讲义一:《因式分解》专题辅导讲义
因式分解经典讲义(精)
第一章分解因式【知识要点】1 .分解因式(1)概念:把一个化成几个的形式,这种变形叫做把这个多项式分解因式。
(2 )注意:①分解因式的实质是一种恒等变形,但并非所有的整式都能因式分解。
②分解因式的结果中,每个因式必须是整式。
③分解因式要分解到不能再分解为止。
2•分解因式与整式乘法的关系整式乘法是_____________________________________________________ ___分解因式是_____________________________________________________ ___所以,分解因式和整式乘法为________ 系。
3•提公因式法分解因式(1 )公因式:几个多项式____________ 因式。
(2 )步骤:①先确定____________,②后____________________ 。
(3)注意:①当多项式的某项和公因式相同时,提公因式后该项变为1。
②当多项式的第一项的系数是负数时,通常先提出“”号。
4•运用公式法分解因式(1 )平方差公式:_____________________________(2 )完全平方公式:____________________________注:分解因式还有诸如十字相乘法、分组分解法等基本方法,做为补充讲解内容。
【考点分析】考点一:利用提公因式法分解因式及其应用【例1】分解因式:【随堂练习】1 .分解因式:,、小34“23小22(1) 2x y 10x y 2x y32(1) 4m 16m 26 m(2) 2x(y z) 3(y z)2(3)x(x y)(x y) x(x y)(4)(3a 4b)(7a 8b) (11a 12b)(7a 8b)号,再提公因式 2m ;( 2)题的公因式为 y z ;(3) 题的公因式为 x(x y) ;答案:(1) 2m(2m 28 »m13);(3)2xy(x y);【例:2】(1 )已知x y 5, xy 6 ,(2 ?)已知ba 6,ab7,解析:(1) 题:2x2y 2 x y 22xy(x(2)题:a|2bab2a b(a答案:(1) 60(2)42(4)题的公因式为7a 8b 。
因式分解ppt讲义
整式乘法 整式乘法 因式分解
(5).2πR+ 2πr= 2π(R+r)
因式分解
下列代数式从左到右旳变形是因式分解吗?
(1) a2 a a(a 1)
Байду номын сангаас
是
(2)(a 3)(a 3) a2 9
不是
(3)4x2 4x 1 (2x 1)2
不是
(4)x2 3x 1 x(x 3) 1
(5) x2 1 x( x 1 ) x
阐明
• 本课是在学生学习了整式乘法旳基础上,研究对整 式旳一种变形即因式分解,是把一种多项式转化成 几种整式相乘旳形式,它与整式乘法是互逆变形旳 关系.
你能发觉这两组等式之间 旳联络和区别吗? 它们旳左 右两边有何特点?
a(a+1)=__a_2+_a_____
a2+a=( a ) ( a+1)
(a+b)(a-b)=__a_2_-_b_2____ a2 - b2= ( a+b) ( a-b )
a2-2ab+b2=(a-b)2
十字相乘法
要点: 一拆(拆常数项), 二乘(十字相乘),
三验(验证十字相乘后旳和是否等于一次项.
x2 px q
x
a
x
b
x2+Px+q=(x+a)(x+b),其中p=a+b,q=ab
一般环节与注意点
1 一般环节: 先提公因式,再利用公式或十字相乘,后分组分 解,最终是重新整顿再分解.
注意: 1、要分解到不能再分为止,括号内合并同 类项后注意把数字因数提出来。
2、因式分解旳成果是连乘式。 3、因式分解旳成果里没有中括号。
初中因式分解讲义
初中因式分解讲义因式分解是初中数学中相当重要的一个概念,它是解决多项式问题的关键步骤。
通过因式分解,我们可以将一个多项式拆分成更简单的乘积形式,从而更好地理解和解决问题。
本讲义将介绍初中因式分解的基本方法和应用,帮助同学们系统地学习和掌握这一知识点。
一、因式分解的基本概念因式分解是指将一个多项式拆分成若干个乘积形式的过程。
在因式分解中,我们将多项式中的每一个项称为因式,拆分后的乘积形式称为因式分解式。
因式分解的结果应满足两个条件:1)拆分后的每个因式之积等于原多项式;2)每个因式都不能再进行继续拆分。
二、因式分解的基本方法1. 公因式提取法公因式提取法是指将多项式的公因式提取出来,并将多项式拆分成公因式与括号内的乘积形式。
通过公因式提取法,我们可以简化多项式的计算过程和展开过程。
举例说明:多项式7x+14可以进行公因式提取,提取公因式7后,原多项式可以写成7(x+2),这就是因式分解的结果。
2. 分组分解法分组分解法是指将多项式的项进行适当的分组,然后利用公式或特定规律进行因式分解。
举例说明:多项式x²+xy+2x+2y可以进行分组分解,将x²+xy作为一组,并将2x+2y作为另一组。
然后,在第一组中提取公因式x,第二组中提取公因式2,最终得到因式分解式为x(x+y)+2(x+y),即(x+2)(x+y)。
三、因式分解的应用因式分解在初中数学中有广泛的应用。
下面我们介绍几个典型的应用场景。
1. 最大公因数和最小公倍数在求最大公因数和最小公倍数的过程中,因式分解是非常有帮助的方法。
通过将两个数分别进行因式分解,然后提取公因式并相乘,我们可以得到它们的最大公因数;同时,将两个数进行因式分解,然后取分解式的所有因子的乘积,我们可以得到它们的最小公倍数。
2. 方程的解法在解一元二次方程和一元三次方程时,因式分解也经常被使用。
通过将方程进行因式分解,可以将原方程转化成更简单的乘积形式,从而更容易求解。
讲义1:因式分解
七年级上:数学提高班辅导讲义1:因式分解【知识要点】1、因式分解:把一个多项式化为几个多项式的形式,叫做把这个多项式分解因式。
(因式分解和整式乘法是互逆的变形)2、因式分解方法:提公因式法、运用公式法、十字相乘法、分组分解法3、因式分解的结论是整式的乘法;小括号内多项式的首项为正;因式分解要分解彻底;【基础自测】1、下列各式中,从左到右的变形,是因式分解的有:( )A .2132132x x x x x ⎛⎫+-=+- ⎪⎝⎭B .()()243223x x x x x --=+--C .221(1)(1)1a a a a -+=-+=-D . ()222ab ab ab b -=-2、能用平方差公式分解因式的是( )A .()22x y ---B .224x y --C .24x y -D . ()22a b --+ 3、能用完全平方公式分解因式的是( )①222x xy y +-,②2224x xy y -+,③244x xy y -+,④2269a ab b -+-A .1个B .2个C . 3个D .0个4、下列各因式分解正确的是( )A .()2222n n n n a a b a b a a b -+=-B .()2222x ax a x a --+=--C .()()()()245a b a b a b a a b -++-=-D . ()()4242222a b b a b b a b b -=+- 5、276x x ++、243x x ++、265x x ++的公因式是__________________6、2440x x k -+是一个完全平方式,那么k =_________7、多项式29x mx ++是一个完全平方式,则m = 。
8、()()22251x mx n x x --=+-,则m =__________,n =____________ 9、计算:(―2)26+(―2)27=______________【例题选讲】因式分解:1、32233111248x y x y x y -+- 2、 2111218n n n n a b a b +++-3、44128x y -4、 ()229()16a b a b +--5、23108x x +-6、2(21)6(12)9x x -+-+7、22244x x y y ---8、22(2)(2)(24)(2)x y x y x y x y ---+++9、2212366368x xy y x y -+-++10、223625101a b b ---【拓展探究】1、计算:44119-2、如果()()223150a a -+-=,那么2a =___________________3、因式分解:4244a a a -+-4、已知2510x x -+=,求(1)221x x +,(2)441x x +的值5、因式分解:376x x -+ 4224x x y y ++6、因式分解:22621012x xy y x y ---+-【小试牛刀】因式分解:1、2322318129x y x y x y --+2、321113912x x x +-3、2144n n n aa a ++++ 4、212215n n n a ab a b ++--5、()()1210x x x ++--6、221227x xy y ++7、22221x y x y --+ 8、22944a ab b -+-9、632ax ay bx by +-- 10、22318318x xy y x y ---+11、若a -1是25a a m ++的因式,则m =__________________。
因式分解讲义(适合0基础的)
因式分解知识网络详解:因式分解的基本方法:1、提公因式法——如果多项式的各项有公因式,首先把它提出来。
2、运用公式法——把乘法公式反过来用,常用的公式有下列五个:平方差公式()()22a b a b a b -=+-; 完全平方公式()2222a ab b a b ±+=±; 3、分组分解法——适当分组使能提取公因式或运用公式。
要灵活运用“补、凑、拆、分”等技巧。
4、十字相乘法——))(()(2b x a x ab x b a x ++=+++ 【课前回顾】1.下列从左到右的变形,其中是因式分解的是( )(A )()b a b a 222-=-(B )()()1112-+=-m m m(C )()12122+-=+-x x x x (D )()()()()112+-=+-b ab a b b a a2.把多项式-8a 2b 3+16a 2b 2c 2-24a 3bc 3分解因式,应提的公因式是(),(A )-8a 2bc (B )2a 2b 2c 3(C )-4abc (D )24a 3b 3c 33.下列因式分解中,正确的是()(A )()63632-=-m m m m (B )()b ab a a ab b a +=++2(C )()2222y x y xy x --=-+-(D )()222y x y x +=+4.下列多项式中,可以用平方差公式分解因式的是()(A )42+a (B )22-a (C )42+-a (D )42--a5.下列各式中,能用完全平方公式分解因式的是().(A )4x 2-1(B )4x 2+4x -1(C )x 2-xy +y 2D .x 2-x +6.若942+-mx x 是完全平方式,则m 的值是()(A )3(B )4(C )12(D )±12 经典例题讲解:提公因式法:提公因式法是因式分解的最基本也是最常用的方法。
它的理论依据就是乘法分配律例:22x y xy -()()p x y q y x ---()()x a b y a b +-+变式练习:1.多项式6a 3b 2-3a 2b 2-21a 2b 3分解因式时,应提取的公因式是()A.3a 2bB.3ab 2C.3a 3b 2D.3a 2b 22.如果()222332x y mx x n -+=--,那么()A .m=6,n=yB .m=-6,n=yC .m=6,n=-yD .m=-6,n=-y3.()()222m a m a -+-,分解因式等于()A .()()22a m m --B .()()21m a m --C .()()21m a m -+D .以上答案都不能4.下面各式中,分解因式正确的是()A.12xyz -9x 2.y 2=3xyz(4-3xy)B.3a 2y -3ay+6y=3y(a 2-a+2)C.-x 2+xy -xz=-x(x 2+y -z)D.a 2b+5ab -b=b(a 2+5a)5.若a+b=7,ab=10,则22ab b a +的值应是()A .7B .10C .70D .176.因式分解1.6x 3-8x 2-4x2.x 2y(x -y)+2xy(y -x)3.()()x m ab m x a +-+4.()()()x x x --+-212运用公式法:把我们学过的几个乘法公式反过来写就变成了因式分解的形式: 平方差:)b a )(b a (b a 22-+=-完全平方:222)b a (b 2ab a ±=+±立方和:)b ab a )(b a (b a 2233+-+=+立方差:)b ab a )(b a (b a 2233++-=- 例1.把下列各式分解因式:(1)x 2-4y 2(2)22331b a +- (3)22)2()2(y x y x +--(4)442-+-x x例2.(1)已知2=+b a ,利用分解因式,求代数式222121b ab a ++的值 (2)已知0136422=+--+b a b a ,求b a +。
因式分解-讲义
因式分解(一)-一般方法多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.例2 分解因式:a3+b3+c3-3abc.例3 分解因式:x15+x14+x13+…+x2+x+1.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.例9分解因式:6x4+7x3-36x2-7x+6.例10 分解因式:(x2+xy+y2)-4xy(x2+y2).1.(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.4、(1)x2-3xy-10y2+x+9y-2= ;(2)x2-y2+5x+3y+4= ;(3)xy+y2+x-y-2= ;(4)6x2-7xy-3y2-xz+7yz-2z2= ;(5)2x2-7xy-22y2-5x+35y-3= .因式分解(二)--求根法分解因式我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例1 分解因式:x3-4x2+6x-4.例2 分解因式:9x4-3x3+7x2-3x-2.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3;(2)x2-xy+2x+y-3;(3)3x2-11xy+6y2-xz-4yz-2z2.2.用求根法分解因式:(1)x3+x2-10x-6;(2)x4+3x3-3x2-12x-4;(3)4x4+4x3-9x2-x+2.3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20;(2)x4+5x3+15x-9.。
因式分解讲义
到底,应把后三项结合在一起,再应用完全平方公式和平方差公式。
例 2.分解因式: x2 y2 x y ____________
解: x2 y2 x y (x2 y2 ) (x y)
(x y)(x y) (x y) (x y)(x y 1) 说明:前两项符合平方差公式,把后两项结合,看成整体提取公因式。
6 / 12
ac bd 0 原式 0
说明:首先要充分利用已知条件 a2 b2 1,c2 d 2 1 中的 1(任何数乘以 1,其值不变),其次利用 分解因式将式子变形成含有 ac+bd 因式乘积的形式,由 ac+bd=0 可算出结果。
例 3. 分解因式: x3 2x 3 分析:此题无法用常规思路分解,需拆添项。观察多项式发现当 x=1 时,它的值为 0,这就意味着
形后再把条件带入,从而简化计算过程。
例 2. 已知 a b c 0,a 3 b3 c3 0 ,
求证: a5 b5 c5 0 证明: a 3 b3 c3 3abc (a b c)(a 2 b2 c2 ab bc ca) 把 a b c 0,a3 b3 c3 0 代入上式, 可得 abc 0 ,即 a 0或 b 0或 c 0 若 a 0,则b c , a5 b5 c5 0 若 b 0或 c 0 ,同理也有 a5 b5 c5 0 说明:利用补充公式确定 a,b,c 的值,命题得证。
因式分解讲义
因式分解知识与技能目标:1、使学生了解因式分解的意义。
2、知道它与整式乘法在整式变形过程中的相反关系。
过程与方法目标:1、通过观察,发现分解因式与整式乘法的关系。
2、培养学生的观察能力和语言概括能力。
情感态度与价值观目标:1、通过观察,推导分解因式与整式乘法的关系。
2、让学生了解事物间的因果联系重点1、理解因式分解的意义;2、识别分解因式与整式乘法的关系.教学过程1、通过学过的公式,引入新课计算(a+b)(a-b)=a2-b2.这是大家学过的平方差公式,我们是在整式乘法中学习的.从式子(a+b)(a-b)=a2-b2中看,由等号左边可以推出等号右边,那么从等号右边能否推出等号左边呢?即a2-b2=(a+b)(a-b)是否成立呢?a2-b2=(a+b)(a-b)是成立的,那么如何去推导呢?这就是我们即将学习的内容:因式分解的问题.学生提出问题:老师,这个要学的内容就是换个形式来写多项式,具体有什么用途啊?回答:这部分内容是一个基础型的内容,因式分解学好了之后在后面我们还要学到一元二次方程,因式分解在一元二次方程就会用的很频繁,方便我们来求解一元二次方程。
它在数学求根作图方面有很广泛的应用。
2、讲授新课1.讨论993-99能被100整除吗?你是怎样想的?与同伴交流.93-99能被100整除.因为993-99=99×992-99=99×(992-1)=99×9800=99×98×100,其中有一个因数为100,所以993-99能被100整除.993-99还能被哪些正整数整除?(99,98,980,990,9702)从上面的推导过程看,等号左边是一个数,而等号右边是变成了几个数的积的形式.2.议一议你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流.大家可以观察a3-a与993-99这两个代数式.a3-a=a(a2-1)=a(a-1)(a+1)3.做一做(1)计算下列各式:①(m+4)(m-4)=__________;②(y-3)2=__________;③3x(x-1)=__________;④m(a+b+c)=__________;⑤a(a+1)(a-1)=__________.(2)根据上面的算式填空:①3x2-3x=( )( );②m2-16=( )( );③ma+mb+mc=( )( );④y2-6y+9=( )2.⑤a3-a=( )( ).能分析一下两个题中的形式变换吗?在(1)中我们知道从左边推右边是整式乘法;在(2)中由多项式推出整式乘积的形式是因式分解.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.4.想一想由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗?总结一下:联系:等式(1)和(2)是同一个多项式的两种不同表现形式.区别:等式(1)是把几个整式的积化成一个多项式的形式,是乘法运算.所以,因式分解与整式乘法是相反方向的变形.5.例题下列各式从左到右的变形,哪些是因式分解?(1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);(3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2.接下来,我们具体来了解一下因式分解常见的第一种方法:提公因式法:知识与技能目标:1、让学生了解多项式公因式的意义。
因式分解专题复习及讲解(很详细)
因式分解的常用方法第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a 2-b 2=(a+b)(a -b);(2) a 2±2ab+b 2=(a ±b)2;(3) a 3+b 3=(a+b)(a 2-ab+b 2);(4) a 3-b 3=(a -b)(a 2+ab+b 2).(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6) a 3±3a 2b+3ab 2±b 3=(a±b)3.例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
初中因式分解讲义
初中因式分解讲义一、什么是因式分解?在代数学中,当一个多项式可以写成几个乘积的形式时,我们将其称为因式分解。
这个过程可以简化多项式的计算和求解。
二、因式分解的基本原则在进行因式分解时,我们需要遵循以下基本原则:1. 最大公因数原则:寻找多项式中的最大公因数,将其提取出来,作为分解的一部分。
2. 求和差化积原则:利用求和差化积的方法,将多项式中的和差变为积,从而进行因式分解。
3. 公式转换原则:利用特定的公式,将多项式进行转换,以便于进行因式分解。
三、因式分解的方法1. 提取公因式法提取公因式法是最常用的因式分解方法之一。
当多项式的各项有公因子时,可以将这个公因子提取出来,并将剩余的部分进行因式分解。
例如:将3x+6分解为3(x+2)2. 公式转换法公式转换法利用特定的公式将多项式进行转换,然后进行因式分解。
例如:将a²-b²分解为(a+b)(a-b)3. 分组分解法当一个多项式中含有四项及以上,并且无法直接进行其他方法的因式分解时,可以尝试使用分组分解法。
例如:将2x²+6x+3分解为(x+1)(2x+3)四、因式分解的应用因式分解在代数中有广泛的应用,可用于求解方程、简化分式、化简根式等。
它是解决复杂代数问题的重要工具。
五、练习题1. 将4x²-9y²分解。
2. 将6a³b-15ab²分解。
3. 将x³+y³分解。
4. 将3x³-27y³分解。
六、总结因式分解是代数学中重要的概念和工具,通过提取公因式、公式转换和分组分解等方法,能够简化多项式的计算和求解。
掌握因式分解的方法和应用,对于初中代数学习至关重要。
希望以上初中因式分解讲义能帮助你更好地理解和掌握因式分解的知识和技巧。
如果需要更多的练习或进一步讨论,请随时提问。
因式分解和分式
龙文教育学科教师辅导讲义课 题因式分解,分式教学内容专题一、因式分解一、因式分解的意义:因式分解是把一个多项式化成几个整式的乘积形式注意:①结果应是整式乘积,而不能是分式或者是n 个整式的积与某项的和差形式;②因式分解与整式的乘法在运算过程上是完全相反的。
例01.下列四个从左到右的变形,是因式分解的是( )A .1)1)(1(2-=-+x x xB .))(())((m n a b n m b a --=--C .)1)(1(1--=+--b a b a abD .)32(322mm m m m --=-- 二、因式分解的方法类型一、提公因式法提公因式时应注意:⑴如果多项式的第一项系数是负的一般要提出“-”号,使括号内的第一项系数为正; ⑵公因式的系数和字母应分别考虑:①系数是各项系数的最大公约数; ②字母是各项共有的字母,并且各字母的指数取次数最低的。
例01.在下面因式分解中,正确的是( )A .)5(522x x y y xy y x +=-+B .2)()()()(c b a c a b c b a c b c b a a ---=+-++-+--C .)1)(2()2()2(2--=-+-x a x a x a xD .)12(2422232--=--b b ab ab ab ab 例02.把y x y x y x 3234268-+-分解因式的结果为 。
例03.分解因式:323)(24)(18)(6x y x y y x ---+--.说明:⑴观察题目结构特征 ⑵对于)(y x -与)(x y -的符号有下面的关系:⎪⎪⎩⎪⎪⎨⎧--=--=---=- 3322)()(,)()(),(x y y x x y y x x y y x例04.解方程:0)2313)(21(6)1823)(612(=-++-+x x x x例05.不解方程组⎩⎨⎧=+=-,134,32n m n m 求:32)2(2)2(5m n n m n ---的值.类型二、公式法1、利用平方差公式因式分解:()()b a b a b a -+=-22注意:①条件:两个二次幂的差的形式; ②平方差公式中的a 、b 可以表示一个数、一个单项式或一个多项式;③在用公式前,应将要分解的多项式表示成22b a -的形式,并弄清a 、b 分别表示什么。
因式分解式讲义精讲
因式分解式讲义精讲教育学科教师辅导讲义学员编号。
年级:初一。
课时数:1学员姓名。
辅导科目:数学。
学科教师:授课类型:复授课日期及时段:2016.4.16.12:50—2:50教学目的:1.熟练掌握因式分解的概念和运算法则。
2.熟练灵活地运用因式分解进行计算。
教学内容:因式分解的常用方法第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一。
它被广泛应用于初等数学中,是解决许多数学问题的有力工具。
因式分解方法灵活,技巧性强,研究这些方法与技巧不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能和发展学生的思维能力都有着十分独特的作用。
初中数学教材主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法。
本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍。
一、提公因式法:ma+mb+mc=m(a+b+c)二、运用公式法:在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:1) (a+b)(a-b) = a^2-b^2,a^2-b^2=(a+b)(a-b)2) (a±b)^2 = a^2±2ab+b^2,a^2±2ab+b^2=(a±b)^23) (a+b)(a^2-ab+b^2) = a^3+b^3,a^3+b^3=(a+b)(a^2-ab+b^2)4) (a-b)(a^2+ab+b^2) = a^3-b^3,a^3-b^3=(a-b)(a^2+ab+b^2)下面再补充两个常用的公式:5) a^2+b^2+c^2+2ab+2bc+2ca=(a+b+c)^26) a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)7) (a+b)^3=a^3+3a^2b+3ab^2+b^3(完全立方和公式)8) (x+p)(x+q)=x^2+(p+q)x+pq(十字相乘)三、分组分解法:一)分组后能直接提公因式例1、分解因式:am+an+bm+bn例2、分解因式:2ax-10ay+5by-bx练:1.分解因式:a-ab+ac-bc2.分解因式:xy-x-y+1二、分组后能直接运用公式进行分解因式。
因式分解1讲义模板
教学目标
重点、难点
考点及考试要求 教学内容
一、因式分解的意义 把一个多项式化成为几个整式的积的形式,叫做多项式的因式分解. 总结:(1)因式分解是多项式的一种恒等变形,也是单项式与多项式,多项式与多项式相乘的逆变 形. (2)分解因式是对多项式而言的,且分解的结果必须是整式的积的形式. (3)分解因式都是在指定的数集内进行(如无特殊说明,一般指有理数),其结果要使每一个因式不 能再分解为止. 二、提公因式法 (1)公因式:多项式中每一项都含有的因式,叫公因式. (2)提公因式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多 项式化成几个因式乘积的形式,这种分解因式的方法叫做提公因式法. (3)公因式的构成: ①系数:各项系数的最大公约数; ②字母:各项都含有相同字母; ③指数:相同字母的最低次幂. 提公因式时要一次提尽.公因式可以是单项式,也可以是多项式。 练习: (1)2x2y-xy (2)6a2b3-9ab2 (3)x(a-b)+y(b-a) (4)ax+ay+bx+by
a 4 1 a 2 1 a 1a 1
4、对某些多项式还要了解经过一定变形后才能分解的因式,如:分解 x 2 4 xy 3 y 2 的因式,此题用 现有的方法还不能分解因式.但若适当处理后配成完全平方,就可以继续分解.
x 2 4 xy 3 y 2 x 2 4 xy 3 y 2 y 2 y 2 x 2 4 xy 4 y 2 y 2 x 2 y y 2 x 2 y y x 2 y y x y x 3 y
(2)3ax2+6axy+3ay2
(3)4x2-12x+9
(4)16x4+24x2+9;
人教版八年级上册 14.3 因式分解 讲义
因式分解一、考纲梳理1.重点:(1)因式分解的意义定义:把一个多项式化为几个整式的积的形式,叫做多项式的因式分解;(2)因式分解的方法提公因式法平方差公式法完全平方公式法分组法和十字相乘法2.难点:因式分解的实际应用因式分解在几何中的应用因式分解在实际生活中的应用二、考点梳理(一)提公因式法1. 公因式:多项式中的每一项都含有一个相同的因式,我们称之为公因式。
2. 提公因式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提取公因式法。
简称提公因式法。
3. 确定公因式的一般方法:①各项系数都是整数时,因式的系数应取各项系数的最大公约数;②字母取各项的相同的字母,而且各字母的指数取次数最低的;③它们的乘积就是多项式的公因式.4. 典例精讲例1: 用提公因式法分解因式(先找公因式)(1)3a2-9ab2(2)-5x2 + 25x3 (3)4x3y+2x2y2-6xy3(4)-9m2n-3mn2+27m3n4(5)2(x+y)2-4x(x+y) (6)2(a-1)+a(1-a)例 2: 已知,x+y=2,xy=-3,求x 2y+xy 2的值.5. 练一练1、对下列多项式进行因式分解①-20a -25ab ②-32233b a b a - ③1+-m m aa④44252336279x a x a x a +- ⑤3a 2-9ab2、填一填:(1)2525a a -+ = ____________(2)代数式328a b -与312a b 的公因式为____________(3)22________()R r R r ππ+=+(4)16 a b x + 2 a x = 2 a x (____________)3、把下列各式分解因式①3 x 3 -3x 2 –9x ② 8a 2c+ 2bc③-4a 3b 3 +6a 2b -2ab ④ a(x -y)+by -bx(二) 平方差公式法1. 观察变形:整式乘法:(a+b) (a -b)= a 2-b 2 因式分解:a 2-b 2=(a+b) (a -b) 我们可以运用平方差公式来分解因式2. 能用平方差公式分解因式的多项式的特征:①由两部分组成 ;②两部分符号相反;③每部分都能写成某个式子的平方。
因式分解讲义
龙文教育学科教师辅导讲义学生: 教师: 庞现胜日期: 课题因式分解教学目标1、了解因式分解的意义。
2、熟练运用适当的方法进行因式分解。
重点、难点重点:因式分解的概念以及运用提取公因式法和公式法分解因式。
难点:运用因式分解进行多项式的除法以及解简单的一元二次方程。
教学内容一、概述定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。
意义:它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。
因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。
学习它,既可以复习的整式四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力。
分解因式与整式乘法互为逆变形。
二、因式分解的方法因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。
而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。
注意三原则1 分解要彻底2 最后结果只有小括号3 最后结果中多项式首项系数为正(例如:-32x+x=-x(3x-1))基本方法1】提取公因式这种方法比较常规、简单,必须掌握。
有时提公因式后再用公式法。
常用的公式有:完全平方公式、平方差公式等例1:22x-3x解:=x(2x-3)针对性练习:提公因式法1.用提取公因式法分解因式正确的是()A.12abc-9a2b2=3abc(4-3ab)B.3x2y-3xy+6y=3y(x2-x+2y)C.-a2+ab-ac=-a(a-b+c)D.x2y+5xy-y=y(x2+5x)2.下列多项式中,能用提公因式法分解因式的是( )A.x 2-yB.x 2+2xC.x 2+y 2D.x 2-xy+y 23.如果b -a =-6,ab =7,那么a 2b -ab 2的值是( )A.42B.-42C.13D.-134.将下面各式进行因式分解(1)c b a c ab b a 233236128+- (2) ab ab b a 7142122-+-(3) ma 2-4ma+4a (4) -28y 4-21y 3+7y 25.已知2x -y =81,xy =2,求2x 4y 3-x 3y 4的值.6.已知(4x -2y -1)2+2-xy =0,求4x 2y -4x 2y 2-2xy 2的值. 【中考链接】1、(2008青海)分解因式:. 2、(2008青海西宁)分解因式:; 3. (2008湖南株洲)分解因式:4. (2008广州市)分解因式5. (2008浙江丽水)因式分解:. 2】公式法将式子利用公式来分解,也是比较简单的方法。
因式分解讲义
。
1 2 b; 4
(5)x2-6x-9;
(6)a2+a+0.25.
3、将下列各式分解因式。
14x 49
(2) (m+n)2-6(m+n)+9
讨论:用完全平方公式分解因式我们首先要把题目中的多项式化为什么形式? 由(2)知,公式中的 a、b 可以是单项式,也可以是
(4)a2b–2ab2+ab
2、将下列多项式进行分解因式: (1)8x–72 检 (2)a2b–5ab (3)a2b–2ab2+ab
(4)4m3–8m2 测
(5)–48mn–24m2n3(6)–2x2y+4xy2–2xy
3、利用分解因式法计算: (1)121×0.13+12.1×0.9-12×1.21
(3)想一想 993-99 还能被哪些正整数整除?解决这个问题的关键是什么?
2、 (1)计算下列各式: ①(m+4) (m-4)=__________; ②(y-3)2=__________; ③3x(x-1)=__________; ④m(a+b+c)=__________; ⑤a(a+1) a-1)=__________. ( (2)根据上面的算式填空: ①3x2-3x=( ②m -16=( ③ma+mb+mc=( ④y -6y+9=( ⑤a -a=(
2、简便方法计算:
7 7 7 13 6 2 9 9 9
活动一:阅读课本 47 也例 1 上面部分,回答以下问题
1、 多项式 ab+ac 中,各项由哪些因式组成?各项有相同的因式吗?
2、 多项式 ma+mb+mc 各项含有的相同因式是什么?多项式 x2+4x 呢?多项式 mb2+nb–b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解专题辅导讲义
一个多项式进行因式分解,从方法上说,一般要比作乘法运算更有灵活性和多样性。
提公因式法和公式法是因式分解的两种最基本的方法。
现行初中数学教科书主要涉及这两种因式分解的方法。
提公因式法和公式法本身不难掌握,但要灵活机动地运用它们,还需要认真思考。
请看下面几道例题。
例题精选1:把4224b a b a -因式分解。
解法1:)b a )(b a (b a )b a (b a b a b a 2222224224-+=-=-
解法2:)b a )(b a (b a )b a (ab )b a (ab )ab b a )(ab b a (b a b a 2222224224-+=-+=-+=- 评注:解法1先用提公因式法,再用公式法;解法2先用公式法,再用提公因式法。
虽然两种解法得到同样的结果,但是解法1更简单。
通常情况下,先考虑提公因式可以使解法简化。
有些多项式不能直接使用提公因式法或公式法,这时就需要先把多项式适当整理变形,然后再使用提公因式法或公式法。
例题精选2: 把c b b ab 2a c a 2222-+++因式分解。
解:222222222)b a ()b a )(b a (c )b ab 2a ()c b c a (c b b ab 2a c a ++-+=+++-=-+++ )b a bc ac )(b a ()]b a ()b a (c )[b a (++-+=++-+=
评注:这样先将多项式的各项进行分组,然后再分解因式的方法叫做分组分解法。
例题精选3: 把44b 4a +因式分解。
解:222222422444)ab 2()b 2a (b a 4)b 4b a 4a (b 4a -+=-++=+
)b 2ab 2a )(b 2ab 2a (2222+-++=。
评注:多项式44b 4a +中只有两项,既不能提公因式,也不能直接用公式。
但由于这两项再加上22b a 4就是222)b 2a (+,所以先对44b 4a +加、减22b a 4,再适当分组,然后使用公式法,最终就能因式分解。
上面的解法中,把44b 4a +变形为224224b a 4)b 4b a 4a (-++,形式上是由简单变复杂了,但变化后的形式为使用公式法创造了条件。
因式分解要进行到什么程度,对于单纯的因式分解题目,一般要求最终结果中每个因式都不能再继续分解,例如,把44b a -因式分解时,得到)b a )(b a (2222-+,并未完全达到
要求,还需要继续分解到)b a )(b a )(b a (22-++。
在解决计算、化简、解方程等问题的过程中,当因式分解作为中间步骤时,应根据具体问题来决定分解到什么程度合适。
例题精选 4:已知5.0b a ,1b a 2222=-=+,计算44b a -。
解:5.05.01)b a )(b a (b a 222244=⨯=-+=-。
评注:上面解法中,因式分解只是中间步骤,只要分解到)b a )(b a (2222-+问题就解决了,继续分解反而不利于解决问题。
我们知道,代数式中的字母是数的抽象表示。
因此,因式分解是在某种数的范围中进行的,对于不同的数的范围,对同一多项式的因式分解,要进行到的程度也可能有所不同。
例题精选5: (1)在有理数范围内把4a 4-因式分解;
(2)在实数范围内把4a 4-因式分解。
解:(1))2a )(2a (4a 224-+=-;
(2))2a )(2a )(2a ()2a )(2a (4a 2224-++=-+=-。
评注:初中数学教科书中,如无特别声明,通常约定因式分解是在有理数范围内进行的。
5. 因式分解有什么用
因式分解是多项式的分解变形,式子变形不是无意义的变来变去的数学游戏,而是解决数学问题的重要手段。
在计算、化简、解方程等问题中,因式分解可以发挥重要作用。
例题精选6:计算b 2a 21b
a a 22+-- 分析:这是两个分式相减,它们的分母不同,正如异分母分数相加减一样,这里也需要先通分。
分数的通分中,可以先分解因数,再确定最简公分母,例如:
12
5322332222213214161=⨯⨯+⨯⨯=⨯+⨯=+。
类似地,分式的通分中,可以先分解因式,再确定最简公分母。
解:)b a )(b a (2b a )b a )(b a (2a 2)b a (21)b a )(b a (a b 2a 21b a a 22-+---+=+--+=+-- b
2a 21)b a (21)b a )(b a (2b a )b a )(b a (2b a a 2-=-=-++=-++-= 例题精选7:例 解方程05x 6x 2=++。
分析:这是一个一元二次方程。
它的一边等于0,如果能将它的另一边分解为两个一次
式的乘积,则可知当这两个因式中任何一个等于0时,乘积都等于0,于是可以得出方程的解。
解:原方程可化为04)9x 6x (2=-++,02)3x (22=-+,分解因式,得到0)1x )(5x (=++。
所以1x ,5x 21-=-=。
总之,因式分解是针对多项式的一种分解变形,它是解决许多数学问题的一种重要手段。
当堂检测
一、填空:(30分)
1、若16)3(22+-+x m x 是完全平方式,则m 的值等于_____。
2、22)(n x m x x -=++则m =____n =____
3、232y x 与y x 612的公因式是_____
4、若n m y x -=))()((4222y x y x y x +-+,则m=_______,n=_________。
5、在多项式4224222294,4,,t s y x b a n m +-+--+中,可以用平方差公式分解因式的 有________________________ ,其结果是 _____________________。
6、若16)3(22+-+x m x 是完全平方式,则m=_______。
7、_____)
)(2(2(_____)2++=++x x x x 8、已知,01200520042=+++++x x
x x 则.________2006=x 9、若25)(162++-M b a 是完全平方式M=________。
10、()22)3(__6+=++x x x , ()2
2)3(9___-=++x x 11、若229y k x ++是完全平方式,则k=_______。
12、若442-+x x 的值为0,则51232-+x x 的值是________。
13、若)15)(1(152
-+=--x x ax x 则a =_____。
14、若6,422=+=+y x y x 则=xy ___。
15、方程042=+x x ,的解是________。
二、选择题:(10分)
1、多项式))(())((x b x a ab b x x a a --+---的公因式是( )
A 、-a 、
B 、))((b x x a a ---
C 、)(x a a -
D 、)(a x a --
2、若22)32(9-=++x kx mx ,则m ,k 的值分别是( )
A 、m=—2,k=6,
B 、m=2,k=12,
C 、m=—4,k=—12、
D m=4,k=12、
3、下列名式:4422222222,)()(,,,y x y x y x y x y x --+---+--中能用平方差公 式分解因式的有( )
A 、1个,
B 、2个,
C 、3个,
D 、4个
4、计算)10
11)(911()311)(211(2232---- 的值是( ) A 、2
1 B 、2011.,101.,201D C 三、分解因式:(30分)
1 、234352x x x --
2 、 2633x x -
3 、 22)2(4)2(25x y y x --- 4、2
2414y xy x +--
5、x x -5
6、12-x
7、2ax a b ax bx bx -++--2 8、811824+-x x
9 、24369y x - 10、24)4)(3)(2)(1(-++++x x x x
四、代数式求值(15分)
1、 已知3
12=
-y x ,2=xy ,求 43342y x y x -的值。
2、 若x 、y 互为相反数,且4)1()2(22=+-+y x ,求x 、y 的值
3、 已知2=+b a ,求)(8)(22222b a b a +--的值
五、计算: (15) (1) 0.7566.24366.3⨯-⨯ (2) 200020012121⎪⎭⎫ ⎝⎛+⎪⎭
⎫ ⎝⎛-
(3)2244222568562⨯+⨯⨯+⨯
六、试说明:对于任意自然数n ,2
2)5()7(--+n n 都能被动24整除。
(8分)。