大学物理-拉伸法测弹性模量 实验报告

合集下载

用拉伸法测金属丝的弹性模量实验报告

用拉伸法测金属丝的弹性模量实验报告

用拉伸法测金属丝的弹性模量实验报告用拉伸法测金属丝的弹性模量实验报告引言:弹性模量是描述材料抵抗形变的能力的物理量,对于金属材料的研究和应用具有重要意义。

本实验旨在通过拉伸法测量金属丝的弹性模量,探究金属丝的力学性质。

实验目的:1. 了解弹性模量的概念和意义;2. 掌握拉伸法测量金属丝弹性模量的实验方法;3. 分析金属丝的力学性质。

实验仪器与材料:1. 弹簧秤:用于测量金属丝的受力;2. 金属丝:选用直径均匀的金属丝,如铜丝、铁丝等;3. 千分尺:用于测量金属丝的长度。

实验原理:拉伸法是一种常用的测量金属丝弹性模量的方法。

当金属丝受到外力拉伸时,会发生形变,即金属丝的长度会发生变化。

根据胡克定律,金属丝的形变与受力之间存在线性关系,即形变量与受力成正比。

通过测量金属丝的形变量和受力,可以计算出金属丝的弹性模量。

实验步骤:1. 准备金属丝和弹簧秤;2. 用千分尺测量金属丝的初始长度,并记录;3. 将金属丝固定在实验台上,并将弹簧秤挂在金属丝上;4. 逐渐增加弹簧秤的负荷,记录每个负荷下金属丝的形变量和弹簧秤的读数;5. 按照一定的负荷间隔重复步骤4,直至金属丝断裂。

实验数据处理:根据实验记录的金属丝形变量和弹簧秤读数,可以绘制出金属丝的受力-形变曲线。

根据胡克定律的线性关系,可以通过线性拟合得到金属丝的弹性模量。

实验结果:通过实验测量和数据处理,得到金属丝的弹性模量为XXX GPa。

根据实验结果,可以得出金属丝具有较高的强度和抗变形能力,适用于承受大荷载的工程应用。

实验讨论:1. 实验误差分析:在实验过程中,由于实验条件和操作技巧等因素的影响,可能会导致实验结果存在一定误差。

例如,金属丝的初始长度测量可能存在一定误差,弹簧秤读数的精度也会影响实验结果的准确性。

2. 实验改进方案:为了提高实验结果的准确性,可以采取以下改进措施:提高测量仪器的精度、增加数据采集的次数、进行多次重复实验并取平均值等。

3. 实验应用展望:金属丝的弹性模量是材料力学性质的重要指标,对于工程设计和材料选择具有重要意义。

拉伸法测弹性模量实验报告

拉伸法测弹性模量实验报告

2.1拉伸法测弹性模量一、实验目的:(1)学习用拉伸法测量弹性模量的方法(2)掌握螺旋测微计和读数显微镜的使用(3)练习用逐差法处理数据二、实验原理(1)弹性模量及其测量方法长度为L、截面积为S的均匀细金属丝,沿长度方向受外力F后伸长δL。

单位横截面积上的垂直作用力F/S称为正应力,金属丝的相对伸长δL/L称作线应变。

实验得出,在弹性形变范围内,正应力与线应变成正比,即胡克定律:F S =EδLL式中比例系数E=F/S δL/L称作材料的弹性模量,表征材料本身的性质。

弹性模量越大的材料,要使它发生一定的相对型变所需的单位横截面积上的作用力也越大。

E的单位是Pa。

本实验测量钢丝的弹性模量,设钢丝的直径为D,则弹性模量可进一步表示为:E=4FL πD2δL实验中的测量方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施力F,测出钢丝相应的伸长量δL,即可求出E。

钢丝长度L用钢尺测量,钢丝直径用螺旋测微计测量,力F由砝码的重力F=mg求出。

δL一般很小,约0.1mm量级,本实验用读数显微镜测量(也可用光杠杆等其它方法测量)。

通过多次测量并用逐差法处理数据达到减少随机误差的目的。

(2)逐差法处理数据本实验中测量10组数据,分成前后两组,对应项相减得到5个l i,l i=5δL,则:δL=15×5y i+5−y i5i=1这种方法称为逐差法。

其优点是充分利用了所测数据,可以减少测量的随机误差,也可以减少测量仪器带来的误差。

三、实验仪器支架:用以悬挂被测钢丝;读数显微镜:用以较准确的测量微小位移。

由物镜和测微目镜构成。

测微目镜鼓轮上有100分格,鼓轮转动一圈,叉丝移动1mm。

故分度值为0.01mm;底座:用以调节钢丝铅直;钢尺、螺旋测微计:测量钢丝的长度和直径。

四、实验步骤(1)调整钢丝竖直:钢丝下夹具上应先挂砝码钩,用以拉直钢丝。

调节底座螺钉使夹具不与周围支架碰蹭。

(2)调节读数显微镜:粗调显微镜高度,使之与钢丝下夹具的标记线同高,再细调读数显微镜。

弹性模量的测量实验报告

弹性模量的测量实验报告

弹性模量的测量实验报告一、拉伸法测量弹性模量 1、实验目的(1) 学习用拉伸法测量弹性模量的方法; (2) 掌握螺旋测微计和读数显微镜的使用; (3) 学习用逐差法处理数据。

2、实验原理(1)、杨氏模量及其测量方法本实验讨论最简单的形变——拉伸形变,即棒状物体(或金属丝)仅受轴向外力作用而发生伸长的形变(称拉伸形变)。

设有一长度为L ,截面积为S 的均匀金属丝,沿长度方向受一外力后金属丝伸长δL 。

单位横截面积上的垂直作用力F /S 成为正应力,金属丝的相对伸长δL /L 称为线应变。

实验结果指出,在弹性形变范围内,正应力与线应变成正比,即LLE SF δ= 这个规律称为胡克定律,其中LL SF E //δ=称为材料的弹性模量。

它表征材料本身的性质,E 越大的材料,要使他发生一定的相对形变所需的单位横截面积上的作用力也越大,E 的单位为Pa(1Pa = 1N/m 2; 1GPa = 109Pa)。

本实验测量的是钢丝的弹性模量,如果测得钢丝的直径为D ,则可以进一步把E 写成:LD FLE δπ24=测量钢丝的弹性模量的方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施力F ,测出钢丝相应的伸长量δL ,即可求出E 。

钢丝长度L 用钢尺测量,钢丝直径D 用螺旋测微计测量,力F 由砝码的重力F = mg 求出。

实验的主要问题是测准δL 。

δL 一般很小,约10−1mm 数量级,在本实验中用读数显微镜测量(也可利用光杠杆法或其他方法测量)。

为了使测量的δL 更准确些,采用测量多个δL 的方法以减少测量的随机误差,即在钢丝下端每加一个砝码测一次伸长位置,逐个累加砝码,逐次记录伸长位置。

通过数据处理求出δL 。

(2)、逐差法处理数据
如果用上述方法测量10 次得到相应的伸长位置y1,y2,...,y10,如何处理数据,算出钢丝的伸长量δL呢?
我们可以由相邻伸长位置的差值求出9 个δL,然后取平均,则从上式可以看出中间各y i都消去了,只剩下y10 −y1 9,用这样的方法处理数据,中间各次测量结果均未起作用。

大学物理实验《用拉伸法测金属丝的杨氏弹性模量》

大学物理实验《用拉伸法测金属丝的杨氏弹性模量》
3、动态悬挂法:将试样(圆棒或矩形棒)用两根线悬挂起来并激发它作横向振动。在一定条件下,试样振动的固有频率取决于它的几何形状、尺寸、质量以及它的杨氏弹性模量,如果我们在实验中测出了试样在不同温度下的固有频率,就可以算出试样在不同温度下的杨氏弹性模量。此法克服了静态拉伸法的缺点,具有实用价值,是国家标准规定的一种测量方法。
三、实验中注意:实验测量中,发现增荷和减荷时读数相关差较大,当荷重按比例增加时,?n不按比例增加,应找出原因,重新测量。这种情况可能发生的原因有:
1、金属丝不直,初始砝码太轻,没有把金属丝完全拉直。
2、杨氏弹性模量仪支柱不垂直,使金属丝下端的夹头不能在金属框内上下自由滑动,摩擦阻力太大。
1
3、加减砝码时动作不够平衡,导致光杠杆足尖发生移动。
1、万能试验机法:在万能试验机上做拉伸或压缩试验,自动记录应力和应变的关系图线,从而计算出杨氏弹性模量。
2、静态拉伸法(本实验采用此法),它适用于有较大形变的固体和常温下的测量,它的缺点是:①因为载荷大,加载速度慢,含有驰豫过程。所以它不能很真实地反映出材料内部结构的变化。②对脆性材料不能用拉伸法测量;③不能测量材料在不同温度下的杨氏弹性模量。
8LD?n??F?KF 2?dbE
8LD
?d2bE由此式作?n?F图线,应得一直线。从图线中计算出直线的斜率K,再由K?
即可计算出E。
3
篇二:大学物理实验用拉伸法测金属丝的杨氏模量
用拉伸法测金属丝的杨氏模量
材料在外力作用下产生形变,其应力与应变的比值叫做弹性模量,它是反映材料抵抗形变能力的物理量,杨氏模量是固体材料的纵向弹性模量,是选择机械构件的依据之一,也是工程技术中研究材料性质的常用参数。测定弹性模量的方法很多,如拉伸法、振动法、弯曲法、光干涉法等,本实验采用拉伸法测定金属丝的杨氏弹性模量,研究拉伸正应力与应变之间的关系。

用拉伸法测量金属丝的杨氏弹性模量实验报告

用拉伸法测量金属丝的杨氏弹性模量实验报告

用拉伸法测量金属丝的杨氏弹性模量实验报告拉伸法测量金属丝的杨氏弹性模量实验报告
实验原理:
拉伸实验是指将弹性样品整体承受一直拉力F,而其同时受轴向拉力T的拉伸实验,
通过测量拉伸实验的样品的拉伸变形量,推知其伸长量与轴向荷载(T)之比,这一比值
就是杨氏弹性模量。

实验仪器和装置:
本实验使用的仪器和装置是:电子称、压迫力传感器、拉伸脉冲式扭矩传感器、电动
改变中心距、实验平台以及拉伸测量系统。

实验环境:
实验环境稳定,温度、湿度均在20℃时,室温保持在25℃以下,湿度保持在50%以下;光照明亮,可使测量精度更高。

实验方法:
1.选取合格的金属丝样品,将金属丝在两个支点上受上力,其中间部分悬空放置,应
用拉伸传感器,将力传感器的正负极接线联接到拉伸测量系统,以便测量拉伸时的变形量;
2.调节力传感器的拉伸力,测量金属丝在拉伸情况时的杨氏弹性模量;
3.如果所测量金属丝中受力跨度较短,可以适当增加测量力的大小,控制其变形量,
以测得最终结果;
4.在做精度处理时,应按试验标准及要求的容差,采取逐渐迭代的原则做精确的测量,充分检验该样品的杨氏弹性模量;
5.最后,将实验最终结果和测得的参数对比,进行分析,得出金属丝的杨氏弹性模量
大小,从而完成此次实验。

实验结论:
本次实验以拉伸法测量金属丝的杨氏弹性模量,由于采用了拉伸测量仪器和设备,对
金属丝进行严格控制,从而极大提高测量精度,最终杨氏弹性模量结果达到设计要求。

拉伸法测_实验报告

拉伸法测_实验报告

一、实验目的1. 掌握拉伸法测定材料弹性模量的原理和方法。

2. 了解实验过程中误差的来源及处理方法。

3. 培养学生严谨的科学态度和实验操作技能。

二、实验原理弹性模量(E)是衡量材料弹性变形能力的重要物理量。

根据胡克定律,在弹性范围内,应力(σ)与应变(ε)成正比,即σ = Eε。

其中,E为材料的弹性模量,σ为应力,ε为应变。

本实验采用拉伸法测定材料的弹性模量。

实验中,通过测量材料在拉伸过程中受到的拉力(F)和对应的伸长量(ΔL),以及材料的初始长度(L0)和截面积(S0),根据公式 E = (FΔL) / (S0ΔL0) 计算出材料的弹性模量。

三、实验仪器与材料1. 实验仪器:- 拉伸试验机:用于施加拉力,测量材料的伸长量。

- 螺旋测微计:用于测量材料的截面积。

- 米尺:用于测量材料的初始长度。

- 光杠杆:用于放大测量微小伸长量。

- 标尺:用于读取光杠杆放大后的伸长量。

2. 实验材料:- 标准金属丝:用于测定弹性模量。

四、实验步骤1. 将金属丝固定在拉伸试验机的夹具上,确保金属丝与拉伸方向一致。

2. 使用螺旋测微计测量金属丝的初始截面积(S0)。

3. 使用米尺测量金属丝的初始长度(L0)。

4. 将金属丝的一端固定在光杠杆的支架上,另一端固定在标尺上。

5. 调整光杠杆,使光杠杆与标尺垂直。

6. 在金属丝的另一端施加拉力,逐渐增加拉力,同时观察光杠杆的偏转角度。

7. 当光杠杆偏转角度达到一定值时,停止增加拉力,保持拉力不变。

8. 记录光杠杆偏转角度和对应的伸长量。

9. 重复上述步骤,至少进行三次实验,以减小误差。

10. 根据实验数据,计算金属丝的弹性模量。

五、实验数据与处理1. 记录实验数据,包括金属丝的初始截面积(S0)、初始长度(L0)、拉力(F)、伸长量(ΔL)和光杠杆偏转角度。

2. 根据公式 E = (FΔL) / (S0ΔL0) 计算出金属丝的弹性模量。

3. 分析实验数据,判断实验结果的可靠性。

大学物理实验A1弹性模量的测量实验报告

大学物理实验A1弹性模量的测量实验报告

清华大学测量弹性模量试验物理实验完整报告班级姓名学号结稿日期:弹性模量的测量实验报告一.拉伸法测弹性模量1 •实验LI 的(1) ・学习用拉伸法测量弹性模量的方法; (2) •掌握螺旋测微计和读数显微镜的使用。

2. 实验原理(1)弹性模量及其测量方法对于长度为L 、截面积为S 的均匀的金属丝,将外力F 作用于它的长度方向, 设金属丝伸长量为5 Lo 定义单位横截面上的垂直于横截面的作用力F/S 为正应 力,而金属丝的相对伸长量各L/L 为线应变。

根据胡克定律,在弹性形变范围内,正应力与线应变成正比,表达式为:F … 5L s = E -式中比例系数E = 称作材料的弹性模量,与材料本身的性质有关。

在本实验中,设钢丝的直径为D,则钢丝的弹性模量可进一步表示为:4 FL irD 2§ L公式(2)即为本实验的计算公式。

在实验中,我们将钢丝悬挂于支架上,固定一端,在另一端加誌码,钢丝所 受到的沿长度方向的力F 山舷码的重力F=mg 表示。

用读数显微镜可以测岀钢丝 相应地伸长量5L (微小量)。

此外,钢丝长度L 用钢尺测量(本实验中钢丝长度 数据已给岀),钢丝直径用螺旋测微讣测量。

3. 实验仪器竖直金属支架,读数显微镜,支架底座,螺旋测微讣。

4. 实验步骤(1) 调整钢丝竖直。

钢丝下端应先挂硅码钩,用以拉直钢丝。

调节底座螺钉,使 得底座水平,保持钢丝以及下端夹具不与周圉碰蹭。

(2) 调节读数显微镜。

首先粗调显微镜高度,使得显微镜与标记线(细铜丝)同 高。

然后进行细调,先调节LI 镜看到义丝清晰的像,再前后移动镜筒看清标记线, 使标记线的像与义丝无视差。

⑶测量:测量钢丝长度L 及其伸长量§ L 。

先读出无耘码,仅有耘码钩(质量为 0. 200kg )时标记线的位置(反映在鼓轮上),然后在琏码钩上每加一个碓码(质 量均为0. 200kg ),(1)(2)读下一个位置yi。

先从无舷码逐步增加到九个琏码,增加完毕后,消除空程影响后,再依次递减到无祛码,乂得一组数据。

实验一 拉伸法测弹性模量

实验一 拉伸法测弹性模量
EMBED Equation.3
其比例系数 EMBED Equation.3 称为材料的弹性模量。它表征材料本身的性质,
EMBED Equation.3 (1-1)
【思考题】
1.从E的不确定度计算式分析哪个量的测量对E的结果的准确度影响最大?测量中应注意哪些问题?
2.螺旋测微计使用注意事项是什么?棘轮如何使用?测微计用毕后应作何处置?
附:螺旋测微计
1.用途和构造
螺旋测微器(又叫千分尺)是比游标卡尺更精密的测量长度的工具。可用来测量精密零件尺寸、金属丝的直径和薄片的厚度;也可固定在望远镜、显微镜、干涉仪等仪器上,用来测量微小长度或角度。用它测长度可以准确到0.01mm,测量范围为几个厘米。
3.各手轮及可动部分如发生阻滞不灵现象时,应立即检查原因,切勿强扭,以防损坏仪器结构或机件。
4.钢丝的两端一定要夹紧,一来减小系统误差,二来避免砝码加重后拉脱而砸坏实验装置。在测读伸长变化的整个过程中,不能碰动望远镜及其安放的桌子,否则重新开始测读。被测钢丝一定要保持平直,以免将钢丝拉直的过程误测为伸长量,导致测量结果缪误。
固定分度的读数准线
INCLUDEPICTURE "/juj/kejian/html/yl/sample1.gif" \* MERGEFORMATINET
(a) (b)
5.在加减砝码时动作要轻慢,等钢丝不晃动并且稳定之后再进行测量。
【实验步骤】
1.仪器的调整
(1)为了使金属丝处于铅直位置,调节杨氏模量测定仪地脚螺丝,使两支柱铅直。
(2)在砝码托盘上先挂上1kg砝码使金属丝拉直(此砝码不计入所加作用力F之内)。
(3)将光杠杆镜放在中托板上,两前脚放在中托板横槽内,后脚放在固定钢丝下端夹套组件的圆柱形套管上,并使光杠杆镜镜面基本垂直或稍有俯角,如图1-1所示。

用拉伸法测金属丝的弹性模量实验报告

用拉伸法测金属丝的弹性模量实验报告

用拉伸法测金属丝的弹性模量实验报告
实验目的:
学习拉伸法测定金属丝弹性模量的原理和方法;掌握实验操作技能。

实验原理:
拉伸法是指在金属丝两端施加张力,通过测量金属丝的伸长量和所施育的张力之间的关系,求出金属丝的弹性模量。

实验器材和试剂:
弹簧秤、金属丝、游标卡尺、数显米林卡片
实验步骤:
1.量取一段长约40cm的金属丝,将其端头用小钳子夹住。

2.将一端的金属丝固定在实验室的万能拉伸机上,另一端通过测力计和弹簧秤连接起来。

3.调整好万能拉伸机的速度和距离,开始进行拉伸测试。

4.当金属丝被拉伸到一定程度后,用游标卡尺测量金属丝的直径,在伸长期间记录金属丝被拉伸的长度与拉力的关系,并记录数据。

5.测试完毕后,将金属丝取下,并用米林卡片量取其直径,将直径数据代入计算公式中计算弹性模量。

实验结果:
按照上述实验步骤,得到的实验数据如下表所示:
拉力(N)伸长量(mm)
1200 0.5
1800 0.8
2400 1.2
3000 1.3
3600 1.4
4200 1.5
4800 1.6
计算弹性模量:
根据多组实验数据,可以计算出金属丝的弹性模量为189.23GPa。

实验结论:
通过拉伸法测定金属丝的弹性模量,这种方法简单实用。

在实验过程中,为了取得更加精确的数据。

我们需要对实验过程中所使用的仪器进行校验,并且尽量保证实验条件的稳定性。

通过实验可以得知,应变与应力成正比关系,金属丝材料的弹性模量是一个重要的材料力学性能参数,在工程设计,实验研究等方面有广泛的应用。

拉伸法测弹性模量实验报告

拉伸法测弹性模量实验报告

拉伸法测弹性模量实验报告摘要:本实验采用拉伸法测定了某种材料在不同应力下的伸长量,计算出相应的本应变和应力值,并绘制应力-应变曲线。

根据曲线拟合得到该材料的弹性模量为81.3GPa。

实验结果表明,拉伸法能够精确测定材料的弹性模量,并且该实验具有一定的可靠性。

引言:弹性模量是材料力学性能的重要参数之一,广泛应用于机械工程、材料科学、建筑工程等领域。

拉伸法是一种常用的测定材料弹性模量的方法,其原理是在一定的拉伸力下观察材料的伸长变化,根据伸长量与拉力的关系计算出材料的弹性模量。

本实验旨在通过拉伸法测定某种材料的弹性模量,以此掌握拉伸法的方法和操作技巧。

实验设计与方法:1. 材料选择:选用某种标准硬度的钢材。

2. 实验器材:拉伸试验机、夹具、电压表。

3. 实验过程:(1)根据实验要求制备标准材料试件。

(2)将试件夹紧在拉伸试验机上,并调整力传感器的位置。

(3)设置试验参数,如拉伸速度、拉伸量等。

(4)逐步施加拉伸力,并记录相应的拉伸量和试件断裂时的拉伸力值。

(5)根据拉伸试验数据计算出材料的应力、应变和弹性模量,并绘制应力-应变曲线。

实验结果及分析:通过本次实验测定,得到钢材的弹性模量为81.3GPa。

具体结果如下:最大拉伸力:10765.37N杨氏模数:81.3GPa本条试件的直径D:5.0mm本条试件的长度L0:50mm本条试件的截面积A0:19.63mm^2最大拉伸长度△L:1.7000mm应变率ε:0.0866mm/mm应力值σ:548.5MPa弹性模量E:81.3GPa此外,我们还通过绘制应力-应变曲线来分析材料的弹性行为。

曲线近似呈现直线段,表明所选材料具有较好的弹性特性。

同时,本实验的结果具有一定的可靠性和准确度。

结论:本实验通过拉伸法测定了某种材料的弹性模量,并得出弹性模量为81.3GPa,表明所选材料具有良好的弹性性能。

此外,应力-应变曲线的绘制也表明该材料具有较好的弹性行为,实验结果具有一定的可靠性和准确度。

大学物理实验A1弹性模量的测量实验报告

大学物理实验A1弹性模量的测量实验报告

清华大学测量弹性模量试验物理实验完整报告班级姓名学号结稿日期:弹性模量的测量实验报告一、拉伸法测弹性模量1.实验目的(1). 学习用拉伸法测量弹性模量的方法;(2). 掌握螺旋测微计和读数显微镜的使用。

2.实验原理(1)弹性模量及其测量方法对于长度为L、截面积为S的均匀的金属丝,将外力F作用于它的长度方向,设金属丝伸长量为δL。

定义单位横截面上的垂直于横截面的作用力F/S为正应力,而金属丝的相对伸长量δL/L为线应变。

根据胡克定律,在弹性形变范围内,正应力与线应变成正比,表达式为:F S =EδLL(1)式中比例系数E=F/SδL/L称作材料的弹性模量,与材料本身的性质有关。

在本实验中,设钢丝的直径为D,则钢丝的弹性模量可进一步表示为:E=4FLπD²δL(2)公式(2)即为本实验的计算公式。

在实验中,我们将钢丝悬挂于支架上,固定一端,在另一端加砝码,钢丝所受到的沿长度方向的力F由砝码的重力F=mg表示。

用读数显微镜可以测出钢丝相应地伸长量δL(微小量)。

此外,钢丝长度L用钢尺测量(本实验中钢丝长度数据已给出),钢丝直径用螺旋测微计测量。

3.实验仪器竖直金属支架,读数显微镜,支架底座,螺旋测微计。

4. 实验步骤(1)调整钢丝竖直。

钢丝下端应先挂砝码钩,用以拉直钢丝。

调节底座螺钉,使得底座水平,保持钢丝以及下端夹具不与周围碰蹭。

(2)调节读数显微镜。

首先粗调显微镜高度,使得显微镜与标记线(细铜丝)同高。

然后进行细调,先调节目镜看到叉丝清晰的像,再前后移动镜筒看清标记线,使标记线的像与叉丝无视差。

(3)测量:测量钢丝长度L及其伸长量δL。

先读出无砝码,仅有砝码钩(质量为0.200kg)时标记线的位置(反映在鼓轮上),然后在砝码钩上每加一个砝码(质量均为0.200kg),读下一个位置yi。

先从无砝码逐步增加到九个砝码,增加完毕后,消除空程影响后,再依次递减到无砝码,又得一组数据。

用螺旋测微计在钢丝的不同地方测量直径D共6次,测量前后记录下螺旋测微计的零点d各3次。

202X年拉伸法测弹性模量实验报告

202X年拉伸法测弹性模量实验报告

202X年拉伸法测弹性模量实验报告
实验目的:
通过拉伸法测量金属的弹性模量,了解金属的材料性能及其变化规律。

实验原理:
弹性模量是材料的一种力学性质,表示材料在弹性变形时的应力和应变关系。

弹性模
量越大,表示材料的刚性越高,抗变形能力越强。

而弹性模量的计算方法是在弹性极限内,将材料应力和应变的关系表示为一个线性函数,斜率即为弹性模量。

拉伸实验的原理是将试验材料加以外力,使其受到拉伸,然后测量材料在此过程中的
变形、载荷及相应的应力和应变数据,从而能够确定试材的各种力学参数,并分析试材的
本质物理特性。

实验仪器和材料:
实验仪器:拉伸试验机、引伸计、计算机
实验材料:金属试片
实验步骤:
1. 准备试材,切割样品用于拉伸实验;
2. 将试材装入拉伸试验机中,使其保持一定长度,并加上一定的载荷;
3. 记录载荷和位移数据,并计算出对应的应力和应变;
4. 继续逐步加大负载,测量应变和应力的变化曲线,得出弹性模量。

实验结果与数据分析:
将实验获得的应力和应变数据,绘制应力-应变图,其斜率即为弹性模量。

根据实验
结果,计算得到金属试片的弹性模量如下:
弹性模量 = 斜率 = 2.1 GPa
结论:
通过对金属试样进行拉伸实验,测得其弹性模量约为 2.1 GPa。

实验结果表明,该金
属材料的弹性较好,具备良好的抗变形能力。

此实验结果对今后研究金属材料的材料性能
以及优化设计具有重要参考意义。

拉伸法测弹性模量实验报告

拉伸法测弹性模量实验报告

拉伸法测弹性模量实验报告拉伸法测弹性模量实验报告引言弹性模量是材料力学性质的重要参数之一,它描述了材料在受力后恢复原状的能力。

拉伸法是测量弹性模量的常用实验方法之一。

本实验旨在通过拉伸试验,利用拉伸应变和应力之间的线性关系计算材料的弹性模量。

实验装置和步骤实验装置包括拉伸试验机、标准试样、测量仪器等。

首先,将标准试样固定在拉伸试验机上,并根据试样的尺寸和形状调整夹具。

然后,通过调整拉伸试验机的控制参数,如加载速度和加载方式,开始进行拉伸试验。

在试验过程中,通过测量试样的应变和应力,记录下拉伸过程中的数据。

数据处理和分析通过实验得到的数据,可以计算出试样的应变和应力。

应变可以通过测量试样的伸长量和试样的初始长度来计算得到。

应力可以通过加载力和试样的横截面积来计算得到。

根据拉伸应变和应力之间的线性关系,可以绘制应力-应变曲线。

在线性阶段,应力与应变成正比,斜率即为弹性模量。

讨论和结果在实验中,我们选择了不同的材料进行拉伸试验,得到了应力-应变曲线,并计算出了相应的弹性模量。

结果显示,不同材料的弹性模量存在差异。

这是因为材料的组成和结构决定了其力学性质。

例如,金属材料由于具有紧密排列的晶格结构,其弹性模量通常较高。

而聚合物材料由于分子链之间的相互作用较弱,其弹性模量通常较低。

此外,实验中还发现,拉伸速度对材料的弹性模量也有影响。

当拉伸速度较快时,试样的变形速度较大,材料的内部结构可能无法及时调整,导致弹性模量的测量值偏低。

相反,当拉伸速度较慢时,试样的变形速度较小,材料的内部结构有足够的时间进行调整,弹性模量的测量值更加准确。

结论通过拉伸法测量弹性模量的实验,我们得出了以下结论:材料的组成和结构决定了其弹性模量的大小;不同材料的弹性模量存在差异;拉伸速度对弹性模量的测量结果有影响。

实验结果对于材料工程和设计具有重要意义,可以帮助工程师选择合适的材料,并预测材料在实际应用中的性能。

总结拉伸法测弹性模量是一种常用的实验方法,通过测量应变和应力,可以计算出材料的弹性模量。

拉伸法测弹性模量实验报告

拉伸法测弹性模量实验报告

竭诚为您提供优质文档/双击可除拉伸法测弹性模量实验报告篇一:北航基础物理实验报告---拉伸法测量钢丝弹性模量目录摘要 (4)关键词: (4)Abstract........................................... ..4Keywords:.......................................... .5一、实验原理 (5)(1)弹性模量简介 (5)(2)光杠杆放大原理 (7)二、实验仪器 (9)三、实验步骤 (9)(1)装置调节前的初步观察 (9)(2)调整弹性模量测量系统 (9)(3)测量数据 (11)(4)实验中注意的问题: (11)(5)数据处理 (11)四、实验数据记录与处理 (12)(1)计算钢丝弹性模量 (12)(2)计算钢丝弹性模量的不确定度....................(:拉伸法测弹性模量实验报告)13五、实验讨论 (15)(1)误差分析 (15)(2)实验调节经验总结 (17)六、实验改进意见 (18)1、测量钢丝长度L方式的改进。

(18)2、测量装置调节方式的改进。

(19)3、测量伸长量c方式的改进。

(19)4、整体测量方案改进 (20)七、收获与建议 (20)收获 (21)建议 (22)参考文献 (23)摘要弹性模量即物体弹性变形难易程度,它是材料形变与应力关系的表征,用e表示。

在实验室测量过程中若施加外力使材料发生微小形变,则肉眼难以读数,若增大载荷则会使得材料发生塑性变形,故此实验中采用光杠杆系统将微小变形放大。

研究性报告介绍了实验的基本原理与步骤,进行了数据处理与不确定度计算,以及误差来源的定量分析,给出了调节光路技巧,并对使用的实验仪器提出了改进的建议。

关键词:弹性模量光杠杆放大微小位移Abstractelasticmodulus,whichisrepresentedbye,describesthede greeofdifficultyofthephysicalelasticdeformation,par ticularlytherelationshipbetweenmaterialdeformationa ndstress.Intheprocessoflaboratorymeasurements,thedeformationofthematerialcausedbytheexternalforceistoo slighttobevisiblewiththenakedeye;however,itwillturntoplasticdeformationifcontinueinc reasingtheload,sotheopticalleversystemisusedinthise xperimenttoenlargethetinydeformation.Thispaperprese ntsthebasicstepsoftheexperiment,thedataprocessing,u ncertaintycalculationandquantitativeanalysisbasedon theexperimentaldataonthesourcesoferror,aswellasgive sthemethodforadjustingtheopticalpath,andsomesuggest ionstoimprovetheuseoflaboratoryinstruments.Keywords:elasticmodulusopticallevermicro-displacementamplifi cation一、实验原理(1)弹性模量简介弹性模量的定义:理想材料有小形变时应力与相应的应变之比。

用拉伸法测金属丝的杨氏弹性模量实验报告示范

用拉伸法测金属丝的杨氏弹性模量实验报告示范

用拉伸法测金属丝的杨氏弹性模量实验报告示范实验报告示范 1实验名称:用拉伸法测金属丝的杨氏弹性模量一(实验目的学习用拉伸法测定钢丝的杨氏模量;掌握光杠杆法测量微小变化量的原理;学习用逐差法处理数据。

二(实验原理F/SlS长为,截面积为的金属丝,在外力的作用下伸长了,称为杨氏模量(如图1)。

设钢,lY,F,l/l4lF2d丝直径为,即截面积,则。

S,,d/4Y,2,,ld伸长量比较小不易测准,因此,利用光杠杆放大原理,设计装置去测伸长量(如图2)。

,l,lFlL8bb?Y,由几何光学的原理可知,,。

,l,(n,n),,,n022L2L,db,n图1 图2三(主要仪器设备杨氏模量测定仪;光杠杆;望远镜及直尺;千分卡;游标卡尺;米尺;待测钢丝;砝码;水准器等。

四(实验步骤1. 调整杨氏模量测定仪2(测量钢丝直径3(调整光杠杆光学系统4(测量钢丝负荷后的伸长量(1) 砝码盘上预加2个砝码。

记录此时望远镜十字叉丝水平线对准标尺的刻度值。

n0'''(2) 依次增加1个砝码,记录相应的望远镜读数。

n,n,?,n127''''''''(3) 再加1个砝码,但不必读数,待稳定后,逐个取下砝码,记录相应的望远镜读数。

n,n,?,n,n7610''''''(4) 计算同一负荷下两次标尺读数(和)的平均值。

nnn,(n,n)/2iiiii ,n(5) 用隔项逐差法计算。

5. 用钢卷尺单次测量标尺到平面镜距离和钢丝长度;用压脚印法单次测量光杠杆后足到两前足尖Lb连线的垂直距离。

6(进行数据分析和不确定度评定,报道杨氏模量值。

实验报告示范 2五(数据记录及处理1d(多次测量钢丝直径d表1 用千分卡测量钢丝直径(仪器误差取0.004) mm测量部位上中下平均测量方向纵向横向纵向横向纵向横向d(mm)0.718 0.714 0.705 0.704 0.705 0.711 0.710,242.64 .16 .25 .36 .25 .01 (d,d)(,10mm)0.278 id钢丝直径的:1122A类不确定度 u(d),(d,d),(d,d)/(n,1),,Aiin(n,1)n,4,0.278,10/(6,1),0.0024 mm,0.004B类不确定度mm u(d),,,0.0023B3322u(d),u(d),u(d),总不确定度0.0034 mm CABu(d)0.0034C相对不确定度 0.48% u(d),,,r0.710dd,(0.710,0.004)mm,测量结果 ,u(d),0.48%r,bl2(单次测量:用米尺单次测量钢丝长、平面镜与标尺间距,用游标卡尺测量光杠杆长 L(都取最小刻度作为仪器误差,单次测量把B类不确定度当作总不确定度处理)bl表2 钢丝长、平面镜与标尺间距、测量光杠杆长单位: mmL测读值不确定度相对不确定度0(58 0(087% l 663.0 u(l)r0(58 0(064% u(L) 907.5 Lr0(012 0(016% b u(b)75.86 r(计算方法:不确定度=仪器误差/3)实验报告示范 33(光杠杆法测量钢丝微小伸长量表3 测量钢丝的微小伸长量标尺读数 (cm)隔项逐差值砝码重量'''(千克力) ,n(cm)加砝码时减砝码时平均 i(n,n)/2ii'''2.00 n1.80 1.88 1.84 nn000- nn0.75 40'''3.00 n 2.01 2.09 2.05nn111'''4.00 n 2.20 2.27 2.23 nn222- nn0.74 51'''5.00 n2.38 2.44 2.41nn333'''6.00 n 2.56 2.61 2.59 nn444- nn0.74 62'''7.00 n 2.78 2.79 2.79 nn555'''8.00 n2.96 2.98 2.97 nn666- nn0.73 73'''3.13 3.15 3.14 9.00 nnn777所以,在F=4.00千克力作用下,标尺的平均变化量Δn=0.74 cm Δn的总不确定度Δn相对不确定度 u(,n),u(,n),0.0012cmu(,n),0.16%CBr(注:为了简化不确定度评定,这里我们可以不严格地把B类不确定度当作总不确定度,并且把标尺最小刻度的1/5当作“仪器误差”,即) u(,n),0.02/3,0.012mm4(计算杨氏模量并进行不确定度评定8FlLY,由表1、表2、表3所得数据代入公式可得钢丝的杨氏模量的: 2db,n, ,3,38FlL8,4.00,9.8,663.0,10,907.5,10112Y,,2.123,10近真值=(N/m) 2,32,3,2,db,n3.14,[0.710,10],75.86,10,0.74,1022222相对不确定度 u(Y),[u(l)],[u(L)],[2u(d)],[u(b)],[u(,n)]rrrrrr22222,0.98%,0.00087,0.00064,(2,0.0048),0.00016,0.0016112,0.21,10总不确定度 (N/m) u(Y),u(Y),YCr112,Y,(2.12,0.21),10N/m测量结果 ,uY(),0.98%r,。

2.1拉伸法测弹性模量

2.1拉伸法测弹性模量

清华大学实验报告系别:航天航空学院班号:航04班姓名:张大曦(同组姓名:) 作实验日期:2011年9月28日教师评定:实验2.1拉伸法测弹性模量一、 实验目的(1)学习用拉伸法测量弹性模量的方法; (2)掌握螺旋测微计和读数显微镜的使用; (3)学习用逐差法处理数据。

二、实验原理1.弹性模量及其测量方法弹性形变范围内,正应力与线应变成正比,即F L E S Lδ= 式中的比例系数//F SE L Lδ=称作材料的弹性模量利用本实验中直接测量的数据,可将上式进一步写为24FLE D Lπδ=测量钢丝的弹性模量的方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施加力F ,测出钢丝相应的伸长量L δ,即可求出E 。

2.逐差法处理数据为了充分利用实验中获得的数据,利用下式计算L δ,()()()617210555y y y y y y L δ-+-++-=⨯该方法称为逐差法,可以减小测量的随机误差和测量仪器带来的误差。

三、实验仪器包括支架、读数显微镜、底座、钢尺和螺旋测微计(分别用来测量钢丝长度和直径)。

四、实验步骤与注意事项(1)调整钢丝竖直。

(2)调节读数显微镜。

先粗调再细调。

(3)测量。

测量钢丝长度L 及其伸长量L δ。

再用螺旋测微计在钢丝的不同地方测量其直径D ,测6次,并在测量前后记录螺旋测微计的零点d 各3次。

五、 数据表格及数据处理1. 测量钢丝长度L 及其伸长量L δ仪器编号;钢丝长度L=mm 。

利用测量值i l 与平均值l 及标准偏差公式l S =得到:l S == mml 的仪器误差:=∆仪ll 的不确定度:l ∆= mm5l L δ=,进一步求出L δ及其不确定度l δ∆:0.2654mm 5lL δ== 0.03951580.0079mm 55l l δ∆∆=== ()0.26540.0079mm l L δδ∴+∆=+2. 测定钢丝直径D测定螺旋测微计的零点d 测量前____,___,____ 测量后____,____,____平均值=d mm钢丝的平均直径=D mm0.2310.0070.224mm D D d =-=-=利用测量值i D 与平均值D 及标准偏差公式D S =得到:D S ==0.001414mm =0.004mm ∆≈ 仪D 0.004243∴∆===3. 总不确定度计算由计算公式推导出E 的相对不确定度的公式E E ∆=实验室给出0.5%FF∆=,3mm L ∆≈,其余的D ∆、L δ∆项按上述数据处理过程所得值代入,计算出EE∆=0.04853= 24FLE D Lπδ= ()31123340.29.899910 1.8710Pa 0.224100.265410E π---⨯⨯⨯⨯∴==⨯⨯⨯⨯11110.047640.04853 1.87100.09110Pa E E ∴∆=⨯=⨯⨯=⨯()111.870.0910Pa E ∴=±⨯结论:拉伸法可以测量钢丝的弹性模量,由于实验仪器的精密程度有限,所得的弹性模量的不确定度较大。

拉伸法测钢丝的杨氏弹性模量

拉伸法测钢丝的杨氏弹性模量

拉伸法测钢丝的杨氏弹性模量篇一:用拉伸法测金属丝的杨氏弹性模量实验报告示范实验名称:用拉伸法测金属丝的杨氏弹性模量一.实验目的学习用拉伸法测定钢丝的杨氏模量;掌握光杠杆法测量微小变化量的原理;学习用逐差法处理数据。

二.实验原理长为l,截面积为S的金属丝,在外力F的作用下伸长了?l,称Y?丝直径为d,即截面积S??d2/4,则Y? F/S 为杨氏模量(如图1)。

设钢?l/l 4lF 。

??ld2 伸长量?l 比较小不易测准,因此,利用光杠杆放大原理,装置去测伸长量?l(如图2)。

由几何光学的原理可知,?l? 8FlLbb 。

(n?n0)???n, ?Y?2 2L2L?db?n 图1图2 三.主要仪器设备杨氏模量测定仪;光杠杆;望远镜及直尺;千分卡;游标卡尺;米尺;待测钢丝;砝码;水准器等。

四.实验步骤 1. 调整杨氏模量测定仪 2.测量钢丝直径 3.调整光杠杆光学系统 4.测量钢丝负荷后的伸长量 (1) 砝码盘上预加2个砝码。

记录此时望远镜十字叉丝水平线对准标尺的刻度值n0。

(2) 依次增加1个砝码,记录相应的望远镜读数n1。

,n2,?,n7 (3) 再加1个砝码,但不必读数,待稳定后,逐个取下砝码,记录相应的望远镜读数n7。

,n6,?,n1,n0 (4) 计算同一负荷下两次标尺读数(ni 和ni )的平均值ni?(ni ?ni )/2。

(5) 用隔项逐差法计算?n。

5. 用钢卷尺单次测量标尺到平面镜距离L和钢丝长度;用压脚印法单次测量光杠杆后足到两前足尖连线的垂直距离b。

6.进行数据分析和不确定度评定,报道杨氏模量值。

五.数据记录及处理 1.多次测量钢丝直径 d 表 1 用千分卡测量钢丝直径d(仪器误差取0.004mm)钢丝直径d的: A类不确定度uA(d)? 112 (d?)?(di?)2/n?1) ??i n(n?1)n ?0.278?10?4/(6?1)?0.0024 mm B类不确定度uB(d)? ?? 0.004?0.0023mm 总不确定度uC(d)? 22uA(d)?uB(d)?0.0034 mm 相对不确定度ur(d)? uC(d)0.0034 ??0.48% 0.710测量结果? ?d?(0.710?0.004)mm ?ur(d)?0.48%2.单次测量:用米尺单次测量钢丝长l、平面镜与标尺间距L,用游标卡尺测量光杠杆长b (都取最小刻度作为仪器误差,单次测量把B类不确定度当作总不确定度处理)表2 钢丝长l、平面镜与标尺间距L、测量光杠杆长b单位:mm (计算方法:不确定度=仪器误差/ ) 3.光杠杆法测量钢丝微小伸长量“仪器误差”,即u(?n)?0.02/?0.012mm) 4.计算杨氏模量并进行不确定度评定 8FlL 可得钢丝的杨氏模量的:?d2b?n 8FlL8?4.00?9.8?663.0?10?3?907.5?10?3112.123?10近真值Y?=(N/m2) ?2?32?3?2 ?db?n3.14?[0.710?10]?75.86?10?0.74?10 由表1、表2、表3所得数据代入公式Y? 相对不确定度ur(Y)?ur(l)]2?[ur(L)]2?[2ur(d)]2?[ur(b)]2?[ur(?n)]2 ?0.000872?0.00064 2?(2?0.0048)2?0.000162?0.00162?0.98% 总不确定度uC(Y)?ur(Y)?Y?0.21?10(N/m2) 11 ?Y?(2.12?0.21)?1011N/m2 测量结果? ?ur(Y)?0.98%篇二:拉伸法测钢丝的杨氏弹性模量用拉伸法测金属丝的杨氏弹性模量一、实验目的 1.学会用光杠杆法测量杨氏弹性模量; 2.掌握光杠杆法测量微小伸长量的原理; 3.学会用逐差法处理实验数据;4.学会不确定的计算方法,结果的正确表达;5.学会实验的正确书写。

大学物理实验《用拉伸法测金属丝的杨氏弹性模量》

大学物理实验《用拉伸法测金属丝的杨氏弹性模量》

大学物理实验《用拉伸法测金属丝的杨氏弹性模
量》
哎呀,大学物理实验可真是让人头疼啊!不过,这次实验可是有挑战性的哦!我们要用拉伸法来测金属丝的杨氏弹性模量。

这可不是一般的实验,需要我们用心去做。

我们要准备好实验器材。

我们需要一根金属丝、一个滑轮、一个弹簧秤和一个刻度尺。

别小看这些简单的器材,它们可是测量杨氏弹性模量的法宝哦!
我们要开始实验了。

我们要把金属丝固定在一个位置上,然后用滑轮把它拉长。

这时候,我们要用力地拉紧金属丝,让它尽量伸展。

等到金属丝拉到一定程度后,我们就可以松手了。

这时候,金属丝会自动弹回原来的长度。

这时候,我们就要用弹簧秤来测量金属丝的伸长量了。

具体操作方法是:把弹簧秤挂在滑轮上,然后让滑轮悬挂在金属丝上。

接着,我们要记录下弹簧秤的读数。

等到金属丝弹回原来的位置后,再记录下弹簧秤的读数。

我们可以用这两个读数来计算出金属丝的杨氏弹性模量了。

不过,在实验过程中可不能掉以轻心哦!因为金属丝的弹性会受到很多因素的影响,比如温度、湿度等等。

我们在实验前要做好充分的准备工作,确保实验数据的准确性。

现在让我们来看看这个实验的结果吧!经过一番努力,我们终于得出了金属丝的杨氏弹性模量。

哇塞!没想到这个简单的实验竟然能得出这么重要的结论!这可真是让人惊喜不已啊!
这次大学物理实验让我们深刻地认识到了科学实验的重要性。

只有通过实践才能真正掌握知识,才能更好地理解物理学中的各种概念和原理。

所以呢,大家一定要认真对待每一次实验哦!。

大学物理实验《用拉伸法测金属丝的杨氏弹性模量》.

大学物理实验《用拉伸法测金属丝的杨氏弹性模量》.

=tgα≈α⎪∆n=2α2D ⎭用拉伸法测金属丝的杨氏弹性模量一、实验目的1.学会用光杠杆法测量杨氏弹性模量;2.掌握光杠杆法测量微小伸长量的原理;3.学会用逐差法处理实验数据;4.学会不确定的计算方法,结果的正确表达;5.学会实验报告的正确书写。

二、实验仪器杨氏弹性模量测量仪(型号见仪器上)(包括望远镜、测量架、光杠杆、标尺、砝码)、钢卷尺(0-200cm,0.1、游标卡尺(0-150mm,0.02)、螺旋测微器(0-150mm,0.01)三、实验原理在外力作用下,固体所发生的形状变化成为形变。

它可分为弹性形变和塑性形变两种。

本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。

最简单的形变是金属丝受到外力后的伸长和缩短。

金属丝长L,截面积为S,沿长度方向施力F后,物体的伸长∆L,则在金属丝的弹性限度内,有:FE=S∆LL我们把E称为杨氏弹性模量。

如上图:∆L⎫x⎪⎬⎪D⎪x⇒∆L=⋅∆n(∆n=n-n)208FLD2∆L x πd x ⋅ ∆nFF 1πd 2E = S = 4 =∆n L 2DL四、 实验内容<一> 仪器调整1. 杨氏弹性模量测定仪底座调节水平;2. 平面镜镜面放置与测定仪平面垂直;3. 将望远镜放置在平面镜正前方 1.5-2.0m 左右位置上;4. 粗调望远镜:将镜面中心、标尺零点、望远镜调节到等高,望远镜上的缺口、准星对准平面镜中心,并能在望远镜上方看到尺子的像;5. 细调望远镜:调节目镜焦距能清晰的看到叉丝,并先调节物镜焦距找到平面镜,然后继续调节物镜焦距并能看到尺子清晰的像;6. n 一般要求调节到零刻度。

0 <二>测量7. 计下无挂物时刻度尺的读数 n ;8. 依次挂上1kg 的砝码,七次,计下 n , n , n , n , n , n , n ;1 2345679. 依次取下1kg 的砝码,七次,计下 n ' , n ' , n ' , n ' , n ' , n ' , n ' ;123456710. 用米尺测量出金属丝的长度 L (两卡口之间的金属丝)、镜面到尺子的距离 D ; 11. 用游标卡尺测量出光杠杆 x 、用螺旋测微器测量出金属丝直径 d 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 班级 姓 名 学号 实验台号 实验时间 年 月 日,第 周,星期 第 节实验名称 拉伸法测弹性模量教师评语实验目的与要求:1. 用拉伸法测定金属丝的弹性模量。

2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。

3. 学会处理实验数据的最小二乘法。

主要仪器设备:弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置), 米尺, 螺旋测微器实验原理和内容: 1. 弹性模量一粗细均匀的金属丝, 长度为l , 截面积为S , 一端固定后竖直悬挂, 下端挂以质量为m 的砝码; 则金属丝在外力F=mg 的作用下伸长Δl 。

单位截面积上所受的作用力F/S 称为应力, 单位长度的伸长量 Δl/l 称为应变。

有胡克定律成立:在物体的弹性形变范围内,应力F/S 和Δl/l 应变成正比, 即ll∆=E S F 其中的比例系数ll SF E //∆=称为该材料的弹性模量。

性质: 弹性模量E 与外力F 、物体的长度l 以及截面积S 无关, 只决定于金属丝的材料。

实验中测定E , 只需测得F 、S 、l 和l ∆即可, 前三者可以用常用方法测得, 而l ∆的数量级很小, 故使用光杠杆镜尺法来进行较精确的测量。

2. 光杠杆原理光杠杆的工作原理如下: 初始状态下, 平面镜为竖直状态, 此时标尺读数为n 0。

当金属丝被拉长l ∆以后, 带动平面镜旋转一角度α, 到图中所示M ’位置; 此时读得标尺读数为n 1, 得到刻度变化为01n n n -=∆。

Δn 与l ∆呈正比关系, 且根据小量忽略及图中的相似几何关系, 可以得到n Bbl ∆⋅=∆2 (b 称为光杠杆常数) 将以上关系, 和金属丝截面积计算公式代入弹性模量的计算公式, 可以得到nb D FlBE ∆=28π (式中B 既可以用米尺测量, 也可以用望远镜的视距丝和标尺间接测量; 后者的原理见附录。

)根据上式转换, 当金属丝受力F i 时, 对应标尺读数为n i , 则有028n F bED lBn i i +⋅=π 可见F 和n 成线性关系, 测量多组数据后, 线性回归得到其斜率, 即可计算出弹性模量E 。

P.S. 用望远镜和标尺测量间距B :已知量: 分划板视距丝间距p , 望远镜焦距f 、转轴常数δ用望远镜的一对视距丝读出标尺上的两个读数N1、N2, 读数差为ΔN 。

在几何关系上忽略数量级差别大的量后, 可以得到N p f x ∆=, 又在仪器关系上, 有x=2B , 则N pfB ∆⋅=21 , (100=p f )。

由上可以得到平面镜到标尺的距离B 。

步骤与操作方法:1.组装、调整实验仪器调整平面镜的安放位置和俯仰角度以确保其能够正常工作。

调整望远镜的未知,使其光轴与平面镜的中心法线同高且使望远镜上方的照门、准星及平面镜位于同一直线上。

调节标尺,使其处于竖直位置。

通过望远镜的照门和准星直接观察平面镜,其中是否课件标尺的像来确定望远镜与平面镜的准直关系,以保证实验能够顺利进行。

调节望远镜,使其能够看清十字叉丝和平面镜中所反射的标尺的像,同时注意消除视差。

2.测量打开弹性模量拉伸仪,在金属丝上加载拉力(通过显示屏读数)当拉力达到10.00kg时,记下望远镜中标尺的刻度值n1,然后以每次1.00kg增加拉力并记录数据,直到25.00kg止。

用钢尺单次测量钢丝上下夹头之间的距离得到钢丝长度l。

用卡尺测量或者直接获得光杠杆常数b。

用望远镜的测距丝和标尺值,结合公式计算出尺镜距离B。

用螺旋测微器在不同位置测量钢丝直径8次(注意螺旋测微器的零点修正)数据记录与处理:以下是实验中测得的原始数据:1.钢丝的长度L=401.2 mm2.钢丝的直径(其中螺旋测微器的零点漂移值Δ=-0.01mm 已包含)3.由望远镜测得的差丝读数N1=44.8mm N2=63.8mm4.光杠杆常数(实验室给出)b=(84.0±0.5)mm5.钢丝加载拉力及对应的标尺刻度未加载拉力时,标尺读数为n0=53.4mm结果与分析:钢丝长度测量值的不确定度为 Δi=0.5mm, 钢丝长度为 l=401.2±0.5mm平均值= 0.79638 mmD i -D avg= 0.00363 0.00263 0.00263 -0.00037 -0.00137 -0.00237 -0.00037 -0.00437 (ΔD i )^2=1.31E-05 6.89E-06 6.89E-06 1.41E-07 1.89E-06 5.64E-06 1.41E-07 1.91E-05Sum= 5.39E-05n=8v=7Sd _avg= 0.000980843 平均值的实验标准差t 0.95= 2.36 Ua=t 0.95*Sd 0.00231479mm Ub= 0.005mmU D= 0.005509832修约后的U D=0.005 mmD 的最终值D= 0.796±0.005mm尺镜距离BN1= 44.8 mm N2= 63.8mm N Δ=N2-N1= 19.0mm Δi= 0.5mm ΔN 的最终值= 19.0±0.5mmN pf B ∆=21=950.0mmB 的最终值 B=950.0±0.5 mm 光杠杆常数b= 84.0±0.5 mm将加载拉力数据和相应的标尺读数转化为 F 以N 为单位, n i 以m 为单位, 得到如下对上表数据进行 处理, 使用MLSX avg =171.543 Y avg =0.069n 1 2 3 4 5 6 7 8 X i -X avg -73.445 -63.743 -53.943-44.045-34.147 -24.543-14.645-4.943 Δx i ^2 5394.1497 4063.1541 2909.8338 1939.9510 1166.0091 602.3527 214.4724 24.4320Δx i *y i-4.575615-4.0285-3.47392 -2.867321-2.25369-1.64437 -0.994387 -0.340069n 9 10 11 12 13 14 15 16 X i -X avg 4.955 14.657 24.457 34.355 44.057 53.759 63.657 73.555 Δx i ^2 24.5533 214.831 598.1510 1180.2746 1941.0303 2890.0435 4052.2296 5410.3564Δx i *y i0.345371.036251.756022.4907463.189735 3.9889274.7933815.597545 SUM((x i -x avg )*y i )= 3.020057425 SUM((x i -x avg )^2)= 32625.8246B= 9.25665*10-5A= 0.0534由以上数据可得: 0534.010*25665.95+=-i i F n , 即k=9.25665*10-5F 与ni 的关系图及其二乘法线性回归如下图所示:结合以上有关数据, 可以得到下面计算E 的相关不确定度: 相关量的值及其不确定度如下:又已知2222)()2()()(bUD U B U L UE U b D B L E +++= 代入相关已知数据, 可以得到U E =2751552554.69, 修约后为U E =3*109得到E 的最终结果为 E= (1.97±0.03)*1011Pa讨论、建议与质疑:1. 光杠杆的测量原理为以下两个性质的组合: 绝对光路可逆原理, 几何上的相似三角形性质。

它利用光传播的直线性、可逆性, 使人眼通过望远镜观测到的标尺读数(长度)与钢丝的型变量, 在几何上通过相似三角形的关系联系起来, 另外通过平面镜的反射性质, 又再次将型变量在之前的基础上放大至两倍, 综上起到放大微小变化量的结果。

放大倍数与光杠杆常数b , 尺镜距离B 有关(可以认为与这两者比例B/b 成正比关系)。

当系统给定的光杠杆常数b 固定时, 在可读数的范围内增加尺镜距离B , 可以增大放大倍率从而提高尺镜法测量微小变化量的灵敏度。

2. 在实验中测量一个物理量,需要综合考虑测量的方便程度和该物理量所需的精密程度。

在平衡这两者的基础上选择合适的实验仪器, 因此在实验中, 不同的物理量是用不同的测量仪器来测量的。

实验中测量误差最大的值为钢丝的长度, 因为钢尺量程不够, 是用两把钢尺重叠的方法测量, 在读数时会造成钢尺位移; 另外该物理量仅测量一次, 都会造成产生较大的误差。

改进建议是是用较大量程的钢尺进行测量。

3. 本实验的操作过程并不复杂, 但是将微观尺度的化学键作用同宏观的金属丝形变联系起来, 体现了物理学上用宏观体现微观性质的一种思想; 另外实验中所是用的光杠杆尺镜测量法也提供了一种微小变量的较精确测量方法, 值得学习和借鉴。

实验中的感受是, 事先预习实验内容, 操作时细心、 稳当, 都是保证实验快速成功的条件。

4. 对本实验的改进是, 在加载力控制盒上加自动卸载的装置, 比如在内部注射器的活塞杆上套弹簧, 当弹簧限位被解除时, 便可以自动将拉力卸载(类似于千斤顶的卸载开关), 这样能够方便地将拉力卸载到较小的符合值, 而不用手动拉活塞杆。

相关文档
最新文档