图像质量。

3. 实验过程中,注意观察屏幕上的图像,及时记录相关信息。

实验报告(超声波)

实验报告(超声波)

超声波探伤实验一、实验目的1、掌握TUD210手持式超声波探伤仪的使用方法;2、掌握仪器的性能指标及仪器各个按钮之间的关系;3、掌握纵波探伤的基本方法。

二、基本原理脉冲反射法—利用超声波脉冲在试件的传播过程中,遇到声阻抗相差较大的两种介质界面时,将发生发射的原理进行检测的方法。

采用一个探头兼做发射和接受器件,接收信号在探伤仪的屏幕上显示,并根据缺陷及地面发射波的有无、大小及其在时间轴上的位置来判断缺陷的有无及其方位。

三、实验装置及物品TUD210手持式超声波探伤仪,耦合剂,实验试件(钢),游标卡尺。

四、实验步骤1、打开TUD210手持式超声波探伤仪开关;2、将试件表面清洗干净,涂上耦合剂,抹匀;3、调节TUD210手持式超声波探伤仪的各个方向键,设定材料(钢)声速为5920m/s,脉冲移位0.0µ m,探头零点0.00 µ m;4、进行单探头校准。

声速校准:先设定一大概的声速值(5920),同时探头延时设置为0;调节闸门逻辑为双闸门方式;将探头耦合到一与被测材料相同且厚度已知的试块上;移动闸门A 的起点到一次回波并与之相交,调节闸门A 的高度低于一次回波最高幅值至适当位置,闸门A 不能与二次回波相交;移动闸门B 的起点到二次回波并与之相交,调节闸门B 的高度低于二次回波最高幅值至适当位置,闸门B 不能与一次回波相交;然后调节声速,使得状态行显示的声程与试块实际厚度相同;探头延时校准:设定闸门逻辑为单闸门方式,即设为正或负逻辑,此时声程测量的就是一次回波处的声程;调节探头延时,使得状态行的声程测量值与试块的已知厚度相同。

此时所得到的探头延时就是该探头的准确探头延时。

5、将超声波探头置于试件缺陷回波处,调节增益步长键和增益加减键,使超声波回波高度为慢刻度的60%,记录显示声程;6、移动超声波探头,找到缺陷回波最大处,调节增益步长键和增益加减键使缺陷回波值为满刻度的60%,记录显示的声程;7、误差对比:将试件翻转过来,用游标卡尺测量小孔的深度;8、实验完毕,关闭TUD210手持式超声波探伤仪,将试件整理好。

超生波探伤实验报告(3篇)

超生波探伤实验报告(3篇)

第1篇一、实验目的1. 理解超声波探伤的基本原理和操作流程。

2. 掌握超声波探伤仪器的使用方法和操作技巧。

3. 通过实际操作,了解超声波探伤在检测金属缺陷中的应用。

4. 分析超声波探伤结果的准确性和可靠性。

二、实验背景超声波探伤是一种利用超声波在材料中传播的特性,对材料内部缺陷进行检测的技术。

由于超声波具有穿透能力强、方向性好、无损检测等优点,因此在工业、军事、医学等领域得到广泛应用。

三、实验原理超声波探伤的基本原理是利用超声波在材料中传播时,遇到缺陷会发生反射、折射、散射等现象。

通过分析反射波的特征,可以判断材料内部的缺陷位置、大小和性质。

四、实验器材1. 超声波探伤仪:用于发射和接收超声波信号。

2. 探头:用于发射和接收超声波。

3. 试块:用于模拟实际材料的缺陷。

4. 耦合剂:用于改善探头与试块之间的耦合效果。

5. 记录仪:用于记录实验数据。

五、实验步骤1. 将探头安装到超声波探伤仪上,调整探头频率和探头间距。

2. 将耦合剂均匀涂抹在试块表面,确保探头与试块之间良好耦合。

3. 将探头放置在试块表面,开始发射超声波。

4. 分析接收到的超声波信号,判断材料内部的缺陷。

5. 记录实验数据,包括缺陷位置、大小和性质。

六、实验结果与分析1. 通过实验,成功检测到试块内部的缺陷,包括裂纹、气孔等。

2. 分析缺陷反射波的特征,可以判断缺陷的位置、大小和性质。

3. 实验结果表明,超声波探伤具有较高的检测准确性和可靠性。

七、实验总结1. 超声波探伤是一种有效的无损检测技术,可以用于检测金属材料内部的缺陷。

2. 掌握超声波探伤仪器的使用方法和操作技巧,可以提高检测准确性和可靠性。

3. 实验结果表明,超声波探伤在检测金属缺陷方面具有较高的应用价值。

八、实验建议1. 在实际应用中,应根据被检测材料的特性选择合适的探头频率和探头间距。

2. 注意耦合剂的选择和涂抹,确保探头与试块之间良好耦合。

3. 分析反射波特征时,应注意缺陷定位、大小和性质的判断。

超声波测声速实验报告

超声波测声速实验报告

超声波测声速实验报告超声波测声速实验报告引言:声速是指声波在介质中传播的速度,它在不同的介质中具有不同的数值。

本实验通过使用超声波测量声速的方法,旨在探究声速与介质性质之间的关系,并验证实验结果与理论值的一致性。

实验材料与装置:1. 超声波发生器2. 超声波接收器3. 介质容器4. 计时器5. 直尺6. 水实验原理:超声波是指频率高于人耳能听到的上限20kHz的声波。

它的传播速度与介质的密度和弹性有关。

根据声波在介质中传播的基本公式:声速 = 频率× 波长,我们可以通过测量声波的频率和波长来计算声速。

实验步骤:1. 将水倒入介质容器中,使其充满容器。

2. 将超声波发生器和接收器分别放置在容器的两端,保证它们与水的接触良好。

3. 设置超声波发生器的频率为已知值,如40kHz。

4. 通过计时器记录超声波从发生器发出后,经过水传播到接收器的时间间隔。

5. 根据已知频率和测得的时间间隔,计算超声波在水中的波长。

6. 根据已知频率和计算得到的波长,计算出超声波在水中的声速。

实验结果与数据处理:在实验中,我们选择了频率为40kHz的超声波进行测量。

通过计时器记录了超声波从发生器发出后,经过水传播到接收器的时间间隔为0.02秒。

根据已知频率和测得的时间间隔,计算得到超声波在水中的波长为0.8米。

根据已知频率和计算得到的波长,可以得知超声波在水中的声速为32米/秒。

讨论与分析:通过本实验,我们成功地使用超声波测量了水中的声速,并得到了实验结果。

与此同时,我们也可以通过实验结果来探究声速与介质性质之间的关系。

首先,根据理论知识,声速与介质的密度和弹性有关。

在本实验中,我们使用的介质是水,它的密度和弹性都相对较大。

因此,根据理论预期,水中的声速应该较高。

其次,通过与理论值的比较,我们可以验证实验结果的准确性。

根据参考资料得知,水中的声速理论值约为1480米/秒。

与我们实验测得的结果32米/秒相比,存在较大的差异。

超声波检测及等级评定实验

超声波检测及等级评定实验

超声波检测及等级评定实验一、实验目的1、了解超声波探伤的工作原理和仪器的工作过程;2、熟悉探伤仪器,掌握使用直探头和斜探头,对试件进行纵波和横波探伤,确定试件的内部缺陷。

二、实验原理超声波探伤是利用电子仪器产生高频(0.5~10MHz)脉冲电压,激发钴钛酸铅等压电晶片,由于这种压电晶片具有电压效应,电能被转换成机械弹性振动成为超声波,向工件内部传播(超声纵波或横波)进行探伤,而在不同介质的界面上(工件表面、内部缺陷、工件底部)反射回来的超声波,又由压电晶片转换成电讯号,经放大后,显示在示波管上,以判断工件内部是否存在缺陷(气孔、夹渣、裂纹、未焊透等)。

显然,缺陷越大,从缺陷界面反射回探头所需的时间就越长,因此,根据反射波的强弱和到达时间的长短,就可以探测工件内部缺陷的大小和位置(深度),这就是超声波探伤的基本工作过程。

三、实验仪器和工具CTS—8型晶体管探伤仪,钢直尺,机油,试件若干。

四、实验步骤1、试件的准备(1)准备各种试件,表面具有一定光洁度;(2)在探测表面涂上一层耦合剂——机油。

2、仪器的调整(1)使用22V~30V的直流电源,严禁仪器直接接入交流电源中,或将直流电源的极性反接,否则损坏仪器;(2)接通电源:开启面板上电源开关K6,这时可听到仪器内部发出频率为1千赫的音响,表示仪器工作正常,约15秒钟后,荧光屏上应出现扫描基线;(3)调整辉度、聚焦、波形位置:用起子调节仪器上端的电位器W10(辉度旋钮)至基线亮度适中,一般在仪器出厂时辉度已调在较亮位置,以后不必常动。

调节旋钮W8(聚焦旋钮)使波形至清晰为止,如果面板上的聚焦控制不能调至波形最清晰时,可用起子略调仪器上端的辅助聚焦电位器至波形更清晰。

仪器上端的垂直位移电位器W11可供调节基线上下移动,使基线与荧光屏的刻度重合,便于读测。

若要调动屏幕上基线左右位置,调节面板上标有“←→”符号的旋钮W7,可以把始波对准于荧光屏刻度的零位;(4)频率调节:超声波工作频率较高,指向性好,声束扩散角小,有利于缺陷的探测,但如果工件结晶颗粒粗大则衰减严重,故一般工件较小结晶细时,选用较高工作频率,如2.5~5MHz;反之则取0.5~1.5MHz的工作频率。

超声波探测实验实验报告(3篇)

超声波探测实验实验报告(3篇)

第1篇一、实验目的1. 了解超声波的基本原理及其在探测中的应用。

2. 掌握超声波探测仪器的操作方法和使用技巧。

3. 通过实验,验证超声波探测技术在实际测量中的应用效果。

二、实验原理超声波探测技术是利用超声波在介质中传播的特性,通过发射、接收和反射等过程来获取被测物体内部结构信息的一种非接触式检测方法。

超声波探测的原理如下:1. 超声波的产生:利用压电换能器将电能转换为超声波能量。

2. 超声波的传播:超声波在介质中传播,遇到不同介质的界面时会发生反射、折射和透射等现象。

3. 超声波的接收:接收换能器接收反射回来的超声波信号。

4. 信号处理:通过信号处理技术,提取出有用的信息,如距离、速度、厚度等。

三、实验设备1. 超声波探测仪2. 超声波发射器3. 超声波接收器4. 试块(用于模拟被测物体)5. 计时器6. 示波器7. 数据采集器四、实验步骤1. 连接设备:将超声波发射器、接收器、探测仪和试块连接好。

2. 调整参数:根据实验要求,设置探测仪的频率、灵敏度等参数。

3. 放置试块:将试块放置在实验台上,确保其稳定。

4. 发射超声波:打开超声波发射器,向试块发射超声波。

5. 接收反射波:打开超声波接收器,接收试块反射回来的超声波信号。

6. 观察波形:使用示波器观察反射波波形,记录反射波的时间、幅度等信息。

7. 数据处理:根据反射波的时间和幅度,计算出被测物体的厚度、距离等参数。

8. 重复实验:改变试块的位置和角度,重复实验步骤,验证实验结果的准确性。

五、实验结果与分析1. 反射波时间:通过实验,我们得到了不同位置和角度下反射波的时间。

根据反射波时间和超声波在介质中的传播速度,可以计算出被测物体的厚度。

2. 反射波幅度:反射波幅度反映了超声波在试块中的衰减程度,从而可以判断试块内部是否存在缺陷。

3. 实验误差:实验过程中,由于设备精度、环境因素等原因,可能会产生一定的误差。

通过多次实验,我们可以分析误差产生的原因,并采取措施减小误差。

大学物理实验超声波速测量实验报告

大学物理实验超声波速测量实验报告

⼤学物理实验超声波速测量实验报告⼤学物理实验超声波速测量实验报告⼀实验⽬的1.了解超声波的物理特性及其产⽣机制;2.学会⽤相位法测超声波声速并学会⽤逐差法处理数据;3.测量超声波在介质中的吸收系数及反射⾯的反射系数;4.并运⽤超声波检测声场分布。

5.学习超声波产⽣和接收原理,6.学习⽤相位法和共振⼲涉法测量声⾳在空⽓中传播速度,并与公认值进⾏⽐较。

7.观察和测量声波的双缝⼲涉和单缝衍射⼆实验条件HLD-SV-II型声速测量综合实验仪,⽰波器,信号发⽣仪三实验原理1、超声波的有关物理知识声波是⼀种在⽓体。

液体、固体中传播的弹性波。

声波按频率的⾼低分为次声波(f<20Hz)、声波(20Hz≤f≤20kHz)、超声波(f>20kHz)和特超声波(f≥10MHz),如下图。

声波频谱分布图振荡源在介质中可产⽣如下形式的震荡波:横波:质点振动⽅向和传播⽅向垂直的波,它只能在固体中传播。

纵波:质点振动⽅向和传播⽅向⼀致的波,它能在固体、液体、⽓体中的传播。

表⾯波:当材料介质受到交变应⼒作⽤时,产⽣沿介质表⾯传播的波,介质表⾯的质点做椭圆的振动,因此表⾯波只能在固体中传播且随深度的增加衰减很快。

板波:在板厚与波长相当的弹性薄板中传播的波,可分为SH 波与兰姆波。

超声波由于其波长短、频率⾼,故它有其独特的特点:绕射现象⼩,⽅向性好,能定向传播;能量较⾼,穿透⼒强,在传播过程中衰减很⼩,在⽔中可以⽐在空⽓或固体中以更⾼的频率传的更远,⽽且在液体⾥的衰减和吸收是⽐较低的;能在异质界⾯产⽣反射、折射和波形转换。

2、理想⽓体中的声速值声波在理想⽓体中的传播可认为是绝热过程,因此传播速度可表⽰为µrRT=V (1)式中R 为⽓体普适常量(R=8.314J/(mol.k)),γ是⽓体的绝热指数(⽓体⽐定压热容与⽐定容热容之⽐),µ为分⼦量,T 为⽓体的热⼒学温度,若以摄⽒温度t 计算,则:t T T +=0K T 15.2730=代⼊式(1)得,00001V 1)(V T t T t T rRt T rR++?+===µµ (2) 对于空⽓介质,0℃时的声速0V =331.45m /s 。

超声实验报告

超声实验报告

超声实验报告超声实验报告引言超声波是一种频率高于人类可听到的声音的声波。

它在医学、工业和科学研究中有着广泛的应用。

本实验旨在探究超声波的特性和应用,并通过实验验证相关理论。

一、超声波的生成和传播超声波的生成主要依赖于压电效应,即将电能转化为机械振动。

在实验中,我们使用了压电陶瓷片作为超声波的发射源。

当施加电压时,压电陶瓷片会振动产生超声波。

超声波在空气中传播时,会遇到折射、反射和散射等现象,这些现象会影响超声波的传播路径和强度。

二、超声波的接收和测量超声波的接收主要依赖于压电效应的逆过程,即将机械振动转化为电能。

在实验中,我们使用了压电陶瓷片作为超声波的接收器。

当超声波传播到接收器上时,它会使压电陶瓷片振动,产生电信号。

通过连接示波器,我们可以测量并观察到超声波的接收信号。

三、超声波的频率和波长超声波的频率是指在单位时间内波动的次数,通常以赫兹(Hz)为单位。

而波长则是指在一个完整波动周期内的长度。

在实验中,我们可以通过改变发射器的频率和测量接收信号的时间间隔,来计算超声波的频率和波长。

四、超声波的衍射和干涉超声波在传播过程中也会发生衍射和干涉现象。

衍射是指当超声波通过一个孔或绕过一个障碍物时,波的传播方向发生改变。

干涉是指两个或多个超声波波峰和波谷相遇时,产生增强或减弱的现象。

这些现象使得超声波的传播和成像更加复杂和多样化。

五、超声波在医学中的应用超声波在医学领域有着广泛的应用。

它可以用于产前检查、器官成像、肿瘤检测等。

通过超声波的成像技术,医生可以非侵入性地观察和评估人体内部的结构和病变,为疾病的诊断和治疗提供重要依据。

结论通过本次实验,我们深入了解了超声波的生成、传播和接收原理,并验证了相关理论。

超声波作为一种重要的声波类型,在医学、工业和科学研究中发挥着重要作用。

通过不断的实验和研究,我们相信超声波的应用领域还会不断拓展和创新。

【大学物理实验(含 数据+思考题)】超声波材料检测实验报告

【大学物理实验(含 数据+思考题)】超声波材料检测实验报告

超声探伤及特性综合实验一、实验目的1、了解超声波产生和接收方法;2、认识超声脉冲波及其特点;3、测量超声波在固体材料中的传播速度和波长;4、通过实验了解超声波探伤的基本原理。

二、实验仪器超声波探伤及特性综合实验仪、示波器、铝试块、耦合剂(水)等。

三、实验原理1.超声波超声波是频率在2X104Hz~1012Hz的声波。

超声波的波长比一般声波要短,具有较好的各向异性而且能透过不透明物质,这一特性已被用于超声波探伤和超声成像技术。

利用超声的机械作用、空化作用,可进行超声焊接、钻孔、固体的粉碎、去锅垢、清洗、灭菌等。

2.超声波的产生压电效应:某些固体物质,在压力(或拉力)的作用下产生形变,从而使物质本身极化,在物体相对的表面出现正、负束缚电荷,这一效应称为压电效应。

逆压电效应:当一个晶体受电场作用时,其正负离子向相反的方向移动,于是产生了晶体的变形,这一效应是逆压电效应。

,),其具有压电效压电陶瓷:具有自发极化现象的晶体,如钛酸钡(BaTiCO3应和逆压电效应,叫压电陶瓷。

压电晶片:压电陶瓷被加工成平面状,并在正反两面分别镀上银层作为电极,其被称为压电晶片。

当给压电晶片两极施加一个电压短脉冲时,晶片将发生弹性形变而产生弹性振荡,适当选择晶片的厚度可以得到超声波。

在晶片的振动过程中,由于能量的减少,其振幅也逐渐减小,因此它发射出的是一个超声波波包,通常称为脉冲波。

3.超声波的传播和接收超声波在材料内部传播时,与被检对象相互作用发生散射,散射波被同一压电换能器接收,由于正压效应,振荡的晶片在两极产生振荡的电压,电压被放大后可以用示波器显示。

4.直探头延迟和试块纵波声速、频率及波长的测量(1)超声波有多种波型:纵波波型/横波波型和表面波波型。

三种超声波:①纵波(介质质点的振动方向与超声波的传播方向一致,介质:固体, 液体,气体)②横波(介质中质点的振动方向与超声波的传播方向相垂直,介质:固体)③表面波(沿着介质表面传播, 由平行于表面的纵波和垂直于表面的横波合成,介质:固体和液体表面)本实验通过直探头产生超声纵波。

超声波无损检测实验报告

超声波无损检测实验报告

超声波无损检测实验报告一、实验目的本次超声波无损检测实验的主要目的是通过使用超声波检测技术,对给定的试件进行检测,以确定其内部是否存在缺陷,并对缺陷的位置、大小和形状进行评估。

同时,通过实验操作,熟悉超声波无损检测设备的使用方法,掌握超声波检测的基本原理和数据分析方法,提高对材料无损检测的实践能力。

二、实验原理超声波无损检测是利用超声波在材料中的传播特性来检测材料内部缺陷的一种方法。

当超声波在均匀介质中传播时,其传播速度、波长和频率等参数保持不变。

然而,当超声波遇到缺陷时,会发生反射、折射、散射等现象,导致超声波的传播路径和能量发生变化。

通过接收和分析这些变化,可以判断材料内部是否存在缺陷以及缺陷的相关信息。

超声波在材料中的传播速度与材料的弹性模量、密度等物理参数有关。

对于特定的材料,可以通过测量超声波的传播时间和传播距离来计算其传播速度。

同时,根据反射波的到达时间和幅度,可以确定缺陷的位置和大小。

三、实验设备与材料1、超声波无损检测仪:本次实验使用的是_____型号的超声波无损检测仪,其具有高精度、高灵敏度和多功能的特点,能够满足实验的检测要求。

2、探头:选用了_____频率的直探头和斜探头,分别用于检测不同类型的缺陷。

3、试件:准备了若干个含有不同类型和大小缺陷的金属试件,如钢板、钢管等。

4、耦合剂:使用了_____耦合剂,以保证超声波能够有效地传入试件内部。

四、实验步骤1、仪器准备开启超声波无损检测仪,进行预热和校准。

设置检测参数,如探头频率、增益、扫描范围等。

2、试件表面处理用砂纸打磨试件表面,去除氧化层和污垢,保证探头与试件之间良好的耦合。

3、涂抹耦合剂在试件检测表面均匀涂抹耦合剂,减少超声波的能量损失。

4、探头安装将直探头或斜探头安装在检测仪的探头上,并确保探头与试件表面垂直或成一定角度。

5、检测操作手持探头在试件表面缓慢移动,观察检测仪屏幕上的波形变化。

对可疑区域进行重点检测,记录反射波的位置、幅度和形状等信息。

物理实验技术中如何进行超声波实验与测量

物理实验技术中如何进行超声波实验与测量

物理实验技术中如何进行超声波实验与测量超声波在物理实验中具有广泛的应用,可以用于测量距离、探测物体的形状和检测材料的性质等。

超声波实验和测量需要一定的技术和方法,本文将介绍在物理实验中如何进行超声波实验与测量。

一、超声波的产生与传播超声波是指频率超过人类听觉上限的声波。

在物理实验中,超声波的产生通常通过压电效应或磁致伸缩效应实现。

压电晶体通过外加电场的作用发生压电效应,产生超声波;而磁致伸缩材料通过外加磁场的作用发生磁致伸缩效应,产生超声波。

超声波在介质中的传播速度与介质的密度和弹性有关,可以通过改变介质的性质来调节超声波的传播速度。

二、探头的选择与放置在超声波实验中,探头是非常关键的组成部分。

探头的选择要根据实验的目的和要测量的物体进行。

一般而言,常用的探头有单元探头和阵列探头。

单元探头适合进行简单的超声波实验与测量,通过调节单元探头的工作频率和焦点,可以实现不同深度的超声波检测。

阵列探头由多个小探头组成,可以实现多角度的超声波发射和接收,提高了超声波的分辨率和成像效果。

在实验中,根据需要选择合适的探头,并正确放置在待测物体的表面。

三、超声波的传播与接收超声波在物体内部传播的方式有直接传播和反射传播两种。

直接传播是指超声波从探头发射后,直接经过物体内部,被探头接收。

反射传播是指超声波从探头发射后,遇到物体的界面发生反射,然后再被探头接收。

在进行超声波实验与测量时,需要根据测量需求选择合适的传播方式。

如果需要测量物体内部的深度或形状,可以使用直接传播方式;如果需要检测物体表面的性质或存在的缺陷,可以使用反射传播方式。

四、超声波的测量与图像处理超声波实验中,测量和图像处理是非常重要的环节。

通过调节探头和接收信号的参数,可以得到相应的超声波信号。

然后,通过信号的处理和分析,可以得到物体的测量结果和成像信息。

在超声波测量中,常用的参数有超声波的传播时间、波形、幅值等。

通过这些参数的测量和分析,可以得到物体的距离、形状、材料特性等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超声波检测实验
一、实验目标
1)了解超声波探伤仪的原理并学会使用CTS-22型超声波探伤仪
2)掌握现场测试超声仪器性能的基本方法,包括:垂直线性、水平线性、探伤仪与仪器的组合性能。

3)初步学会超声波探伤
二、实验仪器设备
CTS-22型超声波探伤仪1台
2.5MHZ直探头1只
平面锻件(工件)1块
ⅡW试块(荷兰试块) 1块
平底孔试块(CS-1试块)1块
三、实验原理
1. 超声传感器结构及原理
超声波传感器又称超声波探头或超声波换能器,是利用压电效应将电能转换为超声振动能,或将超声振动能转为电能的实验装置。

在实际应用中,我们利用压电效应的可逆性,也可将换能器作为“发射”或“接收”兼用。

亦即将交流电压加在压电元件上,使其向介质发射超声波,同时又利于它接收从介质反射回来的超声波,并将反射转换成电信号。

图4-1是超声波纵波换能器的结构图,压电晶片是换能器的主要元件。

压电晶体的厚度与超声波的频率成反比,如铁钛酸铅的频率厚度常数为1890KHz/mm,压电片的厚度为1mm时,固有频率为1.89MHz。

压电片的两面敷有银层,作为导电的极板,压电片的地面接地线,上面接导线引致电路中。

2. 超声检测的基本原理
超声检测是一种利用超声波在介质中传播的性质来判断工件和材料是否异常的检验和测量方法。

在超声检测中,所使用的电声、声电换能器,主要是利用
压电效应制作的,直探头可发射和接受纵波,主要由压电晶片和保护膜组成。

超声波是由发射电路即高频脉冲电路产生的高频电压,加在发射探头上。

发射探头将电波变成超声波,传入工件中。

超声在缺陷或介面上反射后回到接收探头,转变为电波后输入给接收电路进行放大、检波,最后加到示波管上显示出来。

通过缺陷在荧光屏上横坐标的位置,可以对缺陷定位;根据缺陷波的高度可确定缺陷的大小。

四、实验数据整理与分析
1. 测试超声波探伤仪的垂直线性误差
绘制衰减测量曲线:
垂直线性误差:
∆=++-=≤
d d d
[()()] 6.9%8%
满足ZBY-84 标准规定
2.测定水平线性
max
100% 1.25%2%0.8L
∆∆=
⨯=≤ 符合规定的水平误差范围。

3.测定仪器与探头的综合性能分辨力
X 分辨力为38dB
4. 纵波直探头回波频率的测定
实验测得:3 1.220T s μ=
回波频率:3
3
2.459e f MHz T =
=
5.工件探伤试验
五、实验总结分析
(1) 仪器与探头的综合性能不仅与仪器有关,而且与探头有关,主要综合性能有哪些?
答:检测仪器与探头的主要综合性能包括灵敏度与灵敏度余量、分辨力、信噪比。

灵敏度是指仪器与探头发现最小缺陷的能力。

灵敏度余量是指电噪声与回波的比值大小,主要反映灵敏度的范围。

分辨力是指能够将一定大小的两个相邻反射体提供可分离指示时两者的最小宽度。

信噪比是指最小缺陷回波与最大噪声幅度之比。

(2) 仪器的分辨力主要指的是什么,与那些因素有关。

答:仪器的分辨力是指超声波在传递的声路上对两个相邻缺陷的反射波在显示屏上分辨出来的能力。

分辨力主要是与脉冲宽度有关,脉冲宽度越小,分辨力也就越高。

(3) 引起超声波衰减的原因有很多,主要包括的衰减有哪几种情况。

答:超声波的衰减是指声压或声能随着距离的增大逐渐减小的现象。

引起衰减的主要原因有声束的扩散、介质中晶粒或其他的微粒对声波的散射和介质的吸收。

(4) 超声波的端角反射有什么特点,在实验中你见到这种现象的没有,如果观测到了,请从波的反射角度解释一下。

答:超声波的端角反射是指超声波在两个平面构成的直角内的反射,端角反射的特点是二次反射回波与入射波相互平行,而且纵波的端角反射率一般都很低,横波的端角反射率与入射角有关。

在实验中,我没有见到端角反射现象,端角反射现象主要是超声波的反射,不考虑波型转换的话,端角反射可以用下图来反映,而考虑波型转换的话,就比较复杂。

六、实验感想
通过本实验,我对于超声波检测有了进一步的了解,同时通过对超声波检
测的仪器与探头的各种性能进行测定,也是对于超声波检测中我们主要关注的参数以及我们超声波检测的作用范围有了更深的理解,同时在在实验中,对于使用探伤仪对具体的工件进行探伤时,我们主要根据超声波的声程与反射波的高度来判断缺陷的大小与位置。

总之,通过本实验我对于超声波检测的主要过程与测量的参数有了更深的理解,与我们在课堂上学到的知识相互印证,加深了印象。

相关文档
最新文档