1.5.3.2定积分的定义及几何意义相关题型
定积分的例题分析及解法
定积分的例题分析及解法本章的基本内容是定积分的概念、计算和应用 一、定积分的概念1.定积分是下列和式的极限xi i f dx x f i nba∆∑==→⎰)(lim )(10ξλ其中{}xi ni ∆=≤≤1max λ因此,定积分是一个数,它依赖于被积函数)(x f 和积分区间〔a,b 〕 定积分与积分变量用什么字母无关:⎰⎰=babadt t f dx x f )()(定积分的几何意义是曲边梯形的面积(当被积函数0)(≥x f 时)。
2.定积分的性质 (1)线性性质[]⎰⎰⎰+=+bab abadx x g k dx x f k dx x g k x f k)()()()(2121(2) ⎰⎰⎰=-=aaabba dx x f dx x f dx x f 0)(,)()( (3) ⎰⎰⎰+=bccaba dx x f dx x f dx x f )()()((4)若),()(x g x f ≥则⎰⎰≥babadx x g dx x f )()((5)积分中值定理:设)(x f 在〔a,b 〕上连续,则在〔a,b 〕上至少存在一点ξ,使下式成立),()()(a b f dx x ba-=⎰ξ其中].[b a ∈ξ。
(6)估值定理:若)(x f 在〔a,b 〕上可积,且M x f m ≤≤)(,则有不等式⎰-≤≤-baa b M dx x f a b m )()()((7)若函数)(x f 在〔a,b 〕上连续,则有⎰=xa x f dt t f dxd )()( 3.广义积分。
二、定积分的计算 1.牛顿—莱布尼茨公式:⎰-=baa Fb F dx x f )()()(2.换元法:注意,在换元的同时不要忘记换积分限 3.分部积分法:⎰⎰-=babab a x du x x x u x d x u )()()()()()(υυυ4.定积分的近似计算:梯形,抛物线法。
三、定积分的应用基本方法是:(1)代公式;(2)微元法1.平面图形的面积(1)直角坐标系。
高二数学定积分知识点总结
高二数学定积分知识点总结一、定积分的概念1.1 定积分的引入在高中数学中,我们学过了不定积分的概念和性质,定积分就是在这个基础上引入的。
当我们对一个函数进行积分时,如果我们要计算的量是函数在一个区间上的面积或者体积,那么我们就需要用到定积分。
定积分可以看做是一个变量的特定区间上的累积和。
1.2 定积分的定义设函数f(x)在区间[a, b]上有定义,将[a, b]分成n等分,每个小区间的长度为Δx=n(b-a),在第i个小区间上任取一点ξi,则f(x)在[a, b]上的定积分为:∫[a,b]f(x) dx=lim{n→∞}∑{i=1}^{n}f(ξi)Δx其中lim{n→∞}表示当n趋向于无穷大时的极限。
1.3 定积分的几何意义定积分的几何意义即函数f(x)在[a, b]上的定积分就是函数y=f(x)与x轴所围区域的有向面积。
1.4 定积分的性质(1)定积分的线性性质:∫[a,b][f(x)+g(x)] dx=∫[a,b]f(x) dx+∫[a,b]g(x) dx(2)定积分的估值性质:若f(x)在[a, b]上连续,则必定存在α∈[a, b],使得∫[a,b]f(x)dx=f(α)(b-a)1.5 定积分的计算定积分的计算主要是通过不定积分的计算来实现。
通过不定积分求出F(x)的原函数后,即可得到∫[a,b]f(x) dx=F(b)-F(a)。
二、定积分的应用2.1 定积分的物理意义定积分在物理学中有着重要的应用,它可以用来计算物体的质量、重心、压力、力矩等。
在力学中,定积分常用来计算物体的质心以及转动惯量等。
2.2 定积分的几何应用定积分可以用来求曲线与坐标轴所围成的曲边梯形或者曲边梯形的面积,也可以用来计算曲线的弧长、曲线旋转体的体积等几何问题。
2.3 定积分的工程应用在工程问题中,定积分可以用来计算各种曲线的长度、曲线所围成的区域面积、曲线所绕成的物体的体积等。
2.4 定积分的经济应用在经济学中,定积分可以用来计算总收益、总成本、总利润等与变量有关的经济指标。
定积分的概念,几何意义及其运算
当x∈Domain时,解 f (x) 0 得f(x)在I1, I2…上↘
极值的求法
一、形法: 顶点即是极值点 谷底极小峰极大
二、数法:
1.一导法求极值:
一求驻点二单调 三写极值靠图象 书写格式要简明 含参反用须验根
第四步:取极限
当n趋向于无穷大时,S
趋向于S
n
n
,即 S
lim
n
Sn
lim n
i 1
f
一、积分的概念:
1.不定积分: 2.定积分:(四大步 参课本P:39~45)
①分割
②近似代替 分割取近似,求和取极限 ③求和
④取极限
积分上限
lim 记作:
b a
f
(x)dx
n
n ba i1 n
f
(i )
积分下限
随着分割越来越细(n→﹢∞或⊿x→0)时 不足近似值和过剩近似值都会趋于真实值
第一步:分割
y
将图中曲边梯形分割成n个小曲边梯形
记他们的面n积分别为:S1, S2, , Sn
显然有S Si
i 1
第二步:近似代替
O
用小矩形的面积近似的代替 小曲边梯形的面积
y= x 2
i-1 i 1 x nn
第三步:求和 求出图中小矩形的面积和 Sn
⑧ cos xdx sin x C
⑨ [af (x) bg(x)]dx a f (x)dx b g(x)dx
⑩ [ f (x)dx]/ f (x) ,
f / (x)dx f (x) C
一、积分的概念:
定积分的计算公式和例题
定积分的计算公式和例题定积分是微积分中的重要概念,它在数学和物理学中都有着广泛的应用。
在这篇文章中,我们将介绍定积分的计算公式和一些例题,帮助读者更好地理解和掌握这一概念。
一、定积分的计算公式。
1. 定积分的定义。
在介绍定积分的计算公式之前,我们首先来回顾一下定积分的定义。
设函数f(x)在区间[a, b]上有定义,且在该区间上连续,则称函数f(x)在区间[a, b]上的定积分为:∫[a, b] f(x)dx。
其中,∫表示积分的符号,a和b分别为积分的下限和上限,f(x)为被积函数,dx表示自变量。
2. 定积分的计算公式。
定积分的计算公式有很多种,常见的包括:(1)定积分的基本性质。
定积分具有一些基本的性质,例如线性性质、区间可加性等。
这些性质对于定积分的计算非常有用,可以帮助我们简化计算过程。
(2)牛顿-莱布尼茨公式。
牛顿-莱布尼茨公式是定积分的重要公式之一,它表示函数的不定积分与定积分之间的关系。
具体而言,如果函数F(x)是f(x)的一个不定积分,那么函数f(x)在区间[a, b]上的定积分可以表示为:∫[a, b] f(x)dx = F(b) F(a)。
这个公式为我们提供了一种通过求函数的不定积分来计算定积分的方法,非常方便和实用。
(3)换元积分法。
换元积分法是定积分计算中常用的一种方法,它通过引入新的变量来简化被积函数的形式,从而更容易进行积分。
具体而言,如果被积函数的形式比较复杂,我们可以通过引入新的变量来简化计算过程,然后再进行积分。
(4)分部积分法。
分部积分法是定积分计算中另一种常用的方法,它通过对被积函数进行分解,然后再进行积分。
具体而言,如果被积函数可以表示为两个函数的乘积,我们可以通过分部积分法将其分解为两个函数的积分,然后再进行计算。
以上是定积分的一些常用计算公式,它们在定积分的计算中起着重要的作用,可以帮助我们更加高效地进行积分计算。
二、定积分的例题。
下面我们通过一些具体的例题来演示定积分的计算过程,以帮助读者更好地理解和掌握这一概念。
高中数学定积分的概念及相关题目解析
高中数学定积分的概念及相关题目解析在高中数学中,定积分是一个重要的概念,它在数学和实际问题中都有广泛的应用。
本文将介绍定积分的概念,并通过具体的题目解析来说明其考点和解题技巧,帮助高中学生更好地理解和应用定积分。
一、定积分的概念定积分是微积分中的一个重要概念,它是对函数在一个区间上的积分结果的确定值。
定积分的符号表示为∫,下面是定积分的定义:设函数f(x)在区间[a, b]上有定义,将[a, b]分成n个小区间,每个小区间的长度为Δx,选取每个小区间中的一个点ξi,作为f(x)在该小区间上的取值点。
那么,定积分的近似值可以表示为:∫[a, b]f(x)dx ≈ Σf(ξi)Δx当n趋向于无穷大时,定积分的近似值趋向于定积分的准确值,即:∫[a, b]f(x)dx = lim(n→∞)Σf(ξi)Δx这个准确值就是函数f(x)在区间[a, b]上的定积分。
二、定积分的考点和解题技巧1. 计算定积分的基本方法对于一些简单的函数,可以直接使用定积分的定义进行计算。
例如,计算函数f(x) = x²在区间[0, 1]上的定积分:∫[0, 1]x²dx = lim(n→∞)Σf(ξi)Δx = lim(n→∞)Σ(ξi)²Δx在这个例子中,可以将区间[0, 1]等分成n个小区间,每个小区间的长度为Δx = 1/n。
然后,选取每个小区间中的一个点ξi,可以选择ξi = i/n。
这样,定积分的近似值可以表示为:∫[0, 1]x²dx ≈ Σ(ξi)²Δx = Σ(i/n)²(1/n)当n趋向于无穷大时,可以求出定积分的准确值。
在这个例子中,计算过程如下:∫[0, 1]x²dx = lim(n→∞)Σ(i/n)²(1/n)= lim(n→∞)(1/n³)Σi²= lim(n→∞)(1/n³)(1² + 2² + ... + n²)= lim(n→∞)(1/n³)(n(n+1)(2n+1)/6)= 1/3因此,函数f(x) = x²在区间[0, 1]上的定积分的值为1/3。
1.5定积分概念
i
点的取法无关。 3.定积分的值与积分变量用什么字母表示无关,即有
b
a
f ( x)dx f (t )dt f (u)du
a 定理1 若函数 f ( x ) 在区间[a , b]上连续,
则 f ( x ) 在区间[a , b]上可积.
定理2 设函数 f ( x ) 在区间[a , b]上有界,
0
i 1 n
2.被积函数,积分区间,积分变量; 3.介于曲线 y f ( x ) , x 轴 ,直线 x a , x b 之间 各部分面积的代数和; 4. dx .
a b
1 二、 (b 3 a 3 ) b a . 3 1 三、 (b 2 a 2 ) . 2
x
用矩形面积近似取代曲边梯形面积
y
y
o
a
(四个小矩形)
b
x o
a
(九个小矩形)
b
x
显然,小矩形越多,矩形面积和越接近 曲边梯形面积.
曲边梯形如图所示, 在区间 [a, b] 内插入若干
个分点, a x 0 < x1 < x 2 < L < x n 1 < x n b,
把区间 [a , b] 分成 n 个小区间 [ xi 1 , xi ], 长度为 xi xi xi 1 ;
如果不论对[a , b] 怎样的分法,也不论在小区间[ xi 1 , xi ] 上
点 i 怎样的取法, 和 S 总趋于 确定的极限I , 如果当n∞时,
我们称这个极限 I 为函数 f ( x )在区间[a , b]上的定积分, 记为
即
b
a
ba f ( x)dx lim f (i ) n n i 1
(山东专用)高考数学一轮复习专题16定积分与微积分基本定理(含解析)
(山东专用)高考数学一轮复习专题16定积分与微积分基本定理(含解析)一、【知识精讲】1.定积分的概念与几何意义 (1)定积分的定义如果函数f (x )在区间[a ,b ]上连续,用分点将区间[a ,b ]等分成n 个小区间,在每个小区间上任取一点ξi (i=1,2,…,n ),作和式∑n i =1f (ξi )Δx =∑n i =1b -a n f (ξi ),当n →∞时,上述和式无限接近于某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛a b f (x )d x ,即⎠⎛ab f (x )d x =在⎠⎛ab f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.(2)定积分的几何意义f (x ) ⎠⎛abf (x )d x 的几何意义f (x )≥0表示由直线x =a ,x =b ,y =0及曲线y =f (x )所围成的曲边梯形的面积f (x )<0表示由直线x =a ,x =b ,y =0及曲线y =f (x )所围成的曲边梯形的面积的相反数f (x )在[a ,b ]上有正有负表示位于x 轴上方的曲边梯形的面积减去位于x 轴下方的曲边梯形的面积2.(1)⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数).(2)⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x .(3)⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ).3.微积分基本定理一般地,如果f (x )是在区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.可以把F (b )-F (a )记为F (x )⎪⎪⎪b a ,即⎠⎛a b f (x )d x =F (x )⎪⎪⎪ba)=F (b )-F (a ). [微点提醒]函数f (x )在闭区间[-a ,a ]上连续,则有 (1)若f (x )为偶函数,则⎠⎛-a a f (x )d x =2⎠⎛0a f (x )d x .(2)若f (x )为奇函数,则⎠⎛-aa f (x )d x =0. 二、【典例精练】 考点一 定积分的计算【例1】 (1)⎠⎛0π(cos x +1)d x =________.(2) (2012【答案】 (1)π 【解析】(1)⎠⎛0π(cos x +1)d x =(sin x +x )⎪⎪⎪π0=π.(2) 【解法小结】 运用微积分基本定理求定积分时要注意以下几点: (1)对被积函数要先化简,再求积分;(2)若被积函数为分段函数的定积分,依据定积分“对区间的可加性”,先分段积分再求和; (3)对于含有绝对值符号的被积函数,要先去掉绝对值符号再求积分. 考点二 定积分的几何意义角度1 利用定积分的几何意义计算定积分【例2-1】 (1)计算:⎠⎛01(2x +1-x 2)d x =________.(2) (2013请根据以下材料所蕴含的数学思想方法,计算:.【答案】 (1)π4+1 【解析】 (1)由定积分的几何意义知,⎠⎛011-x 2d x 表示以原点为圆心,以1为半径的圆的面积的14,所以⎠⎛11-x 2d x =π4,又⎠⎛012x d x =x 2⎪⎪⎪10=1,所以⎠⎛01(2x +1-x 2)d x =π4+1.(2)从而得到如下等式:答案角度2 利用定积分计算平面图形的面积【例2-2】 (2014 )A .2 D .4 【答案】D【解法小结】 1.运用定积分的几何意义求定积分,当被积函数的原函数不易找到时常用此方法求定积分. 2.利用定积分求曲边梯形面积的基本步骤:画草图、解方程得积分上、下限,把面积表示为已知函数的定积分(注意:两曲线的上、下位置关系,分段表示的面积之间的关系). 考点三 定积分在物理中的应用【例3】 (1)物体A 以v =3t 2+1(m/s)的速度在一直线l 上运动,物体B 在直线l 上,且在物体A 的正前方5 m 处,同时以v =10t (m/s)的速度与A 同向运动,出发后,物体A 追上物体B 所用的时间t (s)为( ) A.3B.4C.5D.6(2)设变力F (x )作用在质点M 上,使M 沿x 轴正向从x =1运动到x =10,已知F (x )=x 2+1且方向和x 轴正向相同,则变力F (x )对质点M 所做的功为________ J(x 的单位:m ,力的单位:N).【答案】 (1)C (2)342【解析】(1)因为物体A 在t 秒内行驶的路程为⎠⎛0t (3t 2+1)d t ,物体B 在t 秒内行驶的路程为⎠⎛0t 10t d t .所以⎠⎛0t (3t 2+1-10t )d t =(t 3+t -5t 2)⎪⎪⎪t0=t 3+t -5t 2=5.整理得(t -5)(t 2+1)=0,解得t =5.(2)变力F (x )=x 2+1使质点M 沿x 轴正向从x =1运动到x =10所做的功为W =⎠⎛110F (x )d x =⎠⎛110(x 2+1)d x =⎝ ⎛⎭⎪⎫13x 3+x ⎪⎪⎪101=342(J).【解法小结】 定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的位移s =⎠⎛ab v (t )d t .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )d x .【思维升华】1.定积分是一个数值(极限值),它的值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关.2.⎠⎛a b f (x )d x 、⎠⎛a b |f (x )|d x 与|⎠⎛ab f (x )d x |在几何意义上有不同的含义,由于被积函数f (x )在闭区间[a ,b ]上可正可负,也就是它的图象可以在x 轴上方、也可以在x 轴下方、还可以在x 轴的上下两侧,所以⎠⎛ab f (x )d x表示由x 轴、函数f (x )的曲线及直线x =a ,x =b (a ≠b )之间各部分面积的代数和;而|f (x )|是非负的,所以⎠⎛a b |f (x )|d x 表示在区间[a ,b ]上所有以|f (x )|为曲边的正曲边梯形的面积;而|⎠⎛a b f (x )d x |则是⎠⎛ab f (x )d x的绝对值,三者的值一般情况下是不相同的. 【易错注意点】1.若定积分的被积函数是分段函数,应分段积分然后求和.2.若积分式子中有几个不同的参数,则必须先分清谁是被积变量.3.定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负. 三、【名校新题】1.(2019·西安调研)定积分⎠⎛01(2x +e x)d x 的值为( )A.e +2B.e +1C.eD.e -1【答案】C【解析】 ⎠⎛01(2x +e x )d x =(x 2+e x )⎪⎪⎪10)=1+e 1-1=e.2.(2019·郑州模拟)汽车以v =(3t +2) m/s 做变速运动时,在第1 s 至第2 s 之间的1 s 内经过的路程是( ) A.132m B.6 mC.152m D.7 m【答案】A【解析】 s =⎠⎛12(3t +2)d t =⎝ ⎛⎭⎪⎫32t 2+2t ⎪⎪⎪21=32×4+4-⎝ ⎛⎭⎪⎫32+2=10-72=132(m). 3.(2018·青岛月考)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积S ,正确的是( ) A.S =⎠⎛02(4x -x 3)d xB.S =⎠⎛02(x 3-4x )d xC.S =⎠⎛02⎝⎛⎭⎪⎫3y -y 4d yD.S =⎠⎛02⎝ ⎛⎭⎪⎫y 4-3y d y【答案】A【解析】 两函数图象的交点坐标是(0,0),(2,8),故对x 积分时,积分上限是2、下限是0,由于在[0,2]上,4x ≥x 3,故直线y =4x 与曲线y =x 3所围成的封闭图形的面积S =⎠⎛02(4x -x 3)d x ⎝⎛⎭⎪⎫同理对y 积分时S =⎠⎛08⎝ ⎛⎭⎪⎫3y -y 4d y .4.(2019·安阳模拟)若a =⎠⎛02x 2d x ,b =⎠⎛02x 3d x ,c =⎠⎛02sin x d x ,则a ,b ,c 的大小关系是( )A.a <c <bB.a <b <cC.c <b <aD.c <a <b【答案】D【解析】 由微积分基本定理a =⎠⎛02x 2d x =⎝ ⎛⎭⎪⎫13x 3⎪⎪⎪20=83,b =⎠⎛02x 3d x =⎝ ⎛⎭⎪⎫14x 4⎪⎪⎪20=4,c =⎠⎛02sin x d x =(-cos x )⎪⎪⎪20=1-cos 2<2,则c <a <b .5.(2019届江西九江高三第一次十校联考)M=dx,T=sin 2xdx,则T 的值为( )A. B.- C.-1 D.1【答案】 A【解析】先求出M=6.(2019届山东日照一中第二次质量达标检测)在函数y=cos x,x∈的图象上有一点P(t,cos t),若该函数的图象与x轴、直线x=t,围成图形(如图阴影部分)的面积为S,则函数S=g(t)的图象大致是( )【答案】 B【解析】因为g(t)==,所以图像是B.7.(2019届吉林长春实验中学上学期期中,6)设f(x)=则f(x)dx等于( )A. B. C. D.0【答案】 A【解析】原式=8.(2018山东菏泽第一次模拟)若(n∈N*)的展开式中含有常数项,且n的最小值为a,则dx=( )A.36πB.C.D.25π【答案】 C【解析】可求出a=5,由定积分的几何意义知:所求定积分为半径为5的半圆的面积,为.9.(荆州市2019届高三联考)已知函数234567()1234567x x x x x xf x x=+-+-+-+,若函数()(3)h x f x=-的零点都在区间(,)(,,)a b a b a b Z <∈内,当b a -取最小值时,(21)bax dx -⎰等于( )A .3B .4C .5D .6【答案】:B 【解析】234562326326()1(1)(1)(1)(1)f x x x x x x x x x x x x x x x x x '=-+-+-+=-+--++=--++,可知当1x ≤时,()0f x '>成立,又2345624232()11(1)(1)1(1)(1)f x x x x x x x x x x x x x x x x x '=-+-+-+=--++-+=+--+,可知当1x >时,()0f x '>成立,所以对任意R x ∈,()0f x '>,()f x 单调递增,所以函数()f x 只有一个零点,(0)10f =>,111111(1)0234567f -=------<,所以()f x 的零点位于区间(1,0)-,所以函数 ()(3)h x f x =-的零点位于区间(2,3),即2,3a b ==,所以32(21)(21)bax dx x dx -=-⎰⎰322()624x x =-=-=10.(2019·昆明诊断)若⎠⎛a0x 2d x =9,则常数a 的值为________.【答案】-3【解析】 ⎠⎛a0x 2d x =13x 3⎪⎪⎪0a =-13a 3=9,∴a 3=-27,a =-3.11.(2019·济南模拟)设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________. 【答案】49【解析】封闭图形如图所示,则⎠⎛0a x d x =23x 32⎪⎪⎪a0=23a 32-0=a 2,解得a =49.12.(2019·广州调研)设f (x )=⎩⎨⎧1-x 2,x ∈[-1,1),x 2-1,x ∈[1,2],则⎠⎛-12f (x )d x 的值为________.【答案】π2+43。
定积分的概念与性质-习题
1.利用定积分的定义计算下列积分: ⑴baxdx ⎰(a b <);【解】第一步:分割在区间[,]a b 中插入1n -个等分点:k b ax k n-=,(1,2,,1k n =-L ),将区间[,]a b 分为n 个等长的小区间[(1),]b a b aa k a k n n--+-+,(1,2,,k n =L ),每个小区间的长度均为k b an-∆=,取每个小区间的右端点k b ax a k n-=+,(1,2,,k n =L ), 第二步:求和对于函数()f x x =,构造和式1()n n k k k S f x ==⋅∆∑1n k k k x ==⋅∆∑1()nk b a b aa k n n=--=+⋅∑ 1()n k b a b a a k n n =--=+∑1()nk b a b a na k n n =--=+∑ 1()n k b a b a na k n n =--=+∑(1)[]2b a b a n n na n n ---=+⋅ 1()[(1)]2b a b a a n -=-+⋅-1()()22b a b a b a a n --=-+-⋅ 1()()22b a b a b a n+-=--⋅第三步:取极限令n →∞求极限1lim lim ()nn k k n n k S f x →∞→∞==⋅∆∑1lim()()22n b a b a b a n→∞+-=--⋅ ()(0)22b a b a b a +-=--⨯()2b a b a +=-222b a -=,即得baxdx ⎰222b a -=。
⑵1xe dx ⎰。
【解】第一步:分割在区间[0,1]中插入1n -个等分点:k k x n=,(1,2,,1k n =-L ),将区间[0,1]分为n 个等长的小区间1[,]k kn n-,(1,2,,1k n =-L ),每个小区间的长度均为1k n ∆=, 取每个小区间的右端点k kx n=,(1,2,,k n =L ),第二步:求和对于函数()xf x e =,构造和式1()nn k k k S f x ==⋅∆∑1knx k k e ==⋅∆∑11k nnk e n ==⋅∑11kn n k e n ==∑由于数列k n e ⎧⎫⎨⎬⎩⎭为等比数列,其首项为11n x e =,公比为1n q e =,可知其前n 项和为1111[1()]1k nnn n nk ne e e e=-=-∑11(1)1nne e e-=-,于是1()nn k k k S f x ==⋅∆∑11kn n k e n ==∑111(1)1nn e e n e -=⋅-111(1)1n ne ne e =-- 第三步:取极限令n →∞求极限1lim lim ()nn k k n n k S f x →∞→∞==⋅∆∑111lim (1)1n n nen e e →∞=--1 x n=0(1)lim 1x x x xe e e →=-- 洛必达法则0(1)lim x x x x e xe e e →+--01=(1)lim 1x xe →+-- =(1)(1)1e e --=-,即得11x e dx e =-⎰。
定积分知识点和例题
定积分知识点和例题
定积分是积分的一种,是函数在某个区间上的积分和的极限。
定积分的概念起源于求图形面积和其他实际应用的问题。
下面我将列举一些定积分的知识点和例题:
知识点:
1. 定积分的定义:定积分是积分和的极限,即对一个给定区间[a,b]上的函数f(x)和任意分割法,求各小区间上函数值的点乘积和的极限。
如果存在一个常数I,对于任意给定的正数ε,总存在一个δ>0,使得当|ΔSi|<δ时,对区间[a,b]的任意分割法,和Si与I的差的绝对值都小于ε,则称I为f(x)在区间[a,b]上的定积分,记作∫abf(x)dx,其中a、b和I分别为定积分的下限、上限和值。
2. 定积分的几何意义:定积分的值等于由曲线y=f(x)与直线x=a、x=b 以及x轴所围成的曲边梯形的面积。
3. 定积分的性质:定积分的性质包括线性性质、积分中值定理、积分上限函数与被积函数的联系等。
4. 定积分的计算方法:主要包括基本初等函数的积分公式和不定积分的性质及计算方法,如换元法、分部积分法等。
例题:
1. 计算定积分∫10(x^2+1)dx的值。
2. 计算定积分∫π20(sinx+cosx)dx的值。
3. 计算定积分∫10|x-1|dx的值。
4. 计算定积分∫10x^2dx的值。
5. 计算定积分∫21(1/x)dx的值。
定积分应用方法总结(经典题型归纳)
定积分复习重点定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物理问题等. 1.定积分的运算性质1212(1)()()().(2)[()()]()().(3)()()()().bbaab bb aaab c baackf x dx k f x dx k f x f x dx f x dx f x dx f x dx f x dx f x dx =±=±=+⎰⎰⎰⎰⎰⎰⎰⎰为常数其中a<c<b2.微积分基本定理如果()f x 是区间[a ,b]上的连续函数,并且'()()F x f x =,那么()()()baf x dx F b F a =-⎰,这个结论叫微积分基本定理,又叫牛顿—莱布尼兹公式。
3.求定积分的方法(1)利用微积分基本定理就定积分 ①对被积分函数,先简化,再求定积分.例如:230(1-2sin)2d πθθ⎰注:322()3x x '=,(-cos )sin x x '=②分段函数,分段求定积分,再求和.(被积函数中带有绝对值符号时,计算的基本思路就是用分段函数表示被积函数,以去掉绝对值符号,然后应用定积分对积分区间的可加性,分段进行计算)1.计算积分⎰---322|32|dx x x解1. 由于在积分区间]3,2[-上,被积函数可表示为⎩⎨⎧≤<-----≤≤---=--.31,)32(,12,32|32|222x x x x x x x x 所以⎰---322|32|dx x x 13)32()32(312122=-----=⎰⎰---dx x x dx x x .(2)利用定积分的几何意义求定积分如定积分12014x dx π-=⎰,其几何意义就是单位圆面积的14。
(课本P60 B 组第一题) (3)利用被积函数的奇偶性a. 若()f x 为奇函数,则()0aa f x dx -=⎰;b. 若()f x 为偶函数,则0()()a aa f x dx f x dx-=⎰⎰2;其中0a >。
1.5.3定积分的几何意义3.14
a
b
f (x)dx =Sf (x)dx
a
c
ba (2)定积分的几何意义: f ( x)dx lim f (i ) a n n i 1
b n
当f(x)0时,由yf (x)、xa、xb 与y=0所围成的曲 边梯形位于 x 轴的下方,
y yf (x)
积分 f (x)dx 在几何上表示
a a
例1、
利用定积分的几何意义 说明等式 成立。
2
2
sin xdx 0
y
解: 在右图中,被积函数 ( x) sin x f
在[
, ]上连续,且在 ,]上 [ 0 2 2 2
2
f(x)=sinx 1
sin x 0, 在[0, ]上sin x 0,并有 2 A1 A2 , 所以
S
y f (x)
x
f ( x) 0,
b
a
f ( x)dx S
曲边梯形的面积的负值
一般地, f(x)在[a, b]上的定积分表示介于y=0、曲线 y=f(x)及直线x=a、x=b之间的各部分面积的代数和.
y
y=f(x)
A1 a
A3
A5
A2
A4
b x
b a
f ( x)d x A1 A2 A3 A4 A5
A1
-1
A2
2
x
2
2
f ( x)dx A2 A1 0
例2、用定积分表示图中四个阴影部分面积
y
f(x)=x2
y
f(x)=x2
数学高三定积分知识点
数学高三定积分知识点在高三数学中,定积分是一个重要的概念,也是学生们常常遇到的题型之一。
定积分可以用于计算曲线与坐标轴之间的面积、求解曲线的弧长、质心等一系列数学问题。
本文将介绍高三数学中关于定积分的基本概念、性质和应用。
一、定积分的基本概念1. 无穷小量与无穷大量在定积分的定义中,我们需要先了解无穷小量与无穷大量的概念。
无穷小量指的是当自变量趋于某个值时,依附于其而趋于零的量;而无穷大量则是当自变量趋于某个值时,逐渐无限增大的量。
2. 定积分的定义定积分的定义是通过分割求和的方式来计算曲线与坐标轴之间的面积。
对于一个函数 f(x) 在区间 [a, b] 上的定积分表示为∫[a,b] f(x) dx,其中 f(x) 为被积函数,dx 为积分变量。
3. 定积分的几何意义定积分的几何意义是曲线与坐标轴之间包围的面积。
当被积函数 f(x) 大于零时,定积分表示曲线所围成的面积;当被积函数 f(x) 小于零时,定积分表示曲线下方所围成的面积。
二、定积分的性质1. 定积分的可加性定积分具有可加性,即∫[a,b] (f(x) + g(x)) dx = ∫[a,b] f(x) dx +∫[a,b] g(x) dx。
这意味着我们可以将被积函数进行分解,然后对每个部分进行积分,最后将结果进行求和。
2. 定积分的线性性质定积分还具有线性性质,即∫[a,b] (cf(x)) dx = c∫[a,b] f(x) dx,其中 c 为常数。
这意味着可以将常数提取出来,然后对函数进行积分。
3. 定积分的区间可加性定积分的区间可加性表示对于一个函数 f(x) 在区间 [a, b] 上的定积分,可以分为两部分进行计算,即∫[a,b] f(x) dx= ∫[a,c] f(x) dx + ∫[c,b] f(x) dx,其中 c 为 [a, b] 上的某一点。
三、定积分的应用1. 几何应用定积分在几何中有广泛的应用,可以用来计算曲线与坐标轴之间的面积。
高中数学 1.5.3定积分的概念 新人教版选修2-2
• 一、问题的提出 • 二、定积分的定义 • 三、几何意义 • 四、小结 思考题
.
砖是直边 的长方体
烟囱的截面 是弯曲的圆
“直的砖”砌 成了“弯的圆”
局部以直代曲
.
一、问题的提出
实例1 (求曲边梯形的面积)
y
曲 边 梯 形 由 连 续 曲 线
yf(x)
yf(x)(f(x)0)、
f (i )xi i3xi
i1
i1
n
xi3xi , i 1
.
n
b
a f (x)dx
的几何意义就是曲线 y = f (x)
直线 x = a, x = b, y = 0 所
围成的曲边梯形的面积
.
y=f (x) y
AS
oa
x b
当函数 f (x) 0 , x[a, b] 时
定积分
b
f (x)dx
a
就是位于 x 轴下方的曲边梯形 面积的相反数. 即
b
a f(x)dxS
.
二、定积分的定义
定义 设 函 数 f(x )在 [a ,b ]上 有 界 , 在 [a ,b ]中 任 意 插 入
若干个分点a x x x x x b
012
n 1 n
把 区 间 [ a , b ] 分 成 n 个 小 区 间 , 各 小 区 间 的 长 度 依 次 为
x i x i x i 1 , ( i 1 , 2 , ) , 在 各 小 区 间 上 任 取
个小区[x间 i1,xi],
长度 xix 为 ixi 1;
在每个小区[x间i1, xo i a x 1 上任取一点i,
b xi1 i x i xn1
高中数学高考总复习定积分与微积分基本定理习题及详解
年 级 高二 学科数学内容标题 定积分的计算 编稿老师马利军一、教学目标:1. 理解定积分的基本概念并能利用定积分的几何意义解决一些简单的积分计算问题.2. 理解微积分的基本定理,并会用定积分公式解决简单函数的定积分问题.二、知识要点分析1. 定积分的概念:函数)(x f 在区间[a ,b ]上的定积分表示为:⎰badx x f )(2. 定积分的几何意义:(1)当函数f (x )在区间[a ,b]上恒为正时,定积分⎰badx x f )(的几何意义是:y=f(x )与x=a ,x=b 及x 轴围成的曲边梯形面积,在一般情形下.⎰badx x f )(的几何意义是介于x 轴、函数f (x )的图象、以及直线x=a ,x=b 之间的各部分的面积代数和,在x 轴上方的面积取正号,x 轴下方的面积取负号.在图(1)中:0s dx )x (f ba>=⎰,在图(2)中:0s dx )x (f ba<=⎰,在图(3)中:dx)x (f ba⎰表示函数y=f (x )图象及直线x=a ,x=b 、x 轴围成的面积的代数和.注:函数y=f (x )图象与x 轴及直线x=a ,x=b 围成的面积不一定等于⎰badx x f )(,仅当在区间[a ,b]上f (x )恒正时,其面积才等于⎰badx x f )(.3. 定积分的性质,(设函数f (x ),g (x )在区间[a ,b ]上可积) (1)⎰⎰⎰±=±bab aba dx )x (g dx )x (f dx )]x (g )x (f [(2)⎰⎰=baba dx x f k dx x kf )()(,(k 为常数)(3)⎰⎰⎰+=bcbac adx x f dx x f dx x f )()()((4)若在区间[a ,b ]上,⎰≥≥badx x f x f 0)(,0)(则推论:(1)若在区间[a ,b ]上,⎰⎰≤≤babadx x g dx x f x g x f )()(),()(则(2)⎰⎰≤babadx x f dx x f |)(||)(|(3)若f (x )是偶函数,则⎰⎰=-aaadx x f dx x f 0)(2)(,若f (x )是奇函数,则0)(=⎰-aadx x f4. 微积分基本定理:一般地,若)()()(],[)(),()('a Fb F dx x f b a x f x f x F ba-==⎰上可积,则在且注:(1)若)()('x f x F =则F (x )叫函数f (x )在区间[a ,b ]上的一个原函数,根据导数定义知:F (x )+C 也是f (x )的原函数,求定积分⎰badx x f )(的关键是求f (x )的原函数,可以利用基本初等函数的求导公式和导数的四则运算法则从反方向求F (x ).(2)求导运算与求原函数的运算互为逆运算.【典型例题】知识点一:定积分的几何意义例1.根据⎰=π200sin xdx 推断:求直线x=0,x=π2,y=0和正弦曲线y=sinx 所围成的曲边梯形面积下列结论正确的是( )A .面积为0B .曲边梯形在x 轴上方的面积大于在x 轴下方的面积C .曲边梯形在x 轴上方的面积小于在x 轴下方的面积D .曲边梯形在x 轴上方的面积等于在x 轴下方的面积题意分析:本题考查定积分的几何意义,注意dx x ⎰π20sin 与y=sinx 及直线x=a ,x=b 和x轴围成的面积的区别.思路分析:作出函数y=sinx 在区间[0,π2]内的图象及积分的几何意义及函数的对称性可判断.解:对于(A ):由于直线x=0,x=π2,y=0和正弦曲线y=sinx 所围成的曲边梯形面积为正可判断A 错.对于(B ),(C )根据y=sinx 在[0,π2]内关于()0,π对称知两个答案都是错误的. 根据函数y=sinx 的图象及定积分的几何意义可知:答案(D )是正确的.解题后的思考:本题主要考查定积分的几何意义,体现了数与形结合的思想的应用,易错点是混淆函数y=sinx 与x 轴、直线x=0,x=π2围成的面积等于⎰π20)(dx x f .例2.利用定积分的几何意义,说明下列等式的合理性 (1)121=⎰xdx(2)⎰=-1241πdx x .题意分析:本题主要考查定积分的几何意义:在区间[0,1]上函数y=2x ,及y=21x -恒为正时,定积分⎰102xdx 表示函数y=2x 图象与x=0,x=1围成的图形的面积,dx x ⎰-121表示函数y=21x -图象与x=0,x=1围成的图形的面积.思路分析:分别作出函数y=2x 及y=21x -的图象,求此图象与直线x=0,x=1围成的面积.解:(1)在同一坐标系中画出函数y=2x 的图象及直线x=0,x=1(如图),它们围成的图形是直角三角形.其面积∆S =11221=⨯⨯.由于在区间[0,1]内f (x )恒为正,故1210=⎰xdx .(2)由]1,0[,11222∈=+⇒-=x y x x y ,故函数y 21x -=(]1,0[∈x 的图象如图所示,所以函数y 21x -=与直线x=0,x=1围成的图形面积是圆122=+y x 面积的四分之一,又y 21x -=在区间[0,1]上恒为正.⎰=-1241πdx x解题后的思考:本题主要考查利用定积分的几何意义来验证函数y=2x 及函数y=21x -在区间[0,1]上的定积分的值,体现了数与形结合的思想的应用,易错点是画函数图象的不准确造成错误的结果.例3.利用定积分的几何意义求⎰-+-4|)3||1(|dx x x 的值.题意分析:本题考查定积分的几何意义,⎰-+-4|)3||1(|dx x x 的值是函数|3||1|-+-=x x y 的图象与直线x=0,x=4所围成图形的面积.思路分析:首先把区间[0,4]分割为[0,1],[1,3],[3,4],在每个区间上讨论x -1,x -3的符号,把函数|3||1|-+-=x x y 化为分段函数,再根据定积分的几何意义求⎰-+-4|)3||1(|dx x x 的值.解:函数|3||1|-+-=x x y 化为⎪⎩⎪⎨⎧∈-∈∈+-=]4,3[(,42]3,1[(,2]1,0[(,42x x x x x y由于函数⎪⎩⎪⎨⎧∈-∈∈+-=]4,3[(,42]3,1[(,2]1,0[(,42x x x x x y 在区间[0,1],[1,3],[3,4]都恒为正.设函数y=-2x+4的图象与直线x=0,x=1围成的面积为S 1 函数y=2的图象与直线x=1,x=3围成的面积是S 2 函数y=2x -4的图象与直线x=3,x=4围成的面积是S 3 由图知:S 1=S 3=,31)24(21=⨯+S 2=422=⨯ 由定积分的几何意义知:⎰-+-4|)3||1(|dx x x =10231=++S S S解题后的思考:本题考查的知识点是定积分的几何意义,利用其几何意义求定积分⎰-+-4|)3||1(|dx x x 的值,体现了等价转化的数学思想(把区间[0,4]分割,把函数y=|x -1|+|x -3|化成分段函数)、数与形结合的思想的应用.易错点是:区间[0,4]分割不当及画函数图象不准确,造成错误的结果.当被积函数含有绝对值时,常采用分割区间把函数化为分段函数的方法求定积分的值.小结:本题主要考查定积分的几何意义,要分清在区间[a ,b ]上f (x )恒为正时,f (x )在区间[a ,b]上定积分值才等于函数图象与直线x=a ,x=b 围成的面积.在画函数图象时注意x 的取值区间.当被积函数含有绝对值时,恰当的分割区间把函数画为分段函数再求定积分的值.高中数学高考总复习定积分与微积分基本定理习题及详解一、选择题1.(2010·山东日照模考)a =⎠⎛02x d x ,b =⎠⎛02e xd x ,c =⎠⎛02sin x d x ,则a 、b 、c 的大小关系是( )A .a <c <bB .a <b <cC .c <b <aD .c <a <b2.(2010·山东理,7)由曲线y =x 2,y =x 3围成的封闭图形面积为( ) A.112B.14C.13D.712(2010·湖南师大附中)设点P 在曲线y =x 2上从原点到A (2,4)移动,如果把由直线OP ,直线y =x 2及直线x =2所围成的面积分别记作S 1,S 2.如图所示,当S 1=S 2时,点P 的坐标是( )A.⎝ ⎛⎭⎪⎫43,169B.⎝ ⎛⎭⎪⎫45,169C.⎝ ⎛⎭⎪⎫43,157D.⎝ ⎛⎭⎪⎫45,137 3.由三条直线x =0、x =2、y =0和曲线y =x 3所围成的图形的面积为( ) A .4B.43C.185D .64.(2010·湖南省考试院调研)⎠⎛1-1(sin x +1)d x 的值为( )A .0B .2C .2+2cos1D .2-2cos15.曲线y =cos x (0≤x ≤2π)与直线y =1所围成的图形面积是( ) A .2πB .3πC.3π2D .π6.函数F (x )=⎠⎛0x t (t -4)d t 在[-1,5]上( )A .有最大值0,无最小值B .有最大值0和最小值-323C .有最小值-323,无最大值D .既无最大值也无最小值7.已知等差数列{a n }的前n 项和S n =2n 2+n ,函数f (x )=⎠⎛1x 1td t ,若f (x )<a 3,则x 的取值范围是( )A.⎝⎛⎭⎪⎫36,+∞ B .(0,e 21) C .(e -11,e )D .(0,e 11)8.(2010·福建厦门一中)如图所示,在一个长为π,宽为2的矩形OABC 内,曲线y=sin x (0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( )A.1πB.2πC.3πD.π49.(2010·吉林质检)函数f (x )=⎩⎪⎨⎪⎧x +2-2≤x <02cos x 0≤x ≤π2的图象与x 轴所围成的图形面积S 为( )A.32B .1C .4D.1210.(2010·沈阳二十中)设函数f (x )=x -[x ],其中[x ]表示不超过x 的最大整数,如[-1.2]=-2,[1.2]=1,[1]=1.又函数g (x )=-x3,f (x )在区间(0,2)上零点的个数记为m ,f (x )与g (x )的图象交点的个数记为n ,则⎠⎛mn g (x )d x 的值是( )A .-52B .-43C .-54D .-7611.(2010·江苏盐城调研)甲、乙两人进行一项游戏比赛,比赛规则如下:甲从区间[0,1]上随机等可能地抽取一个实数记为b ,乙从区间[0,1]上随机等可能地抽取一个实数记为c (b 、c 可以相等),若关于x 的方程x 2+2bx +c =0有实根,则甲获胜,否则乙获胜,则在一场比赛中甲获胜的概率为( )A.13B.23C.12D.3412.(2010·吉林省调研)已知正方形四个顶点分别为O (0,0),A (1,0),B (1,1),C (0,1),曲线y =x 2(x ≥0)与x 轴,直线x =1构成区域M ,现将一个质点随机地投入正方形中,则质点落在区域M 内的概率是( )A.12 B.14 C.13D.25二、填空题13.(2010·芜湖十二中)已知函数f (x )=3x 2+2x +1,若⎠⎛1-1f (x )d x =2f (a )成立,则a =________.14.已知a =∫π20(sin x +cos x )d x ,则二项式(a x -1x )6的展开式中含x 2项的系数是________.15.抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积为________.16.(2010·安徽合肥质检)抛物线y 2=ax (a >0)与直线x =1围成的封闭图形的面积为43,若直线l 与抛物线相切且平行于直线2x -y +6=0,则l 的方程为______.17.(2010·福建福州市)已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围成区域(图中阴影部分)的面积为112,则a 的值为________.三、解答题18.如图所示,在区间[0,1]上给定曲线y =x 2,试在此区间内确定t 的值,使图中阴影部分的面积S1+S2最小.。
定积分计算知识点总结
定积分计算知识点总结一、定积分的概念1.1 定积分的定义定积分是在微积分学中给定一个连续函数$f(x)$,对它在区间$[a, b]$上的积分值的确定。
具体地,定积分可以定义为:$$\int_{a}^{b} f(x) dx = \lim _{n \rightarrow \infty} \sum _{i=1}^{n} f(x_{i}^{*})\Delta x $$其中,$\Delta x = (b-a)/n$,$x_i^* \in [x_{i-1}, x_i]$。
1.2 定积分的几何意义定积分的几何意义是函数$y=f(x)$在区间$[a, b]$上的曲边梯形的面积,可以用积分来表示。
当积分区间的$[a, b]$上的函数是非负值函数时,它的定积分可以表示该函数与$x$轴所夹的曲边梯形的面积。
1.3 定积分的基本性质① 定积分与积分区间的顺序无关,即$\int_{a}^{b}f(x)dx = -\int_{b}^{a}f(x)dx$。
② 定积分的线性性:$\int_{a}^{b}(\alpha f(x)+\beta g(x))dx = \alpha \int_{a}^{b} f(x)dx + \beta \int_{a}^{b} g(x)dx$。
③ 定积分的加法性:$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$。
1.4 定积分的计算方法定积分的计算方法主要包括:几何意义法、切割法、定积分的性质、换元积分法、分部积分法等。
这些方法在不同的情况下都有其适用范围,学习者需要根据具体问题进行选择和灵活运用。
二、定积分的计算2.1 几何意义法几何意义法是通过将定积分代表的曲边梯形进行适当的分割和逼近,最终得到定积分的值。
这种方法适用于简单的函数和几何形状,容易理解和操作。
2.2 切割法切割法是将定积分的积分区间进行适当的分割,然后对每个小区间内的函数求积分,最后将所得的和加起来。
定积分知识点汇总
定积分知识点汇总定积分是微积分中的一个重要概念,它在数学、物理、工程等领域都有着广泛的应用。
下面就来对定积分的相关知识点进行一个全面的汇总。
一、定积分的定义如果函数\(f(x)\)在区间\(a,b\)上连续,用分点\(a =x_0 < x_1 < x_2 <\cdots < x_n = b\)将区间\(a,b\)等分成\(n\)个小区间,在每个小区间\(x_{i 1}, x_i\)上取一点\(\xi_i\)(\(i = 1, 2, \cdots, n\)),作和式\(\sum_{i = 1}^n f(\xi_i) \Delta x\)(其中\(\Delta x =\dfrac{b a}{n}\))。
当\(n\)无限趋近于正无穷大时,上述和式无限趋近于某个常数,这个常数叫做函数\(f(x)\)在区间\(a,b\)上的定积分,记作\(\int_{a}^{b} f(x)dx\)。
二、定积分的几何意义1、当函数\(f(x)\)在区间\(a,b\)上恒为正时,定积分\(\int_{a}^{b} f(x)dx\)表示由曲线\(y = f(x)\),直线\(x = a\),\(x = b\)和\(x\)轴所围成的曲边梯形的面积。
2、当函数\(f(x)\)在区间\(a,b\)上恒为负时,定积分\(\int_{a}^{b} f(x)dx\)的值为上述曲边梯形面积的相反数。
3、当函数\(f(x)\)在区间\(a,b\)上有正有负时,定积分\(\int_{a}^{b} f(x)dx\)表示曲线\(y = f(x)\)在\(x\)轴上方部分与\(x\)轴所围成的面积减去曲线\(y = f(x)\)在\(x\)轴下方部分与\(x\)轴所围成的面积。
三、定积分的性质1、\(\int_{a}^{a} f(x)dx = 0\)2、\(\int_{a}^{b} f(x)dx =\int_{b}^{a} f(x)dx\)3、\(\int_{a}^{b} f(x) ± g(x)dx =\int_{a}^{b} f(x)dx ±\int_{a}^{b} g(x)dx\)4、\(\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx\)(其中\(k\)为常数)四、定积分的计算1、牛顿莱布尼茨公式如果函数\(F(x)\)是连续函数\(f(x)\)在区间\(a,b\)上的一个原函数,那么\(\int_{a}^{b} f(x)dx = F(b) F(a)\)。
2017高考数学必考点【定积分的概念及几何意义】整理.doc
2017高考数学必考点【定积分的概念及几何意义】整理高考数学想要取得好成绩必须要掌握好数学考点,很多考生在记忆数学考点的时候不够准确,因此在考试答题的时候就会模棱两可,为此下面为大家带来2017高考数学必考点【定积分的概念及几何意义】整理,希望大家能够认真掌握这些考点。
高考数学知识点:定积分的概念及几何意义定积分的定义:设函数f(x)在[a,b]上有界(通常指有最大值和最小值),在a与b之间任意插入n-1个分点,,将区间[a,b]分成n个小区间(i=1,2,,n),记每个小区间的长度为(i=1,2,,n),在上任取一点i,作函数值f(i)与小区间长度的乘积f(i)(i=1,2,高考学习方法,,n),并求和,记=max{△xi;i=1,2,,n },如果当0时,和s总是趋向于一个定值,则该定值便称为函数f(x)在[a,b]上的定积分,记为,即,其中,称为函数f(x)在区间[a,b]的积分和。
定积分的几何意义:定积分在几何上,当f(x)0时,表示由曲线y=f(x)、直线x=a、直线x=b与x轴所围成的曲边梯形的面积;当f(x)0时,表示由曲线y=f(x)、直线x=a、直线x=b与x轴所围成的曲边梯形的面积的负值;一般情况下,表示介于曲线y=f(x)、两条直线x=a、x=b与x轴之间的个部分面积的代数和。
定积分的性质:(1)(k为常数);(2);(3)(其中a定积分特别提醒:①定积分不是一个表达式,而是一个常数,它只与被积函数及积分区间有关,而与积分变量的记法无关,例如:②定义中区间的分法和的取法是任意的2017高考数学必考点【定积分的概念及几何意义】整理为大家带来过了,数学考点是我们解题的重要依据,希望大家在记忆数学考点的时候多下功夫。
用定积分的定义或几何意义求下列定积分的值
1习题五(A)1、用定积分的定义或几何意义求下列定积分的值: (1)⎰+1)53(dx x解 将区间]1,0[分成n 等份,得nh 1=,取 h i i ⋅=ξ )12,1,0(-=n i作和∑-=+=1)53(n i n h ih S22210102102233552)1(353)53(n n n n n n n n hi hh ih n i n i n i -+=+-⋅=+=+=∑∑∑-=-=-=于是 213235lim =+=∞→n n S 由于53)(+=x x f 在]1,0[上连续故积分⎰+1)53(dx x 是存在的,且它与分法无关,同时也与点的取法无关。
因此上述和的极限就是所求的积分值(下例如无特殊情况,不再说明) 即定积分⎰=+1213)53(dx x2(2)dx e x ⎰1解 将区间n ]1,0[等分,得nh 1=,取 ih i =ξ )12,1,0(-=n i ,作和 ∑-=⋅=10n i ih n e h S11)1()1(1)1(11111)(1111--=--=--⋅=--⋅==⋅-=∑nnnh n h n i ih e ne e n e e en e e h e h 于是11lim)1(lim 1--=∞→∞→nn n n e ne S由于)(n f 是)(x f 的一个子列,利用洛必达法则,可得)1()1(lim 11lim 11''=-→∞→∞ne n e nn n n n 11lim1==∞→nn e,因此11lim)1(lim 1--=∞→∞→nn n n e n e S 1-=e3即:11-=⎰e dx e x(3)dx x ⎰-121解 被积函数21x y -=在区间]1,0[上积分,在几何意义上表示为单位圆在第一象限上积分,即阴影部分面积,如图5-1所示,由于整个单元圆面积为π,因此阴影部分面积为4π即4112π=-⎰dx x(4)⎰-10103dx x解 将区间]10,10[-分成n 等分,得nh 20=,取 ih i +-=10ξ )12,1,0(-=n i 作和 ∑-=+-=13)10(n i n ih h S4nn n n n n n n n n n n i h i h i h nh n i n i n i 200004)2(1600006)32(8000302)1(40030020000303001000423432321341021032-=+-++-⋅--⋅+-=⋅+⋅-⋅+-=∑∑∑-=-=-=于是020000lim =-∞→nn , 即010103=⎰-dx x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为12×1Leabharlann ×2=1,所
以
∫
0 -1
(-2x)dx=1.
栏目 导引
第一章 导数及其应用
题型三 利用定积分的性质求定积分 例3 求解以下各题: (1)若∫10[f(x)+g(x)]dx=3,∫10[f(x)-g(x)]dx= -5,则∫10f(x)dx=________; (2)若∫ba2f(x)dx=5,则∫baf(x)dx=________.
栏目 导引
第一章 导数及其应用
方法感悟 方法技巧 1.定积分∫baf(x)dx 是一个数值(极限值).它的 值仅取决于被积函数与积分上、下限.另外∫ba f(x)dx 与积分区间[a,b] 息息相关,不同的积分 区间,所得值也不同.
栏目 导引
第一章 导数及其应用
n
2.
定
积
分
就
是
和
的
极
限
lim
n→∞
栏目 导引
第一章 导数及其应用
想一想
2.当 f(x)<0 时,∫baf(x)dx 是否有几何意义?
提示:有.
栏目 导引
第一章 导数及其应用
3.定积分的性质 (1)∫bakf(x)dx=_k_∫_ba_f( __x_) __d__x__ (k 为常数); (2)∫ba[f1(x)±f2(x)]dx =_∫ba_f_1_(x_)_d_x____±_∫_baf_2_(x_)_d_x_____; (3)∫baf(x)dx=_∫ca_f_(x_)_d_x__+∫_bc_f(_x_)_d_x (其中 a<c<b).
n
n
所以 Sn=i∑=1ΔSi=∑i=1
2ni·1n=n22(1+2+3+…
+n)
=n22·n(n2+1)=1+1n,
所以∫102xdx=nli→m∞Sn=nli→m∞ 1+1n=1.
栏目 导引
第一章 导数及其应用
题型二 利用定积分的几何意义求定积分
例2 (本题满分 12 分)利用定积分的几何意
栏目 导引
第一章 导数及其应用
做一做
已
知
∫
3 2
f(x)dx
=
2,∫
7 3
f(x)dx
=
3,
则
∫
7 2
f(x)dx
=
________.
答案:5
栏目 导引
第一章 导数及其应用
典题例证•技法归纳
题型探究 题型一 利用定积分的定义求定积分 例1 用定积分的定义证明∫bakdx=k(b-a).
栏目 导引
记作∫baf(x) dx,即∫baf(x)dx=_nli_→m_∞_i∑=n_1__b_-n__a_f_(ξ_i_) , 其中,a 与 b 分别叫做_积__分__下__限__与_积__分__上__限___, 区 间 [a,b] 叫 做 __积__分__区__间____,函 数 f(x) 叫 做 _被__积__函__数________,x 叫 做 __积__分__变__量___,f(x)dx 叫做___被__积__式_____.
栏目 导引
第一章 导数及其应用
【名师点评】 利用定积分的性质可将被积 函数较复杂的定积分化为简单函数的定积分, 将未知的定积分转化为已知的定积分;对于分 段函数类型的定积分,可以利用定积分的性质 分解求解.
栏目 导引
第一章 导数及其应用
变式训练 x,x∈[0,2),
3.已知 f(x)= 4-x,x∈[2,3), 52-x2,x∈[3,5],
栏目 导引
备选例题
第一章 导数及其应用
已知函数 f(x)=
x3,
x∈[-2,2),
2x, x∈[2,π),
cosx, x∈[π,2π],
求 f(x)在区间[-2,2π]上的定积分.
栏目 导引
第一章 导数及其应用
解:由定积分的几何意义知 ∫2-2x3dx=0, ∫π22xdx=(π-2)2(2π+4)=π2-4, ∫2ππcosxdx=0, 由定积分的性质得 ∫2-π2f(x)dx =∫2-2x3dx+∫π22xdx+∫2ππcosxdx=π2-4.
栏目 导引
第一章 导数及其应用
解:(1)∫20(3x+1)dx 表示的是图(1)中阴影所示 梯 形的 面积 ,其面积 为 12× (1+ 7) ×2 =8,所以 ∫20(3x+1)dx=8.
栏目 导引
第一章 导数及其应用
(2)∫0-1(-2x)dx 表示的是图(2)中阴影所示三
角
形
的
面
积
,其
面
积
f(ξi)·Δ
i=1
x,
而
∫
b a
f(x)dx 只是这种极限的一种记号,读作“函数 f(x)从 a 到 b 的定积分”. 3.若 f(x)在[-a,a]上连续,则 (1)当 f(x)是偶函数时,∫a-af(x)dx=2∫a0f(x)dx; (2)当 f(x)是奇函数时,∫a-af(x)dx=0.
栏目 导引
n 个小区间,在每个小区间[xi-1,xi]上任取一点
ξi(i
=
1,2,…
,n),作
和
式
n
∑
i=1
f(ξi)
Δ
x
=
∑ i_=n_1_b_-n__a_f(_ξ_i)_,
当 n→∞时,上述和式无限接近某个常数,这个常 数叫做函数 f(x)在区间[a,b]上的_定__积__分__,
栏目 导引
第一章 导数及其应用
求 f(x)在区间[0,5]上的定积分.
栏目 导引
第一章 导数及其应用
解:如图, 由定积分的几何意义,得 ∫20xdx=12×2×2=2, ∫32(4-x)dx=12×(1+2)×1=32,
栏目 导引
第一章 导数及其应用
∫53(52-x2)dx=12×2×1=1, ∴∫50f(x)dx =∫20xdx+∫32(4-x)dx+∫53(52-x2)dx =2+32+1=92.
第一章 导数及其应用
【名师点评】 利用几何意义求定积分,关 键是准确确定被积函数的图象,以及积分区 间,正确利用相关的几何知识求面积,不规 则的图形常用分割法求面积.注意分割点的 准确性.
栏目 导引
第一章 导数及其应用
变式训练 2.说明下列定积分所表示的几何意义,并根据 其意义求出定积分的值: (1)∫20(3x+1)dx;(2)∫0-1(-2x)dx.
义,求:
(1)∫3-3 9-x2dx; (2)∫30(2x+1)dx.
【思路点拨】 确定被积函数 → 确定积分区间 → 画出图形 → 用几何法求面积 →
求出定积分
栏目 导引
第一章 导数及其应用
【解】 (1)在平面上,y= 9-x2表示的几何 图形为以原点为圆心,以 3 为半径的上半圆如 图(1)所示,3 分 其面积为 S=12·π·32=92π. 由定积分的几何意义知∫3-3 9-x2dx=92π.6 分
第一章 导数及其应用
1.5.3 定积分的概念
第一章 导数及其应用
学习导航 学习目标
重点难点 重点:定积分的几何意义的应用. 难点:利用定积分的基本性质解题.
栏目 导引
第一章 导数及其应用
新知初探•思维启动
1.定积分的概念
如 果函数 f(x)在区间[a,b]上 连续 ,用 分点 a=
x0<x1<…<xi-1<xi<…<xn=b 将区间[a,b]等分成
栏目 导引
第一章 导数及其应用
变式训练 1.利用定积分的定义计算∫102xdx 的值. 解:令 f(x)=2x.将区间[0,1]等分成 n 个小区间,
则第 i 个小区间为i-n 1,ni ,
第 i 个小区间的面积为 ΔSi=f(ni )·1n=2ni·n1,
栏目 导引
第一章 导数及其应用
第一章 导数及其应用
失误防范 1.函数 f(x)在区间[a,b]上连续这一条件是不能 忽视的,它保证了和的极限(定积分)的存在(实 际上,函数连续是定积分存在的充分条件,而 不是必要条件). 2.当函数 f(x)≤0 时,曲边梯形位于 x 轴的下方, 此时∫baf(x)dx 等于曲边梯形面积 S 的相反数, 即∫baf(x)dx=-S.
【证明】 令 f(x)=k,
第一章 导数及其应用
1. 分割:用分点 a=x0<x1<x2<…<xi-1<xi<… <xn=b 将区间[a,b]等分成 n 个小区间[xi- 1,xi](i=1,2,…,n),
2. 近似代替,作和:在每个小区间上任取一
点 ξi(i=1,2,…,n). 作和式∑i=n1f(ξi)Δx=∑i=n1k·b-n a=k(b-a),
栏目 导引
第一章 导数及其应用
(2)在平面上,f(x)=2x+1为一条直线.
(13 2x+1)dx表示直线f(x)=2x+1,x=
0,x=3围成的直角梯形OABC的面积,如图(2
)所示,9分
其面积为 S=12(1+7)×3=12.
根据定积分的几何意义知
∫30(2x+1)dx=12.12 分
栏目 导引
栏目 导引
第一章 导数及其应用
知能演练•轻松闯关
栏目 导引
第一章 导数及其应用
本部分内容讲解结束
按ESC键退出全屏播放
栏目 导引
3.取极限:当 n→∞时,k(b-a)→k(b-a),
∴∫bakdx=k(b-a).
栏目 导引
第一章 导数及其应用
【名师点评】 利用定义求定积分的步骤:
①分割:n 等分区间[a,b];
②近似代替:取点 ξi∈[xi-1,xi];
n
③求和:∑ i=1