双积分数字直流电压表
数字电压表的概述
数字电压表的概述数字电压表是一种用来测量电路中的电压的仪器。
它可以用来测量直流电压和交流电压,广泛应用于电子工程、电力工程、通信工程等领域。
数字电压表具有精确度高、测量范围广、操作简单等优点,成为现代电子测量仪器中不可或缺的一部分。
数字电压表的基本原理是将被测电压转换为与之成正比的电流或电荷,再通过电路进行放大和处理,最后将结果显示在数字显示屏上。
数字电压表的核心部件是模拟到数字转换器(ADC),它负责将模拟电压转换为数字信号,并传递给数字处理单元进行处理和显示。
数字电压表通常还配备了保护电路,以防止电压过高或过低对仪器造成损坏。
数字电压表具有很高的精确度,通常可以达到0.1%甚至更高的精度。
这意味着在测量电压时,数字电压表的误差非常小,可以提供可靠的测量结果。
数字电压表的测量范围也很广,可以覆盖几毫伏到几千伏的电压范围,满足不同应用场景的需求。
数字电压表操作简单,通常只需要将测量引线连接到被测电路的正负极,然后选择合适的量程和测量模式,即可进行测量。
数字电压表的显示屏通常会显示电压数值和量程单位,方便用户直观地读取测量结果。
一些高级的数字电压表还具有自动量程切换、数据记录、峰值保持等功能,进一步提高了测量的便利性和灵活性。
数字电压表的应用非常广泛。
在电子工程中,数字电压表被用来测量电路中各个节点的电压,以验证电路设计的正确性。
在电力工程中,数字电压表可以用来测量电力系统中的电压变化,以监测电网的稳定性。
在通信工程中,数字电压表可以用来测量通信设备中的电压信号,以确保通信质量的稳定性。
总的来说,数字电压表是一种精确、方便、实用的电子测量仪器。
它的出现极大地简化了电压测量的过程,提高了测量的准确性和效率。
数字电压表在各个领域都有着广泛的应用,为工程师和技术人员提供了强大的测量工具。
随着科技的不断发展,数字电压表也在不断创新和改进,将会有更多的功能和特性加入进来,进一步满足不同领域的测量需求。
高速积分式直流数字电压表
器的输入端 ,进行 两次 方向相反的积 分,
积 分 时 间常 数 T R 。 = C ()过 零 比较 器 2
过 零比较器用来确 定积分器 的输 出
电压 V 0过 零 的时 刻 。 当 V ≥0时 , 较 O 比 器输 出 V c为低 电平 : 当 V < 0 0时 , c为 V
及 电网电压波动有较好的抑制性。
方波 , 占空 比 为 5 % : O 小 的 门信 号 。
路构成 的控制器对积 分 电路的积 分门限 和计数门限进行控制 , 并协调显示输出 电 压 值 。经 测试 , 电压 测 量精 度 可 达 到 00 0 伏 ,电压采集 的时 间分辨率可达 .0 1
到 01秒 , 且 对 环 境 温 度 、 . 并 电磁 干 扰 以
控 制 部分 原 理
电路工作过程 分为以下 4个阶段进
行:
( 积 分器 1 )
度, 提高 电压 采集 中的抗干扰性 能 , 设 本
计 采 用 基 于 数 字 电路 和 模 拟 电路 并 结 合 A 8 S 1 片机 的 系统 ,先通 过 两 片 运 T9 5 单
控制信号说明: A 、 0 A1 为 积 分 控 制 开 关 ,0通 ,1 1 0
F n 组成 n级计数器 , F 一1 对输入时钟脉冲
C P计 数 ,以便 把 与 输 入 电压 平 均 值 成 正
比的时间间隔转变成数字信号输 出。 当计
数到 2 n个 时 钟 脉 冲 时 ,F F 0一F n 1均 F一 回 到 0态 ,而 F n翻 转 到 1态 , = F Qn l后 开 关 S 从 位 置 A 转接 到 B 1 。 ()时钟 脉 冲 控 制 门 4
束, 计数停止。直接将十六进制转换 为十
双积分数字直流电压表
积分式直流数字电压表摘要本双积分电压表系统以89C51单片机为核心、以分立元件制作的双积分型A/D转换器为主要部件的4位半积分式数字直流电压表,并对所设计的电压表进行了测试,结果测量误差≤±0.03%,精度达到4位半。
实现了自动量程转换功能,自动调零功能,有很好的实际应用价值。
关键词:单片机,双积分A/D转换器,自动调零,自动转换量程目录1 方案论证与比较 (1)1.1信号调理 (1)1.2处理器的选择与比较 (1)1.3积分器的选择与比较 (1)2 系统设计 (2)2.1总体设计 (2)2.2单元电路设计 (3)2.2.1 信号调理调理电路 (3)2.2.2 双积分电路设计 (4)2.2.3 基准源电路设计 (4)3 软件设计 (5)4系统测试 (5)5 结论 (6)参考文献: (6)附录: (7)附1:元器件明细表: (8)附2:仪器设备清单 (8)附3:电路图图纸 (9)附4:程序清单方案论证与比较1.1.1信号调理比较与选择方案一、信号经过缓冲器提高输入阻抗后经过低通滤波器后,然后由模拟开关选择信号放大与不放大,当信号大于200mv时不放大,小于200mv时经过仪表放大器进行放大。
方案二、信号经过电压分阻条统一衰减后经过缓冲器提高其负载能力,信号进行低通滤波器其截止频率在10HZ左后滤除高频噪声及干扰,然后经过低噪声,高精度运放放大。
方案论证:方案一对不同信号进行放大其电路复杂,当测量多个量程时放大电路的增益不一样,需多个放大电路成本很高,且用仪表放大器价格过于昂贵。
方案二通过统一衰减后在进行放大其电路简单调试方便。
所以采用方案二。
1.2 处理器的比较与选择STC单片机所特有的在线下载功能和其他公司的单片机不同,不是利用SPI进行在线编程,而是利用IAP功能,在系统运行时编程,因此,可以通过串口来对单片机进行编程。
其电路极为简单,只要所使用的单片机系统具有232串口通信功能即可。
数字电压表
教案首页A 、复习掌握三种模拟式交流电压表工作原理。
B 、新课数字电压表DVM数字电压表:直流数字电压表、交流数字电压表、数字万用表等(本章主要介绍直流数字电压表) 优点(与模拟相比):精度高、测量速度快、输入阻抗高、读数准确、抗干扰能力和抗过载能力强、便于实现测量过程自动化等。
2.3.1 DVM 的主要技术指标1.测量范围(量程、显示位数和超量程能力)(1)量程 表示电压表所能测量的最小和最大电压范围。
基本量程:不经衰减器和输入放大器的量程(测量误差最小的量程)。
通常为1V 或10 V ,也有的为2 V 或5 V 。
(2)位数 表示数字电压表精密程度的参数。
完整位:能够显示0 ~ 9这十个数码的位。
四位数字电压表:最大显示数字为9 999和19 999的数字电压表。
为了区别把19 999的数字电压表称为214位数字电压表。
(3)超量程能力 指DVM 所能测量的最大电压超过量值的能力,它是数字电压表的一个重要指标。
是否有超量程能力,要根据它的量程分档情况及能够显示的最大数字情况决定。
典型例子无超量程能力:① 显示位数全是完整位的数字电压表。
② 带有21位的数字电压表,按2 V 、20 V 、200 V 分挡。
有超量程能力: ① 带有21位并以1V 、10 V 、100 V 分挡的数字电压表。
② 215位的数字电压表,在10 V 量程上,最大显示 9 V 电压,允许有100%的超量程。
提问讲解重点强调新授课③如果数字电压表最大显示为59 999,称为434位的数字电压表。
如量程按5 V 、50 V 、500 V 分挡,则允许有20超量程。
2.分辨力数字电压表能够显示输入电压最小变化值的能力,即显示器末位读数跳一个单位所需的最小电压变化值。
不同量程,分辨力不同。
量程越小,分辨力越高。
3.测量误差(只讨论固有误差) 在基准条件下的误差:)%%(m x U U U βα+±=∆式中 U x ——被测电压读数; U m ——该量程的满度值; α——误差的相对项系数; αU x ——读数误差,随被测电压而变化; β——误差的固定项系数; βU m ——满度误差,对于给定的量程,β U m 是不变的。
直流数字电压表的课程设计
3 元器件的介绍· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 5
3.1 课程设计器材和供参考选择的元器件· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1 3.2 3 A/D 转换器 MC14433· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·5 2 3.3 MC14433 引脚功能说明· 8 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3.4 七段锁存—译码—驱动器 MC4511· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10 3.5 七路达林顿驱动器阵列 MC1413· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 12 3.6 高精度低漂移能隙基准电源 MC1403· 12 · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
5 课程设计报告结论· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·13
综合实验三 位直流数字电压表
综合实验三213位直流数字电压表一、实验目的 1、了解双积分式A / D 转换器的工作原理2、熟悉213位A / D 转换器CC14433的性能及其引脚功能3、掌握用CC14433构成直流数字电压表的方法二、实验原理直流数字电压表的核心器件是一个间接型A / D 转换器,它首先将输入的模拟电压信号变换成易于准确测量的时间量,然后在这个时间宽度里用计数器计时,计数结果就是正比于输入模拟电压信号的数字量。
1、V -T 变换型双积分A / D 转换器图3-1是双积分ADC 的控制逻辑框图。
它由积分器(包括运算放大器A 1 和RC 积分网络)、过零比较器A 2,N 位二进制计数器,开关控制电路,门控电路,参考电压V R 与时钟脉冲源CP图3-1 双积分ADC 原理框图转换开始前,先将计数器清零,并通过控制电路使开关 S O 接通,将电容C 充分放电。
由于计数器进位输出Q C =0,控制电路使开关S 接通v i ,模拟电压与积分器接通,同时,门G 被封锁,计数器不工作。
积分器输出v A 线性下降,经零值比较器A 2 获得一方波v C ,打开门G ,计数器开始计数,当输入2n个时钟脉冲后t =T 1,各触发器输出端D n-1~D O 由111…1回到000…0,其进位输出Q C =1,作为定时控制信号,通过控制电路将开关S转换至基准电压源-V R ,积分器向相反方向积分,v A 开始线性上升,计数器重新从0开始计数,直到t =T 2,v A 下降到0,比较器输出的正方波结束,此时计数器中暂存二进制数字就是v i 相对应的二进制数码。
2、213位双积分A / D 转换器CC14433的性能特点 CC14433是CMOS 双积分式213位A / D 转换器,它是将构成数字和模拟电路的约7700多个MOS 晶体管集成在一个硅芯片上,芯片有24只引脚,采用双列直插式,其引脚排列与功能如图18-2所示。
图3-2 CC14433引脚排列引脚功能说明:V AG (1脚):被测电压V X 和基准电压V R 的参考地V R (2脚):外接基准电压(2V 或200mV )输入端V X (3脚):被测电压输入端R 1(4脚)、R 1 /C 1(5脚)、C 1(6脚):外接积分阻容元件端C 1=0.1μf (聚酯薄膜电容器),R 1=470K Ω(2V 量程);R 1=27K Ω(200mV 量程)。
双斜积分式DVM的工作原理
西南科技大学
一、本章内容
7. 能分析AC-DC转换器,R-U 转换器,I-U 转换器的 组成和工作过程。
8. 结合图4.4-2和图4.4-3,掌握电子计数式频率计的工 作原理,能详细分析工作过程。
9. 能详细分析测频方面的测量误差,包括: (1)量化误差——±1误差 (2)标准频率误差 10. 测量时间、相位的工作原理,能详细分析其测量误
电子测量与仪表( Electronic Measurement and Instruments )
西南科技大学
4.1 电压测量的数字化方法
由于DVM的灵敏度很高,因而对外部干扰的抑制 能力就成为保证它的高精度测量能力的重要因素。外 部干扰可分为串模干扰和共模干扰两种。
(1)串模干扰
串模干扰是指干扰电压Usm以串联形式与被测电压 Ux迭加后加到DVM输入端,见图4.1.2。
Uom正比于Ux。
电子测量与仪表( Electronic Measurement and Instruments )
西南科技大学
4.1.2 DVM的主要类型
(1) 双斜积分式DVM的工作原理
准备阶段(t0~t1)
采样阶段(t1~t2)
比较阶段(t2~t3):
“逻辑控制”使开关 S2( 或S3)闭合,其他开关 断开,基准信号UN(或UN,UN>0)送入积分器, 进行反向积分。同时,计 数器仍以T0为时钟计数。 至t3时,积分器输出uo2=0, 此时计数器的计数值为N2。
被测量转为 频率
被测量转为 数字
数字式仪表的结构框图
电子测量与仪表( Electronic Measurement and Instruments )
西南科技大学
4.1 电压测量的数字化方法
数字直流电压表
摘要本文介绍了用ADC0832集成电压转换芯片和ATC89C52单片机设计制作的数字直流电压表。
在测量仪器中,电压表是必须的,而且电压表的好坏直接影响到测量精度。
具有一个精度高、转换速度快、性能稳定的电压表才能符合测量的要求。
为此,我们设计了数字电压表,该系统有三个部分:数据采集,数据处理和显示,终端接收,主要由ADC0832转换器和单片机ATC89C52构成,A/D转换器在单片机的控制下完成对模拟信号的采集和转换功能,最后由译码器74LS164和LED数码显示器构成的显示部分来显示采集的电压值。
此设计通过调试完全满足设计的指标要求。
电路设计简单,设计制作方便有较强的实用性。
关键词:模数转换器ADC0832;单片机ATC89C52;数字电压表; 译码器74LS164;LED数码显示器摘要 (1)第一章电压表概述 (4)第二章总体方案设计 (6)2.1信号采集分析 (6)2.1.1信号采集 (6)2.1.2 A/D转换器的选取 (8)2.2控制与显示方法分析 (8)2.2.1单片机系统分析 (9)2.2.2显示分析 (10)2.3传输方式分析 (11)第三章系统硬件设计 (12)3.1单片机及外围电路的设计 (12)3.1.1 单片机的选择 (12)3.1.2复位和振荡电路的设计 (13)3.2数据采集电路 (14)3.2.1 A/D转换的一般步骤 (14)3.2.2 ADC0832内部功能与引脚介绍 (14)3.2.3 AT89C52单片机 (16)3.2.3 ADC0832与ATC89C52单片机的接口方法 (17)3.3 LED显示电路和译码器74LS164 (18)3.3.1 LED显示电路 (18)3.3.2 译码器74LS164 (18)3.3.3 LED与74LS164的接口方法 (19)3.4通信电路 (20)第四章系统软件设计 (22)4.1 数字电压表系统软件设计方案确定 (22)4.2数字电压表应用程序设计 (24)4.3 LED显示程序 (24)第五章总结 (26)参考文献 (27)附录A:硬件原理图 (28)附录B:源程序......................................... 错误!未定义书签。
数字电压表
数字电压表,7106/7107数字表头的应用1. 辨认引脚芯片的第一脚,是正放芯片,面对型号字符,然后,在芯片的左下方为第一脚。
也可以把芯片的缺口朝左放置,左下角也就是第一脚了。
许多厂家会在第一脚旁边打上一个小圆点作为标记。
知道了第一脚之后,按照反时针方向去走,依次是第 2 至第40 引脚。
(1 脚与40 脚遥遥相对)。
2. 牢记关键点的电压芯片第一脚是供电,正确电压是DC5V 。
第36 脚是基准电压,正确数值是100mV,第26 引脚是负电源引脚,正确电压数值是负的,在-3V 至-5V 都认为正常,但是不能是正电压,也不能是零电压。
芯片第31 引脚是信号输入引脚,可以输入±199.9mV 的电压。
在一开始,可以把它接地,造成“0”信号输入,以方便测试。
3. 注意芯片27,28,29 引脚的元件数值它们是0.22uF,47K,0.47uF 阻容网络,这三个元件属于芯片工作的积分网络,不能使用磁片电容。
芯片的33 和34 脚接的104 电容也不能使用磁片电容。
4. 注意接地引脚芯片的电源地是21 脚,模拟地是32 脚,信号地是30 脚,基准地是35 脚,通常使用情况下,这4 个引脚都接地,在一些有特殊要求的应用中(例如测量电阻或者比例测量),30 脚或35 脚就可能不接地而是按照需要接到其他电压上。
(本文不讨论特殊要求应用)5. 负电压产生电路负电压电源可以从电路外部直接使用7905 等芯片来提供,但是这要求供电需要正负电源,通常采用简单方法,利用一个+5V 供电就可以解决问题。
比较常用的方法是利用ICL7660 或者NE555 等电路来得到,这样需要增加硬件成本。
我们常用一只NPN 三极管,两只电阻,一个电感来进行信号放大,把芯片38 脚的振荡信号串接一个20K -56K 的电阻连接到三极管“B”极,在三极管“C”极串接一个电阻(为了保护)和一个电感(提高交流放大倍数),在正常工作时,三极管的“C”极电压为2.4V - 2.8V 为最好。
基于ICL7107数字电压表
西安电子科技大学长安学院课程设计设计题目:数字电压表的仿真与设计学院:长安学院系别:电子工程专业:电子科学与技术:班级:06521学号:06521002姓名:***指导老师:王勇目录一. 摘要 (2)二.课程设计任务与要求 (2)2.1设计目的 (2)2.2设计要求 (2)三.总体设计思路 (3)3.1方案选择 (3)3.2系统框图 (3)四.课程设计框图及工作原理 (4)4.1 工作原理 (4)4.2 ICL7107的工作原理 (5)4.3 ICL7107 安装电压表头时的一些要点 (8)4.4 关于多量程电路部分 (10)五.电路设计与仿真 (12)六.系统调试及结果分析 (13)6.1调试仪器 (13)6.2 调试方法 (13)6.3 测试结果分析 (13)6.4 硬件实物图 (13)七.元器件清单 (14)八.设计心得体会 (14)九.参考文献 (14)一.摘要数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。
目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等领域,显示出强大的生命力。
与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。
本章重点介绍单片A/D 转换器以及由它们构成各种新型数字电压表的工作原理。
数字电压表具有以下九大特点:1. 显示清晰直观,读数准确2. 准确度高3. 分辨率高4. 测量范围宽5. 扩展能力强6. 测量速率快7.输入阻抗高8. 集成度高,微功耗9. 抗干扰能力强二.课程设计任务与要求2.1、设计目的1、了解双积分式A/D转换器的工作原理2、熟悉A/D转换器ICL7107的性能及其引脚功能3、掌握用ICL7107构成直流数字电压表的方法2.2、设计要求1、设计一个数字电压表电路。
直流数字电压表 原理
直流数字电压表原理
直流数字电压表是一种测量直流电压的仪器。
其工作原理基于安培定律和欧姆定律。
安培定律表明,在一段电路中,电流的大小与通过该电路的电压成正比。
欧姆定律则说明了电流与电阻之间存在着一种线性关系,即电流等于电压除以电阻。
直流数字电压表利用这两个定律来测量直流电压。
在测量过程中,它通过将待测电压与已知电阻串联,通过分压的原理来测量电压的大小。
具体来说,直流数字电压表内部包含一个系列的电阻,这些电阻可通过旋钮来选用。
当待测电压施加到测量端口上时,电压会通过选用的电阻产生分压作用,使得仪表内部的电路中流过的电流减小。
测量电路中的电流经过放大和转换后,传递给数字显示部分。
数字显示部分将接收到的电流信号转换为对应的电压值,并将其显示在屏幕上。
由于数字显示部分已经预先校准,所以在测量过程中,我们可以直接看到数字显示屏上的数值,从而得知待测电压的大小。
总的来说,直流数字电压表通过选取不同的电阻来实现电压的分压,并通过数字显示部分将分压形成的电流信号转换成相应的电压值,从而实现对直流电压的测量。
直流数字电压表设计方案及原理
直流数字电压表设计方案及原理直流数字电压表是一种用于测量直流电压的电子设备。
其设计方案及原理如下:设计方案:1. 选择合适的电压测量范围:根据实际需求选取合适的电压测量范围,可以是几个固定的范围或可调节的范围。
2. 选择适当的电压分压电阻:为了避免将高电压直接施加在测量电路上,通常会使用电压分压电阻将输入电压降低到安全范围内。
3. 选择合适的运算放大器:运算放大器用于放大电压信号,并将其转换为数字信号。
选择合适的运算放大器可以保证测量的准确性和稳定性。
4. 添加A/D转换器:A/D转换器将模拟电压信号转换为数字信号,以便于微处理器或显示器进行处理和显示。
5. 添加微处理器或显示器:微处理器可以对转换后的数字信号进行处理、计算和显示。
显示器可以直接显示测量结果。
原理:1. 电压分压:通过选择合适的电阻进行电压分压,将输入电压降低到运算放大器可接受的范围内。
2. 运算放大器放大:运算放大器将输入电压放大到合适的范围内,通常使用差分放大器进行放大,并通过负反馈控制放大倍数。
3. A/D转换:通过A/D转换器将模拟电压信号转换为数字信号。
A/D转换器将连续的模拟信号离散化为一系列数字值,通常使用逐次逼近型或积分型A/D转换器。
4. 数字处理和显示:微处理器对转换后的数字信号进行处理和计算,可以进行单位转换、数据平滑等操作,并将结果显示在显示器上。
总结:直流数字电压表通过电压分压、运算放大、A/D转换和数字处理等步骤,将输入的直流电压转换为数字信号,并通过显示器显示测量结果。
设计方案需要选择合适的电压测量范围、电压分压电阻、运算放大器、A/D转换器和显示器,以保证测量的准确性和稳定性。
直流数字电压表的设计仿真与制作
学号:课程设计题目学院专业班级姓名指导教师年月日课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目: 直流数字电压表的设计仿真与制作初始条件:利用集成3位半或4位半的A/D转换器及显示译码驱动电路设计实现直流数字电压表的基本功能(也可以利用FPGA或单片机系统设计实现)。
要求完成的主要任务:(包括课程设计工作量及技术要求,以及说明书撰写等具体要求)1、课程设计工作量:1周内完成对数控电压源的设计、仿真、装配与调试。
2、技术要求:输入电压介于+—2v之间。
①用电阻、电位器构成一个简单的输入电压Vx调节电路;②用3位半MC14433/CD14433或4位半ICL7135ADC实现A/D转换;③设计4个或5个数码管的动态显示驱动电路实现测量电压的显示;④确定设计方案,按功能模块的划分分选择元、器件和中小规模集成电路,设计分电路,画出总体电路原理图,阐述基本原理。
3、查阅至少5篇参考文献。
按《武汉理工大学课程设计工作规范》要求撰写设计报告书,全文用A4纸打印,图纸应符合绘图规范。
时间安排:1)第1-2天,查阅相关资料,学习设计原理。
2)第3-4天,方案选择和电路设计仿真。
3)第4-5天,电路调试和设计说明书撰写。
4)第6天,上交课程设计成果及报告,同时进行答辩。
指导教师签名:年月日系主任(或责任教师)签名:年月日目录课程设计任务书....................................................................................................... - 2 -1 Proteus软件简介................................................................................................... - 4 -2方案论证和确定.................................................................................................... - 6 -2.1 设计目标................................................................................................... - 6 -2.2 方案论证................................................................................................... - 6 -2.3 总体设计 .................................................................................................. - 8 -3 硬件系统的设计................................................................................................... - 9 -3.1 硬件系统设计原则................................................................................... - 9 -3.2 A/D转换电路........................................................................................... - 9 -3.2.1 双积分A/D转换器的工作原理.................................................... - 9 -3.2.2 ICL7135芯片介绍 ....................................................................... - 10 -3.3 电压反向电路.................................................................................. - 16 -3.4 数码显示模块电路................................................................................... - 18 -3.5 输入电路................................................................................................. - 20 -4 系统的软件设计................................................................................................. - 21 -4.1 应用软件设计原则................................................................................. - 21 -4.2 系统主程序设计..................................................................................... - 21 -5 制作与调试......................................................................................................... - 25 -5.1 调试........................................................................................................... - 25 -5.1.1 软件调试......................................................................................... - 25 -5.1.2 硬件调试....................................................................................... - 25 -8 原件清单............................................................................................................. - 28 -9参考文献.............................................................................................................. - 29 -1 Proteus软件简介Proteus软件是英国Labcenter electronics公司出版的EDA工具软件(该软件中国总代理为广州风标电子技术有限公司)。
三种形式直流数字表的工作原理
三种形式直流数字表的工作原理电压数字化测量是将被测电压U x经过A/D转换,将连续模拟量转换成离散数字量,然后用十进制计数方式显示被测量的数值。
✓输入阻抗越大越好,否则将影响测量精度。
✓对于直流DVM,输入阻抗用输入电阻表示,一般在10MΩ~1000MΩ之间。
模拟与数字电压表各有优缺点:如:①数字电压表灵敏度高于模拟电压表。
②数字电压表操作方便,如只需切换测量项目,不需要切换量程,不需要考虑表笔的极性,屏幕自动显示极性,所以数字电压表安全,操作方便。
③但对于变化量,模拟电压表可通过指针摆动直观体现,数字电压表不宜读取变化量。
④模拟电压表易出现读数误差,数字电压表不会出现读数误差。
逐次逼近比较式DVM工作原理余数循环比较式DVM工作原理双积分式DVM工作原理逐次逼近比较式DVM工作原理1)基本原理:将被测电压和一可变的已知电压(基准电压)进行逐次比较,最终逼近被测电压。
2)结构框图3)工作过程起始脉冲(START)使DVM开始工作第一个时钟脉冲(CLK)使SAR的最高位(MSB),即2-1位置“1”SAR输出一个基准码(100000)2D/A转换器输出比较电压U∑= U r / 2U∑与U x进行比较,若U∑<U x,则2-1位保持不变,仍为“1”;若U∑>U x,则2-1位置“0”;即遵循“大者弃,小者留”的原则。
第二个时钟脉冲(CLK)使SAR的2-2位置“1”这时SAR的输出为(010000)2D/A转换器输出比较电压U∑= U r / 4U∑与U x进行比较,若U∑<U x,则2-2位保持不变,仍为“1”;若U∑>U x,则2-2位置“0”;即遵循“大者弃,小者留”的原则。
依此类推,直至第n个时钟脉冲控制SAR的最低位,即2-n位完成置位为止。
SAR的最终输出数据(二进制比特流)送译码器译码为比较电压值后,经十进制数显示器显示。
由于显示的被测结果是真实被测量的逼近值,可见存在量化误差,可通过增加D/A 转换器的位数减少误差。
答案数字仪表
数字仪表试题一、 填空题1.DC-DVM 的检定标准(装置)的综合误差,应小于被检表允许误差的51~31。
直流电压信号源的稳定度应小于被检表允许误差的101~51。
2.DC-DVM 的原理框图可简单地分为 模拟电路 和 数字电路 两大部分。
3.DC-DVM 的误差检定方法和标准设备种类很多,但从原理上可归纳为三大类:① 直流标准电压源法 ② 直接比较法(标准数字电压表法) ③ 直流标准仪器法。
4.通常DVM 的检定工作可分为三种情况,即: 周期 检定 修理后 检定 和 验收 检定。
5.数字电压表的绝对误差公式为 m X U U %%βα±±=∆ ,相对误差公式为⎪⎪⎭⎫⎝⎛±±=Xm UU %%βαγ 。
6.数字多用表(DMM )以测量 直流电压 电参量的准确度最高,以测量 交流电流 电参量的准确度最低。
7.用标准电阻检定数字欧姆表(数字多用表的欧姆功能)的误差时,在低阻测量时要采用 四端接法 ,在高阻测量时要采用 屏蔽措施 。
二、选择题1.输入电阻对DC-DVM 所产生的相对测量误差与 (1) 直接有关。
(1)信号源内阻 (2)DVM 的零电流I 。
3)输入电压的大小2.双积分式(双斜式)数字电压表,有良好的工作特性。
但它有一个较突出的缺点是 (3)。
(1)准确度较低 (2)抗干扰能力差 (3)采样速率较慢 (4)电路结构较复杂 3.逐次逼近式DVM 是表征对被测电压的 (4) 。
(1)平均值 (2)有效值 (3)最大值 (4)瞬时值 4.DC-DVM 共模干扰抑制比(CMRR )的测试,选择不平衡电阻R 一般取 (1)Ω的标称值。
(1)1000 (2)100 (3)10000 5.DVM 的干扰可分为:(1)共模干扰 (2)串模干扰 (3)有效共模干扰6.检定DVM 误差时,设标准电压值为n U ,被检DVM 显示值为x U ,则被检表的绝对误差为 (1) 。
数字直流电压表设计(2)
电子技术课程设计报告题目名称:直流数字电压表的设计姓名:学号:班级:指导教师:目录一·摘要二·课程设计与任务要求(一)设计目的(二)设计要求三·总体设计思路与方案选择四·所用器件介绍(一)双积分MC14433功能介绍(二)MC14511B功能介绍(三)MC1413功能介绍(四)基准电源MC1403功能介绍五·设计框图与工作原理,测量电压的转换与显示原理六·数字电压表的安装调试七·元器件清单八·心得体会九·参考文献直流数字电压表一·摘要:传统的模拟指针式电压表功能单一,精度低,读数的时候也非常不方便,很容易出错。
而采用单片机的数字电压表由于测量精度高,速度快,读数时也非常的方便,抗干扰能力强等优点而被广泛应用。
数字电压表(Digital Voltmeter)简称DVM,由电阻网络(量程调整)、直流放大(运放组成)、电压极性判断、A/D转换、数码(液晶)显示等部分组成。
PZ158A系列直流数字电压表具有6½位显示,可测量0.1µV—1000V直流电压。
该表由于采用了微处理器和脉冲调宽模数转换技术,自动校零,数字模拟滤波等技术,从而赋予本表极其稳定的零位和良好的线性和抗干扰能力,本表还带有RS232C接口,可方便地与计算机系统相连接,组成数据采集系统。
采用八位VFD或LED显示,其中PZ158A/1为单量程(0.2V)VFD显示,读数清晰,光色柔和,适宜在科研、工业、国防等各种领域内使用。
本设计给出基于MC14433双积分模数转换器的一种电压测量电路。
数字电压表是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。
该系统由MC144333位半A\D转换器、MC1413七路达林顿驱动器阵列、MC4543BCD七段锁存-译码-驱动器、基准电源MC1403和共阳极LED发光数码管组成。
直流数字电压表
电子技术课程设计报告题目名称:直流数字电压表的设计姓名:学号:班级:指导教师:重庆大学电气工程学院2010 年6 月直流数字电压表摘要:传统的模拟指针式电压表功能单一,精度低,读数的时候也非常不方便,很容易出错。
而采用单片机的数字电压表由于测量精度高,速度快,读数时也非常的方便,抗干扰能力强等优点而被广泛应用。
本设计给出基于MC14433双积分模数转换器的一种电压测量电路。
数字电压表是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。
该系统由MC144333位半A\D转换器、MC1413七路达林顿驱动器阵列、MC4543BCD七段锁存-译码-驱动器、基准电源MC1403和共阳极LED发光数码管组成。
本次设计的简单直流数字电压表的具体功能是:最高量程为1999V,分四个档位量程,即0~1.999V,0~19.99V0~199.9V,0~1999V,可以通过调档开关来实现各个档位。
一、设计内容及要求:1)设计直流数字电压表;2)直流电压测量范围:0V~1.999V,0V~19.99V,0V~199.9V,0V~1999V。
3)直流输入电阻大于100kΩ。
4)画出完整的设计电路图,写出总结报告。
5) 选做内容:自动量程转换。
二、比较和选定设计的系统方案,画出系统框图:方案:本次设计的直流数字电压表由测量电路、双积分模数转换电路电路、数码显示电路和量程转换电路组成,原理框图如图1 所示。
测量电路和量程转换将宽范围的输入直流电压变换为模数转换电路输入电压范围的直流电压,模数转换电路将其转换为数字量,送数码显示电路显示测量值。
三、单元电路设计、参数计算和器件选择:1)量程转换电路:R1、R2、R3、R4对输入电压进行分压,使x V 直流输入电压的范围是0V~2V 。
由于直流输入电阻要求大于100k Ω,设定总电阻为1000K Ω。
列出方程计算各电阻阻值:41234431234432123412340.0010.010.11000R R R R R R R R R R R R R R R R R R R R R R K ⎧=⎪+++⎪+⎪=⎪+++⎨⎪++⎪=+++⎪⎪+++=Ω⎩ 得:1234900;90;9;1R K R K R K R K =Ω=Ω=Ω=Ω 图2 量程转换电路图1直流数字电压表原理框图图3 小数点控制仿真电路(如图所示,当被测电压为6V时,百位上的小数点亮)2)双积分模数转换电路:集成双积分模数转换器MC14433原理电路和引脚图如图4所示。
数字电压表的设计
数字电压表的设计刘英电子信息科学与技术专业学号:040524097指导老师:熊中朝摘要:数字电压表是诸多数字化仪表的核心与基础。
以数字电压表为核心扩展成的各种数字化仪表几乎覆盖了电子电工测量、工业测量、自动化系统等各个领域。
本设计采用CMOSS集成电路芯片CC7106来进行A/D 转换,属于双积分型直流数字电压表。
该数字电压表采用LCD显示,除具有一般数字电压表读数直观准确、测量速度快、输入阻抗大、测量范围宽之外,还具有读数保持的功能。
电路特点是成本低,简单,体积小,安全性好,可扩展性强。
关键词:数字电压表;132位;A/D转换;液晶显示目录摘要 (1)1引言 (3)2数字电压表原理框图 (4)3单元电路设计 (4)3.1双积分式A/D转换器CC7106 (4)3.2输入电路 (8)3.3 CC7106外围电路 (9)3.3.1振荡电路 (9)3.3.2 基准电压电路 (10)3.3.3 积分电路 (11)3.4 显示部分 (11)3.4.1132位液晶显示器 (12)3.4.2 小数点驱动电路 (12)3.5 读数保持功能电路 (13)4 总电路图 (13)5 总结 (15)参考文献 (15)1 引言数字电压表简称DVM,是采用数字化测量的电压仪表。
数字电压表与模拟电压表相比,具有读数直观、准确,显示范围宽、分辨力高,输入阻抗大,集成度高、功耗小、抗干扰能力强,可扩展能力强等特点,因此在电压测量、电压校准中有着广泛的应用。
数字电压表也是诸多数字化仪表的核心与基础。
以数字电压表为核心扩展成的各种数字化仪表几乎覆盖了电子电工测量、工业测量、自动化系统等各个领域。
数字电压表按测量功能可分为直流数字电压表和交流数字电压表。
数字电压表一般由模拟部分和数字部分组成,模拟部分主要功能是获取电压并将其转换为相应的数字量,数字部分完成逻辑控制、译码和显示等功能。
数字电压表的核心是A/D转换器,由A/D转换器工作原理的不同,数字电压表又可分为逐次比较型和双积分型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
积分式直流数字电压表摘要本双积分电压表系统以89C51单片机为核心、以分立元件制作的双积分型A/D转换器为主要部件的4位半积分式数字直流电压表,并对所设计的电压表进行了测试,结果测量误差≤±0.03%,精度达到4位半。
实现了自动量程转换功能,自动调零功能,有很好的实际应用价值。
关键词:单片机,双积分A/D转换器,自动调零,自动转换量程目录1 方案论证与比较 (1)1.1信号调理 (1)1.2处理器的选择与比较 (1)1.3积分器的选择与比较 (1)2 系统设计 (2)2.1总体设计 (2)2.2单元电路设计 (3)2.2.1 信号调理调理电路 (3)2.2.2 双积分电路设计 (4)2.2.3 基准源电路设计 (4)3 软件设计 (5)4系统测试 (5)5 结论 (6)参考文献: (6)附录: (7)附1:元器件明细表: (8)附2:仪器设备清单 (8)附3:电路图图纸 (9)附4:程序清单方案论证与比较1.1.1信号调理比较与选择方案一、信号经过缓冲器提高输入阻抗后经过低通滤波器后,然后由模拟开关选择信号放大与不放大,当信号大于200mv时不放大,小于200mv时经过仪表放大器进行放大。
方案二、信号经过电压分阻条统一衰减后经过缓冲器提高其负载能力,信号进行低通滤波器其截止频率在10HZ左后滤除高频噪声及干扰,然后经过低噪声,高精度运放放大。
方案论证:方案一对不同信号进行放大其电路复杂,当测量多个量程时放大电路的增益不一样,需多个放大电路成本很高,且用仪表放大器价格过于昂贵。
方案二通过统一衰减后在进行放大其电路简单调试方便。
所以采用方案二。
1.2 处理器的比较与选择STC单片机所特有的在线下载功能和其他公司的单片机不同,不是利用SPI进行在线编程,而是利用IAP功能,在系统运行时编程,因此,可以通过串口来对单片机进行编程。
其电路极为简单,只要所使用的单片机系统具有232串口通信功能即可。
.工作宽温度范围,-40℃~85℃,在系统可编程,无需编程器,可远程升级,抗干扰强.价格低廉,所以采用了STC单片机.1.3积分器比较与选择方案一、采用双极性运放UA741,UA741为通用运放价格便宜,容易购买。
积分电容选择胆电容进行积分。
方案二、采用FET运放TL062,其漏电流小,电容选择独石电容。
方案论证:方案一ua741器基集电流大,失调电流大对积分产生影响,且胆电容的漏电流大也对积分产生一定影响,而方案二TL062为FET型输入阻抗高基集电流小且独石电容漏电流小。
所以才用方案二。
2系统设计2.1 总体设计本设计基于STC89C51单片机的4位半积分式直流数字电压表设计的设计思路及实现方法。
在设计中,充分利用了89C51单片机内部的高速计数器和以分立元件组成的双积分型A/D 转换器的优良特性,使整个设计达到了比较满意的效果。
硬件设计主要有双电源电路、信号采集电路、量程转换电路、开关逻辑控制电路、积分比较与自动回零电路、单片机系统、显示电路组成。
软件编程采用模块化结构,主要有时序子程序,系数运算子程序, BCD码转换子程序,自动量程转换子程序,显示子程序等组成。
信号经过电阻分压器统一衰减后,经过运放缓冲后在经过高精度,低噪声,失调电压小的运放OP37放大,开始先对信号进行积分,后开始对基准源进行反积分,然后经过单片机运算处理后有单片机显示。
信号衰减选择放大基准源VREF 逻辑选择积分比较和自动调零单片机处理液晶显示电源200mv比较器量程转换图一2.2 单元电路设计2.2.1 信号调理调理电路图二信号经过电压分阻条统一衰减后经过缓冲器提高其负载能力,信号进行低通滤波器其截止频率在10HZ左后滤除高频噪声及干扰,然后经过低噪声,高精度运放放大。
放大倍数可有可变电阻进行调整补偿。
2.2.2 双积分电路设计图三单片机通过对开关逻辑控制电路来控制双积分A/D转换,单片机先控制开关逻辑控制电路使s2接通进行自动回零,接着OUT2接通将待测电压进行正积分,再使Vref接通对反积分基准电压进行反积分,同时单片机内部计数器开始计数,到一定时间后比较电路中的比较电路输出中断信号,单片机停止计数并将计数值滤波,通过减法、乘法和除法的系数运算最后转换成BCD码,再通过显示电路将待测电压值显示出来。
A/D转换是在单片机和开关逻辑控制电路的控制下有条不紊地进行,全部过程可分三个阶段:(1)正积分:也称信号采集阶段。
在这个阶段,通过单片机对开关逻辑控制电路的控制对检测电压out2积分。
积分器的输出电压随时间线性地增加。
正积分时间由单片机控制,定时为T1,在T1结束时积分器的输出电压为: Vout(T1)=-1/C2*R9∫out2 (公式一)(2)反积分:也称计数阶段。
在这个阶段,通过单片机对开关逻辑控制电路的控制对基准电压ref积分。
经过T2时间后回到0,Vout2(T2)=Vout1+1/C2*R9∫Vref (公式二)T2=out2*T1/T2 (公式三)由此可以看出T2的大小取决于输入待测电压Vx的大小。
(3)自动回零:也称复位阶段,在该阶段,因反积分使比较器输出由高电平变成低电平,再由单片机控制开关逻辑控制电路动作,使VA导通,使得积分电容充分放大。
2.2.3 基准电压电路设计图四负电源电压采用高精度可编程稳压器件TL431产生,然后进过电源滤波。
在经过缓冲器进行隔离,以免后级电路对基准源产生负载影响,影响基准源的精度。
3 软件设计控制芯片为STC89C52,由于处理器速度较快,所以采用c 语言编程方便简单.软件流程如图下开始初始化自动调零N比较器低电平否Y定时60ms正向积分方向积分比较器低电平否停止积分量程转换系统运算显示结束电压表主流程图4系统测试电压测试数据(室温条件下)标准电压值自动量程选择实测电压值误差/﹪1.000mV 200mV档01.00mV 0 50.000mV 200mV档50.00mV 0 120.000mV档200mV 120.01mV 0.008 199.990mV档200mV 199.97mV -0.010.20020V 2V档0.2000V -0.011.25000V 2V档 1.2503V 0.024 1.98000V 2V档 1.9804V 0.020从标准稳压电源输出标准的待测电压,用5位半数字电压表作为校准设备,分别用5位半数字电压表和本电压表对待测电压进行测试,并对测试结果进行了比较,如表1所示。
测试结果表明,本电压表的测量误差≤±0.03%,精度达到4位半。
当测量199.990mV和0.20020V两组标准电压值时,本电压表进行了自动量程转换,由此表明本电压表具有200mV和2V两个量程并且可以实现自动量程转换功能。
5 结论由于系统架构设计合理,功能电路实现较好,系统性能优良、稳定,较好地达到了题目要求的各项指标。
参考文献:[1]《模拟电子线路基础》,吴运昌著,广州:华南理工大学出版社,2004年;[2]《数字电子技术基础》,阎石著,北京:高等教育出版社,1997年;[3]《单片机原理及应用》,李建忠著,西安:西安电子科技大学,2002年;[4]王剑铭,黄俊杰,宁彦卿.新颖实用的单片机双积分A/D转换电路和软件[J].郑州工业大学学报,2001;[5]李伟.一种高精度低成本A/D转换器的原理和实现[J].自动化仪表,2007;[6]冯文涛,于明鑫.单片机控制的高精度双积分ADC[J].辽宁师专学报,2004;附录:附1:元器件明细表:1、STC89C522、TL0623、OP374、1602液晶附2:仪器设备清单1、低频信号发生器2、数字万用表3、数字示波器4、稳压电源附3:电路图图纸整体电路图附4:程序清单/////////////////////////////////////////////////////////////////////////////////SW1 S1 S0 00 A4 Vin 11 A7 GND//SW2 S1 S0 10 A6 Vref 11 A7 GND 01 A5 Vin//SW3 S 0 导通 1 断开///////////////////////////////////////////////////////////////////////////////#include <reg51.h>#include <intrins.h> #define uchar unsigned char#define uint unsigned int#define LCD_DATA P0 sbit LCD_RS = P2^4;sbit LCD_RW = P2^5;sbit LCD_EN = P2^6;sbit change_in = P3^0;sbit S2 = P3^1;sbit S3 = P3^2;sbit S4 = P3^4;sbit S5 = P3^5;//sbit S6 = P3^6;sbit P1_7 = P1^7;sbit cmp_in = P3^3;sbit P1_4 = P1^0;sbit P1_5 = P1^1;sbit P1_6 = P1^2; uchar compares_zero = 'a' ,first_integral = 'b',second_integral = 'c',discharge = 'd', Operation = 'e';//状态定义为校零第一次积分第二次积分电容放电运算uchar state;uint regser;uchar code dis1[] = {" current voltage"};uchar dis2[] = {" 00000 mv "}; uchar cnt=0;/*******************************************************************//*/* 延时子程序/*/*******************************************************************/ void delay(uint ms){uchar i;while(ms--){for(i = 0; i< 250; i++){_nop_();_nop_();_nop_();_nop_();}}} /*******************************************************************//*/*检查LCD忙状态/*lcd_busy为1时,忙,等待。