人教版九年级数学上册 一元二次方程同步练习题含答案(最新推荐版)

合集下载

人教版九年级数学上册一元二次方程测试题(含答案)4页

人教版九年级数学上册一元二次方程测试题(含答案)4页

人教版九年级数学上册一元二次方程测试题(含答案)4页(1)x^2-9x+8=0答案:x1=8x2=1(2)x^2+6x-27=0答案:x1=3x2=-9(3)x^2-2x-80=0答案:x1=-8x2=10(4)x^2+10x-200=0答案:x1=-20x2=10(5)x^2-20x+96=0答案:x1=12x2=8(6)x^2+23x+76=0答案:x1=-19x2=-4(7)x^2-25x+154=0答案:x1=14x2=11(8)x^2-12x-108=0答案:x1=-6x2=18(9)x^2+4x-252=0答案:x1=14x2=-18(10)x^2-11x-102=0答案:x1=17x2=-6(11)x^2+15x-54=0答案:x1=-18x2=3(12)x^2+11x+18=0答案:x1=-2x2=-9(13)x^2-9x+20=0答案:x1=4x2=5(14)x^2+19x+90=0答案:x1=-10x2=-9(15)x^2-25x+156=0答案:x1=13x2=12(16)x^2-22x+57=0答案:x1=3x2=19(17)x^2-5x-176=0答案:x1=16x2=-11(18)x^2-26x+133=0答案:x1=7x2=19(19)x^2+10x-11=0答案:x1=-11x2=1(20)x^2-3x-304=0答案:x1=-16x2=19(22)x^2+13x-48=0答案:x1=3x2=-16(23)x^2+5x-176=0答案:x1=-16x2=11(24)x^2+28x+171=0答案:x1=-9x2=-19(25)x^2+14x+45=0答案:x1=-9x2=-5(26)x^2-9x-136=0答案:x1=-8x2=17(27)x^2-15x-76=0答案:x1=19x2=-4(28)x^2+23x+126=0答案:x1=-9x2=-14(29)x^2+9x-70=0答案:x1=-14x2=5(30)x^2-1x-56=0答案:x1=8x2=-7(31)x^2+7x-60=0答案:x1=5x2=-12(32)x^2+10x-39=0答案:x1=-13x2=3(33)x^2+19x+34=0答案:x1=-17x2=-2(34)x^2-6x-160=0答案:x1=16x2=-10(35)x^2-6x-55=0答案:x1=11x2=-5(36)x^2-7x-144=0答案:x1=-9x2=16(37)x^2+20x+51=0答案:x1=-3x2=-17(38)x^2-9x+14=0答案:x1=2x2=7(39)x^2-29x+208=0答案:x1=16x2=13(40)x^2+19x-20=0答案:x1=-20x2=1(41)x^2-13x-48=0答案:x1=16x2=-3(42)x^2+10x+24=0答案:x1=-6x2=-4(44)x^2-8x-209=0答案:x1=-11x2=19(45)x^2+23x+90=0答案:x1=-18x2=-5(46)x^2+7x+6=0答案:x1=-6x2=-1(47)x^2+16x+28=0答案:x1=-14x2=-2(48)x^2+5x-50=0答案:x1=-10x2=5(49)x^2+13x-14=0答案:x1=1x2=-14(50)x^2-23x+102=0答案:x1=17x2=6(51)x^2+5x-176=0答案:x1=-16x2=11(52)x^2-8x-20=0答案:x1=-2x2=10(53)x^2-16x+39=0答案:x1=3x2=13(54)x^2+32x+240=0答案:x1=-20x2=-12(55)x^2+34x+288=0答案:x1=-18x2=-16(56)x^2+22x+105=0答案:x1=-7x2=-15(57)x^2+19x-20=0答案:x1=-20x2=1(58)x^2-7x+6=0答案:x1=6x2=1(59)x^2+4x-221=0答案:x1=13x2=-17(60)x^2+6x-91=0答案:x1=-13x2=7(61)x^2+8x+12=0答案:x1=-2x2=-6(62)x^2+7x-120=0答案:x1=-15x2=8(63)x^2-18x+17=0答案:x1=17x2=1(64)x^2+7x-170=0答案:x1=-17x2=10(65)x^2+6x+8=0答案:x1=-4x2=-2(66)x^2+13x+12=0答案:x1=-1x2=-12(67)x^2+24x+119=0答案:x1=-7x2=-17(68)x^2+11x-42=0答案:x1=3x2=-14(69)x^20x-289=0答案:x1=17x2=-17(70)x^2+13x+30=0答案:x1=-3x2=-10(71)x^2-24x+140=0答案:x1=14x2=10(72)x^2+4x-60=0答案:x1=-10x2=6(73)x^2+27x+170=0答案:x1=-10x2=-17(74)x^2+27x+152=0答案:x1=-19x2=-8(75)x^2-2x-99=0答案:x1=11x2=-9(76)x^2+12x+11=0答案:x1=-11x2=-1(77)x^2+17x+70=0答案:x1=-10x2=-7(78)x^2+20x+19=0答案:x1=-19x2=-1(79)x^2-2x-168=0答案:x1=-12x2=14(80)x^2-13x+30=0答案:x1=3x2=10(81)x^2-10x-119=0答案:x1=17x2=-7(82)x^2+16x-17=0答案:x1=1x2=-17(83)x^2-1x-20=0答案:x1=5x2=-4(84)x^2-2x-288=0答案:x1=18x2=-16(85)x^2-20x+64=0答案:x1=16x2=4(86)x^2+22x+105=0答案:x1=-7x2=-15(88)x^2-4x-285=0答案:x1=19x2=-15(89)x^2+26x+133=0答案:x1=-19x2=-7(90)x^2-17x+16=0答案:x1=1x2=16(91)x^2+3x-4=0答案:x1=1x2=-4(92)x^2-14x+48=0答案:x1=6x2=8(93)x^2-12x-133=0答案:x1=19x2=-7(94)x^2+5x+4=0答案:x1=-1x2=-4(95)x^2+6x-91=0答案:x1=7x2=-13(96)x^2+3x-4=0答案:x1=-4x2=1(97)x^2-13x+12=0答案:x1=12x2=1(98)x^2+7x-44=0答案:x1=-11x2=4(99)x^2-6x-7=0答案:x1=-1x2=7 (100)x^2-9x-90=0答案:x1=15x2=-6 (101)x^2+17x+72=0答案:x1=-8x2=-9 (102)x^2+13x-14=0答案:x1=-14x2=1 (103)x^2+9x-36=0答案:x1=-12x2=3 (104)x^2-9x-90=0答案:x1=-6x2=15 (105)x^2+14x+13=0答案:x1=-1x2=-13 (106)x^2-16x+63=0答案:x1=7x2=9 (107)x^2-15x+44=0答案:x1=4x2=11 (108)x^2+2x-168=0答案:x1=-14x2=12(110)x^2-6x-55=0答案:x1=11x2=-5 (111)x^2+18x+32=0答案:x1=-2x2=-16。

最新人教版九年级上册 解一元二次方程 同步练习(含答案)

最新人教版九年级上册  解一元二次方程 同步练习(含答案)

解一元二次方程同步练习一.选择题1.方程x2-6x+5=0的两个根之和为()A.-6B.6C.-5D.52.下列方程中,没有实数根的是()A.2x2+3x=0B.(x-1)2=2C.x2+3=0D.x2-4x+3=03.已知方程x2-6x+q=0配方后是(x-p)2=7,那么方程x2+6x+q=0配方后是()A.(x-p)2=5B.(x+p)2=5C.(x-p)2=9D.(x+p)2=7 4.关于x的一元二次方程ax2-x+0.25=0有两个不相等的实数根,则a的取值范围是()A.a>0B.a>-1C.a<1D.a<1且a≠05.已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:①若a+b+c=0,则b2-4ac>0;②若方程两根为-1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;④若b=2a+c,则方程有两个不相等的实根.其中正确的有()A.①②③B.①②④C.②③④D.①②③④6.使方程2x2-5mx+2m2=5的一根为整数的整数m的值共有()A.1个B.2个C.3个D.4个7.已知实数x满足(x2-2x+1)2+2(x2-2x+1)-3=0,那么x2-2x+1的值为()A.-1或3B.-3或1C.3D.18.定义运算:a*b=2ab,若a、b是方程x2+x-m=0(m>0)的两个根,则(a+1)*b+2a的值为()A.mB.2-2mC.2m-2D.-2m-29.三角形两边的长是6和8,第三边满足方程x2-24x+140=0,则三角形周长为()A.24B.28C.24或28D.以上都不对10.从-2,-1,0,1,2,4,这六个数中,随机抽一个数、记为a,若数a使关于x的一元二次方程x2-2(a-4)x+a2=0有实数解,且关于y的分式方有整数解,则符合条件的a的值的和是()A.-2B.0C.1D.211.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的两倍,则称这样的方程为“2倍根方程”,以下说法不正确的是()A.方程x2-3x+2=0是2倍根方程B.若关于x的方程(x-2)(mx+n)=0是2倍根方程,则m+n=0 C.若m+n=0且m≠0,则关于x的方程(x-2)(mx+n)=0是2倍根方程D.若2m+n=0且m≠0,则关于x的方程x2+(m-n)x-mn=0 是2倍根方程12.若整数a使得关于x的一元二次方程(a+2)x2+2ax+a-1=0有实数根,且关于x的不等式组有解且最多有6个整数解,则符合条件的整数a的个数为()A.3B.4C.5D.6二.填空题13.方程(x-3)(x+2)=0的根是.14.已知(x2+y2+1)(x2+y2+3)=8.则x2+y2的值为.15.已知a,b是方程x2+3x-1=0的两根,则a2b+ab2的值是.16.已知关于x的一元二次方程(0.25m-1)x2-x+1=0有实数根,则m的取值范围是.17.对于实数a,b,定义运算“*“,a*b=例如4*2,因为4>2,所以4*2=42-4×2=8.若x1,x2是一元二次方程x2-8x+16=0的两个根,则x1*x2=.三.解答题18.解下列一元二次方程:(1)x2+4x-8=0;(2)(x-3)2=5(x-3);(3)2x2-4x=1(配方法).19.设实数a,b满足a2(b2+1)+b(b+2a)=40,a(b+1)+b=8,求的值.20.已知关于x的一元二次方程有两个不相等的实数根x1,x2.(1)若m为正整数,求m的值;(2)在(1)的条件下,求代数式(x1x2)(x12+x22)的值.21.已知关于x的一元二次方程kx2+(1-2k)x+k-2=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)当k取满足(1)中条件的最小整数时,设方程的两根为α和β,求代数式α3+β2+β+2016的值.22.基本事实:“若ab=0,则a=0或b=0”.方程x2-x-6=0可通过因式分解化为(x-3)(x+2)=0,由基本事实得x-3=0或x+2=0,即方程的解为x=3或x=-2.(1)试利用上述基本事实,解方程:3x2-x=0;(2)若实数m、n满足(m2+n2)(m2+n2-1)-6=0,求m2+n2的值.参考答案1-5:BCDDC 6-10:DDDAD 11-12:BC13、x=3或x=-214、115、316、m≤5且m≠417、018、19、820、(1)m=1;(2)21、:(1)k>-0.25且k≠0;(2)2020.22、(2)3。

人教版数学九年级上册解一元二次方程因式分解法同步练习题含答案与解析

人教版数学九年级上册解一元二次方程因式分解法同步练习题含答案与解析

21.2 解一元二次方程 21.2.3 因式分解法一、单项选择题1. 一元二次方程x 2-x +=0的根是( ) A ., B .x 1=2,x 2=-2 C .x 1=x 2= D .x 1=x 2=2. 方程3x 2=0与方程3x 2=3x 的解( )A .都是x=0B .有一个相同的解x=0C .都不相同D .无法确定3.解方程(x +5)2-3(x +5)=0,较为简便的方法是( )A .直接开平方法B .因式分解法C .配方法D .公式法4.方程x(x -4)=32-8x 的解是( )A .x =-8B .x 1=4,x 2=-8C .x 1=-4,x 2=8D .x 1=2,x 2=-85. 一个三角形的两边长为3和6,第三边的边长是方程(x-3)(x-4)=0的根,则这个三角形的周长( )A .13B .11或13C .11D .11和136、要使4452-+-x x x 的值为0,x 的值为( )A .4或1B .4C .1D .-4或-114112x =21=2x -12-127、已知x2-5xy+6y2=0,那么x与y的关系是()A.2x=y或3x=y B.2x=y或3y=xC.x=2y或x=3y D.x=2y或y=3x8、已知(a2+b2)2-2(a2+b2)+1=0,则a2+b2的值为()A.0 B.-1 C.1 D.±1二、填空题9.方程(x-1)(x+2)=2(x+2)的根是__________.10.如果代数式3x2-6的值为21,那么x的值为__________.11.已知x=2是一元二次方程(m-2)x2+4x-m2=0的一个根,则m的值是______.12. 一元二次方程x(x-1)=0的解是__________.13. 一元二次方程x2-3x=0的根是__________.14. 方程(x+1)(3x-2)=0的根是15. 请写出一个根为x=1,另一个根满足-1<x<1的一元二次方程:16. 已知一元二次方程(m-1)x2+7mx+m2+3m-4=0有一根为0,则m=y=17. 若2x2+9xy-5y2=0,则x三、解答题18. 用因式分解法解下列一元二次方程:(1)(x-1)(x+3)=-3;(2)(3x-1)2=4(2x+3)2.19. 如果方程x2+mx-2m=0的一个根为-1,求方程x2-6mx =0的根.20. 用因式分解法解方程x2-mx-7=0时,将左边分解后有一个因式为x+1,求m的值.21. 若m是关于x的方程x2+nx+m=0的根,切m≠0,则m+n的值是多少?22. 有一大一小两个正方形,小正方形的边长比大正方形边长的一半多4cm,大正方形的面积比小正方形面积的2倍少32cm2,求这两个正方形的边长.23. 阅读材料:为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1看作一个整体,然后设x 2-1=y ①,那么原方程可化为y 2-5y+4=0,解得y 1=1,y 2=4,当y=1时,x 2-1=1,∴x 2=2,∴x=±2;当y=4时,x 2-1=4,∴x 2=5,∴x=±5,故原 方程的解为x 1=2,x 2= -2,x 3=5,x 4= -5解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用 法达到了解方程的目的,体现了转化的数学思想。

2024-2025学年人教版九年级数学上册第二十一章 一元二次方程单元测试卷(含答案)

2024-2025学年人教版九年级数学上册第二十一章 一元二次方程单元测试卷(含答案)

第二十一章一元二次方程一、选择题1.下列方程中,是一元二次方程的是( )A.x−1=0B.x2−x−1=0C.x2−y=0D.1x+x−1=02.一元二次方程x2−4x+1=0配方后,可化为( )A.(x−2)2=3B.(x+2)2=3C.(x−2)2=4D.(x+2)2=43.若x=1是方程x2+mx+1=0的一个解,则m的值为( )A.1B.2C.−1D.−24.方程x(x−2)=0的解是( )A.0B.2C.−2D.0或25.如果关于x的一元二次方程k x2−4x+2=0有实数根,则k的取值范围是( )A.k≤2B.k≤2且k≠0C.k<2且k≠0D.k≥2且k≠06.若x1+x2=3,x1x2=2,则以x1,x2为根的一元二次方程是( )A.x2−3x+2=0B.x2+3x−2=0C.x2+3x+2=0D.x2−3x−2=07.学校要组织一场篮球联赛,赛制为单循环形式,即每两队之间比赛一场,计划安排15场比赛,应邀请多少个队参加比赛?设应邀请x个球队参加比赛,下列算式正确的是( )A.x(x+1)=15B.x(x−1)=15C.12x(x+1)=15D.12x(x−1)=158.若m,n是关于x的一元二次方程x2+2x−5=0的两个根,则m2+mn−2n的值为( )A.−6B.6C.−4D.4二、填空题9.若关于x的方程(m+1)x2﹣3x+2=0是一元二次方程,则m的取值范围是 .10.将关于x的一元二次方程x2−6x−5=0化成(x+a)2=b的形式,则b= .11.方程3x2−6x=0的解是 12.已知关于x的方程(a−2)x2−2x+1=0有实数根,则a的取值范围是 13.若x1,x2是一元二次方程x2−x−6=0的两个实数根,则1x1+1x2的值为 .三、计算题14.解方程:(1)3x2−10x+6=0;(2)5(x+3)2=2(x+3).15.已知关于x的一元二次方程x2−(2k+1)x+k2+k=0 .(1)求证:方程有两个不相等的实数根.(2)若 Rt△ABC的两边AB,AC的长分别是这个方程的两个实数根,第三边BC的长为5,求 k 的值.16.已知关于x的一元二次方程x2+(2m+1)x+m2−1=0有两个不相等的实数根.(1)求m的取值范围.(2)设x1,x2分别是方程的两个根,且x21+x22+x1x2−17=0,求m的值.17.交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定,某头盔经销商统计了某品牌头盔4月份到6月份的销量,该品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率.(2)若此种头盔的进价为30元/个,经测算,此种头盔在市场中,当售价为40元/个时,月销售量为600个,在此基础上售价每上涨1元/个,则月销售量将减少10个.现希望该头盔每月销售利润为10 000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少?18.某超市销售一种衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该超市准备适当降价,经过一段时间测算,发现每件衬衫每降价1元,平均每天可多售出2件.(1)若每件衬衫降价4元,平均每天可售出多少件衬衫? 此时每天销售获利多少元?(2)在每件盈利不少于 25元的前提下,要使该衬衫每天销售获利为1 200元,问每件衬衫应降价多少元?(3)该衬衫每天的销售获利能达到 1 300 元吗?如果能,请写出降价方案;如果不能,请说明理由.1.B 2.A 3.D 4.D 5.B 6.A 7.D 8.D 9.m≠-1 10.1411.x1=0,x2=212.a≤313.−1614.(1)解:3x2−10x+6=0,∵a=3,b=−10,c=6,∴b2−4ac=(−10)2−4×3×6=28>0,∴x=−b±b2−4ac2a =10±286=5±73,∴x1=5+73,x2=5−73;(2)解:5(x+3)2=2(x+3),5(x+3)2−2(x+3)=0,(x+3)(5x+13)=0,x+3=0或5x+13=0,解得x1=−3,x2=−135.15.(1)证明:∵关于x的一元二次方程为x2−(2k+1)x+k2+k=0,∴Δ=[−(2k+1)]2−4(k2+k)=4k2+4k+1−4k2−4k=1>0,∴关于x的一元二次方程x2−(2k+1)x+k2+k=0有两个不相等的实数根;(2)解:∵关于x的一元二次方程为x2−(2k+1)x+k2+k=0,∴(x−k)[x−(k+1)]=0,解得:x1=k,x2=k+1.∵ Rt△ABC的两边AB,AC的长分别是这个方程的两个实数根,分两种情况讨论如下:当BC=5为直角边时,k2+52=(k+1)2,解得:k=12;当BC=5为斜边时,k2+(k+1)2=52,解得:k1=3,k2=−4(根据边长为正判断不合题意,舍去),∴k=12或k=3.16.(1)解:∵一元二次方程有两个不相等的实根∴(2m+1)2−4×1×(m2−1)=4m2+4m+1−4m2+4=4m+5>0,解得m>−54;(2)解:∵ x1,x2分别是方程的两个根∴x1+x2=−(2m+1)=−2m−1,x1·x2=m2−1;∵x12+x22+x1x2−17=0,配方后可得(x1+x2)2−x1x2−17=0;将x1+x2=−(2m+1)=−2m−1和x1·x2=m2−1代入,可得:(−2m−1)2−(m2−1)−17=0,化简可得3m2+4m−15=0;解得m=53或-3(舍去);∴m的值为53.17.(1)设该品牌头盔销售量的月增长率为x,依题意,得:150(1+x)2=216,解得:x1=0.2=20%,x2=−2.2(不合题意,舍去).答:该品牌头盔销售量的月增长率为20%;(2)设该品牌头盔的实际售价为y元,依题意,得:(y−30)(600−y−400.5×5)=10000,整理,得:y2−130y+4000=0,解得:y1=80(不合题意,舍去),y2=50,∵尽可能让顾客得到实惠,∴该品牌头盔的实际售价应定为50元,答:该品牌头盔的实际售价应定为50元.18.(1)解:由题意可得,每件衬衫降价4元,平均每天可售出衬衫的数量为:20+4×2=28(件);此时每天获取的利润为(40-4)×28=1008(元);(2)解:设每件衬衫降价x元(0≤x≤15),由题意可得(20+2x)×(40-x)=1200,整理得x2-30x+200=0,解得x1=10,x2=20(舍),答:在每件盈利不少于25元的前提下,要使该衬衫每天销售获利为1200元,每件衬衫应降价10元;(3)解:该衬衫每天的销售获利不能达到1300元,理由如下:设每件衬衫降价y元,由题意可得(20+2y)×(40-y)=1300,整理得y2-30y+250=0,∵b2-4ac=302-4×1×250=-100<0,∴此方程没有实数根,即该衬衫每天的销售获利不能达到1300元.。

人教版九年级数学上册《21.2解一元二次方程》同步练习题(附带答案)

人教版九年级数学上册《21.2解一元二次方程》同步练习题(附带答案)

人教版九年级数学上册《21.2解一元二次方程》同步练习题(附带答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.方程的实数根的个数是()A.0个B.1个C.2个D.无法确定2.以3,4为两实数根的一元二次方程为()A.B.C.D.3.用配方法解方程,下列配方正确的是()A.B.C.D.4.若是方程的一个根,则此方程的另一个根是()A.B.C.D.5.若关于的一元二次方程有实数根,则实数的取值范围是()A.B.C.且D.且6.若是一元二次方程的两根,则的值是()A.B.1 C.5 D.7.亮亮在解一元二次方程+▢=0时,不小心把常数项丢掉了,已知这个一元二次方程有实数根,则丢掉的常数项的最大值是()A.7 B.12 C.16 D.188.已知是关于x的方程的实数根.下列说法:①此方程有两个不相等的实数根;②当时,一定有;③b是此方程的根;④此方程有两个相等的实数根.上述说法中,正确的有()A.①②B.②③C.①③D.③④二、填空题:(本题共5小题,每小题3分,共15分.)9.方程x2-4x=5的根是.10.关于x的方程有两个不相等的实数根,则m的取值范围是.11.一元二次方程的两根为和,则的值为.12.已知一元二次方程▢+2=0,在▢中添加一个合适的数字,使该方程没有实数根,则添加的数字可以是.13.已知关于x的一元二次方程,当的斜边长a为,且两条直角边的长b、c恰好是这个方程的两个根,的周长为.三、解答题:(本题共5题,共45分)14.(1)(2)15.(1);(2) .16.当x满足条件时,求出方程x2﹣2x﹣4=0的根.17.已知有关于x的一元二次方程.(1)求k的取值范围,并判断该一元二次方程根的情况;(2)若方程有一个根为-2,求k的值及方程的另一个根;(3)若方程的一个根是另一个根3倍,求k的值.18.已知关于的一元二次方程有两个不相等的实数根. (1)求m的取值范围;(2)若两实数根分别为和,且,求m的值.参考答案:1.B 2.B 3.B 4.A 5.D 6.B 7.C 8.C 9.5或-110.m>-111.912.大于就行13.14.(1)解:.(2)解:或.15.(1)解:因式分解,得于是得或解得:;(2)解:∵∴∴∴解得: .16.解:由求得,则2<x<4.解方程x2﹣2x﹣4=0可得x1=1+ ,x2=1﹣,∵2<<3,∴3<1+ <4,符合题意∴x=1+ .17.(1)解:∵关于x的一元二次方程∴∴;而∴原方程方程有两个实数根(2)解:∵方程有一个根为∴解得:∴方程为:∴∴解得:∴方程的另一个解为1.(3)解:∵∴∴解得:∵方程的一个根是另一个根3倍当时,解得:,经检验符合题意;当时,解得:,经检验符合题意;综上:或.18.(1)解:∵关于x的一元二次方程有两个不相等的实数根∴Δ>0,即,解得;∴m的取值范围为.(2)解:∵方程的两个实数根分别为x1和x2∴x1+x2=,x1x2=∴∵∴解得m=1或-3∵∴。

人教版九年级数学上册 一元二次方程同步练习题含答案-精品版

人教版九年级数学上册 一元二次方程同步练习题含答案-精品版

人教版九年级数学上册第21章《一元二次方程》同步练习1带答案◆随堂检测1、判断下列方程,是一元二次方程的有____________.(1)32250x x -+=; (2)21x =; (3)221352245x x x x --=-+; (4)22(1)3(1)x x +=+;(5)2221x x x -=+;(6)20ax bx c ++=. (提示:判断一个方程是不是一元二次方程,首先要对其整理成一般形式,然后根据定义判断.)2、下列方程中不含一次项的是( )A .x x 2532=-B .2916x x =C .0)7(=-x xD .0)5)(5(=-+x x3、方程23(1)5(2)x x -=+的二次项系数___________;一次项系数__________;常数项_________.4、1、下列各数是方程21(2)23x +=解的是( ) A 、6 B 、2 C 、4 D 、05、根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式.(1)4个完全相同的正方形的面积之和是25,求正方形的边长x .(2)一个矩形的长比宽多2,面积是100,求矩形的长x .(3)一个直角三角形的斜边长为10,两条直角边相差2,求较长的直角边长x . ◆典例分析已知关于x 的方程22(1)(1)0m x m x m --++=.(1)x 为何值时,此方程是一元一次方程?(2)x 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项。

分析:本题是含有字母系数的方程问题.根据一元一次方程和一元二次方程的定义,分别进行讨论求解. 解:(1)由题意得,21010m m ⎧-=⎨+≠⎩时,即1m =时, 方程22(1)(1)0m x m x m --++=是一元一次方程210x -+=.(2)由题意得,2(1)0m -≠时,即1m ≠±时,方程22(1)(1)0m x m x m --++=是一元二次方程.此方程的二次项系数是21m -、一次项系数是(1)m -+、常数项是m .◆课下作业●拓展提高1、下列方程一定是一元二次方程的是( )A 、22310x x+-= B 、25630x y --= C 、220ax x -+= D 、22(1)0a x bx c +++=2、2121003m x x m -++=是关于x 的一元二次方程,则x 的值应为( ) A 、m =2 B 、23m =C 、32m =D 、无法确定 3、根据下列表格对应值:判断关于x 的方程0,(0)ax bx c a ++=≠的一个解x 的范围是( )A 、x <3.24B 、3.24<x <3.25C 、3.25<x <3.26D 、3.25<x <3.284、若一元二次方程20,(0)ax bx c a ++=≠有一个根为1,则=++c b a _________;若有一个根是-1,则b 与a 、c 之间的关系为________;若有一个根为0,则c=_________.5、下面哪些数是方程220x x --=的根?-3、-2、-1、0、1、2、3、6、若关于x 的一元二次方程012)1(22=-++-m x x m 的常数项为0,求m 的值是多少? ●体验中考1、(2009年,武汉)已知2x =是一元二次方程220x mx ++=的一个解,则m 的值是( )A .-3B .3C .0D .0或3(点拨:本题考查一元二次方程的解的意义.)2、(2009年,日照)若(0)n n ≠是关于x 的方程220x mx n ++=的根,则m n +的值为( )A .1B .2C .-1D .-2(提示:本题有两个待定字母m 和n ,根据已知条件不能分别求出它们的值,故考虑运用整体思想,直接求出它们的和.)参考答案:◆随堂检测1、(2)、(3)、(4) (1)中最高次数是三不是二;(5)中整理后是一次方程;(6)中只有在满足0a ≠的条件下才是一元二次方程.2、D 首先要对方程整理成一般形式,D 选项为2250x -=.故选D.3、3;-11;-7 利用去括号、移项、合并同类项等步骤,把一元二次方程化成一般形式231170x x --=,同时注意系数符号问题.4、B 将各数值分别代入方程,只有选项B 能使等式成立.故选B.5、解:(1)依题意得,2425x =,化为一元二次方程的一般形式得,24250x -=.(2)依题意得,(2)100x x -=,化为一元二次方程的一般形式得,221000x x --=.(3)依题意得,222(2)10x x +-=,化为一元二次方程的一般形式得,22480x x --=.◆课下作业●拓展提高1、D A 中最高次数是三不是二;B 中整理后是一次方程;C 中只有在满足0a ≠的条件下才是一元二次方程;D 选项二次项系数2(1)0a +≠恒成立.故根据定义判断D.2、C 由题意得,212m -=,解得32m =.故选D. 3、B 当3.24<x <3.25时,2ax bx c ++的值由负连续变化到正,说明在3.24<x <3.25范围内一定有一个x 的值,使20ax bx c ++=,即是方程20ax bx c ++=的一个解.故选B. 4、0;b a c =+;0 将各根分别代入简即可.5、解:将3x =-代入方程,左式=2(3)(3)20----≠,即左式≠右式.故3x =-不是方程220x x --=的根.同理可得2,0,1,3x =-时,都不是方程220x x --=的根.当1,2x =-时,左式=右式.故1,2x =-都是方程220x x --=的根. 6、解:由题意得,21010m m ⎧-=⎨-≠⎩时,即1m =-时,012)1(22=-++-m x x m 的常数项为0.●体验中考1、A 将2x =带入方程得4220m ++=,∴3m =-.故选A.2、D 将x n =带入方程得220n mn n ++=,∵0n ≠,∴20n m ++=,∴2m n +=-.故选D.。

人教版九年级数学上册 第21章《一元二次方程》单元同步练习(有答案)

人教版九年级数学上册  第21章《一元二次方程》单元同步练习(有答案)

九年级数学第21章《一元二次方程》单元同步练习一、选择题:1、若x1,x2是一元二次方程x2+10x+16=0的两个根,则x1+x2的值是()A.﹣10 B. 10 C.﹣16 D.162、已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A.6 B.5 C.4 D.33、下列方程有两个相等的实数根的是()A. x2+x+1=0B.4 x2+2x+1=0C. x2+12x+36=0D. x2+x-2=04、若0是关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的一根,则m值为()A.1B.0C.2D.1或25、某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.8 D.66、我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.10% C.12% D.11%7、已知一元二次方程x2-8x+12=0 的两个解恰好是等腰△ABC的底边长和腰长,则△ABC 的周长为()A.14B.10C.11D.14或108、某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=15二、填空题:9、若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为.10、若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是.11、某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为 .12、若3是关于x的方程x2+kx-6=0的一个根,则k=________.13、若一元二次方程式x2﹣8x﹣3×11=0的两根为a、b,且a>b,则a﹣2b= .14、三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的解,则此三角形周长是.三、解答题:15、解一元二次方程:(1)x2﹣5x﹣6=0(因式分解法)(2)2x2﹣4x﹣1=0(公式法)(3)2(x-3)2=x2-9 (4) 4y2=8y+116、在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.8 32 29.6 28 …售价x(元/千克)…22.6 24 25.2 26 …(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?17、如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?18、为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元)成一次函数关系.(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?19、某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?20、在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1:2,且里程数之比为2:1.为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.参考答案一、选择题:1、A2、B3、C4、C5、D6、B7、A8、A二、填空题:9、110、 511、 80(1+x)2=10012、-113、1714、13三、解答题:15、(1)x 1=6,x 2=﹣1; (2)x=2±√62. (3)x 1=3, x 2=9 (4)y=2±√5216、(1) 当天该水果的销售量为33千克.(2) 如果某天销售这种水果获利150元,那么该天水果的售价为25元.17、所围矩形猪舍的长为10m 、宽为8m .18、(1) 年销售量y 与销售单价x 的函数关系式为y=﹣10x+1000.(2) 该设备的销售单价应是50万元/台.19、(1)每天完成200平方米(2)人行道宽为2米20、(1) 原计划今年1至5月,道路硬化的里程数至少是40千米.(2) a=10.。

人教版九年级数学上册第21章一元二次方程同步训练(含答案)

人教版九年级数学上册第21章一元二次方程同步训练(含答案)

第21章《一元二次方程》同步训练2021-2022学年人教版九年级数学上册一、单选题1.关于x 一元二次方程()22110a x x a -++-=的一个根是0,则a 的值为( ) A .1或1- B .1 C .1- D .0 2.关于x 的方程2(2)310m x x +-+=有两个不相等的实数根,则m 的取值范围是( ) A .14m <且2m ≠- B .14m <-且2m ≠- C .14m < D .14m <- 3.()()2222280m n m n ----=,则22m n -的值是( )A .4B .2-C .4或2-D .4-或2 4.由于国家出台对房屋的限购令,我省某地的房屋价格原价为2400元/米2,通过连续两次降价a 后,售价变为2000元/米2,下列方程中正确的是( )A .()2240012000a -=B .22000(1)2400a -=C .22400(1)2000a +=D .22400(1)2000a -= 5.解方程2||20x x --=的解是( )A .121,2x x =-=B .121,2x x ==-C .121,1x x ==-D .122,2x x ==- 6.下列命题①方程220kx x --=是一元二次方程;②1x =与方程21x =是同解方程;③方程2x x =与方程1x =是同解方程;④由(1)(1)9x x +-=可得13x +=或13x -=,其中正确的命题有( ).A .0个B .1个C .2个D .3个 7.设方程2320x x -+=的两根分别是1x ,2x ,则12x x +的值为( ) A .3 B .32- C .32 D .3-8.若m ,n 满足2530m m +-=,2530n n +-=,且m n ≠,则11m n+的值为( ) A .35 B .53- C .35D .53 9.如图,将边长2cm 的正方形ABCD 沿其对角线AC 剪开,再把ABC 沿着AD 方向平移,得到A B C ''',若两个三角形重叠部分的面积为21cm ,则它移动的距离AA '等于( )A .0.5cmB .1cmC .1.5cmD .2cm 10.定义:如果一元二次方程20(a 0)++=≠ax bx c 满足0a b c -+=,那么我们称这个方程为“美丽”方程.已知20(a 0)++=≠ax bx c 是“美丽”方程,且有两个相等的实数根,则下列结论正确的是( )A .a b c ==B .a b =C .b c =D .a c = 11.用求根公式法解得某方程20(a 0)++=≠ax bx c 的两个根互为相反数,则( ) A .0b = B .0c C .240b ac -= D .0b c += 12.某小区规划在一个长为40m ,宽为26m 的矩形场地ABCD 上修建三条同样宽的甬路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,若使每块草坪的面积都为2144m (如图),则甬路的宽为( )A .3mB .4mC .2mD .5m二、填空题 13.方程x (x ﹣3)=0的解为_____.14.当x 满足()()133114423x x x x +<-⎧⎪⎨-<-⎪⎩时,方程x 2﹣2x ﹣5=0的根是__. 15.已知1x ,2x 是方程2630x x ++=的两个实数根,则2112x x x x +的值等于________. 16.已知一个直角三角形的两条直角边的长恰好是方程x 2-17x +60=0的两个根,则这个直角三角形的斜边长为________.17.如果关于x 的一元二次方程()20ax b ab =>的两个根分别是11x m =+与224x m =-,那么b a的值为__________. 18.某市前年PM 2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM 2.5的年均浓度比去年也下降10%,那么今年PM 2.5的年均浓度将是____________微克/立方米.三、解答题19.解下列方程:(1)()()2253x x x x -=+; (2)22(2)(23)x x -=+;(3)(2)(3)12x x --=; (4)226(3)x x +=+;(5)2242y y y +=+.20.已知a ,b ,c 为ABC 的三边,且方程()()()()()()0x a x b x b x c x c x a --+--+--=有两个相等的实数根,试判断ABC 的形状.21.已知关于x 的方程()--+=22m m x 2mx 10有两个不相等的实数根. (1)求m 的取值范围;(2)若m 为整数且3m <,a 是方程的一个根,求代数式22212334a a a +--+的值.22.已知1x 、2x 是方程2220x kx k k -+-=的两个实根,是否存在常数k ,使122132x x x x +=成立?若存在,请求出k 的值;若不存在,请说明理由.23.如图,Rt ABC 中,90,8,6C AC BC ∠=︒==,P ,Q 分别在AC 、BC 边上,同时由A 、B 两点出发,分别沿AC 、BC 方向向点C 匀速移动,它们的速度都是1米/秒,几秒后PCQ △的面积为Rt ABC 的面积的一半?24.在一块长方形镜面玻璃的四周镶上与它的周长相等的边框,制成一面镜子,镜子的长与宽的比是2∶1.已知镜面玻璃的价格是每平方米120元,边框的价格是每米30元,另外制作这面镜子还需加工费45元.设制作这面镜子的总费用是y元,镜子的宽是x 米.(1)求y与x之间的关系式;(2)如果制作这面镜子共花了195元,求这面镜子的长和宽.25.一个小球以5m/s的速度开始向前滚动,并且均匀减速,4s后小球停止滚动.(1)小球的滚动速度平均每秒减少多少?(2)小球滚动5m约用了多少秒(结果保留小数点后一位)?(提示:匀变速直线运动中,每个时间段内的平均速度v(初速度与末速度的算术平均.)数)与路程s,时间t的关系为s vt参考答案1.C2.A3.C4.D5.D6.A7.A8.D9.B10.D11.A12.C13.x 1=0,x 2=3.14.115.1016.1317.418.40.519.解:(1)()()2253x x x x -=+ ()()()()5131055330280x x x x x x x x x --+=---=-=解得:120,4x x ==;(2)22(2)(23)x x -=+223x x -=+或223x x -=--,解得:1215,3x x =-=-;(3)(2)(3)12x x --=()()225612560160x x x x x x -+=--=+-=解得:121,6x x =-=;(4)226(3)x x +=+()()()()()()2223323303230x x x x x x +=++-+=+--= 解得:123,1x x =-=-;(5)2242y y y +=+()()()()22202210y y y y y +-+=+-= 解得:1212,2y y =-=. 20 解:ABC 是等边三角形,理由如下:()()()()()()0x a x b x b x c x c x a --+--+--=,整理,得:()2320x a b c x ab bc ac -+++++= ,∴()()2=243a b c ab bc ac ∆-++-⨯++⎡⎤⎣⎦ 222444444a b c ab ac bc =++---()()()222222a b a c b c =-+-+- , ∵方程有两个相等的实数根,∴()()()222222=0a b a c b c -+-+-∴0,0,0a b a c b c -=-=-= ,∴a b c == ,∴ABC 是等边三角形.21解:(1)∵关于x 的方程(m 2﹣m )x 2﹣2mx +1=0有两个不相等的实数根, ∴222044()0m m m m m ⎧-≠⎨∆=-->⎩,解得,m >0,且m ≠1;∴m 的取值范围是:m >0,且m ≠1;(2)∵m 为整数,m <3,由(1)知,m >0,且m ≠1;∴m =2,∴关于x 的方程(m 2﹣m )x 2﹣2mx +1=0的就是:2x 2﹣4x +1=0;∵a 是方程的一个根,∴2a 2﹣4a +1=0,即2a 2=4a ﹣1; ∴2221411233413344a a a a a a +-+--+=---+=132a a --+=, 即22212334a a a +--+=2. 22.解:不存在.∵1x 、2x 是方程2220x kx k k -+-=的两个实根,∴240b ac -≥,即22(2)4()0k k k ---≥,解得,0k ≥;由题意可知122x x k +=,212x x k k =-, ∵12121212122221122()232x x x x x x x x x x x x x x +=+-=+=, ∴222(2)32)2(k k k k k --=-,解得120,7k k ==-,经检验,27k =-是原方程的解, ∵0k ≥,∴不存在常数k ,使122132x x x x +=成立. 23.解:设经过x 秒后△PCQ 的面积是Rt △ACB 面积的一半,则AP =x ,BQ =x∴CP =8-x ,CQ =6-x ,∵∠C =90° ∴1=242ABC S AC BC ⋅=△,()()118622CPQ S PC CQ x x =⋅=--△, ∵△PCQ 的面积是Rt △ACB 面积的一半,∴()()11862422x x --=⨯ 解得x 1=12(舍去),x 2=2.答:经2秒△PCQ 的面积是Rt △ACB 面积的一半.24.解:(1)y =(2x +2x +x +x )×30+45+2x 2×120=240x 2+180x +45;(2)由题意可列方程为240x 2+180x +45=195,整理得8x 2+6x -5=0,即(2x -1)(4x +5)=0,解得x 1=0.5,x 2=-1.25(舍去)∴x =12,∴2x =1,答:镜子的长和宽分别是1m 和12m .25.解:(1)从滚动到停下平均每秒速度减少值为:速度变化÷小球运动速度变化的时间,即5÷4=54(m/s ), 故小球的滚动速度平均每秒减少54小m/s ;. (2)设小球滚动到5m 用了x s , 即55(5)452x x +-⋅=,解得14x =+,24 1.2x =-.答:小球滚动到5 m 约用了1.2 s .。

人教版九年级数学上册《21.1一元二次方程》同步练习题-附答案

人教版九年级数学上册《21.1一元二次方程》同步练习题-附答案

人教版九年级数学上册《21.1一元二次方程》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列关于x 的方程是一元二次方程的是( )A .20ax bx c ++=B .240x x-= C .()()1110x x +-+= D .()22125x x x -= 2.一元二次方程221x x -=的一次项系数和常数项依次是( )A .1-和1B .1-和1-C .2和1-D .1-和33.将一元二次方程()()()21235x x x x +-=+-化为一般形式为( )A .2510x x -+=B .290x x +-=C .2430x x -+=D .210x x -+=4.一元二次方程x 2+px ﹣2=0的一个根为2,则p 的值为( )A .1B .2C .﹣1D .﹣25.若a 是方程2230x x --=的一个解,则263a a -的值为() A .3B .3-C .9D .9-二、填空题 6.只含有 个未知数,并且未知数的 次数是2的方程,叫做一元二次方程,它的一般形式为 .7.一元二次方程()521x x x -=+的一次项系数是 .8.若关于x 的一元二次方程20x a -=的一个根是2,则=a .9.若方程()2190a x x -+-=是关于x 的一元二次方程,则a 的取值范围是__________.10.已知m 是方程210x x --=的一个根,则代数式2552021m m -+的值是 .三、解答题11.判断下列各式哪些是一元二次方程.①21x x ++;②2960x x -=;③ 2102y =;④ 215402x x-+=; ⑤ 2230x xy y +-=;⑥ 232y =;⑦ 2(1)(1)x x x +-=.12.已知13,都是方程230==-x x+-=的根,求a、b的值和这个一元二次方程的一般形式.ax bx13.已知m是方程2250x x+-=的一个根,求32+--的值.259m m m14.根据题意列出方程,化为一般式,不解方程.(1)一个大正方形的边长比一个小正方形边长的3倍多1,若两正方形面积和为53,求这两正方形的边长.(2)某班同学之间为了相互鼓励,每两人之间进行一次击掌,共击掌595次.求本班有多少名同学(设本班有x名同学).参考答案1.C2.B3.A4.C5.C6.一最高20(0)++=≠ax bx c a7.7-8.49.1a ≠10.202611.②③⑥.12.1a = 2b = 2 230x x +-= 13.9-14.(1)10x 2+6x-52=0;(2)211900x x --=。

人教版九年级数学上册:一元二次方程同步练习 (含答案)

人教版九年级数学上册:一元二次方程同步练习 (含答案)

第二十一章 一元二次方程21.1 一元二次方程知识点1.只含有 个未知数,并且未知数的 方程叫一元二次方程.2.一元二次方程的一般形式是 ,其中二次项为 ,一次项 ,常数项 ,二次项系数 ,一次项系数 .3.使一元二次方程左右两边 叫一元二次方程的解。

一.选择题1.下列方程是一元二次方程的是( )A .x-2=0B .x 2-4x-1=0C .x 2-2x-3D .xy+1=02.下列方程中,是一元二次方程的是( )A .5x+3=0B .x 2-x (x+1)=0C .4x 2=9D .x 2-x 3+4=03.关于x 的方程013)2(22=--+-x x a a 是一元二次方程,则a 的值是( )A .a=±2B .a=-2C .a=2D .a 为任意实数4.把一元二次方程4)3()1(2+-=-x x x 化成一般式之后,其二次项系数与一次项分别是( )A .2,-3B .-2,-3C .2,-3xD .-2,-3x5.若关于x 的一元二次方程x 2+5x+m 2-1=0的常数项为0,则m 等于( )A .1B .2C .1或-1D .06.把方程2(x 2+1)=5x 化成一般形式ax 2+bx+c=0后,a+b+c 的值是( )A .8B .9C .-2D .-17.(2013•安顺)已知关于x 的方程x 2-kx-6=0的一个根为x=3,则实数k 的值为( )A .1B .-1C .2D .-28.(2013•牡丹江)若关于x 的一元二次方程为ax 2+bx+5=0(a ≠0)的解是x=1,则2013-a-b 的值是( )A .2018B .2008C .2014D .2012二.填空题9.当m= 时,关于x 的方程5)3(72=---x x m m 是一元二次方程;10.若方程kx 2+x=3x 2+1是一元二次方程,则k 的取值范围是 .11.方程5)1)(13(=+-x x 的一次项系数是 .12.(2012•柳州)一元二次方程3x 2+2x-5=0的一次项系数是 .13.关于x 的一元二次方程3x (x-2)=4的一般形式是 .14.(2005•武汉)方程3x 2=5x+2的二次项系数为 ,一次项系数为 .15.(2007•白银)已知x=-1是方程x 2+mx+1=0的一个根,则m= .16.(2010•河北)已知x=1是一元二次方程x 2+mx+n=0的一个根,则m 2+2mn+n 2的值为 .17.(2013•宝山区一模)若关于x 的一元二次方程(m-2)x 2+x+m 2-4=0的一个根为0,则m 值是 .18.已知关于x 的一元二次方程ax 2+bx+c=0(a ≠0)有一个根为1,一个根为-1,则a+b+c= ,a-b+c= .三.解答题19.若(m+1)x |m|+1+6-2=0是关于x 的一元二次方程,求m 的值.20.(2013•沁阳市一模)关于x 的方程(m 2-8m+19)x 2-2mx-13=0是否一定是一元二次方程?请证明你的结论.21.一元二次方程0)1()1(2=++++c x b x a 化为一般式后为01232=-+x x ,试求0222=-+c b a 的值的算术平方根.21.1 一元二次方程知识点1.一,最高次数是2的整式。

人教版九年级上册数学同步练习《一元二次方程》(习题+答案)

人教版九年级上册数学同步练习《一元二次方程》(习题+答案)

21.1 一元二次方程内容提要1.只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.2.一元二次方程的一般形式是20ax bx c ++=(,,a b c 是已知数,且0a ≠).其中2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.基础训练1.如果4x =是一元二次方程223x x a -=的一个根,则常数a 的值是( ) A .2B .2-C .2±D .42.下列方程中是关于x 的一元二次方程的是( ) A .2210x x += B .20ax bx c ++= C .()()121x x -+= D .223250x xy y --=3.下列方程中是一元二次方程的是( )①()2210x +=;②26x y +=;③2450x x --=;④24505x -= A .①③④B .①④C .①③D .③④4.把方程()2235x -=化成一元二次方程的一般形式是. 5.若1x =是一元二次方程20x x c ++=的一个解,则2c =.6.已知1x =是一元二次方程20x mx n ++=的一个根,则222m mn n ++的值为.7.将下列方程化成一元二次方程的一般形式,并写出它们的二次项系数、一次项系数及常数项.(1)245x x -=; (2)24132x x =-; (3)26y y =.8.已知1x =是一元二次方程2400ax bx +-=的一个解,且a b ≠,求2222a b a b--的值.能力提高1.已知1是关于x 的一元二次方程()2110m x x -++=的一个根,则m 的值是( ) A .1B .1-C .0D .1-或12.a 是方程2230x x --=的一个解,则263a a -的值为( )A .3B .3-C .9D .9-3.若1x =是关于x 的一元二次方程230x mx n ++=的解,则62m n += .4.已知关于x 的方程224220x x p p --++=的一个根为p ,则p =.5.已知1x =-是一元二次方程20x mx n ++=的一个根,则222m mn n -+的值为.6.若实数m 满足210m +=,则44m m -+= .7.已知2510m m --=,则22125m m m -+=.8.2010年亚运会在广州举办,组委会决定对志愿者进行分批培训,某中学学生思思已受训合格,成为该校唯一的一名合格志愿者,并由她负责培训本校的第一批志愿者,再由思思和参加第一批培训且合格的志愿者培训第二批志愿者.已知参加两批培训的志愿者全部合格,经两批培训后,该校共有121名合格志愿者,若设该校每批培训中每个志愿者平均培训x 人,请列出满足条件方程. 拓展探究1.关于x 的方程()228192130m m x mx -++-=是否一定是一元二次方程,勤勤、聪聪两同学有不同意见.勤勤认为:原方程中二次项系数与m 有关,可能为零,所以不能确定这个方程就一定是一元二次方程.聪聪认为:原方程中二次项系数()2228198163433m m m m m -+=-++=-+≥,肯定不会等于零,所以可以确定这个方程一定是一元二次方程.你认为勤勤、聪聪两同学的意见谁正确?你从中有什么收获?2.教材或资料会出现这样的题目:把方程2122x x -=化为一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项,现在把上面的题目改编为下面的两个小题,请解答:(1)下列式子中,有哪几个是方程2122x x -=所化成的一元二次方程的一般形式?(答案只写序号)①21202x x --=;②21202x x -++=;③224x x -=;④2240x x -++=;⑤20--=.(2)方程2122x x -=化为一元二次方程的一般形式,它的二次项系数、一次项系数、常数项之间具有什么关系?21.1 参考答案:基础训练1.C 2.C 3.A 4.2212130x x-+=5.4 6.17.(1)2450x x--=,其中二次项系数为1,一次项系数为4-,常数项为5-;(2)242130x x+-=,其中二次项系数为4,一次项系数为2,常数项为13-;(3)260y y-+=,其中二次项系数为6-,一次项系数为1,常数项为0.8.()()()2220 2222a b a ba b a ba b a b+--+=== --.能力提高1.B 2.C 3.2-4.1 5.1 6.62 7.28 8.()11121x x x+++=拓展探究1.聪聪正确.2.解:(1)①②④⑤(2)若设它的二次项系数为()0a a≠,则一次项系数为2a-、常数项为4a-.。

人教版数学九年级上册第二十一章解一元二次方程计算题练习卷[含答案]

人教版数学九年级上册第二十一章解一元二次方程计算题练习卷[含答案]

人教版数学九年级上册第二十一章解一元二次方程计算题练习卷一、计算题1.解下列方程:x2−4x=0(1);(x−6)(x+1)=−12(2) .2.解方程:(1)(x+2)2﹣9=0;(2)x2﹣2x﹣3=0.3.解方程:(1)x2-2x-3=0;(2)x (x-2)-x+2=0.4.解方程:(x+3)2−25=0x(x+2)=2x+45.解方程:.(x+3)(x−3)=x−36.解方程:.7.解方程:(1)x2=4x;(2)x(x﹣2)=3x﹣6.(1)4x(2x+1)=3(2x+1);(2)﹣3x2+4x+4=0.9.解下列方程:(1)x2−2x−8=0(2)(x−1)2=(x−1)10.用适当方法解下列一元二次方程:(1)x2﹣6x=1;(2)x2﹣4=3(x﹣2).11.解方程:x(x﹣3)=x﹣312.解方程:(x+3)2﹣2x(x+3)=0.13.解方程:x(2x﹣5)=2x﹣5.14.解下列关于x的方程.6x(x−1)=x−1(1);3x2−2x=x2+x+1(2).(1)x2−2x+1=0(2)2x2−7x+3=016.解方程:(x−2)2=3(x−2)(1);3x2−4x−1=0(2).17.解方程:(1)(x﹣4)(5x+7)=0;(2)x2﹣4x﹣6=0.18.解方程:(1)x2﹣3x=0;(2)2x(3x﹣2)=2﹣3x.答案解析部分1.【答案】(1)解:x2−4x=0x(x−4)=0解得x1=0,x2=4(2)解:(x−6)(x+1)=−12x2−5x−6=−12x2−5x+6=0即(x−2)(x−3)=0解得x1=3,x2=22.【答案】(1)解:(x+2)2﹣9=0(x+2)2=9x+2=±3x1=−5,x2=1所以 .(2)解:x2﹣2x﹣3=0(x+1)(x-3)=0x-3=0或x+1=0x1=−1,x2=3所以 .3.【答案】(1)解:x2-2x-3=0x2-2x+1=3+1(x-1)2=4x-1=±2∴x1=3,x2=-1;(2)解:x (x-2)-(x-2)=0(x-2)(x-1)=0x-2=0或x-1=0∴x1=2,x2=1.4.【答案】解:(x+3)2=25,∴x+3=±5,解得:x1=2,x2=-8.5.【答案】解:x(x+2)=2x+4,x(x+2)-2(x+2)=0,(x+2)(x-2)=0,x+2=0或x-2=0,∴x1=-2,x2=2.6.【答案】解:,(x+3)(x−3)−(x−3)=0.(x−3)[(x+3)−1]=0即.(x−3)(x+2)=0∴或,x−3=0x+2=0∴或.x1=3x2=−27.【答案】(1)解:∵x2=4x,∴x2-4x=0,则x(x-4)=0,∴x=0或x-4=0,解得x1=0,x2=4;(2)解:∵x(x-2)=3x-6,∴x(x-2)-3(x-2)=0,则(x-2)(x-3)=0,∴x-2=0或x-3=0,解得x1=2,x2=3.8.【答案】(1)解:4x(2x+1)=3(2x+1)(4x−3)(2x+1)=0x1=34,x2=−12(2)解:−3x2+4x+4=0a=−3,b=4,c=4,Δ=42+3×4×4=64∴x=−b±b2−4ac2a=−4±8−6∴x1=−23,x2=29.【答案】(1)解:x2−2x−8=0(x−4)(x +2)=0解得: , .x 1=−2x 2=4(2)解: (x−1)2=(x−1)(x−1−1)(x−1)=0(x−2)(x−1)=0解得: , .x 1=1x 2=210.【答案】(1)解:两边同加.得,32x 2−6x +32=1+32即,(x−3)2=10两边开平方,得,x−3=±10即,或,x−3=10x−3=−10∴,x 1=10+3x 2=−10+3(2)解:,(x +2)(x−2)=3(x−2)∴,(x +2)(x−2)−3(x−2)=0∴,(x−2)(x−1)=0∴,或,x−2=0x−1=0解得x 1=2,x 2=111.【答案】解:x (x-3)=x-3x (x-3)-(x-3)=0,(x-3)(x-1)=0,解得:x 1=3,x 2=1.12.【答案】解:(x+3)2﹣2x (x+3)=0(x +3)(x +3−2x)=0(x +3)(3−x)=0解得x 1=3,x 2=−313.【答案】解:(2x -5)(x -1)=0x 1=,x 2=15214.【答案】(1)解:移项,得6x (x−1)−(x−1)=0由此可得(6x−1)(x−1)=06x−1=0,x−1=0解得,.x 1=16x 2=1(2)解:移项,得2x 2−3x−1=0,,a =2b =−3c =−1Δ=b 2−4ac =(−3)2−4×2×(−1)=17>0∴x =−(−3)±172×2=3±174∴x 1=3+174,x 2=3−17415.【答案】(1)解:,x 2−2x +1=0即(x-1)2=0,∴x 1=x 2=1(2)解:,2x 2−7x +3=0因式分解得:(2x-1)(x-3)=0,∴2x-1=0或x-3=0,∴x 1=,x 2=31216.【答案】(1)解:原方程可化为(x−2)(x−5)=0即或,x−2=0x−5=0∴,x 1=2x 2=5(2)解:∵,,,a =3b =−4c =−1∴,Δ=b 2−4ac =28>0∴,x =4±282×3=2±73∴,x 1=2+73x 2=2−7317.【答案】(1)解:,(x−4)(5x +7)=0或,x−4=05x +7=0或,x =4x =−75即x 1=4,x 2=−75(2)解:,x 2−4x−6=0,x 2−4x =6,x 2−4x +4=6+4,(x−2)2=10,x−2=±10,x =2±10即x 1=2+10,x 2=2−1018.【答案】(1)解:x 2﹣3x =0,x (x﹣3)=0,∴x =0或x﹣3=0,∴x 1=0,x 2=3;(2)解:2x (3x﹣2)=2﹣3x , 2x (3x﹣2)+(3x﹣2)=0,则(3x﹣2)(2x+1)=0,∴3x﹣2=0或2x+1=0,解得x 1=,x 2=﹣.2312。

人教版九年级数学上册 一元二次方程同步练习题含答案【精】

人教版九年级数学上册 一元二次方程同步练习题含答案【精】

人教版九年级数学上册第21章《一元二次方程》同步练习1带答案◆随堂检测1、判断下列方程,是一元二次方程的有____________.(1)32250x x -+=; (2)21x =; (3)221352245x x x x --=-+; (4)22(1)3(1)x x +=+;(5)2221x x x -=+;(6)20ax bx c ++=. (提示:判断一个方程是不是一元二次方程,首先要对其整理成一般形式,然后根据定义判断.)2、下列方程中不含一次项的是( )A .x x 2532=-B .2916x x =C .0)7(=-x xD .0)5)(5(=-+x x3、方程23(1)5(2)x x -=+的二次项系数___________;一次项系数__________;常数项_________.4、1、下列各数是方程21(2)23x +=解的是( ) A 、6 B 、2 C 、4 D 、05、根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式.(1)4个完全相同的正方形的面积之和是25,求正方形的边长x .(2)一个矩形的长比宽多2,面积是100,求矩形的长x .(3)一个直角三角形的斜边长为10,两条直角边相差2,求较长的直角边长x . ◆典例分析已知关于x 的方程22(1)(1)0m x m x m --++=.(1)x 为何值时,此方程是一元一次方程?(2)x 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项。

分析:本题是含有字母系数的方程问题.根据一元一次方程和一元二次方程的定义,分别进行讨论求解. 解:(1)由题意得,21010m m ⎧-=⎨+≠⎩时,即1m =时, 方程22(1)(1)0m x m x m --++=是一元一次方程210x -+=.(2)由题意得,2(1)0m -≠时,即1m ≠±时,方程22(1)(1)0m x m x m --++=是一元二次方程.此方程的二次项系数是21m -、一次项系数是(1)m -+、常数项是m .◆课下作业●拓展提高1、下列方程一定是一元二次方程的是( )A 、22310x x+-= B 、25630x y --= C 、220ax x -+= D 、22(1)0a x bx c +++=2、2121003m x x m -++=是关于x 的一元二次方程,则x 的值应为( ) A 、m =2 B 、23m =C 、32m =D 、无法确定 3、根据下列表格对应值:判断关于x 的方程0,(0)ax bx c a ++=≠的一个解x 的范围是( )A 、x <3.24B 、3.24<x <3.25C 、3.25<x <3.26D 、3.25<x <3.284、若一元二次方程20,(0)ax bx c a ++=≠有一个根为1,则=++c b a _________;若有一个根是-1,则b 与a 、c 之间的关系为________;若有一个根为0,则c=_________.5、下面哪些数是方程220x x --=的根?-3、-2、-1、0、1、2、3、6、若关于x 的一元二次方程012)1(22=-++-m x x m 的常数项为0,求m 的值是多少? ●体验中考1、(2009年,武汉)已知2x =是一元二次方程220x mx ++=的一个解,则m 的值是( )A .-3B .3C .0D .0或3(点拨:本题考查一元二次方程的解的意义.)2、(2009年,日照)若(0)n n ≠是关于x 的方程220x mx n ++=的根,则m n +的值为( )A .1B .2C .-1D .-2(提示:本题有两个待定字母m 和n ,根据已知条件不能分别求出它们的值,故考虑运用整体思想,直接求出它们的和.)参考答案:◆随堂检测1、(2)、(3)、(4) (1)中最高次数是三不是二;(5)中整理后是一次方程;(6)中只有在满足0a ≠的条件下才是一元二次方程.2、D 首先要对方程整理成一般形式,D 选项为2250x -=.故选D.3、3;-11;-7 利用去括号、移项、合并同类项等步骤,把一元二次方程化成一般形式231170x x --=,同时注意系数符号问题.4、B 将各数值分别代入方程,只有选项B 能使等式成立.故选B.5、解:(1)依题意得,2425x =,化为一元二次方程的一般形式得,24250x -=.(2)依题意得,(2)100x x -=,化为一元二次方程的一般形式得,221000x x --=.(3)依题意得,222(2)10x x +-=,化为一元二次方程的一般形式得,22480x x --=.◆课下作业●拓展提高1、D A 中最高次数是三不是二;B 中整理后是一次方程;C 中只有在满足0a ≠的条件下才是一元二次方程;D 选项二次项系数2(1)0a +≠恒成立.故根据定义判断D.2、C 由题意得,212m -=,解得32m =.故选D. 3、B 当3.24<x <3.25时,2ax bx c ++的值由负连续变化到正,说明在3.24<x <3.25范围内一定有一个x 的值,使20ax bx c ++=,即是方程20ax bx c ++=的一个解.故选B. 4、0;b a c =+;0 将各根分别代入简即可.5、解:将3x =-代入方程,左式=2(3)(3)20----≠,即左式≠右式.故3x =-不是方程220x x --=的根.同理可得2,0,1,3x =-时,都不是方程220x x --=的根.当1,2x =-时,左式=右式.故1,2x =-都是方程220x x --=的根. 6、解:由题意得,21010m m ⎧-=⎨-≠⎩时,即1m =-时,012)1(22=-++-m x x m 的常数项为0.●体验中考1、A 将2x =带入方程得4220m ++=,∴3m =-.故选A.2、D 将x n =带入方程得220n mn n ++=,∵0n ≠,∴20n m ++=,∴2m n +=-.故选D.。

九年级数学上册《第二十一章一元二次方程》同步练习题及答案(人教版)

九年级数学上册《第二十一章一元二次方程》同步练习题及答案(人教版)

九年级数学上册《第二十一章一元二次方程》同步练习题及答案(人教版) 班级姓名学号一、单选题1.方程x2=4x的根是()A.4 B.-4 C.0或4 D.0或-42.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0B.1x2+1x=2C.x2+2x=x2−1D.3(x+1)2=2(x+1)3.若x=1是方程x2+ax﹣2=0的一个根,则a的值为()A.0 B.1 C.2 D.34.如果一个一元二次方程的根是x1=x2=2,那么这个方程可以是()A.x2=4 B.x2+4=0C.x2+4x+4=0 D.x2-4x+4=05.已知关于x的方程ax2+bx+c=0,若a+b+c=0,则该方程一定有一个根为()A.-1 B.0 C.1 D.1或-16.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1C.k≤5,且k≠1 D.k>57.已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或108.定义:cx2+bx+a=0是一元二次方程ax2+bx+c=0的倒方程.则下列四个结论:①如果x=2是x2+2x+c=0的倒方程的解,则c=−54;②如果ac<0,那么这两个方程都有两个不相等的实数根;③如果一元二次方程ax2−2x+c=0无实数根,则它的倒方程也无实数根;④如果一元二次方程ax2+bx+c=0有两个不相等的实数根,则它的倒方程也有两个不相等的实数根. 其中正确的有()A.1个B.2个C.3个D.4个二、填空题9.写一个以5,﹣2为根的一元二次方程(化为一般形式).10.一元二次方程x2-3x=0的较大的根为。

11.把方程3x (x ﹣1)=2﹣2x 化成一元二次方程的一般形式为12.若一元二次方程ax 2﹣bx ﹣2015=0有一根为x=﹣1,则a+b= .13.已知 {x =−2y =3是方程x ﹣ky=1的解,那么k= . 三、解答题14.已知x=1是方程x 2﹣5ax+a 2=0的一个根,求代数式3a 2﹣15a ﹣7的值.15.若关于x 的二次方程(m+1)x 2+5x+m 2﹣3m=4的常数项为0,求m 的值.16.已知关于x 的方程(k ﹣1)(k ﹣2)x 2+(k ﹣1)x+5=0.求:(1)当k 为何值时,原方程是一元二次方程;(2)当k 为何值时,原方程是一元一次方程;并求出此时方程的解.17.阅读下题的解答过程,请判断其是否有错,若有错误,请你写出正确的m 值.已知m 是关于x 的方程mx 2﹣2x+m=0的一个根,求m 的值.解:把x=m 代入原方程,化简得m 2=m ,两边同除以m ,得m=1把m=1代入原方程检验,可知m=1符合题意.18.关于x 的一元二次方程x 2﹣3x+k =0有实数根.(1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程(m ﹣1)x 2+x+m ﹣3=0与方程x 2﹣3x+k =0有一个相同的根,求此时m 的值.19.已知关于x 的一元二次方程x 2+(m ﹣2)x +m ﹣3=0.(1)求证:无论m 取何值,方程总有实数根.(2)设该方程的两个实数根分别为x 1,x 2,且2x 1+x 2=m +1,求m 的值.1.C2.D3.B4.D5.C6.B7.B8.C9.x2-3x-10=0(不唯一)10.x=311.3x2−x−2=012.201513.k=﹣114.解:∵x=1是方程x2﹣5ax+a2=0的一个根∴1﹣5a+a2=0.∴a2﹣5a=﹣1∴3a2﹣15a﹣7=3(a2﹣5a)﹣7=3×(﹣1)﹣7=﹣10,即3a2﹣15a﹣7=﹣10.15.解:∵关于x的二次方程(m+1)x2+5x+m2﹣3m﹣4=0的常数项为0∴m2﹣3m﹣4=0,即(m﹣4)(m+1)=0解得:m=4或m=﹣1当m=﹣1时,方程为5x=0,不合题意;则m的值为4.16.解:(1)依题意得:(k﹣1)(k﹣2)≠0解得k≠1且k≠2;(2)依题意得:(k﹣1)(k﹣2)=0,且k﹣1≠0所以k﹣2=0解得k=2所以该方程为x+5=0解得x=﹣5.17.解:错误,由于关于x的方程不一定是一元二次方程此时,方程为﹣2x=0∴x=0,符合题意当m ≠0时∴m 3﹣2m+m=0∴m (m 2﹣1)=0∴m 2﹣1=0∴m=±1综上所述,m=0或±1.18.(1)解:根据题意得△=(-3)2-4k ≥0,解得k ≤ 94(2)解:满足条件的k 的最大整数为2,此时方程变形为方程x 2-3x+2=0,解得x 1=1,x 2=2 当相同的解为x=1时,把x=1代入方程得m-1+1+m-3=0,解得m= 32当相同的解为x=2时,把x=2代入方程得4(m-1)+2+m-3=0,解得m=1,而m-1≠0 不符合题意,舍去,所以m 的值为 3219.(1)证明:∵Δ=(m −2)2−4(m −3)=m 2−4m +4−4m +12=m 2−8m +16=(m −4)2≥0 ∴无论m 取何值,此方程总有实数根;(2)解:∵该方程的两个实数根分别为x 1,x 2∴{x 1+x 2=−(m −2)=2−m 2x 1+x 2=m +1,且 x 1x 2=m −3 解得 {x 1=2m −1x 2=3−3m∴(2m −1)(3−3m)=m −3∴6m −3−6m 2+3m =m −3 即 6m 2−8m =0∴m(6m −8)=0∴解得 m =0 或 m =43。

最新人教版九年级上册数学解一元二次方程(因式分解法)同步练习(含答案)

最新人教版九年级上册数学解一元二次方程(因式分解法)同步练习(含答案)

解一元二次方程(因式分解法)一、填空题(填出下列一元二次方程的根)1.x (x -3)=0.______2.(2x -7)(x +2)=0.______3.3x 2=2x .______4.x 2+6x +9=0.______5.______6.______ 7.(x -1)2-2(x -1)=0.______.8.(x -1)2-2(x -1)=-1.______二、选择题9.方程(x -a )(x +b )=0的两根是( ).A .x 1=a ,x 2=bB .x 1=a ,x 2=-bC .x 1=-a ,x 2=bD .x 1=-a ,x 2=-b10.下列解方程的过程,正确的是( ).A .x 2=x .两边同除以x ,得x =1.B .x 2+4=0.直接开平方法,可得x =±2.C .(x -2)(x +1)=3×2.∵x -2=3,x +1=2, ∴x 1=5, x 2=1.D .(2-3x )+(3x -2)2=0.整理得3(3x -2)(x -1)=0, .03222=-x x .)21()21(2x x -=+.1,3221==∴x x三、解答题(用因式分解法解下列方程,*题用十字相乘法因式分解解方程)11.3x (x -2)=2(x -2).12.*13.x 2-3x -28=0.14.x 2-bx -2b 2=0.*15.(2x -1)2-2(2x -1)=3.*16.2x 2-x -15=0.四、解答题17.x 取什么值时,代数式x 2+8x -12的值等于2x 2+x 的值. .32x x综合、运用、诊断一、写出下列一元二次方程的根18..______________________.19.(x -2)2=(2x +5)2.______________________.二、选择题20.方程x (x -2)=2(2-x )的根为( ).A .-2B .2C .±2D .2,221.方程(x -1)2=1-x 的根为( ).A .0B .-1和0C .1D .1和022.方程的较小的根为( ). A .B .C .D .三、用因式分解法解下列关于x 的方程23.24.4(x +3)2-(x -2)2=0.0222=-x x 0)43)(21()43(2=--+-x x x 43-218543.2152x x =-25.26.abx 2-(a 2+b 2)x +ab =0.(ab ≠0)四、解答题27.已知关于x 的一元二次方程mx 2-(m 2+2)x +2m =0.(1)求证:当m 取非零实数时,此方程有两个实数根;(2)若此方程有两个整数根,求m 的值..04222=-+-b a ax x参考答案1.x =0,x 2=3. 2. 3.4.x 1=x 2=-3. 5. 6. 7.x =1,x 2=3. 8.x 1=x 2=2. 9. B . 10. D .11.12. .2,2721-==x x ⋅==32,021x x .6,021==x x .322,021-==x x ⋅==32,221x x ⋅==33,021x x13.x 1=7,x 2=-4.14.x 1=2b ,x 2=-b . 15.x 1=0,x 2=2.16. 17.x 1=3,x 2=4.18. 19.x 1=-1,x 2=-7.20.C . 21.D . 22.C .23.x 1=0,x 2=-10.24. 25.26. 27.(1)∆=(m 2-2)2.当m ≠0时,∆≥0;(2)(mx -2)(x -m )=0,m =±1或m =±2. .3,2521=-=x x .2,021==x x ⋅-=-=34,821x x .2,221b a x b a x +=-=⋅==b a x a b x 21,。

九年级数学上册《第二十一章 一元二次方程》同步练习题附带答案(人教版)

九年级数学上册《第二十一章 一元二次方程》同步练习题附带答案(人教版)

九年级数学上册《第二十一章 一元二次方程》同步练习题附带答案(人教版)姓名 班级 学号一、选择题:1.下列方程是关于 x 的一元二次方程的是( )A .20ax bx c ++=B .2112x x +=C .2221x x x +=-D .()23(1)21x x +=+2.要使方程(a-3)x 2+(b+1)x+c=0是关于x 的一元二次方程,则( )A .a ≠0B .a ≠3C .a ≠3且b ≠-1D .a ≠3且b ≠-1且c ≠03.一元二次方程22(1)(1)1x a x x x -+=--化成一般式后,二次项系数为1,一次项系数为﹣1,则a 的值为( )A .﹣1B .1C .﹣2D .24.“读万卷书,行万里路.”某校为了丰富学生的阅历知识,坚持开展课外阅读活动,学生人均阅读量从七年级的每年100万字增加到九年级的每年121万字.设该校七至九年级人均阅读量年均增长率为x ,则可列方程为( )A .()21001121x +=B .()21001%121x +=C .()10012121x +=D .()()210010*********x x ++++=5.若 1x =- 是关于x 的一元二次方程 ()2200ax bx a ++=≠ 的一个根,则202122a b -+= ( )A .2025B .2023C .2019D .20176.方程230x +=的二次项系数与一次项系数及常数项之积为( )A .3B .CD .9- 7.若0x 是方程()2200ax x c a ++=≠的一个根,设2M ac =-,20(1)N ax =+则下列关于M与N 的关系正确的为( )A .M N =B .1M N =+C .3M N +=D .2M N = 8.若关于x 的方程()200ax bx c a ++=≠满足0a b c -+=,称此方程为“月亮”方程.已知方程()221999100a x ax a -+=≠是“月亮”方程,则22199919991a a a a +++的值为( ) A .-1B .2C .1D .-2 二、填空题: 9.将方程 22143x x x -+=- 化为一般形式为 .10.已知关于x 的方程(a ﹣1)x 2﹣2x+1=0是一元二次方程,则a 的取值范围是11.若关于x 的一元二次方程()221210m x x m -++-=的常数项为0,则m 的值是 . 12.某市从2020年开始大力发展旅游产业.据统计,该市2020年旅游收入约为2亿元.预计2022年旅游收入约达2.88亿元,设该市旅游收入的年平均增长率为x ,根据题意列出方程为 .13.若关于 x 的一元二次方程 ()2100mx nx m +-=≠ 的一个解是 1x = ,则 m n + 的值是 .三、解答题:14.若(m+1)x |m|+1+6x ﹣2=0是关于x 的一元二次方程,求m 的值.15.学完一元二次方程后,在一次数学课上,同学们说出了一个方程的特点:①它的一般形式为ax 2+bx+c=0(a 、b 、c 为常数,a ≠0)②它的二次项系数为5③常数项是二次项系数的倒数的相反数你能写出一个符合条件的方程吗?16.把方程(3x+2)(x ﹣3)=2x ﹣6,化成一般形式,并写出它的二次项系数,一次项系数和常数项.17.一元二次方程化为一般式后为 ,试求 a 2+b 2-c 2的值的算术平方根.18.完成下列问题:(1)已知x ,y 为实数,且 2y = ,求 23x y - 的值.(2)已知 m 是方程 2202110x x -+= 的一个根,求代数式 2120202m m m-++ 的值.参考答案:1.D 2.B 3.B 4.A 5.A 6.D 7.B 8.D9.230x x +-=10.a ≠111.-112.()221 2.88x +=13.114.解:由题意,得|m|+1=2,且m+1≠0解得m=115.解:由①知这是一元二次方程,由②③可确定 a c 、 ,而 b 的值不唯一确定,可为任意数,熟悉一元二次方程的定义及特征是解答本题的关键.这个方程是5x 2-2x - 15=0. 16.解:(3x+2)(x ﹣3)=2x ﹣63x 2﹣9x=0所以它的二次项系数是3,一次项系数是﹣9,常数项是017.解:a (x+1)2+b (x+1)+c=0化作一元二次方程的一般形式为ax 2+(2a+b)x+a+b+c=0又一般形式为3x 2+2x-1=0∴a=3,2a+b=2,a+b+c=-1解得,a=3,b=-4,c=0∴a 2+b 2-c 2=25,则其算术平方根是5.18.(1)解:由题意得, 5050x x --,∴52x y ==-,∴2310616x y -=+=(2)解:∵m 是方程 2202110x x -+= 的一个根∴2202110m m -+=∴220211m m =-211202022021120202m m m m m m -++=--++21111202112022m m m m +=++=+=+=。

2024人教版数学九年级上册第一章一元二次方程单元复习卷(含答案)

2024人教版数学九年级上册第一章一元二次方程单元复习卷(含答案)

第二十一章一元二次方程章末复习测试题(二)一.选择题1.一元二次方程(x﹣2)2=0的根是()A.x=2B.x1=x2=2C.x1=﹣2,x2=2D.x1=0,x2=2 2.用公式法解一元二次方程2x2+3x=1时,化方程为一般式当中的a、b、c依次为()A.2,﹣3,1B.2,3,﹣1C.﹣2,﹣3,﹣1D.﹣2,3,1 3.若关于x的一元二次方程m2x2﹣(2m﹣1)x+1=0有两个实数根,则m的取值范围是()A.m <B.m≤C.m≥D.m ≤且m≠04.已知关于x的一元二次方程x2﹣2ax+4=0的一个根是2,则a的值为()A.1B.﹣1C.2D.﹣25.方程(m﹣1)x2+2mx﹣3=0是关于x的一元二次方程,则()A.m≠±1B.m=1C.m≠﹣1D.m≠16.菱形ABCD的一条对角线长为6cm,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长等于()A.10cm B.12cm C.16cm D.12cm或16cm7.已知一元二次方程x2+2x﹣1=0的两实数根为x1、x2,则x1•x2的值为()A.2B.﹣2C.1D.﹣1 8.九江某快递公司随着网络的发展,业务增长迅速,完成快递件数从六月份的10万件增长到八月份的12.1万件.假定每月增长率相同,设为x.则可列方程为()A.10x+x2=12.1B.10(x+1)=12.1C.10(1+x)2=12.1D.10+10(1+x)=12.19.若等腰三角形一条边的边长为3,另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是()A.27B.36C.27或36D.1810.用配方法解方程x2﹣8x+5=0,将其化为(x+a)2=b的形式,正确的是()A.(x+4)2=11B.(x+4)2=21C.(x﹣8)2=11D.(x﹣4)2=112024人教版数学九年级上册第一章一元二次方程单元复习卷(含答案)11.若a,b,c满足,则关于x的方程ax2+bx+c=0(a≠0)的解是()A.1,0B.﹣1,0C.1,﹣1D.无实数根12.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.32x+2×20x﹣2x2=570B.32x+2×20x=32×20﹣570C.(32﹣2x)(20﹣x)=32×20﹣570D.(32﹣2x)(20﹣x)=570二.填空题13.一元二次方程x(x﹣2)=x﹣2的一个根为x=2,另一个根为.14.用一根20m长的绳子围成一个面积为24m2矩形,则矩形的长与宽分别是.15.今年我国生猪价格不断飙升,某超市的排骨价格由第一季度的每公斤40元上涨到第三季度的每公斤元90,则该超市的排骨价格平均每个季度的增长率为.16.若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为.17.某企业退休职工李师傅2013年月退休金为1500元,2015年达到2160元.设李师傅的月退休金从2013年到2015年年平均增长率为x,可列方程为.18.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒,若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长,设剪去的小正方形边长是xcm,根据题意可列方程,化为一般式为.三.解答题19.解下列方程.(1)(4x﹣1)2=225.(2)(x﹣5)(x﹣6)=x﹣5.20.已知:关于x的一元二次方程x2+(2m+1)x+m2+m=0.(1)求证:此方程总有两个不相等的实数根;(2)请选择一个合适的m值,写出这个方程并求出此时方程的根.21.a为实数,关于x的方程(x﹣a)2+2(x+1)=a有两个实数根x1,x2.(1)求a的取值范围.(2)若(x1﹣x2)2+x1x2=12.试求a的值.22.有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃,设花圃的一边AB为xm,面积为ym2.(1)用含有x的代数式表示y.(2)如果要围成面积为63m2的花圃,AB的长是多少?(3)能围成面积为72m2的花圃吗!如果能,请求出AB的长;如果不能,请说明理由.23.方程x2+ax+b=0与x2+bx+a=0有一个公共根,设它们另两个根为x1,x2;方程x2﹣cx+d=0与x2﹣dx+c=0有一个公共根,设它们另两个根为x3,x4.求x1x2x3x4的取值范围(a、b<0,a≠b,c、d<0,c≠d)24.2019年国庆档上映了多部优质国产影片,其中《我和我的祖国》、《中国机长》这两部影片不管是剧情还是制作,都非常值得一看.《中国机长》是根据真实故事改编的,影片中全组机组人员以自己的实际行动捍卫安全、呵护生命,堪称是“新时代的英雄”、“民航奇迹的创造者”,据统计,某地10月1日该影片的票房约为1亿,10月3日的票房约为1.96亿.(1)求该地这两天《中国机长》票房的平均增长率;(2)电影《我和我的祖国》、《中国机长》的票价分别为40元、45元,10月份,某企业准备购买200张不同时段的两种电影票,预计总花费不超过8350元,其中《我和我的祖国》的票数不多于《中国机长》票数的2倍,请求出该企业有多少种购买方案,并写出最省钱的方案及所需费用.25.为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.参考答案一.选择题1.解:(x﹣2)2=0,则x1=x2=2,故选:B.2.解:∵方程2x2+3x=1化为一般形式为:2x2+3x﹣1=0,∴a=2,b=3,c=﹣1.故选:B.3.解:由已知得:,解得:m≤且m≠0.故选:D.4.解:∵关于x的一元二次方程x2﹣2ax+4=0的一个根是2,∴22﹣2a×2+4=0,即﹣4a=﹣8解得,a=2.故选:C.5.解:根据题意得:m﹣1≠0,解得:m≠1,故选:D.6.解:解方程x2﹣7x+12=0得:x=3或4,即AB=3或4,∵四边形ABCD是菱形,∴AB=AD=DC=BC,当AD=DC=3cm,AC=6cm时,3+3=6,不符合三角形三边关系定理,此时不行;当AD=DC=4cm,AC=6cm时,符合三角形三边关系定理,即此时菱形ABCD的周长是4×4=16,故选:C.7.解:∵一元二次方程x2+2x﹣1=0的两实数根为x1、x2,所以x1•x2==﹣1.故选:D.8.解:设每月增长率为x,根据题意得:10(1+x)2=12.1.故选:C.9.解:当3为腰长时,将x=3代入原方程得9﹣12×3+k=0,解得:k=27,∴原方程为x2﹣12x+27=0,∴x1=3,x2=9,∵3+3<9,∴长度为3,3,9的三条边不能围成三角形∴k=27舍去;当3为底边长时,△=(﹣12)2﹣4k=0,解得:k=36.故选:B.10.解:x2﹣8x+5=0,x2﹣8x=﹣5,x2﹣8x+16=﹣5+16,(x﹣4)2=11.故选:D.11.解:当x=1时,a+b+c=0,当x=﹣1时,a﹣b+c=0,所以关于x的方程ax2+bx+c=0(a≠0)的解为1或﹣1.故选:C.12.解:设道路的宽为xm,则草坪的长为(32﹣2x)m,宽为(20﹣x)m,根据题意得:(32﹣2x)(20﹣x)=570.故选:D.二.填空题(共6小题)13.解:方程整理为x2﹣3x+2=0,设方程的另一个解为t,则2t=2,解得t=1,即方程的另一个解为1.故答案为1.14.解:设矩形的长为xm,则宽为m,依题意,得:x•=24,整理,得:x2﹣10x+24=0,解得:x1=6,x2=4.∵x≥,∴x≥5,∴x=6,=4.故答案为:6m,4m.15.解:设平均每个季度的增长率为x,依题意,得:40(1+x)2=90,解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).故答案为:50%.16.解:∵a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,∴a、b可看作方程x2﹣4x+1=0的两个实数解,∴a+b=4,ab=1,而a2+1=4a,b2+1=4b,∴=+=×=×=1.故答案为1.17.解:如果设李师傅的月退休金从2013年到2015年年平均增长率为x,那么根据题意得今年退休金为:1500(1+x)2,列出方程为:1500(1+x)2=2160.故答案为:1500(1+x)2=2160.18.解:设剪去的小正方形边长是xcm,则长方形纸盒的底面长为(10﹣2x)cm,宽为(6﹣2x)cm,依题意,得:(10﹣2x)(6﹣2x)=32,即x2﹣8x+7=0.故答案为:x2﹣8x+7=0.三.解答题(共7小题)19.解:(1)∵(4x﹣1)2=225,∴4x﹣1=15或4x﹣1=﹣15,解得x=4或x=﹣;(2)∵(x﹣5)(x﹣6)﹣(x﹣5)=0,∴(x﹣5)(x﹣7)=0,则x﹣5=0或x﹣7=0,解得x=5或x=7.20.(1)证明:∵△=(2m+1)2﹣4m2﹣4m=1>0,∴方程总有两个不相等的实数根;(2)解:当m=0时,方程化为x2+x=0,解得x1=0,x2=﹣1.21.解:(1)(x﹣a)2+2(x+1)=a,变形为x2﹣2(a﹣1)x+a2﹣a+2=0.根据题意得△=4(a﹣1)2﹣4(a2﹣a+2)=4a2﹣8a+4﹣4a2+4a﹣8=﹣4a﹣4≥0,解得a≤﹣1.即a的取值范围是a≤﹣1;(2)由根与系数的关系得x1+x2=2(a﹣1),x1x2=a2﹣a+2,∵(x1﹣x2)2+x1x2=12,∴(x1+x2)2﹣3x1x2=12,∴[2(a﹣1)]2﹣3(a2﹣a+2)=12,即a2﹣5a﹣14=0,解得a1=﹣2,a2=7,∵a≤﹣1,∴a的值为﹣2.22.解:(1)由题意得:y=x(30﹣3x),即y=﹣3x2+30x.(2)当y=63时,﹣3x2+30x=63.解此方程得x1=7,x2=3.当x=7时,30﹣3x=9<10,符合题意;当x=3时,30﹣3x=21>10,不符合题意,舍去;∴当AB的长为7m时,花圃的面积为63m2.(3)不能围成面积为72m2的花圃.理由如下:如果y=72,那么﹣3x2+30x=72,整理,得x2﹣10x+24=0,解此方程得x1=4,x2=6,当x=4时,30﹣3x=18,不合题意舍去;当x=6时,30﹣3x=12,不合题意舍去;故不能围成面积为72m2的花圃.23.解:∵x2+ax+b=0与x2+bx+a=0有一个公共根,∴x2+ax+b=x2+bx+a,∴(a﹣b)x=a﹣b,∵a≠b,∴x=1,∴x1=b,x2=a,∴a+b=﹣1,∴x1+x2=﹣1,∵x2﹣cx+d=0与x2﹣dx+c=0有一个公共根,∴x2﹣cx+d=x2﹣dx+c,∴﹣(d﹣c)x=d﹣c,∵c≠d,∴x=﹣1,∴x3=﹣d,x4=﹣c,∴d+c=﹣1,∴x3+x4=1,∵a、b<0,c、d<0,∴(﹣x1)+(﹣x2)≥2,x3+x4≥2,∴0<x1x2≤,0<x3x4≤,∴0<x1x2x3x4≤.24.解:(1)设该地这两天《中国机长》票房的平均增长率为x.根据题意得:1×(1+x)2=1.96解得:x1=0.4,x2=﹣2.4(舍)答:该地这两天《中国机长》票房的平均增长率为40%.(2)设购买《我和我的祖国》a张,则购买《中国机长》(200﹣a)张根据题意得:解得:130≤a≤∵a为正整数∴a=130,131,132,133∴该企业共有4种购买方案,购买《我和我的祖国》133张,《中国机长》67张时最省钱,费用为:40×133+45×67=8335(元).答:最省钱的方案为购买《我和我的祖国》133张,《中国机长》67张,所需费用为8335元.25.解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合题意,舍去).答:广场中间小路的宽为1米.11。

21 1一元二次方程同步练习(含简单答案)人教版九年级数学上册

21 1一元二次方程同步练习(含简单答案)人教版九年级数学上册

21.1一元二次方程一、单选题1.若()21510a x x --+=是关于x 的一元二次方程,则a 不能取( )A .0B .1C .-1D .2 2.将一元二次方程2792x x +=化成一般式后,二次项系数和一次项系数分别为( ) A .7,9 B .27x ,﹣2x C .7,2 D .7,﹣2 3.若关于x 的一元二次方程230x x a -+=的一个根是1,则a 的值为( ) A .2 B .1 C .0 D .2- 4.若22(1)0b a +-=,则下列方程中是一元二次方程的是( ) A .250ax x b +-=B .()()21350b x a x -++-=C .()()21170a x b x -+--=D .2(1)10b x ax -+-= 5.若关于x 的一元二次方程2(1)5(1)(3)0m x x m m -++--=的常数项为0,则m 的值等于( )A .1B .3C .1或3D .0A .1个B .2个C .3个D .4个 7.将一元二次方程2314x x -=化成一般形式为( )A .2341x x +=B .2341x x -=C .23410x x --=D .23410x x +-= 8.已知关于x 的一元二次方程222(4)(21)40k x k x k ++-+-=有一个根是0,则k 的值是( )A .4B .±2C .2D .2- 9.若一元二次方程20ax bx c ++=中的二次项系数与常数项之和等于一次项系数,则方程必有一根是( )A .0B .1C .-1D .±1二、填空题三、解答题参考答案:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级数学上册第21章《一元二次方程》同步练习1
带答案
◆随堂检测
1、判断下列方程,是一元二次方程的有____________.
(1)32250x x -+=; (2)21x =; (3)221352245
x x x x --=-+; (4)2
2(1)3(1)x x +=+;(5)2221x x x -=+;(6)20ax bx c ++=. (提示:判断一个方程是不是一元二次方程,首先要对其整理成一般形式,然后根据定义判断.)
2、下列方程中不含一次项的是( )
A .x x 2532=-
B .2916x x =
C .0)7(=-x x
D .0)5)(5(=-+x x
3、方程23(1)5(2)x x -=+的二次项系数___________;一次项系数__________;常数项_________.
4、1、下列各数是方程21(2)23
x +=解的是( ) A 、6 B 、2 C 、4 D 、0
5、根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式.
(1)4个完全相同的正方形的面积之和是25,求正方形的边长x .
(2)一个矩形的长比宽多2,面积是100,求矩形的长x .
(3)一个直角三角形的斜边长为10,两条直角边相差2,求较长的直角边长x . ◆典例分析
已知关于x 的方程22
(1)(1)0m x m x m --++=.
(1)x 为何值时,此方程是一元一次方程?
(2)x 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项。

分析:本题是含有字母系数的方程问题.根据一元一次方程和一元二次方程的定义,分别进行讨论求解. 解:(1)由题意得,21010m m ⎧-=⎨+≠⎩
时,即1m =时, 方程22
(1)(1)0m x m x m --++=是一元一次方程210x -+=.
(2)由题意得,2(1)0m -≠时,即1m ≠±时,方程22(1)(1)0m x m x m --++=是一元二次方程.此方程的二次项系数是2
1m -、一次项系数是(1)m -+、常数项是m .
◆课下作业
●拓展提高
1、下列方程一定是一元二次方程的是( )
A 、22310x x
+-= B 、25630x y --= C 、220ax x -+= D 、22(1)0a x bx c +++=
2、2121003
m x x m -++=是关于x 的一元二次方程,则x 的值应为( ) A 、m =2 B 、23m =
C 、32m =
D 、无法确定 3、根据下列表格对应值:
判断关于x 的方程0,(0)ax bx c a ++=≠的一个解x 的范围是( )
A 、x <3.24
B 、3.24<x <3.25
C 、3.25<x <3.26
D 、3.25<x <3.28
4、若一元二次方程20,(0)ax bx c a ++=≠有一个根为1,则=++c b a _________;若有一个根是-1,则b 与a 、c 之间的关系为________;若有一个根为0,则c=_________.
5、下面哪些数是方程220x x --=的根?
-3、-2、-1、0、1、2、3、
6、若关于x 的一元二次方程012)1(22=-++-m x x m 的常数项为0,求m 的值是多少? ●体验中考
1、(2009年,武汉)已知2x =是一元二次方程2
20x mx ++=的一个解,则m 的值是( )
A .-3
B .3
C .0
D .0或3
(点拨:本题考查一元二次方程的解的意义.)
2、(2009年,日照)若(0)n n ≠是关于x 的方程220x mx n ++=的根,则m n +的值为( )
A .1
B .2
C .-1
D .-2
(提示:本题有两个待定字母m 和n ,根据已知条件不能分别求出它们的值,故考虑运用整体思想,直接求出它们的和.)
参考答案:
◆随堂检测
1、(2)、(3)、(4) (1)中最高次数是三不是二;(5)中整理后是一次方程;(6)中只有在满
足0a ≠的条件下才是一元二次方程.
2、D 首先要对方程整理成一般形式,D 选项为2250x -=.故选D.
3、3;-11;-7 利用去括号、移项、合并同类项等步骤,把一元二次方程化成一般形式231170x x --=,同时注意系数符号问题.
4、B 将各数值分别代入方程,只有选项B 能使等式成立.故选B.
5、解:(1)依题意得,2425x =,
化为一元二次方程的一般形式得,24250x -=.
(2)依题意得,(2)100x x -=,
化为一元二次方程的一般形式得,221000x x --=.
(3)依题意得,222(2)10x x +-=,
化为一元二次方程的一般形式得,22480x x --=.
◆课下作业
●拓展提高
1、D A 中最高次数是三不是二;B 中整理后是一次方程;C 中只有在满足0a ≠的条件下才是一元二次方程;D 选项二次项系数2(1)0a +≠恒成立.故根据定义判断D.
2、C 由题意得,212m -=,解得32m =
.故选D. 3、B 当3.24<x <3.25时,2ax bx c ++的值由负连续变化到正,说明在3.24<x <3.25范
围内一定有一个x 的值,使20ax bx c ++=,即是方程2
0ax bx c ++=的一个解.故选B. 4、0;b a c =+;0 将各根分别代入简即可.
5、解:将3x =-代入方程,左式=2(3)(3)20----≠,即左式≠右式.故3x =-不是方程220x x --=的根.
同理可得2,0,1,3x =-时,都不是方程2
20x x --=的根.
当1,2x =-时,左式=右式.故1,2x =-都是方程220x x --=的根. 6、解:由题意得,21010
m m ⎧-=⎨-≠⎩时,即1m =-时,012)1(22=-++-m x x m 的常数项为0.
●体验中考
1、A 将2x =带入方程得4220m ++=,∴3m =-.故选A.
2、D 将x n =带入方程得220n mn n ++=,∵0n ≠,∴20n m ++=,
∴2m n +=-.故选D.。

相关文档
最新文档