LTCC基板材料

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、陶瓷基板

现阶段较普遍的陶瓷散热基板种类共有LTCC、HTCC、DBC、DPC四种,其中HTCC属于较早期发展之技术,但由于其较高的工艺温度(1300~1600℃),使其电极材料的选择受限,且制作成本相当昂贵,这些因素促使LTCC的发展,LTCC虽然将共烧温度降至约850℃,但其尺寸精确度、产品强度等技术上的问题尚待突破。而DBC与DPC则为近几年才开发成熟,且能量产化的专业技术,但对于许多人来说,此两项专业的工艺技术仍然很陌生,甚至可能将两者误解为同样的工艺。DBC乃利用高温加热将Al2O3与Cu板结合,其技术瓶颈在于不易解决Al2O3与Cu板间微气孔产生之问题,这使得该产品的量产能量与良率受到较大的挑战,而DPC技术则是利用直接披覆技术,将Cu沉积于Al2O3基板之上,其工艺结合材料与薄膜工艺技术,其产品为近年最普遍使用的陶瓷散热基板。然而其材料控制与工艺技术整合能力要求较高,这使得跨入DPC产业并能稳定生产的技术门槛相对较高。

2、现阶段LED散热情况

LED 散热技术随着高功率LED产品的应用发展,已成为各家业者相继寻求解决的议题,而LED散热基板的选择亦随着LED之线路设计、尺寸、发光效率…等条件的不同有设计上的差异,以目前市面上最常见的可区分为(一)系统电路板,其主要是作为LED最后将热能传导到大气中、散热鳍片或外壳的散热系统,而列为系统电路板的种类包括:铝基板(MCPCB)、印刷电路板(PCB)以及软式印刷电路板(FPC)。(二)LED芯片基板,是属于LED芯片与系统电路板两者之间热能导出的媒介,并藉由共晶或覆晶与LED芯片结合。为确保LED的散热稳定与LED芯片的发光效率,近期许多以陶瓷材料作为高功率LED散热基板之应用,其种类主要包含有:低温共烧多层陶瓷(LTCC)、高温共烧多层陶瓷(HTCC)、直接接合铜基板(DBC)、直接镀铜基板(DPC)四种,以下本文将针对陶瓷LED芯片基板的种类做深入的探讨。

3.对四种陶瓷散热基板的生产流程做进一步的说明,进而更加瞭解四种陶瓷散热基板制造过程的差异。

2-1 LTCC (Low-Temperature Co-fired Ceramic)

LTCC 又称为低温共烧多层陶瓷基板,此技术须先将无机的氧化铝粉与约30%~50%的玻璃材料加上有机黏结剂,使其混合均匀成为泥状的浆料,接着利用刮刀把浆料刮成片状,再经由一道干燥过程将片状浆料形成一片片薄薄的生胚,然后依各层的设计钻导通孔,作为各层讯号的传递,LTCC内部线路则运用网版印刷技术,分别于生胚上做填孔及印制线路,内外电极则可分别使用银、铜、金等金属,最后将各层做叠层动作,放置于850~900℃的烧结炉中烧结成型,即可完成。详细制造过程如图1 LTCC生产流程图。

图1 LTCC生产流程图

2-2 HTCC (High-Temperature Co-fired Ceramic)

HTCC又称为高温共烧多层陶瓷,生产制造过程与LTCC极为相似,主要的差异点在于HTCC 的陶瓷粉末并无加入玻璃材质,因此,HTCC的必须再高温1300~1600℃环境下干燥硬化成生胚,接着同样钻上导通孔,以网版印刷技术填孔与印制线路,因其共烧温度较高,使得金属导体材料的选择受限,其主要的材料为熔点较高但导电性却较差的钨、钼、锰…等金属,最后再叠层烧结成型。

2-3 DBC (Direct Bonded Copper)

DBC直接接合铜基板,将高绝缘性的Al2O3或AlN陶瓷基板的单面或双面覆上铜金属后,经由高温1065~1085℃的环境加热,使铜金属因高温氧化、扩散与Al2O3材质产生(Eutectic) 共晶熔体,使铜金与陶瓷基板黏合,形成陶瓷复合金属基板,最后依据线路设计,以蚀刻方式备制线路,DBC制造流程图如下图2。

图2 DBC 制造流程图

2-4 DPC (Direct Plate Copper)

DPC亦称为直接镀铜基板,以瑷司柏DPC基板工艺为例:首先将陶瓷基板做前处理清洁,利用薄膜专业制造技术-真空镀膜方式于陶瓷基板上溅镀结合于铜金属复合层,接着以黄光微影之光阻被覆曝光、显影、蚀刻、去膜工艺完成线路制作,最后再以电镀/化学镀沉积方式增加线路的厚度,待光阻移除后即完成金属化线路制作,详细DPC生产流程图如下图3。

图3 DPC 制造流程图

3、陶瓷散热基板特性

在瞭解陶瓷散热基板的制造方法后,接下来将近一步的探讨各个散热基板的特性具有哪些差异,而各项特性又分别代表了什么样的意义,为何会影响了散热基板在应用时必须作为考量的重点。以下表一陶瓷散热基板特性比较中,本文取了散热基板的:(1)热传导率、 (2)工艺温度、(3)线路制作方法、(4)线径宽度,四项特性作进一步的讨论:

表一、陶瓷散热基板特性比较

3-1热传导率

热传导率又称为热导率,它代表了基板材料本身直接传导热能的一种能力,数值愈高代表其散热能力愈好。LED散热基板最主要的作用就是在于,如何有效的将热能从LED芯片传导到系统散热,以降低LED 芯片的温度,增加发光效率与延长LED寿命,因此,散热基板热传导效果的优劣就成为业界在选用散热基板时,重要的评估项目之一。检视表一,由四种陶瓷散热基板的比较可明看出,虽然Al2O3材料之热传导率约在20~24之间,LTCC为降低其烧结温度而添加了30%~50%的玻璃材料,使其热传导率降至2~3W/mK左右;而HTCC因其普遍共烧温度略低于纯Al2O3基板之烧结温度,而使其因材料密度较低使得热传导系数低Al2O3基板约在16~17W/mK之间。一般来说,LTCC与HTCC散热效果并不如DBC与DPC散热基板里想。

3-2 操作环境温度

操作环境温度,主要是指产品在生产过程中,使用到最高工艺温度,而以一生产工艺而言,所使用的温度愈高,相对的制造成本也愈高,且良率不易掌控。HTCC工艺本身即因为陶瓷粉末材料成份的不同,其工艺温度约在1300~1600℃之间,而LTCC/DBC的工艺温度亦约在850~1000℃之间。此外,HTCC与LTCC在工艺后对必须叠层后再烧结成型,使得各层会有收缩比例问题,为解决此问题相关业者也在努力寻求解决方案中。另一方面,DBC对工艺温度精准度要求十分严苛,必须于温度极度稳定的1065~1085℃温度范围下,才能使铜层熔炼为共晶熔体,与陶瓷基板紧密结合,若生产工艺的温度不够稳定,势必会造成良率偏低的现象。而在工艺温度与裕度的考量,DPC的工艺温度仅需250~350℃左右的温度即可完成散热基板的制作,完全避免了高温对于材料所造成的破坏或尺寸变异的现象,也排除了制造成本费用高的问题。

5.jpg(44.83 KB, 下载次数: 1)

相关文档
最新文档