(完整word版)与三角形有关的线段练习题

合集下载

人教版八年级数学上册 11

人教版八年级数学上册  11

人教版八年级数学上册 11.1和三角形有关的线段(提高)巩固练习 (word 版含答案解析 )与三角形有关的线段(提高)巩固练习【巩固练习】一、填空题1.对面积为1的△ABC 进行以下操作:分别延长AB 、BC 、CA 至点A 1、B 1、C 1,使得A 1B=2AB ,B 1C=2BC ,C 1A=2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1(如图所示),记其面积为S 1.现再分别延长A 1B 1、B 1C 1、C 1A 1至点A 2、B 2、C 2,使得A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1,顺次连接A 2、B 2、C 2,得到△A 2B 2C 2,记其面积为S 2,则S 2=.2.三角形的两边长分别为5 cm 和12 cm ,第三边与前两边中的一边相等,则三角形的周长为.个.3.如图,AD ⊥BC 于D ,那么图中以AD 为高的三角形有11111++...+++4.在数学活动中,小明为了求的值(结果用n 表示),设计了如图22223242n 11111++...+++所示的几何图形.请你利用这个几何图形求n =.222232425.请你观察下图的变化过程,说明四边形的四条边一定时,其面积或“不能”)确定.(填“能”人教版八年级数学上册 11.1和三角形有关的线段(提高)巩固练习 (word版含答案解析 )6.如图,是用四根木棒搭成的平行四边形框架,AB=8cm,AD=6cm,使AB固定,转动AD,当∠DAB=时,ABCD的面积最大,最大值是.二、选择题7.如果三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5,其中可构成三角形的有()A.1个B.2个C.3个D.4个8.一个三角形的周长是偶数,其中的两条边分别为5和9,则满足上述条件的三角形个数为()A.2个B.4个C.6个D.8个9.下列说法正确的是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A.①②③B.①②C.②③D.①③10.如图,AC⊥BC,CD⊥AB,DE⊥BC,则下列说法中错误的是() A.在△ABC中,AC是BC边上的高B.在△BCD中,DE是BC边上的高C.在△ABE中,DE是BE边上的高D.在△ACD中,AD是CD边上的高11.有4根小木棒,长度分别为3cm、5cm、7cm、9cm任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为()A.2个B.3个C.4个D.5个12.给出下列图形:其中具有稳定性的是()A .①B .③C .②③D .②③④13.如图所示为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为A .1121平方公分,则此方格纸的面积为多少平方公分?(4C .13D .14)B .1214王师傅用4根木条钉成一个四边形木架.如图所示,要使这个木架不变形,他至少要再钉上几根木条?()A .0根B .1根C .2根D .3根三、解答题15.草原上有4口油井,位于四边形ABCD 的四个顶点上,如图所示,如果现在要建一个维修站H ,试问H 建在何处,才能使它到4口油井的距离之和HA+HB+HC+HD 为最小,说明理由.16.取一张正方形纸片,把它裁成两个等腰直角三角形,取出其中一张如图①,再沿着直角边上的中线AD 按图②所示折叠,则AB 与DC 相交于点G .试问:△AGC 和△BGD 的面积哪个大?为什么?17.已知AD 是△ABC 的高,∠BAD =70°,∠CAD =20°,(1)求∠BAC 的度数.(2)△ABC 是什么三角形.18.阅读下列材料:某同学遇到这样一个问题:如图1,在△ABC 中,AB=AC ,BD 是△ABC 的高.P 是BC 边上一点,PM ,PN 分别与直线AB ,AC 垂直,垂足分别为点M ,N .求证:BD=PM+PN .他发现,连接AP ,有S △ABC =S △ABP +S △ACP ,即可得BD=PM+PN .111AC •BD=AB •PM+AC •PN .由AB=AC ,222他又画出了当点P 在CB 的延长线上,且上面问题中其他条件不变时的图形,如图2所示.他猜想此时BD ,PM ,PN 之间的数量关系是:BD=PN ﹣PM .请回答:(1)请补全以下该同学证明猜想的过程;证明:连接AP .∵S △ABC =S △APC ﹣∴1,211.AC •BD = AC • = AB •22∵AB=AC ,∴BD=PN ﹣PM .(2)参考该同学思考问题的方法,解决下列问题:在△ABC中,AB=AC=BC,BD是△ABC的高.P是△ABC所在平面上一点,PM,PN,PQ分别与直线AB,AC,BC垂直,垂足分别为点M,N,Q.①如图3,若点P在△ABC的内部,则BD,PM,PN,PQ之间的数量关系是:;②若点P在如图4所示的位置,利用图4探究得出此时BD,PM,PN,PQ之间的数量关系是:.人教版八年级数学上册 11.1和三角形有关的线段(提高)巩固练习 (word 版含答案解析 )【答案与解析】一、填空题1.【答案】361;【解析】解:连接A 1C ,根据A 1B=2AB ,得到:AB :A 1A=1:3,因而若过点B ,A 1作△ABC 与△AA 1C 的AC 边上的高,则高线的比是1:3,因而面积的比是1:3,则△A 1BC 的面积是△ABC 的面积的2倍,设△ABC 的面积是a ,则△A 1BC 的面积是2a ,同理可以得到△A 1B 1C 的面积是△A 1BC 面积的2倍,是4a ,则△A 1B 1B 的面积是6a ,同理△B 1C 1C 和△A 1C 1A 的面积都是6a ,△A 1B 1C 1的面积是19a ,即△A 1B 1C 1的面积是△ABC 的面积的19倍,同理△A 2B 2C 2的面积是△A 1B 1C 1的面积的19倍,∴S 2=19×19×1=361.故答案为:361.2.【答案】29cm ;3.【答案】6;4.【答案】1-12n【答案】解:如图所示,设大三角形的面积为1,然后不断地按顺序作出各个三角形的11111++...+++中线,根据三角形的中线把它分成两个面积相等的三角形可知,423n2222211111++...+++表示组成面积为1的大三角形的n 个小三角形的面积之和,因此423n222221=1-n25.【答案】不能;【解析】因为四边形的高不能确定.6.【答案】90°,48 cm2;二、选择题7.【答案】B;【解析】根据两边之和大于第三边:⑤⑥满足.8.【答案】B;【解析】5+9=14,所以第三边长应为偶数,大于4而小于14的偶数有4个,所以9.【答案】B;【解析】①、②正确;而对于三角形三条高:锐角三角形的三条高在三角形的内部;直角三角形有两条高在边上;钝角三角形有两条高在外部,故③错误.10.【答案】C;【解析】三角形高的定义.11.【答案】B;【解析】解:可搭出不同的三角形为:3cm、5cm、7cm;3cm、5cm、9cm;3cm、7cm、9cm;5cm、7cm、9cm共4个,其中3cm、5cm、9cm不能组成三角形,故选B.12.【答案】C;【解析】均是由三角形构成的图形,具有稳定性.13.【答案】B;【解析】设每个小正方形的边长为a,则有16a2-4 a×2 a÷2-3 a×2 a÷2-4 a×a÷2=3212216a=12(平方公分).,解得a=,而整个方格纸的面积为4414.【答案】B;三、解答题15.【解析】解:维修站应建在四边形两对角线AC、BD的交点H处,理由如下:取不同于H的F点,根据三角形两边之和大于第三边可得;FD+FB>HD+HB,FC+FA>HC+HA.所以:FD+FB+FC+FA>HD+HB+HC+HA,即HD+HB+HC+HA为最小.16.【解析】解:∵ BD=CD,∴S△ABD =S△ACD.∴S△ABD -S△ADG=S△ACD-S△ADG.∴S△ADG S△BGD.17.【解析】解:(1)当高AD在△ABC的内部时(如图(1)).因为∠BAD=70°,∠CAD=20°,所以∠BAC=∠BAD+∠CAD=70°+20°=90°.当高AD在△ABC的外部时(如图(2)).因为∠BAD=70°,∠CAD=20°,所以∠BAC=∠BAD-∠CAD=70°-20°=50°.综上可知∠BAC的度数为90°或50°.(2)如图(1),当AD在△ABC的内部时,因为∠BAC=∠BAD+∠CAD=70°+20°=90°,所以△ABC是直角三角形.如图(2),当AD在△ABC的外部时,因为∠BAC=∠BAD-∠CAD=70°-20°=50°,∠ABC=90°-∠BAD=90°-70°=20°,所以∠ACB=180°-∠ABC-∠BAC=180°-50°-20°=110°.所以△ABC为钝角三角形.综上可知,△ABC是直角三角形或钝角三角形.18.【解析】解:(1)证明:连接AP.∵S△ABC=S△APC﹣S△APB,11∴1AC•BD=AC•PN﹣AB•PM.222∵AB=AC,∴BD=PN﹣PM.(2)①BD=PM+PN+PQ;如图3,连接AP、BP、CP,∵S△ABC =S△APC+S△APB+S△BPC人教版八年级数学上册 11.1和三角形有关的线段(提高)巩固练习 (word版含答案解析 )∴1111AC•BD=AC•PN+AB•PM+BC•PQ,2222∵AB=AC=BC,∴BD=PM+PN+PQ;②BD=PM+PQ﹣PN;如图4,连接AP、BP、CP,∵S△ABC=S△APB+S△BPC﹣S△APC.∵12AC•BD=111AB•PM+BC•PQ﹣AC•PN,222∵AB=AC=BC,∴BD=PM+PQ﹣PN.。

(完整word版)九年级数学相似三角形知识点及习题

(完整word版)九年级数学相似三角形知识点及习题

相似三角形要点一、本章的两套定理第一套(比例的有关性质): b a n d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质 涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。

二、有关知识点:1.相似三角形定义: 对应角相等,对应边成比例的三角形,叫做相似三角形。

2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。

3.相似三角形的相似比: 相似三角形的对应边的比叫做相似比。

4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。

5.相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:类型斜三角形 直角三角形 全等三角形的判定 SASSSS AAS (ASA ) HL 相似三角形的判定 两边对应成比例夹角相等 三边对应成比例 两角对应相等一条直角边与斜边对应成比例 从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。

6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

7.相似三角形的性质定理:(1)相似三角形的对应角相等。

(2)相似三角形的对应边成比例。

(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

(4)相似三角形的周长比等于相似比。

(5)相似三角形的面积比等于相似比的平方。

8.相似三角形的传递性 如果△ABC ∽△A 1B 1C 1,△A 1B 1C 1∽△A 2B 2C 2,那么△ABC ∽A 2B 2C 2三、注意1、相似三角形的基本定理,它是相似三角形的一个判定定理,也是后面学习的相似三角形的判定定理的基础,这个定理确定了相似三角形的两个基本图形“A ”型和“ X ”型。

11.1与三角形有关的线段练习题(可编辑修改word版)

11.1与三角形有关的线段练习题(可编辑修改word版)

一、选择题11.1 与三角形有关的线段测试题A1.如图1,三角形有()A.3 个B.4 个C.5 个D.6 个2.甲地离学校4km,乙地离学校1km,记甲、乙两地之间的距离为dkm,则d 的取值范围是()A.3B.5C.3 或5D. 3 ≤d ≤53.三角形按边可分为()EB D CA.等腰三角形,直角三角形,锐角三角形B.直角三角形,三边都不相等的三角形C.等腰三角形,三边都不相等的三角形D.等腰三角形,等边三角形4.下列说法正确的是()A.一个直角三角形一定不是等腰三角形B.一个等腰三角形一定不是锐角三角形C.一个钝角三角形一定不是等腰三角形 D.一个等边三角形一定不是钝角三角形5.已知三角形的两边长分别为3 和8,则该三角形的第三边的长可能是()A.4B.5C.6D.116.△ABC的三条边长分别是a、b、c,则下列各式成立的是()A.A.a+b=c B.a+b>c C.a+b<c D.a2+b2=c27、以长为13cm、10cm、5cm、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是()A.1个B.2 个C.3 个D.48、已知△ABC的三边长为a,b,c,化简|a+b-c|-|b-a-c|的结果是()9、2a B.-2b C.2a+2b D.2b-2c9、已知三角形的周长为15cm,其中的两边长都等于第三边长的2 倍,则这个三角形的最短边长是()A.3cm B.4cm C.5cm D.6cm二、填空题1.个等腰三角形的两边长分别为8cm 和6cm,则它的周长为cm.2.已知三角形的两边长分别为a=3,b=7,则第三边的长c 的取值范围3..已知△ABC的三边长为5,12,3x-4,周长为偶数,则X= ,周长=4.如果以 5cm 为等腰三角形的一边,另一边为 10cm,则它的周长为.5.已知:a、b、c 为三角形的三边长,化简:|b+c-a| +|b-c-a|-|c-a-b|-|a-b+c|=6.平面上有n 个点(n≥3),且任意三点不在同一条直线上,过任意三点作三角形,一共能作出多少个不同的三角形?考察点的个数n 和可作出的三角形的个数S n发现:三、简答题1.如图,草原上有 4 口油井,位于四边形 ABCD 的 4 个顶点,现在要建立一个维修站 H ,问 H 建在何处,才能使它到 4 口油井的距离之和最小?点的个数 345…n可连成三角形的个数2.如图,在△ABC 中,D 是 BC 上一点,试说明下列不等式成立的理由.AB +BC +AC>2CD.3、已知△ABC 的周长为 45cm ,(1)若 AB=AC=2BC ,求 BC 的长;(2)若 AB:BC:AC=2:3:4, 求△ABC 三条边的长.4.点 P 是△ABC 内任意一点。

(完整word)三角形内角和定理练习题

(完整word)三角形内角和定理练习题

三角形内角和定理练习题1.在△ABC中,∠A=∠B=∠C,则△ABC是三角形。

2.如图,在△ABC中,BE、CF分别是∠ABC和∠ACB的角平分线,它们相交于点I,已知∠A=56°,则∠BIC =。

3。

如图,在△ABC中,∠B=25°,延长BC至E,过点E作AC的垂线ED,垂足为O,且∠E=40°,则∠A=。

4.如图,若AB=AC,BG=BH,AK=KG,则∠BAC的度数为.5.若等腰三角形一腰上的高和另一腰上的高的夹角为58°,则这个等腰三角形顶角的度数是。

6.如图,将三角形纸片ABC的一角折叠,折痕为EF,若∠A=80°,∠B=68°,∠CFB=22°,则∠CEA =。

7.在一个三角形中,三个内角中至少有个锐角,最多有个直角或钝角.8.如图,AB∥CD,若∠ABE=135°,∠CDE=110°,则∠DEF=。

9。

如图,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,则∠EDF等于( )A.64°B.65°C.67°D。

68°10。

如图,已知AB∥CD,BE平分∠ABD,DE平分∠BDC,则∠E是( )A.锐角B.直角C。

钝角 D.无法确定11。

如图,已知在△ABC中,AD平分外角∠EAC,AD∥BC,则△ABC的形状是() A。

等边三角形 B.直角三角形C。

等腰三角形 D.任意三角形12.如图,在△ABC中,∠ABC和∠ACB的外角平分线交于点D,设∠BAC=∠α,则∠D等于()A。

180°—2∠α B。

180°—∠αC。

90°—∠α D.90°-2∠α13.如果三角形的一个外角等于与它相邻的内角,那么这个三角形的形状是( )A.锐角三角形B。

直角三角形 C.钝角三角形 D.任意三角形14。

如图,∠1=20°,∠2=25°,∠A=35°,则∠BDC的度数等于()A。

(完整版)初中数学三角形证明题经典题型训练汇总

(完整版)初中数学三角形证明题经典题型训练汇总

2015年 05月 03日初中数学三角形证明组卷.选择题(共 20 小题)1.( 2015? 涉县模拟)如图,在△ ABC 中,∠ C=90°, AB 的垂直平分线交 AB 与 D ,交 BC 于 E ,连接 AE ,若 CE=5, AC=12,则 BE 的长是( )2 .( 2015? 淄博模拟)如图,在△ ABC 中,AB=AC ,∠A=36°, BD 、CE 分别是∠ ABC 、∠BCD的角平分线,则图中的等腰三角形有( )4.( 2014?丹东)如图,在△ ABC 中, AB=AC ,∠ A=40°, AB 的垂直平分线交 AB 于点 D ,交AC 于点 E ,连接 BE ,则∠ CBE 的度数为( )C 12D53.( 2014 秋? 西城区校级期中)如图,在△ ABC 中, AD 是它的角平分线, A B=8cm ,AC=6cm ,C 16 : 9D 9: 163:4WORD格式可编辑A 70°B 80°C 40°D 30°度数为( )6.(2014? 山西模拟)如图,点 O 在直线 AB 上,射线 OC 平分∠ AOD ,若∠ AOC=3°5 , 则∠BOD7 .(2014? 雁塔区校级模拟)如图,在△ ABC 中,∠ ACB=90°, BA 的垂直平分线交 BC 边于8.(2014 秋? 腾冲县校级期末) 如图,已知 BD 是△ABC 的中线, AB=5,BC=3,△ABD 和△BCD 的周长的差是()5.( 2014? 南充)如图,在△ ABC 中, AB=AC ,且 D 为 BC 上一点,CD=AD , AB=BD ,则∠ B 的C 40D 45A 145°B 110C 70°D 35°60°的角的个数是(C4D5等于( )D ,若 AB=10, AC=5,则图中等于9.(2014春? 栖霞市期末) 在 Rt △ABC 中,如图所示,∠C=90°,∠CAB=60°,AD 平分∠CAB ,点 D 到 AB 的距离 DE=3.8cm ,则 BC 等于(10 .( 2014秋? 博野县期末)△ ABC 中,点 O 是△ABC 内一点,且点 O 到△ABC 三边的距离 相等;∠ A=40°,则∠ BOC (= )A 110°B 120°C 130°D 140°B3 C6D 不能确定B 7.6cm 11.4cmD 11.2cm11 .(2013秋? 潮阳区期末)如图,已知点 P 在∠ AOB 的平分线 OC 上,PF ⊥OA ,PE ⊥OB ,A 3.8cm若 PE=6,则 PF 的长为(12 .( 2013秋? 马尾区校级期末)如图,△ ABC 中, DE 是 AB 的垂直平分线,交 BC 于点 D , 交 AB 于点 E ,已知 AE=1cm ,△ACD 的周长为 12cm ,则△ ABC 的周长是( )16.(2014 秋? 万州区校级期中)如图,已知在△ ABC 中, AB=AC , D 为 BC 上一点, BF=CD ,C 15cmD 16cm13.(2013秋? 西城区期末) 如图,∠BAC=13°0 等于( )14.(2014 秋? 东莞市校级期中)如图,要用条件是( ), 若 MP 和 QN 分别垂直平分 AB 和 AC ,则∠ PAQ80°D 105°HL ”判定 Rt △ABC 和 Rt △A ′B ′C ′全等的B .∠A=∠A ′, AB=A ′B ′ D .∠B=∠B ′, BC=B ′C ′15.(2014 秋 ? 淄川区校级期中)如图, M N 是线段 AB 的垂直平分线, C 在 MN 外,且与 A 点在 MN 的同一侧, BC 交 MN 于 P 点,则( )A BC > PC+APB BC <PC+APC BC=PC+APD BC ≥ PC+APCE=BD,那么∠ EDF等于()不一定成立的是( )B . 90°﹣ ∠AC . 180°﹣∠AD45°∠A17.( 2014 秋 ? 泰山区校级期中)如图,在△ ABC 中, AB=AC ,AD 平分∠BAC ,那么下列结论A . △ABD ≌△ ACDC . AD 是△ ABC 的角平分线B . AD 是△ ABC 的高线D .△ABC 是等边三角18.(2014 秋? 晋江市校级月考)如图,点 P 是△ ABC 内的一点,若 PB=PC ,则(A .点 P 在∠ABC 的平分线上 C .点 P 在边 AB 的垂直平分线上 B . 点 P 在∠ ACB 的平分线上 D .点 P 在边 BC 的垂直平分线上19.( 2013? 河西区二模) 如图, 在∠ECF 的两边上有点 B ,A ,D ,BC=BD=D ,A 且∠ADF=75°, C 25° D 30°A 90°﹣∠A20 .(2013 秋? 盱眙县校级期中)如图, P 为∠ AOB 的平分线 OC 上任意一点, PM ⊥OA 于 M , PN ⊥OB 于 N ,连接 MN 交 OP 于点 D .则① PM=P ,N ②MO=N ,O ③OP ⊥MN ,④MD=N .D 其中正确 的有( ).解答题(共 10 小题)21 .(2014 秋? 黄浦区期末)如图,已知 ON 是∠AOB 的平分线, OM 、OC 是∠ AOB 外的射线.1)如果∠ AOC α= ,∠ BOC β= ,请用含有 α, 的式子表示∠ NOC . 那么∠ MON 的度数是多少?A 1 个2)如果∠ BOC=9°0 , OM 平分∠ AOC ,22.(2014 秋? 阿坝州期末)如图,已知: E 是∠AOB 的平分线上一点, EC ⊥OB ,ED ⊥OA , C 、 D 是垂足,连接 CD ,且交 OE 于点 F .(1)求证: OE 是 CD 的垂直平分线.23.(2014 秋? 花垣县期末)如图,在△ ABC 中,∠ ABC=2∠C , BD 平分∠ ABC ,DE ⊥AB( E 在 AB 之间),DF ⊥BC ,已知 BD=5,DE=3,CF=4,试求△ DFC 的周长.24 .( 2014 秋? 大石桥市期末) 如图, 点 D 是△ ABC 中 BC 边上的一点, 且 AB=AC=C ,DAD=BD , 求∠BAC 的度数.EF 之间有什么数量关系?并证明你的结论.25.(2014 秋? 安溪县期末)如图,在△ ABC 中,AB=AC,∠A=α.(1)直接写出∠ ABC的大小(用含α 的式子表示);分别交AC、AB于D、E两点,并连接BD、DE.若26.(2014 秋? 静宁县校级期中)如图,在△ABC中,AD平分∠ BAC,点D是BC的中点,DE⊥AB 于点E,DF⊥AC 于点F.求证:(1)∠B=∠C.27.(2012 秋? 天津期末)如图,AB=AC,∠ C=67°,AB的垂直平分线EF交AC于点D,求∠DBC的度数.28 .(2013秋? 高坪区校级期中)如图,△ ABC 中,AB=AD=A,E DE=EC,∠DAB=30°,求∠C 的度数.29.(2012 春? 扶沟县校级期中)阅读理解:“在一个三角形中,如果角相等,那么它们所对的边也相等.”简称“等角对等边”,如图,在△ ABC 中,已知∠ ABC 和∠ACB的平分线上交于点F,过点F作BC的平行线分别交AB、AC于点D、E,请你用“等角对等边”的知识说明DE=BD+C.E30.(2011? 龙岩质检)如图,AD是△ ABC的平分线,DE,DF分别垂直AB、AC于E、F,连接EF,求证:△ AEF 是等腰三角形.2015年 05 月 03 日初中数学三角形证明组卷参考答案与试题解析一.选择题(共 20 小题)1.( 2015? 涉县模拟)如图,在△ ABC 中,∠ C=90°, AB 的垂直平分线交 AB 与 D ,交 BC 于 E ,连接 AE ,若 CE=5, AC=12,则 BE 的长是( )考 线段垂直平分线的性质. 点:分 先根据勾股定理求出 AE=13,再由 DE 是线段 AB 的垂直平分线,得出BE=AE=13. 析:解解:∵∠ C=90°,答:∴A E=,∵DE 是线段 AB 的垂直平分线, ∴BE=AE=1;3 故选: A .点 本题考查了勾股定理和线段垂直平分线的性质;利用勾股定理求出 AE 是解题的关评: 键.2.( 2015? 淄博模拟)如图,在△ ABC 中, AB=AC ,∠ A=36°, BD 、CE 分别是∠ ABC 、∠BCD 的角平分线,则图中的等腰三角形有( )考 等腰三角形的判定;三角形内角和定理.C 12D5点:专证明题.题:分根据已知条件和等腰三角形的判定定理,对图中的三角形进行分析,析:解解:共有 5 个.答:(1)∵ AB=AC ∴△ABC是等腰三角形;(2)∵BD、CE分别是∠ ABC、∠BCD 的角平分线∴∠ EBC= ∠ABC,∠ECB= ∠BCD,∵△ABC是等腰三角形,∴∠ EBC=∠ ECB,∴△BCE是等腰三角形;(3)∵∠ A=36°,AB=AC,∴∠ ABC=∠ACB= (180°﹣36°)=72°,又BD是∠ ABC的角平分线,∴∠ ABD= ∠ABC=36°=∠A,∴△ABD是等腰三角形;同理可证△ CDE 和△ BCD是等腰三角形.故选:A.点此题主要考查学生对等腰三角形判定和三角形内角和定理的理解和掌握,评:题.3.(2014秋? 西城区校级期中)如图,在△ ABC 中,AD是它的角平分线,考角平分线的性质;三角形的面积.点:专计算题.题:C 16 :9 D 9:16即可得出答案.属于中档AB=8cm,AC=6cm,则S △ABD:S△ACD=()3:4分 首先过点 D 作 DE ⊥AB ,DF ⊥AC ,由 AD 是它的角平分线,根据角平分线的性质, 析: 即可求得 DE=DF ,由△ ABD 的面积为 12,可求得 DE 与 DF 的长,又由 AC=6,则 可求得△ ACD 的面积.解 解:过点 D 作 DE ⊥AB ,DF ⊥AC ,垂足分别为 E 、F ⋯( 1 分) 答: ∵AD 是∠ BAC 的平分线, DE ⊥AB ,DF ⊥AC ,∴DE=D ,F ⋯( 3 分) ∴S △ABD= ? DE? AB=12, ∴DE=DF=⋯3 ( 5 分)∴S △ADC= ? DF? AC= ×3×6=9⋯( 6 分)∴S △ABD : S △ACD =12: 9=4: 3.点 此题考查了角平分线的性质.此题难度不大,解题的关键是熟记角平分线的性 评: 质定理的应用,注意数形结合思想的应用,注意辅助线的作法.4.( 2014? 丹东)如图,在△ ABC 中, AB=AC ,∠A=40°, AB 的垂直平分线交 AB 于点 D ,交 AC 于点 E ,连接 BE ,则∠ CBE 的度数为( )考点:线段垂直平分线的性质;等腰三角形的性质. 专题: 几何图形问题.分析: 由等腰△ABC 中,AB=AC ,∠A=40°,即可求得∠ ABC 的度数,又由线段 AB 的垂直 平分线交 AB 于 D ,交 AC 于 E ,可得 AE=BE ,继而求得∠ ABE 的度数,则可求得答 案.解答: 解:∵等腰△ ABC 中, AB=AC ,∠ A=40°,∴∠ ABC=∠C==70°,∵线段 AB 的垂直平分线交 AB 于 D ,交 AC 于 E ,A 70°B 80°C 40D 30°故选 A .∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC﹣∠ABE=30°.故选:D.点评:此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.5.(2014? 南充)如图,在△ ABC 中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A 30°B 36°C 40°D 45考等腰三角形的性质.点:分求出∠ BAD=2∠ CAD=∠2 B=2∠C 的关系,利用三角形的内角和是180°,求∠ B,析:解解:∵ AB=AC,答:∴∠ B=∠C,∵AB=BD,∴∠BAD=∠BDA,∵CD=A,D∴∠C=∠CAD,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36° 故选:B.点本题主要考查等腰三角形的性质,解题的关键是运用等腰三角形的性质得出评:∠BAD=2∠CAD=∠2 B=2∠C 关系.6.(2014? 山西模拟)如图,点O在直线AB上,射线OC平分∠ AOD,若∠ AOC=3°5 ,则∠BOD 等于()A 145°B 110C 70°D 35°考 角平分线的定义. 点:分 首先根据角平分线定义可得∠ AOD=∠2 AOC=7°0 ,再根据邻补角的性质可得∠ BOD 析: 的度数.解 解:∵射线 OC 平分∠ DOA . 答: ∴∠ AOD=∠2 AOC ,∵∠ COA=3°5 , ∴∠ DOA=7°0 ,∴∠ BOD=18°0 ﹣70°=110°, 故选: B .点 此题主要考查了角平分线定义,关键是掌握角平分线把角分成相等的两部分. 评:7.( 2014? 雁塔区校级模拟)如图,在△ ABC 中,∠ ACB=90°, BA 的垂直平分线交 D ,若 AB=10, AC=5,则图中等于 60°的角的个数是( )考点: 线段垂直平分线的性质. 分析: 根据已知条件易得∠ B=30°, ∠ BAC=60°.根据线段垂直平分线的性质进一步求解.解答: 解:∵∠ ACB=90°, AB=10, AC=5,∴∠ B=30°.∴∠BAC=90°﹣30°=60° ∵DE 垂直平分 BC ,∴∠ BAC=∠ADE=∠BDE=∠CDA=9°0 ﹣30°=60°. ∴∠BDE 对顶角 =60°,∴图中等于 60°的角的个数是 4. 故选 C .点评: 此题主要考查线段的垂直平分线的性质等几何知识. 线段的垂直平分线上的点到 线段的两个端点的距离相等.由易到难逐个寻找,做到不重不漏.8.(2014 秋? 腾冲县校级期末) 如图,已知 BD 是△ABC 的中线, AB=5,BC=3,△ABD 和△BCD 的周长的差是( )BC 边于C4 D5考点:三角形的角平分线、中线和高.专题:计算题.分析:根据三角形的中线得出AD=CD,根据三角形的周长求出即可.解答:解:∵BD 是△ABC的中线,∴AD=C,D∴△ABD和△BCD的周长的差是:(AB+BD+A)D ﹣(BC+BD+C)D=AB﹣BC=5﹣3=2.故选A.点评:本题主要考查对三角形的中线的理解和掌握,能正确地进行计算是解此题的关键.9.(2014春? 栖霞市期末)在Rt△ABC中,如图所示,∠C=90°,∠CAB=60°,AD平分∠CAB,点 D 到AB的距离DE=3.8cm,则BC等于(考点:角平分线的性质.分析:由∠ C=90°,∠ CAB=60°,可得∠B 的度数,故BD=2DE=7.6,又AD平分∠ CAB,故DC=DE=3.8,由BC=BD+DC求解.解答:解:∵∠ C=90°,∠ CAB=60°,∴∠B=30°,在Rt△BDE中,BD=2DE=7.6,又∵AD平分∠ CAB,∴DC=DE=3.,8 ∴BC=BD+DC=7.6+3.8=11..4 故选C.点评:本题主要考查平分线的性质,由已知能够注意到D到AB 的距离DE即为CD长,是解题的关键.B3 C6 D 不能确定B 7.6cm 11.4cm D 11.2cmA 3.8cm10.(2014 秋? 博野县期末)△ ABC 中,点 O 是△ABC 内一点,且点 O 到△ABC 三边的距离相 等;∠ A=40°,则∠ BOC (= )A 110°B 120°C 130°D 140°角平分线的性质;三角形内角和定理;三角形的外角性质. 计算题.由已知, O 到三角形三边距离相等,得 O 是内心,再利用三角形内角和定理即可求 出∠BOC 的度数.解 解:由已知, O 到三角形三边距离相等,所以 O 是内心, 答: 即三条角平分线交点,AO , BO ,CO 都是角平分线,所以有∠ CBO ∠= ABO= ∠ABC ,∠ BCO ∠= ACO= ∠ACB , ∠ABC+∠ACB=18﹣0 40=140 ∠OBC ∠+ OCB=70 ∠BOC=18﹣0 70=110° 故选 A .点 此题主要考查学生对角平分线性质,三角形内角和定理,三角形的外角性质等知识 评: 点的理解和掌握,难度不大,是一道基础题.11.(2013 秋? 潮阳区期末)如图,已知点 P 在∠ AOB 的平分线 OC 上,PF ⊥OA ,PE ⊥OB ,若考点 : 角平分线的性质;全等三角形的判定与性质. 专题 : 计算题.分析: 利用角平分线性质得出∠ POF=∠POE ,然后利用 AAS 定理求证△ POE ≌△ POF ,即可 求出 PF 的长.考点专题分)4解答: 解:∵ OC 平分∠ AOB ,∴∠ POF=∠POE , ∵PF ⊥OA ,PE ⊥OB ,∴∠PFO=∠PEO , PO 为公共边,∴△ POE ≌△ POF , ∴PF=PE=6. 故选 C .点评: 此题考查学生对角平分线性质和全等三角形的判定与性质的理解和掌握,解答此 题的关键是求证△ POE ≌△ POF .12.(2013 秋? 马尾区校级期末)如图,△ ABC 中, DE 是 AB 的垂直平分线,交 BC 于点 D , 交 AB 于点 E ,已知 AE=1cm ,△ACD 的周长为 12cm ,则△ ABC 的周长是( )考 线段垂直平分线的性质. 点: 分 要求△ ABC 的周长,先有 AE 可求出 AB ,只要求出 AC+BC 即可,根据线段垂直平分线析: 的性质可知, AD=BD ,于是 AC+BC=AC+CD+A 等D 于△ ACD 的周长,答案可得. 解解:∵ DE 是 AB 的垂直平分线,答: ∴AD=BD , AB=2AE=2又∵△ ACD 的周长 =AC+AD+CD=AC+BD+CD=AC+BC=12 ∴△ ABC 的周长是 12+2=14cm . 故选 B点 此题主要考查线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端 评: 点的距离相等;进行线段的等效转移,把已知与未知联系起来是正确解答本题的关 键.13.(2013秋? 西城区期末)如图,∠BAC=13°0 ,若 MP 和 QN 分别垂直平分 AB 和 AC ,则∠PAQ 等于( )考点:线段垂直平分线的性质. 点:分析:根据线段垂直平分线性质得出 BP=AP ,CQ=AQ ,推出∠ B=∠BAP ,∠C=∠QAC ,求出 ∠B+∠C ,即可求出∠ BAP+∠QAC ,即可求出答案.C 15cmD 16cmC 80°D 105°A 13cmB 14cm A 50° B 75解 解:∵ MP 和 QN 分别垂直平分 AB 和 AC , 答: ∴BP=AP , CQ=AQ ,∴∠B=∠PAB ,∠C=∠QAC ,∵∠ BAC=13°0 , ∴∠B+∠C=180°﹣∠ BAC=50°,∴∠ BAP+∠CAQ=5°0 , ∴∠PAQ=∠BAC ﹣(∠ PAB+∠QAC )=130°﹣50°=80°, 故选: C .点 本题考查了等腰三角形的性质,线段垂直平分线性质,三角形的内角和定理,注 评: 意:线段垂直平分线上的点到线段两个端点的距离相等,等边对等角.14.(2014 秋? 东莞市校级期中)如图,要用“ HL ”判定AB=A ′B ′ . BC=B ′C ′考 直角三角形全等的判定. 点:分 根据直角三角形全等的判定方法( HL )即可直接得出答案. 析: 解 解:∵在 Rt △ ABC 和 Rt △A ′B ′C ′中,答: 如果 AC=A ′C ′, AB=A ′B ′,那么 BC 一定等于 B ′C ′,Rt △ ABC 和 Rt △A ′B ′C ′一定全等, 故选 C .点 此题主要考查学生对直角三角形全等的判定的理解和掌握,难度不大,是一道基 评: 础题.15.(2014 秋 ? 淄川区校级期中)如图, 在 MN 的同一侧, BC 交 MN 于 P 点,则(考点: 线段垂直平分线的性Rt △ABC 和 Rt △A ′B ′C ′全等的MN 是线段 AB 的垂直平分线,)C 在 MN 外,且与 A 点C BC=PC+APD BC ≥ PC+APC AC=A ′ C ′,D ∠ B=∠B ′,B BC < PC+AP分析: 从已知条件进行思考,根据垂直平分线的性质可得PA=PB ,结合图形知 BC=PB+P ,C通过等量代换得到答案.解答: 解:∵点 P 在线段 AB 的垂直平分线上, ∴PA=PB .∵BC=PC+B ,P ∴BC=PC+A .P 故选 C .点评: 本题考查了垂直平分线的性质: 线段的垂直平分线上的点到线段的两个端点的距离 相等;结合图形,进行线段的等量代换是正确解答本题的关键.16.(2014 秋? 万州区校级期中)如图,已知在△ ABC 中, AB=AC , D 为 BC 上一点, BF=CD , CE=BD ,那么∠ EDF 等于( )考点: 等腰三角形的性质.分析: 由 AB=AC ,利用等边对等角得到一对角相等,再由 BF=CD , BD=CE ,利用 SAS 得到三角形 FBD 与三角形 DEC 全等,利用全等三角形对应角相等得到一对角相等,即可表示出解答: 解:∵ AB=AC , ∴∠B=∠C °, 在△BDF 和△CED 中,,∴△ BDF ≌△CED ( SAS ), ∴∠ BFD=∠CDE ,∴∠FDB+∠EDC=∠FDB+∠BFD=180°﹣∠ B=180°﹣ 则∠ EDF=180°﹣(∠ FDB+∠EDC )=90°﹣ ∠A . 故选 B .点评: 此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的 关键.90° ﹣ ∠A∠A ,=90°BC 180°﹣∠A17.(2014 秋? 泰山区校级期中)如图,在△ ABC 中, AB=AC ,AD 平分∠BAC ,那么下列结论B AD 是△ ABC 的 . 高线D △ ABC 是等边 . 三角形考点 : 等腰三角形的性质.分析: 利用等腰三角形的性质逐项判断即可. 解答: 解:A 、在△ ABD 和△ ACD 中,,所以△ ABD ≌△ACD ,所以 A 正确;B 、因为 AB=AC , AD 平分∠ BAC ,所以 AD 是 BC 边上的高,所以 B 正确; C 、由条件可知 AD 为△ ABC 的角平分线;D 、由条件无法得出 AB=AC=B ,C 所以△ ABC 不一定是等边三角形,所以 D 不正确;故选 D .点评: 本题主要考查等腰三角形的性质,掌握等腰三角形“三线合一”的性质是解题的关键.18.(2014 秋? 晋江市校级月考)如图,点 P 是△ ABC 内的一点,若 PB=PC ,则(考点: 线段垂直平分线的性质.分析:根据到线段两端点的距离相等的点在这条线段的垂直平分线上由 线段 BC 的垂直平分线上. PC=PB 即可得出 P 在解答:解:∵ PB=PC ,∴P 在线段 BC 的垂直平分线上,.DC AD 是△ ABC的 . 角平分线A 点 P 在∠ ABC . 的平分线上C 点 P 在边AB . 的垂直平分 B 点 P 在∠ ACB . 的平分线上D 点 P 在边BC . 的垂直平不一定成立的是(故选 D .点评: 本题考查了角平分线的性质和线段垂直平分线定理,注意:到线段两端点的距离相等的点在这条线段的垂直平分线上,角平分线上的点到角的两边的距离相等.19.( 2013? 河西区二模) 如图, 在∠ECF 的两边上有点考 等腰三角形的性质. 点:分 根据等腰三角形的性质以及三角形外角和内角的关系,逐步推出∠ ECF 的度数. 析: 解解:∵ BC=BD=D ,A 答: ∴∠ C=∠BDC ,∠ ABD=∠BAD , ∵∠ABD=∠C+∠BDC ,∠ADF=75°,∴3∠ECF=75°,∴∠ECF=25°. 故选: C .点 考查了等腰三角形的性质:等腰三角形的两个底角相等,三角形外角和内角的运 评: 用.20.(2013 秋? 盱眙县校级期中)如图, P 为∠ AOB 的平分线 OC 上任意一点, PM ⊥OA 于 M ,PN ⊥OB 于 N ,连接 MN 交 OP 于点 D .则① PM=P ,N ②M O=NO ,③OP ⊥MN ,④MD=N .D其中正确考 角平分线的性质. 点:B ,A ,D ,BC=BD=D ,A 且∠ADF=75°,C 25°D 30°的有( )A 1 个分由已知很易得到△ OPM≌△ OPN,从而得角相等,边相等,进而得△ OM≌P △ ONP,析:△PMD≌△PND,可得MD=N,D ∠ ODN∠= ODM=9°O,答案可得.解解:P为∠AOB的平分线OC上任意一点,PM⊥OA 于M,PN⊥OB 于N答:连接MN交OP于点D,∴∠ MOP∠= NOP,∠OMP∠= ONP,OP=OP,∴△OPM≌△OPN,∴MP=N,POM=O,N 又OD=OD∴△OMD≌△OND,∴MD=N,D∠ ODN∠= ODM=9°O,∴OP⊥MN∴① PM=P,N ②MO=N,O③OP⊥MN,④MD=ND 都正确.故选D.点本题主要考查了角平分线的性质,即角平分线上的一点到两边的距离相等;发现并评:利用△ OM≌D △OND是解决本题的关键,证明两线垂直时常常通过证两角相等且互补来解决.二.解答题(共10 小题)21.(2014 秋? 黄浦区期末)如图,已知ON是∠AOB的平分线,OM、OC是∠AOB外的射线.(1)如果∠ AOCα= ,∠ BOCβ= ,请用含有α,β 的式子表示∠ NOC.(2)如果∠ BOC=9°0 ,OM平分∠ AOC,那么∠ MON的度数是多少?考点:角平分线的定义.分析:(1)先求出∠ AOB=α﹣β,再利用角平分线求出∠ AON,即可得出∠ NOC;(2)先利用角平分线求出∠ AOM= ∠AOC,∠ AON= ∠AOB,即可得出解答:解:(1)∵∠ AOCα= ,∠ BOCβ= ,∴∠AOB=α﹣β,∵ON是∠ AOB的平分线,∴∠AON= (α﹣β),∠NOCα= ﹣(α﹣β)= (α +β);(2)∵OM平分∠ AOC,ON平分∠ AOB,∴∠AOM= ∠AOC ,∠AON= ∠AOB , ∴∠MON ∠= AOM ﹣∠AON= (∠AOC ﹣∠AOB )点评: 本题考查了角平分线的定义和角的计算;弄清各个角之间的数量关系是解决问题的关键.22.(2014 秋? 阿坝州期末)如图,已知: E 是∠AOB 的平分线上一点, EC ⊥OB ,ED ⊥OA , C 、D 是垂足,连接 CD ,且交 OE 于点F .考点 : 线段垂直平分线的性质. 专题 : 探究型.分析: ( 1)先根据 E 是∠ AOB 的平分线上一点, EC ⊥OB ,ED ⊥OA 得出△ODE ≌△OCE , 可得出 OD=OC , DE=CE , OE=OE ,可得出△ DOC 是等腰三角形,由等腰三角形的性 质即可得出 OE 是 CD 的垂直平分线;( 2)先根据 E 是∠ AOB 的平分线,∠ AOB=6°0 可得出∠ AOE=∠BOE=3°0 ,由直 角三角形的性质可得出 OE=2DE ,同理可得出 DE=2EF 即可得出结论.解答: 解:( 1)∵E 是∠AOB 的平分线上一点, EC ⊥OB ,ED ⊥OA , ∴DE=C ,EOE=O ,E∴Rt △ODE ≌Rt △OCE , ∴OD=O ,C∴△DOC 是等腰三角形, ∵OE 是∠AOB 的平分线, ∴OE 是 CD 的垂直平分线; ( 2)∵ OE 是∠ AOB 的平分线,∠ AOB=6°0 , ∴∠ AOE=∠BOE=3°0 , ∵EC ⊥OB ,ED ⊥OA ,∴OE=2D ,E ∠ ODF=∠OED=6°0 , ∴∠EDF=30°, ∴DE=2EF , ∴OE=4E .F= ∠BOC= × 90° =45°EF 之间有什么数量关系?并证明你的结论.1)求证: OE 是 CD 的垂直平分线.点评:本题考查的是角平分线的性质及直角三角形的性质、等腰三角形的判定与性质,熟知以上知识是解答此题的关键.23.(2014 秋? 花垣县期末)如图,在△ ABC 中,∠ ABC=2∠C,BD平分∠ ABC,DE⊥AB ( E 在AB之间),DF⊥BC,已知BD=5,DE=3,CF=4,试求△ DFC的周长.考点:角平分线的性质.分析:根据角平分线的性质可证∠ ABD=∠CBD,即可求得∠ CBD=∠C,即BD=CD,再根据角平分线上的点到角两边距离相等即可求得DE=DF,即可解题.解答:解:∵∠ ABC=2∠C,BD平分∠ ABC,∴∠CBD=∠C,∴BD=C,D∵BD平分∠ ABC,∴DE=D,F∴△ DFC的周长=DF+CD+CF=DE+BD+CF=3+5+4=.12点评:本题考查了角平分线上点到角两边距离相等的性质,考查了角平分线平分角的性质,考查了三角形周长的计算,本题中求证DE=DF是解题的关键.24.(2014秋? 大石桥市期末)如图,点D是△ABC中BC边上的一点,且AB=AC=C,DAD=BD,求∠BAC的度数.考点:等腰三角形的性质.分析:由AD=BD得∠BAD=∠DBA,由AB=AC=CD得∠ CAD=∠CDA=∠2 DBA,∠DBA=∠C,从而可推出∠ BAC=3∠DBA,根据三角形的内角和定理即可求得∠DBA 的度数,从而不难求得∠BAC的度数.解答:解:∵ AD=BD∴设∠ BAD=∠DBA=x°,∵AB=AC=CD ∴∠CAD=∠CDA=∠BAD+∠DBA=2x°,∠ DBA=∠C=x°,∴∠BAC=3∠DBA=3x°,∵∠ABC+∠BAC+∠C=180°∴5x=180°,∴∠ DBA=36°∴∠ BAC=3∠DBA=10°8 .点评:此题主要考查学生对等腰三角形的性质及三角形内角和定理的综合运用能力;求得角之间的关系利用内角和求解是正确解答本题的关键.25.(2014 秋? 安溪县期末)如图,在△ ABC 中,AB=AC,∠A=α.(1)直接写出∠ ABC 的大小(用含α 的式子表示);(2)以点 B 为圆心、BC长为半径画弧,分别交AC、AB于D、E两点,并连接BD、DE.若=30°,求∠ BDE 的度数.考点:等腰三角形的性质.分析:(1)根据三角形内角和定理和等腰三角形两底角相等的性质即可求得∠ABC 的大小;(2)根据等腰三角形两底角相等求出∠ BCD=∠BDC,再求出∠ CBD,然后根据∠ABD=∠ABC﹣∠CBD,求得∠ ABD,再根据三角形内角和定理和等腰三角形两底角相等的性质计算即可得解.解答:解:(1)∠ABC的大小为×(180°﹣α)=90°﹣α;(2)∵AB=AC,∴∠ABC=∠C=90°﹣α=90°﹣ ×30°=75°,由题意得:BC=BD=B,E由BC=BD得∠ BDC=∠C=75°,∴∠CBD=18°0 ﹣75°﹣75°=30°,∴∠ABD=∠ABC﹣∠CBD=7°5 ﹣30°=45°,由BD=BE得故∠BDE的度数是67.5 °.点评:本题考查了三角形内角和定理、等腰三角形的性质,主要利用了等腰三角形两底角相等,熟记性质是解题的关键.26.(2014 秋? 静宁县校级期中)如图,在△ABC中,AD平分∠ BAC,点D是BC的中点,DE⊥AB 于点E,DF⊥AC 于点F.求证:(1)∠B=∠C.考等腰三角形的判定.点:分由条件可得出DE=DF,可证明△ BDE≌△ CDF,可得出∠ B=∠C,再由等腰三角形的析:判定可得出结论.解证明:(1)∵AD平分∠ BAC,DE⊥AB 于点E,DF⊥AC 于点F,答:∴DE=D,F在Rt △BDE和Rt △CDF中,,,∴Rt △BDE≌Rt △CDF(HF),∴∠ B=∠C;(2)由(1)可得∠ B=∠C,∴△ABC为等腰三角形.点本题主要考查等腰三角形的判定及全等三角形的判定和性质,利用角平分线的性质评:得出DE=DF是解题的关键.27.(2012 秋? 天津期末)如图,AB=AC,∠ C=67°,AB的垂直平分线EF交AC于点D,求∠DBC的度数.考点:线段垂直平分线的性质;等腰三角形的性质.分析:求出∠ ABC,根据三角形内角和定理求出∠ A,根据线段垂直平分线得出AD=BD,求出∠ ABD,即可求出答案.解答:解:∵ AB=AC,∠C=67°,∴∠ABC=∠C=67°,∴∠A=180°﹣67°﹣67°=46°,∵EF 是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=46°,∴∠DBC=6°7 ﹣46°=21°.点评:本题考查了线段垂直平分线,三角形的能或定理,等腰三角形的性质和判定等知识点,关键是求出∠ ABC 和∠ ABD的度数,题目比较好.28.(2013 秋? 高坪区校级期中)如图,△ ABC 中,AB=AD=A,E DE=EC,∠DAB=30°,求∠C 的度数.考点:等腰三角形的性质.分析:首先根据AB=AD=A,E DE=EC,得到∠ B=∠ADB,∠ADE=∠AED,∠ C=∠EDC,从而得到∠ADE=∠AED=∠C+∠EDC=∠2 C,根据∠ DAB=30°,求得∠B=∠ADB=75°,利用∠ADC=∠ADE+∠EDC=∠3 C=105°,求得∠C 即可.解答:解:∵ AB=AD=A,E DE=EC,∴∠B=∠ADB,∠ADE=∠AED,∠C=∠EDC,∴∠ ADE=∠AED=∠C+∠EDC=∠2 C,∵∠DAB=30°,∴∠B=∠ADB=75°,∴∠ ADC=∠ADE+∠EDC=∠3 C=105°,∴∠C=35°.点评:本题考查了等腰三角形的性质,解题的关键是利用等腰三角形的性质求得有关角的度数.29.(2012 春? 扶沟县校级期中)阅读理解:“在一个三角形中,如果角相等,那么它们所对的边也相等.”简称“等角对等边”,如图,在△ ABC 中,已知∠ ABC 和∠ACB的平分线上交于点F,过点F作BC的平行线分别交AB、AC于点D、E,请你用“等角对等边”的知识说明DE=BD+C.E考 等腰三角形的性质.点:专 证明题.题:分由 DE ∥BC , BF 平分∠ ABC , CF 平分∠ ACB 可知, DB=DF , CE=EF .便可得出结论.析:解 证明:∵ BF 平分∠ ABC (已知) , CF 平分∠ ACB (已知) ,答: ∴∠ ABF=∠CBF ,∠ ACF=∠FCB ;又∵ DE 平行 BC (已知)∴∠ DFB=∠FBC (两直线平行,内错角相等) ,∠ EFC=∠FCB (两直线平行,内错角 相等),∴∠DBF=∠DFB ,∠EFC=∠E CF (等量代换)∴DF=DB , EF=EC (等角对等边)∴DE=BD+C .E点 此题考查学生对等腰三角形的判定与性质和平行线的性质的理解和掌握,主要利 评: 用等腰三角形两边相等.稍微有点难度是一道中档题.DE , DF 分别垂直 AB 、 AC 于 E 、F ,连 考点:等腰三角形的判定;全等三角形的判定与性质. 专题:证明题. 分析: 根据角平分线的性质知∠ BAD=∠CAD ;然后根据已知条件“ DE , DF 分别垂直 AB 、 AC 于 E 、F ”得到∠ DEA=∠DFA=90°;再加上公共边 AD=AD ,从而证明,△ADE ≌△ ADF ;最后根据全等三角形的对应边相等证明△ AEF 的两边相等,所解答: 证明:∵ AD 是△ ABC 的平分线,∴∠ BAD=∠CAD ,( 3 分) 又∵DE , DF 分别垂直 AB 、AC 于 E ,F∴∠ DEA=∠ DFA=90°( 6 分)又∵ AD=AD ,∴△ ADE ≌△ ADF . (8分) ∴AE=AF ,即△ AEF 是等腰三角形( 10分)30.( 2011? 龙岩质检)如图, AD 是△ ABC 的平分线,点本题综合考查了等腰三角形的判定、全等三角形的判定与性质.解答此题时,根评:据全等三角形的判定定理ASA判定△ ADE≌△ADF.。

全等三角形章末练习卷(Word版 含解析)

全等三角形章末练习卷(Word版 含解析)

全等三角形章末练习卷(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,已知△ABC和△ADE都是正三角形,连接CE、BD、AF,BF=4,CF=7,求AF的长_________ .【答案】3【解析】【分析】过点A作AF⊥CE交于I,AG⊥BD交于J,证明CAE≅BAD,再证明CAI≅BAJ,求出°7830∠=∠=,然后求出12IF FJ AF==,,通过设FJ x=求出x,即可求出AF的长.【详解】解:过点A作AF⊥CE交于I,AG⊥BD交于J在CAE和BAD中AC ABCAE BADAE AD=⎧⎪∠=∠⎨⎪=⎩∴CAE≅BAD∴ICA ABJ∠=∠∴BFE CAB∠=∠(8字形)∴°120CFD∠=在CAI和BAJ中°90ICA ABJ CAI BJA CA BA ∠=∠⎧⎪∠=∠=⎨⎪=⎩∴CAI ≅BAJ,AI AJ CI BJ ==∴°60CFA AFJ ∠=∠=∴°30FAI FAE ∠=∠=在RtAIF 和RtAJF 中°30FAI FAE ∠=∠=∴12IF FJ AF ==设FJ x = 7,4CF BF ==则47x x +=-32x ∴=2AF FJ =AF ∴=3【点睛】此题主要考查了通过做辅助线证明三角形全等,得出相关的边相等,学会合理添加辅助线求解是解决本题的重点.2.如图,线段AB ,DE 的垂直平分线交于点C ,且72ABC EDC ∠=∠=︒,92AEB ∠=︒,则EBD ∠的度数为 ________ .【答案】128︒【解析】【分析】连接CE ,由线段AB ,DE 的垂直平分线交于点C ,得CA=CB ,CE=CD ,ACB=∠ECD=36°,进而得∠ACE=∠BCD ,易证∆ACE ≅∆BCD ,设∠AEC=∠BDC=x ,得则∠BDE=72°-x ,∠CEB=92°-x ,BDE 中,∠EBD=128°,根据三角形内角和定理,即可得到答案.【详解】连接CE ,∵线段AB ,DE 的垂直平分线交于点C ,∴CA=CB ,CE=CD ,∵72ABC EDC ∠=∠=︒=∠DEC ,∴∠ACB=∠ECD=36°,∴∠ACE=∠BCD ,在∆ACE 与∆BCD 中,∵CA CB ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴∆ACE ≅∆BCD (SAS ), ∴∠AEC=∠BDC ,设∠AEC=∠BDC=x ,则∠BDE=72°-x ,∠CEB=92°-x ,∴∠BED=∠DEC-∠CEB=72°-(92°-x )=x-20°,∴在∆BDE 中,∠EBD=180°-(72°-x )-(x-20°)=128°.故答案是:128︒.【点睛】本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.3.等腰三角形顶角为30°,腰长是4cm ,则三角形的面积为__________【答案】4【解析】如图,根据30°角所对直角边等于斜边的一半的性质,可由等腰三角形的顶角为30°,腰长是4cm ,可求得BD=12AB =4×12=2,因此此三角形的面积为:S=12AC•BD=12×4×2=8×12=4(cm 2).故答案是:4.4.如图,在四边形ABCD 中,AB AD =,BC DC =,60A ∠=︒,点E 为AD 边上一点,连接BD .CE ,CE 与BD 交于点F ,且CE AB ∥,若8AB =,6CE =,则BC 的长为_______________.【答案】27【解析】【分析】由AB AD =,BC DC =知点A,C 都在BD 的垂直平分线上,因此,可连接AC 交BD 于点O ,易证ABD △是等边三角形,EDF 是等边三角形,根据等边三角形的性质对三角形中的线段进行等量转换即可求出OB,OC 的长度,应用勾股定理可求解.【详解】解:如图,连接AC 交BD 于点O∵AB AD =,BC DC =,60A ∠=︒,∴AC 垂直平分BD ,ABD △是等边三角形∴30BAO DAO ∠=∠=︒,8AB AD BD ===,4BO OD ==∵CE AB ∥∴30BAO ACE ∠=∠=︒,60CED BAD ∠=∠=︒∴30DAO ACE ∠=∠=︒∴6AE CE ==∴2DE AD AE =-=∵60CED ADB ∠=∠=︒∴EDF 是等边三角形∴2DE EF DF ===∴4CF CE EF =-=,2OF OD DF =-=∴2223OC CF OF =-=∴2227BC BO OC +=【点睛】本题主要考查了等边三角形的判定与性质、勾股定理,综合运用等边三角形的判定与性质进行线段间等量关系的转换是解题的关键.5.如图,在△ABC 中,AB=AC ,∠BAC=120°,D 为BC 上一点,DA ⊥AC ,AD=24 cm ,则BC的长________cm.【答案】72【解析】【分析】按照等腰三角形的性质、角的和差以及含30°直角三角形的性质进行解答即可.【详解】解:∵AB=AC,∠BAC=120°∴∠B=∠C=30°∵DA⊥AC,AD=24 cm∴DC=2AD=48cm,∵∠BAC=120°,DA⊥AC∴∠BAD=∠BAC-90°=30°∴∠B=∠BAD∴BD=AD=24cm∴BC=BD+DC=72cm故答案为72.【点睛】本题考查了腰三角形的性质、角的和差以及含30°直角三角形的性质,其中灵活运用含30°直角三角形的性质是解答本题的关键.6.在△ABC 中,∠ACB=90º,D、E 分别在 AC、AB 边上,把△ADE 沿 DE 翻折得到△FDE,点 F 恰好落在 BC 边上,若△CFD 与△BFE 都是等腰三角形,则∠BAC 的度数为_________.【答案】45°或60°【解析】【分析】根据题意画出图形,设∠BAC的度数为x,则∠B=90°-x,∠EFB =135°-x,∠BEF=2x-45°,当△BFE 都是等腰三角形,分三种情况讨论,即可求解.【详解】∵∠ACB=90º,△CFD是等腰三角形,∴∠CDF=∠CFD=45°,设∠BAC的度数为x,∴∠B=90°-x,∵△ADE 沿 DE 翻折得到△FDE,点 F 恰好落在 BC 边上,∴∠DFE=∠BAC=x,∴∠EFB=180°-45°-x=135°-x,∵∠ADE=∠FDE,∴∠ADE=(180°-45°)÷2=67.5°,∴∠AED=180°-∠ADE-∠BAC=180°-67.5° -x=112.5°-x,∴∠DEF=∠AED=112.5°-x,∴∠BEF=180°-∠AED-∠DEF=180°-(112.5°-x)-(112.5°-x)=2x-45°,∵△BFE 都是等腰三角形,分三种情况讨论:①当FE=FB时,如图1,则∠BEF=∠B,∴90-x=2x-45,解得:x=45;②当BF=BE时,则∠EFB=∠BEF,∴135-x=2x-45,解得:x=60,③当EB=EF时,如图2,则∠B=∠EFB,∴135-x=90-x,无解,∴这种情况不存在.综上所述:∠BAC 的度数为:45°或60°.故答案是:45°或60°.图1 图2【点睛】本题主要考查等腰三角形的性质定理,用代数式表示角度,并进行分类讨论,是解题的关键.7.如图,已知AB=A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4,…若∠A=70°,则锐角∠A n 的度数为______.【答案】1702n -︒ 【解析】【分析】根据等腰三角形的性质以及三角形的内角和定理和外角的性质即可得出答案.【详解】在△1ABA 中,AB=A 1B ,∠A=70°可得:∠1BAA =∠1BA A =70°在△112B A A 中,A 1B 1=A 1A 2可得:∠112A B A =∠121A A B根据外角和定理可得:∠1BA A =∠112A B A +∠121A A B∴∠112A B A =∠121A A B =702︒ 同理可得:∠232A A B =2702︒ ∠343A A B =3702︒ …….以此类推:∠A n =1702n -︒ 故答案为:1702n -︒. 【点睛】本题主要考查等腰三角形、三角形的基本概念以及规律的探索,准确识图,熟练掌握和灵活运用相关知识是解题的关键..8.如图,在△ABC 中,AB =BC =8,AO =BO ,点M 是射线CO 上的一个动点,∠AOC =60°,则当△ABM 为直角三角形时,AM 的长为______.【答案】7或34【解析】【分析】分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.【详解】如图1,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OB=4,又∵∠AOC=∠BOM=60°,∴△BOM是等边三角形,∴BM=BO=4,∴Rt△ABM中,AM22-3AB BM如图2,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OA=4,又∵∠AOC=60°,∴△AOM是等边三角形,∴AM=AO=4;如图3,当∠ABM=90°时,∵∠BOM=∠AOC=60°,∴∠BMO=30°,∴MO=2BO=2×4=8,∴Rt△BOM中,BM22-=43MO OB∴Rt△ABM中,AM22AB BM+47综上所述,当△ABM为直角三角形时,AM的长为3474.故答案为43 7或4.9.如图,ABC ∆中,AB AC =,点D 是ABC ∆内部一点,DB DC =,点E 是边AB 上一点,若CD 平分ACE ∠,100AEC =∠,则BDC ∠=______°【答案】80【解析】【分析】根据角平分线得到∠ACE=2∠ACD ,再根据角的和差关系得到∠ECB =∠ACB -2∠ACD ,然后利用外角定理得到∠ABC+∠ECB=100°,代换化简得出∠ACB -∠ACD=50°,即∠DCB=50°,从而求出∠BDC 即可.【详解】∵CD 平分∠ACE ,∴∠ACE=2∠ACD=2∠ECD ,∴∠ECB=∠ACB -∠ACE=∠ACB -2∠ACD ,∵∠AEC=100°,∴∠ABC+∠ECB=100°,∴∠ABC+∠ACB -2∠ACD=100°,∵AB=AC,∴∠ABC=∠ACB,∴2∠ACB-2∠ACD=100°,∴∠ACB-∠ACD=50°,即∠DCB=50°,∵DB=DC,∴∠DBC=∠DCB,∴∠BDC=180°-2∠DCB=180°-2×50°=80°.【点睛】本题考查了角平分线,三角形内角和,外角定理,及等边对等角的性质等知识,熟练掌握基本知识,找出角与角之间的关系是解题的关键.10.如图,在四边形ABCD中,∠A+∠C=180°,E、F分别在BC、CD上,且AB=BE,AD =DF,M为EF的中点,DM=3,BM=4,则五边形ABEFD的面积是_____.【答案】12【解析】【分析】延长BM至G,使MG=BM,连接FG、DG,证明△BME≌△GMF(SAS),得出FG=BE,∠MBE=∠MGF,证出AB=FG,证明△DAB≌△DFG(SAS),得出DB=DG,由等腰三角形的性质即可得DM⊥BM,由五边形ABEFD的面积=△DBG的面积,可求解.【详解】延长BM至G,使MG=BM=4,连接FG、DG,如图所示:∵M为EF中点,∴ME=MF,在△BME和△GMF中,BM MG BME GMFME MF =⎧⎪∠=∠⎨⎪=⎩, ∴△BME ≌△GMF (SAS ),∴FG =BE ,∠MBE =∠MGF ,S △BEM =S △GFM ,∴FG ∥BE ,∴∠C =∠GFC ,∵∠A +∠C =180°,∠DFG +∠GFC =180°,∴∠A =∠DFG ,∵AB =BE ,∴AB =FG ,在△DAB 和△DFG 中,AB FG A DFGAD DF =⎧⎪∠=∠⎨⎪=⎩, ∴△DAB ≌△DFG (SAS ),∴DB =DG ,S △DAB =S △DFG ,∵MG =BM ,∴DM ⊥BM ,∴五边形ABEFD 的面积=△DBG 的面积=12×BG ×DM =12×8×3=12, 故答案为:12.【点睛】本题考查了全等三角形的判定与性质、平行线的性质、等腰三角形的判定与性质等知识;熟练掌握等腰三角形的判定由性质,证明三角形全等是解题的关键.二、八年级数学轴对称三角形选择题(难)11.已知点M(2,2),且,在坐标轴上求作一点P ,使△OMP 为等腰三角形,则点P 的坐标不可能是( )A .B .(0,4)C .(4,0)D .)【答案】D【解析】【分析】分类讨论:OM=OP ;MO=MP ;PM=PO ,分别计算出相应的P 点,从而得出答案.【详解】∵M(2,2),且,且点P 在坐标轴上当22OM OP == 时P 点坐标为:()()22,0,0,22±± ,A 满足;当22MO MP ==时:P 点坐标为:()()4,0,0,4,B 满足;当PM PO =时:P 点坐标为:()()2,0,0,2,C 满足故答案选:D【点睛】本题考查动点问题构成等腰三角形,利用等腰三角形的性质分类讨论是解题关键.12.如图,ABC ,分别以AB 、AC 为边作等边三角形ABD 与等边三角形ACE ,连接BE 、CD ,BE 的延长线与CD 交于点F ,连接AF ,有以下四个结论:①BE CD =;②FA 平分EFC ∠;③FE FD =;④FE FC FA +=.其中一定正确的结论有( )A .1B .2C .3D .4【答案】C【解析】【分析】 根据等边三角形的性质证出△BAE ≌△DAC ,可得BE =CD ,从而得出①正确;过A 作AM ⊥BF 于M ,过A 作AN ⊥DC 于N ,由△BAE ≌△DAC 得出∠BEA =∠ACD ,由等角的补角相等得出∠AEM =∠CAN ,由AAS 可证△AME ≌△ANC ,得到AM =AN ,由角平分线的判定定理得到FA 平分∠EFC ,从而得出②正确;在FA 上截取FG ,使FG =FE ,根据全等三角形的判定与性质得出△AGE ≌△CFE ,可得AG =CF ,即可求得AF =CF +EF ,从而得出④正确;根据CF +EF =AF ,CF +DF =CD ,得出CD ≠AF ,从而得出FE ≠FD ,即可得出③错误.【详解】∵△ABD 和△ACE 是等边三角形,∴∠BAD =∠EAC =60°,AE =AC =EC .∵∠BAE +∠DAE =60°,∠CAD +∠DAE =60°,∴∠BAE =∠DAC ,在△BAE 和△DAC 中,∵AB ADBAE DACAE AC=⎧⎪∠=∠⎨⎪=⎩,∴△BAE≌△DAC(SAS),∴BE=CD,①正确;过A作AM⊥BF于M,过A作AN⊥DC于N,如图1.∵△BAE≌△DAC,∴∠BEA=∠ACD,∴∠AEM=∠ACN.∵AM⊥BF,AN⊥DC,∴∠AME=∠ANC.在△AME和△ANC中,∵∠AEM=∠CAN,∠AME=∠ANC,AE=AC,∴△AME≌△ANC,∴AM=AN.∵AM⊥BF,AN⊥DC,AM=AN,FA平分∠EFC,②正确;在FA上截取FG,使FG=FE,如图2.∵∠BEA=∠ACD,∠BEA+∠AEF=180°,∴∠AEF+∠ACD=180°,∴∠EAC+∠EFC=180°.∵∠EAC=60°,∴∠EFC=120°.∵FA平分∠EFC,∴∠EFA=∠CFA=60°.∵EF=FG,∠EFA=60°,∴△EFG是等边三角形,∴EF=EG.∵∠AEG+∠CEG=60°,∠CEG+∠CEF=60°,∴∠AEG=∠CEF,在△AGE和△CFE中,∵AE ACAEG CEFEG EF=⎧⎪∠=∠⎨⎪=⎩,∴△AGE≌△CFE(SAS),∴AG=CF.∵AF=AG+FG,∴AF=CF+EF,④正确;∵CF+EF=AF,CF+DF=CD,CD≠AF,∴FE≠FD,③错误,∴正确的结论有3个.故选C.【点睛】本题考查了等边三角形的判定与性质以及全等三角形的判定与性质,正确作辅助线是解答本题的关键.13.如图,已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②连结AC、BC;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④在射线AM上截取AB=a;以上画法正确的顺序是()A.①②③④B.①④③②C.①④②③D.②①④③【答案】B【解析】【分析】根据尺规作等边三角形的过程逐项判断即可解答.【详解】解:已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②在射线AM上截取AB=a;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④连结AC、BC.△ABC即为所求作的三角形.故选答案为B.本题考查了尺规作图和等边三角形的性质,解决本题的关键是理解等边三角形的作图过程.的正方形网格中,A,B是如图所示的两个格点,如果C也是格点,且14.在一个33ABC是等腰三角形,则符合条件的C点的个数是()A.6B.7C.8D.9【答案】C【解析】【分析】根据题意、结合图形,画出图形即可确定答案.【详解】解:根据题意,画出图形如图:共8个.故答案为C.【点睛】本题主要考查了等腰三角形的判定,根据题意、画出符合实际条件的图形是解答本题的关键.15.如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC 于F,AD交CE于G.则下列结论中错误的是( )A.AD=BE B.BE⊥ACC.△CFG为等边三角形D.FG∥BC【答案】B试题解析:A.ABC 和CDE △均为等边三角形,60AC BC EC DC ACB ECD ∴==∠=∠=︒,,,在ACD 与BCE 中,{AC BCACD BCE CD CF =∠=∠=,ACD BCE ∴≌,AD BE ∴=,正确.B .据已知不能推出F 是AC 中点,即AC 和BF 不垂直,所以AC BE ⊥错误,故本选项符合题意.C.CFG 是等边三角形,理由如下:180606060ACG BCA ∠=︒-︒-︒=︒=∠,ACD BCE ≌,CBE CAD ∴∠=∠,在ACG 和BCF 中,{CAG CBFAC BCBCF ACG ∠=∠=∠=∠,ACG BCF ∴≌,CG CH ∴=,又∵∠ACG=60° CFG ∴是等边三角形,正确.D.CFG 是等边三角形,60CFG ACB ∴∠︒=∠﹦,.FG BC ∴ 正确.故选B.16.如图,已知AD 为ABC ∆的高线,AD BC =,以AB 为底边作等腰Rt ABE ∆,连接ED ,EC ,延长CE 交AD 于F 点,下列结论:①DAE CBE ∠=∠;②CE DE ⊥;③BD AF =;④AED ∆为等腰三角形;⑤BDE ACE S S ∆∆=,其中正确的有( )A .①③B .①②④C .①③④D .①②③⑤【答案】D【解析】【分析】 ①根据等腰直角三角形的性质即可证明∠CBE =∠DAE ,再得到△ADE ≌△BCE ; ②根据①结论可得∠AEC =∠DEB ,即可求得∠AED =∠BEG ,即可解题;③证明△AEF ≌△BED 即可;④根据△AEF ≌△BED 得到DE=EF, 又DE ⊥CF ,故可判断;⑤易证△FDC 是等腰直角三角形,则CE =EF ,S △AEF =S △ACE ,由△AEF ≌△BED ,可知S △BDE =S △ACE ,所以S △BDE =S △ACE .【详解】①∵AD 为△ABC 的高线,∴CBE +∠ABE +∠BAD =90°,∵Rt △ABE 是等腰直角三角形,∴∠ABE =∠BAE =∠BAD +∠DAE =45°,AE =BE ,∴∠CBE +∠BAD =45°,∴∠DAE =∠CBE ,故①正确;在△DAE 和△CBE 中,AE BE DAE CBE AD BC ⎧⎪∠∠⎨⎪⎩===,∴△ADE ≌△BCE (SAS );②∵△ADE ≌△BCE ,∴∠EDA =∠ECB ,∵∠ADE +∠EDC =90°,∴∠EDC +∠ECB =90°,∴∠DEC =90°,∴CE ⊥DE ;故②正确;③∵∠BDE =∠ADB +∠ADE ,∠AFE =∠ADC +∠ECD ,∴∠BDE =∠AFE ,∵∠BED +∠BEF =∠AEF +∠BEF =90°,∴∠BED =∠AEF ,在△AEF 和△BED 中,BDE AFE BED AEF AE BE ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AEF ≌△BED (AAS ),∴BD=AF故③正确;∵△AEF≌△BED∴DE=EF, 又DE⊥CF,∴△DEF为等腰直角三角形,故④错误;④∵AD=BC,BD=AF,∴CD=DF,∵AD⊥BC,∴△FDC是等腰直角三角形,∵DE⊥CE,∴EF=CE,∴S△AEF=S△ACE,∵△AEF≌△BED,∴S△AEF=S△BED,∴S△BDE=S△ACE.故④正确;故选:D.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BFE≌△CDE是解题的关键.17.如图,已知等边△ABC的边长为4,面积为43,点D为AC的中点,点E为BC的中点,点P为BD上一动点,则PE+PC的最小值为()A.3 B.2C.3D.3【答案】C【解析】【分析】由题意可知点A、点C关于BD对称,连接AE交BD于点P,由对称的性质可得,PA=PC,故PE+PC=AE,由两点之间线段最短可知,AE即为PE+PC的最小值.【详解】解:∵△ABC是等边三角形,点D为AC的中点,点E为BC的中点,∴BD⊥AC,EC=2,连接AE,线段AE的长即为PE+PC最小值,∵点E是边BC的中点,∴AE⊥BC,∴PE+PC的最小值是22-=.4223-=22AC E C故选C.【点睛】本题考查的是轴对称-最短路线问题,熟知等边三角形的性质是解答此题的关键.18.如图所示,在四边ABCD中,∠BAD=120°,∠B=∠D=90°,若在BC和CD上分别找一点M,使得△AMN的周长最小,则此时∠AMN+∠ANM的度数为()A.110°B.120°C.140°D.150°【答案】B【解析】【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【详解】作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠DAB=120°,∴∠AA′M+∠A″=180°-120°=60°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,故选B.【点睛】此题主要考查了平面内最短路线问题求法,以及三角形的外角的性质和垂直平分线的性质等知识的综合应用,根据轴对称的性质,得出M,N的位置是解题的关键.19.如图,O是正三角形ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+33;⑤S△AOC+S△AOB=6+934.其中正确的结论是()A.①②③⑤B.①③④C.②③④⑤D.①②⑤【答案】A【解析】试题解析:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确; S 四边形AOBO ′=S △AOO′+S △OBO′=12×3×4+3×42=6+43, 故结论④错误; 如图②所示,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形, 则S △AOC +S △AOB =S 四边形AOCO″=S △COO″+S △AOO″=123293, 故结论⑤正确.综上所述,正确的结论为:①②③⑤.故选A .20.如图,ABC △中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:①120BEC ∠=︒;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有( ).A .①②B .①③C .②③D .①②③【答案】D【解析】 分析:根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角平分线的定义求出∠EBC+∠ECB ,然后求出∠BEC=120°,判断①正确;过点D 作DF ⊥AB 于F ,DG ⊥AC 的延长线于G ,根据角平分线上的点到角的两边的距离相等可得DF=DG ,再求出∠BDF=∠CDG ,然后利用“角边角”证明△BDF 和△CDG 全等,根据全等三角形对应边相等可得BD=CD ,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB ,根据等角对等边可得BD=DE ,判断②正确,再求出B ,C ,E 三点在以D 为圆心,以BD 为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE ,判断③正确.详解:∵60BAC ∠=︒,∴18060120ABC ACB ∠+∠=︒-︒=︒,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴12EBC ABC ∠=∠,12ECB ACB ∠=∠, ∴11()1206022EBC ECB ABC ACB ∠+∠=∠+∠=⨯︒=︒, ∴180()18060120BEC EBC ECB ∠=︒-∠+∠=︒-︒=︒, 故①正确.如图,过点D 作DF AB ⊥于F ,DG AC ⊥的延长线于G ,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴AD 为BAC ∠的平分线,∴DF DG =,∴36090260120FDG ∠=︒-︒⨯-︒=︒,又∵120BDC ∠=︒,∴120BDF CDF ∠+∠=︒,120CDG CDF ∠+∠=︒.∴BDF CDG ∠=∠,∵在BDF 和CDG △中,90BFD CGD DF DGBDF CDG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴BDF ≌()CDG ASA ,∴DB CD =, ∴1(180120)302DBC ∠=︒-︒=︒, ∴30DBC DBC CBE CBE ∠=∠+∠=︒+∠,∵BE 平分ABC ∠,AE 平分BAC ∠,∴ABE CBE ∠=∠,1302BAE BAC ∠=∠=︒, 根据三角形的外角性质, 30DEB ABE BAE ABE ∠=∠+∠=∠+︒,∴DEB DBE ∠=∠,∴DB DE =,故②正确.∵DB DE DC ==,∴B 、C 、E 三点在以D 为圆心,以BD 为半径的圆上,∴2BDE BCE ∠=∠,故③正确,综上所述,正确结论有①②③,故选:D .点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.。

(完整word版)全等三角形证明经典及答案

(完整word版)全等三角形证明经典及答案

中考数学专练三角形的专题1.已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD1. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB2. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=ACADBC4. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C5. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE6. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD7. 已知:D 是AB 中点,∠ACB=90°,求证:12CD ABADB CBA CDF2 1 ECDB A8. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠29. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC10. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C11. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BEBA CDF2 1 ECDB A12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

求证:BC=AB+DC 。

13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C14. 已知:AB=CD ,∠A=∠D ,求证:∠B=∠CDCBA FEAB C D15. P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB16. 已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE17. 已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC18.(5分)如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .19.(5分)如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBAP D ACBFA ED C B20.(5分)如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .21.(6分)如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B22.(6分)如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.PEDCBA D CBA23.(7分)已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,(1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):24.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F . 求证:BD =2CE .25、(10分)如图:DF=CE ,AD=BC ,∠D=∠C 。

(完整word版)八年级数学全等三角形难题集锦

(完整word版)八年级数学全等三角形难题集锦

1. 如图① , 在△ ABC中 , ∠ ACB=90° ,AC=BC, 过点C 在△ ABC外作直线MN,AM⊥ MN于点M,BN⊥MN于点 N.(1)试说明 :MN=AM+BN.(2)如图② , 若过点 C作直线 MN与线段 AB订交 ,AM⊥MN 于点 M,BN⊥MN于点 N(AM>BN),(1) 中的结论能否仍旧建立 ?说明原因 .【答案】 (1) 答案看法析 ;(2) 不建立【分析】试题剖析:(1)利用互余关系证明∠ MAC =∠ NCB,又∠ AMC=∠CNB=90°, AC=BC,故可证△ AMC ≌△ CNB,进而有 AM=CN, MC=BN,即可得出结论;(2)近似于( 1)的方法,证明△ AMC ≌△ CNB,进而有 AM =CN ,MC =BN,可推出 AM 、 BN 与 MN 之间的数目关系.试题分析:解:( 1)∵ AM ⊥ MN , BN⊥ MN,∴∠ AMC=∠CNB=90°.∵∠ ACB=90°,∴∠ MAC +∠ ACM=90°,∠ NCB+∠ ACM=90°,∴∠ MAC=∠NCB.在△ AMC 和△ CNB 中,∵∠ AMC =∠ CNB,∠ MAC =∠ NCB, AC= CB,∴△ AMC ≌△ CNB(AAS ),∴ AM =CN ,MC =NB.∵MN =NC+CM ,∴ MN =AM+BN;(2)图( 1)中的结论不建立, MN =BN-AM.原因以下:∵AM ⊥ MN , BN⊥ MN ,∴∠ AMC=∠ CNB=90°.∵∠ ACB=90°,∴∠ MAC +∠ ACM=90°,∠ NCB+∠ ACM=90°,∴∠ MAC=∠NCB.在△ AMC 和△ CNB 中,∵∠ AMC =∠ CNB,∠ MAC =∠ NCB, AC= CB,∴△ AMC ≌△ CNB(AAS ),∴ AM =CN ,MC =NB.∵MN =CM -CN,∴ MN=BN-AM .点睛:此题考察了全等三角形的判断与性质.重点是利用互余关系推出对应角相等,证明三角形全等.2. 如图, BE、CF 是△ ABC 的高且订交于点 P,AQ∥ BC 交 CF 延伸线于点 Q,如有 BP=AC ,CQ=AB ,线段 AP 与 AQ 的关系怎样?说明原因。

阜阳数学三角形解答题单元复习练习(Word版 含答案)

阜阳数学三角形解答题单元复习练习(Word版 含答案)

阜阳数学三角形解答题单元复习练习(Word 版 含答案)一、八年级数学三角形解答题压轴题(难)1.已知:线段AB ,以AB 为公共边,在AB 两侧分别作ABC ∆和ABD ∆,并使C D ∠=∠.点E 在射线CA 上.(1)如图l ,若AC BD ,求证:AD BC ∥;(2)如图2,若BD BC ⊥,请探究DAE ∠与C ∠的数量关系,写出你的探究结论,并加以证明;(3)如图3,在(2)的条件下,若BAC BAD ∠=∠,过点D 作DF BC ∥交射线于点F ,当8DFE DAE ∠=∠时,求BAD ∠的度数.【答案】(1)见详解;(2)DAE ∠+2C ∠=90°,理由见详解;(3)99°. 【解析】 【分析】(1)根据平行线的性质和判定定理,即可得到结论;(2)设CE 与BD 交点为G ,由三角形外角的性质得∠CGB=∠D+∠DAE ,由BD BC ⊥,得∠CGB+∠C=90°,结合C D ∠=∠,即可得到结论;(3)设∠DAE=x ,则∠DFE=8x ,由DF BC ∥,DAE ∠+2C ∠=90°,得关于x 的方程,求出x 的值,进而求出∠C ,∠ADB 的度数,结合∠BAD=∠BAC ,即可求解. 【详解】(1)∵ACBD ,∴∠C+∠CBD=180°, ∵C D ∠=∠, ∴∠D+∠CBD=180°, ∴AD BC ∥;(2)DAE ∠+2C ∠=90°,理由如下: 设CE 与BD 交点为G , ∵∠CGB 是∆ADG 的外角, ∴∠CGB=∠D+∠DAE , ∵BD BC ⊥, ∴∠CBD=90°,∴在∆BCG 中,∠CGB+∠C=90°, ∴∠D+∠DAE+∠C=90°, 又∵C D ∠=∠, ∴DAE ∠+2C ∠=90°;(3)设∠DAE=x ,则∠DFE=8x , ∴∠AFD=180°-8x , ∵DF BC ∥,∴∠C=∠AFD=180°-8x , 又∵DAE ∠+2C ∠=90°,∴x+2(180°-8x)=90°,解得:x=18°, ∴∠C=180°-8x=36°=∠ADB , 又∵∠BAD=∠BAC ,∴∠ABC=∠ABD=12∠CBD=45°, ∴∠BAD=180°-45°-36°=99°.【点睛】本题主要考查平行线的性质和判定定理,三角形的内角和定理与外角的性质,掌握平行线的性质和三角形外角的性质,是解题的关键.2.探究:(1)如图1,在△ABC 中,BP 平分∠ABC ,CP 平分∠ACB .求证:∠P =90°+12∠A . (2)如图2,在△ABC 中,BP 平分∠ABC ,CP 平分外角∠ACE .猜想∠P 和∠A 有何数量关系,并证明你的结论.(3)如图3,BP 平分∠CBF ,CP 平分∠BCE .猜想∠P 和∠A 有何数量关系,请直接写出结论.【答案】(1)见解析;(2)12∠A =∠P ,理由见解析;(3)∠P =90°﹣12∠A ,理由见解析 【解析】 【分析】(1)根据三角形内角和定理以及角平分线的性质进行解答即可:(2)根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A的度数,根据补角的定义求出∠ACB的度数,根据三角形的内角和即可求出∠P的度数,即可求出结果,(3)根据三角形的外角性质、内角和定理、角平分线的定义探求并证明.【详解】证明:(1)∵△ABC中,∠ABC+∠ACB=180°﹣∠A.又∵BP平分∠ABC,CP平分∠ACB,∴∠PBC=12∠ABC,∠PCB=12∠ACB,∴∠PBC+∠PCB=12(180°﹣∠A),根据三角形内角和定理可知∠BPC=180°﹣12(180°﹣∠A)=90°+12∠A;(2)12∠A=∠P,理由如下:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠PBC=12∠ABC,∠PCE=12∠ACE.∵∠ACE是△ABC的外角,∠PCE是△BPC的外角,∴∠ACE=∠ABC+∠A,∠PCE=∠PBC+∠P,∴12∠ACP=12∠ABC+12∠A,∴12∠ABC+12∠A=∠PBC+∠P,∴12∠A=∠P.(3)∠P=90°﹣12∠A,理由如下:∵P点是外角∠CBF和∠BCE的平分线的交点,∠P+∠PBC+∠PCB=180°∴∠P=180°﹣(∠PBC+∠PCB)=180°﹣12(∠FBC+∠ECB)=180°﹣12(∠A+∠ACB+∠A+∠ABC)=180°﹣12(∠A+180°)=90°﹣12∠A.【点睛】本题考查了角平分线的定义,一个三角形的外角等于与它不相邻的两个内角和以及补角的定义以及三角形的内角和为180°,此类题解题的关键是找出角平分线平分的两个角的和的度数,从而利用三角形内角和定理求解.3.如图,△ABC的三条角平分线相交于点I,过点I作DI⊥IC,交AC于点D.(1)如图①,求证:∠AIB=∠ADI;(2)如图②,延长BI,交外角∠ACE的平分线于点F.①判断DI与CF的位置关系,并说明理由;②若∠BAC=70°,求∠F的度数.【答案】(1)证明见解析;(2)解:①结论:DI∥CF,②35°.【解析】分析:(1)只要证明∠AIB=90°+12∠ACB,∠ADI=90°+12∠ACB即可;(2)①只要证明∠IDC=∠DCF即可;②首先求出∠ACE-∠ABC=∠BAC=70°,再证明∠F=12∠ACE-12∠ABC=12(∠ACE-∠ABC)即可解决问题;详解:(1)证明:∵AI,BI分别平分∠BAC,∠ABC,∴∠BAI=12∠BAC,∠ABI=12∠ABC,∴∠BAI+∠ABI=12(∠BAC+∠ABC)=12(180°-∠ACB)=90°-12∠ACB.在△ABI中,∠AIB=180°-(∠BAI+∠ABI)=180°-(90°-12∠ACB)=90°+12∠ACB.∵CI平分∠ACB,∴∠DCI=12∠ACB.∵DI⊥IC,∴∠DIC=90°,∴∠ADI=∠DIC+∠DCI=90°+12∠ACB.∴∠AIB=∠ADI. (2)解:①结论:DI∥CF.理由:∵∠IDC=90°-∠DCI=90°-12∠ACB,CF平分∠ACE,∴∠ACF=12∠ACE=12(180°-∠ACB)=90°-12∠ACB,∴∠IDC=∠ACF,∴DI∥CF.②∵∠ACE=∠ABC+∠BAC,∴∠ACE-∠ABC=∠BAC=70°.∵∠FCE=∠FBC+∠F,∴∠F=∠FCE-∠FBC.∵∠FCE=12∠ACE,∠FBC=12∠ABC,∴∠F=12∠ACE-12∠ABC=12(∠ACE-∠ABC)=35°.点睛:本题考查了三角形的外角性质:三角形的一个外角等于另外两个内角之和,三角形内角和定理:三角形的内角和为180°,难度适中,此类题型的关键在于结合题目条件与三角形的外角性质,三角形内角和定理.4.已知:如图①,BP、CP分别平分△ABC的外角∠CBD、∠BCE,BQ、CQ分别平分∠PBC、∠PCB,BM、CN分别是∠PBD、∠PCE的角平分线.(1)当∠BAC=40°时,∠BPC=,∠BQC=;(2)当BM∥CN时,求∠BAC的度数;(3)如图②,当∠BAC=120°时,BM、CN所在直线交于点O,直接写出∠BOC的度数.【答案】(1) 70°,125°;(2)∠BAC=60° (3) 45°【解析】分析:(1)根据三角形的外角性质分别表示出∠DBC与∠BCE,再根据角平分线的性质可求得∠CBP+∠BCP,最后根据三角形内角和定理即可求解;根据角平分线的定义得出∠QBC=12∠PBC,∠QCB=12∠PCB,求出∠QBC+∠QCB的度数,根据三角形内角和定理求出即可;(2)根据平行线的性质得到∠MBC+∠NCB=180°,依此求解即可;(3)根据题意得到∠MBC+∠NCB,再根据三角形外角的性质和三角形内角和定理得到∠BOC 的度数.详解:(1)∵∠DBC=∠A+∠ACB,∠BCE=∠A+∠ABC,∴∠DBC+∠BCE=180°+∠A=220°,∵BP、CP分别是△ABC的外角∠CBD、∠BCE的角平分线,∴∠CBP+∠BCP=12(∠DBC+∠BCE)=110°,∴∠BPC=180°﹣110°=70°,∵BQ、CQ分别是∠PBC、∠PCB的角平分线,∴∠QBC=12∠PBC,∠QCB=12∠PCB,∴∠QBC+∠QCB=55°,∴∠BQC=180°﹣55°=125°;(2)∵BM∥CN,∴∠MBC+∠NCB=180°,∵BM、CN分别是∠PBD、∠PCE的角平分线,∴34(∠DBC+∠BCE)=180°,即34(180°+∠BAC)=180°,解得∠BAC=60°;(3)∵∠BAC=120°,∴∠MBC+∠NCB=34(∠DBC+∠BCE)=34(180°+α)=225°,∴∠BOC=225°﹣180°=45°.点睛:本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.5.操作示例:如图1,在△ABC中,AD为BC边上的中线,△ABD的面积记为S1,△ADC的面积记为S2.则S1=S2.解决问题:在图2中,点D、E分别是边AB、BC的中点,若△BDE的面积为2,则四边形ADEC的面积为 .拓展延伸:(1)如图3,在△ABC中,点D在边BC上,且BD=2CD,△ABD的面积记为S1,△ADC的面积记为S2.则S1与S2之间的数量关系为.(2)如图4,在△ABC中,点D、E分别在边AB、AC上,连接BE、CD交于点O,且BO=2EO,CO=DO,若△BOC的面积为3,则四边形ADOE的面积为 .【答案】解决问题:6;拓展延伸:(1)S1=2S2(2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)作△ABD的中线AE,则有BE=ED=DC,从而得到△ABE的面积=△AED的面积=△ADC的面积,由此即可得到结论;(2)连接AO.则可得到△BOD的面积=△BOC的面积,△AOC的面积=△AOD的面积,△EOC的面积=△BOC的面积的一半,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论.试题解析:解:解决问题连接AE.∵点D、E分别是边AB、BC的中点,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE=2,∴S△ADE =2,∴S△ABE=S△AEC=4,∴四边形ADEC的面积=2+4=6.拓展延伸:解:(1)作△ABD的中线AE,则有BE=ED=DC,∴△ABE的面积=△AED的面积=△ADC的面积= S2,∴S1=2S2.(2)连接AO.∵CO=DO,∴△BOD的面积=△BOC的面积=3,△AOC的面积=△AOD的面积.∵BO=2EO,∴△EOC的面积=△BOC的面积的一半=1.5,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四边形ADOE的面积为=a+b=6+4.5=10.5.6.如图①,在平面直角坐标系中,A(0,1),B(4,1),C为x轴正半轴上一点,且AC平分∠OAB.(1)求证:∠OAC=∠OCA;(2)如图②,若分别作∠AOC的三等分线及∠OCA的外角的三等分线交于点P,即满足∠POC=13∠AOC,∠PCE=13∠ACE,求∠P的大小;(3)如图③,在(2)中,若射线OP、CP满足∠POC=1n∠AOC,∠PCE=1n∠ACE,猜想∠OPC的大小,并证明你的结论(用含n的式子表示).【答案】(1)证明见解析(2)15°(3)45 n【解析】试题分析:(1)根据AB坐标可以求得∠OAB大小,根据角平分线性质可求得∠OAC大小,即可解题;(2)根据题干中给出的∠POC=13∠AOC、∠PCE=13∠ACE可以求得∠PCE和∠POC的大小,再根据三角形外角等于不相邻两内角和即可解题;(3)解法和(2)相同,根据题干中给出的∠POC=1n∠AOC、∠PCE=1n∠ACE可以求得∠PCE和∠POC的大小,再根据三角形外角等于不相邻两内角和即可解题.试题解析:(1)证明:∵A(0,1),B(4,1),∴AB∥CO,∴∠OAB=180°-∠AOC=90°.∵AC平分∠OAB,∴∠OAC=45°,∴∠OCA=90°-45°=45°,∴∠OAC=∠OCA.(2)解:∵∠POC=∠AOC,∴∠POC=×90°=30°.∵∠PCE=∠ACE,∴∠PCE=(180°-45°)=45°.∵∠P+∠POC=∠PCE,∴∠P=∠PCE-∠POC=15°.(3)解:∠OPC=.证明如下:∵∠POC=∠AOC,∴∠POC=×90°=.∵∠PCE=∠ACE,∴∠PCE=(180°-45°)=.∵∠OPC+∠POC=∠PCE,∴∠OPC=∠PCE-∠POC=.点睛:本题考查了三角形内角和为180°的性质,考查了角平分线平分角的性质,考查了三角形外角等于不相邻两内角和的性质,本题中求∠PCE和∠POC的大小是解题的关键.7.已知,在ABC中,∠A=60°,(1)如图①,∠ABC和∠ACB的角平分线交于点O,则∠BOC= ;(2)如图②,∠ABC和∠ACB的三等分线分别对应交于点O1,O2,则2_________BO C ∠=;(3)如图③,∠ABC 和∠ACB 的n 等分线分别对应交于点O 1,O 2,……,1n O -(内部有1n -个点),则1-∠=n BO C ;(4)如图③,∠ABC 和∠ACB 的n 等分线分别对应交于点O 1,O 2,……,1n O -,若190-∠=︒n BO C ,求n 的值.【答案】(1)120°;(2)100°;(3)60120+⎛⎫︒ ⎪⎝⎭n n ;(4)n=4 【解析】 【分析】(1)根据三角形的内角和定理即可求出∠ABC +∠ABC ,然后根据角平分线的定义即可求出∠OBC +∠OCB ,再根据三角形的内角和定理即可求出结论;(2)根据三角形的内角和定理即可求出∠ABC +∠ABC ,然后根据三等分线的定义即可求出∠O 2BC +∠O 2CB ,再根据三角形的内角和定理即可求出结论;(3)根据三角形的内角和定理即可求出∠ABC +∠ABC ,然后根据n 等分线的定义即可求出∠O n -1BC +∠O n -1CB ,再根据三角形的内角和定理即可求出结论; (4)根据(3)的结论列出方程即可求出结论. 【详解】解:(1)∵在ABC 中,∠A =60°, ∴∠ABC +∠ABC=180°-∠A=120° ∵∠ABC 和∠ACB 的角平分线交于点O , ∴∠OBC=12∠ABC ,∠OCB=12∠ACB ∴∠OBC +∠OCB=12∠ABC +12∠ACB =12(∠ABC +∠ACB ) =60°∴∠BOC=180°-(∠OBC +∠OCB )=120° 故答案为:120°.(2)∵在ABC 中,∠A =60°, ∴∠ABC +∠ABC=180°-∠A=120°∵∠ABC 和∠ACB 的三等分线分别对应交于点O 1,O 2,∴∠O 2BC=23∠ABC ,∠O 2CB=23∠ACB ∴∠O 2BC +∠O 2CB=23∠ABC +23∠ACB =23(∠ABC +∠ACB ) =80°∴2∠=BO C 180°-(∠O 2BC +∠O 2CB )=100° 故答案为:100°.(3)∵在ABC 中,∠A =60°, ∴∠ABC +∠ABC=180°-∠A=120°∵∠ABC 和∠ACB 的n 等分线分别对应交于点O 1,O 2,……,1n O - ∴∠O n -1BC=1n n -∠ABC ,∠O n -1CB=1n n-∠ACB ∴∠O n -1BC +∠O n -1CB=1n n -∠ABC +1n n-∠ACB =1n n-(∠ABC +∠ACB ) =120120-⎛⎫⎪⎝⎭n n ° ∴1-∠=n BO C 180°-(∠O 2BC +∠O 2CB )=60120+⎛⎫︒ ⎪⎝⎭n n 故答案为:60120+⎛⎫︒⎪⎝⎭n n (4)由(3)知:1-∠=n BO C 60120+⎛⎫︒⎪⎝⎭n n ∴6012090+=n n 解得:n=4经检验:n=4是原方程的解. 【点睛】本题考查了n 等分线的定义和三角形的内角和定理,掌握n 等分线的定义和三角形的内角和定理是解决此题的关键.8.已知:△ABC 中 ∠A=64°, 角平分线BP 、CP 相交于点P .1若BP 、CP 是两内角的平分线,则∠BPC=_____(直接填数值)求证:01902BPC A ∠=+∠.2若BP 、CP 是两外角的平分线,则∠BPC=_____(直接填数值)3若BP 、CP 是一内角的平分线,一外角的平分线,则∠BPC=_______(直接填数值) 4 由①②③的数值计算可知:∠BPC 与∠A 有着密切的数量关系,请就第②③写出你的发现【答案】(1)122°;(2)58°;(3)32°.(4).若BP 、CP 是两外角的平分线,则∠BPC=90°-12∠A ; 若BP 、CP 是一内角的平分线,一外角的平分线,则∠BPC=12∠A . 【解析】 【分析】①根据三角形角平分线的性质可得,∠BPC +∠PCB =90°-12∠A ,根据三角形内角和定理可得∠BPC =90°+12∠A ; ②根据三角形外角平分线的性质可得∠BCP =12(∠A +∠ABC )、∠PBC =12(∠A +∠ACB );根据三角形内角和定理可得∠BPC =90°-12∠A ; ③根据BP 为∠ABC 的角平分线,CP 为△ABC 外角∠ACE 的平分线,可知,∠A =180°-∠1-∠3,∠P =180°-∠4=∠5=180°-∠3-12(∠A +2∠1),两式联立可得2∠P =∠A . ④根据前面的情况直接写出∠BPC 与∠A 的数量关系, 【详解】解:(1)证明:∵在△ABC 中,PB 、PC 分别是∠ABC 、∠ACB 的平分线,∠A 为x ° ∴∠PBC +∠PCB =12(180°-∠A )=12×(180°-x °)=90°-12∠A故∠BPC=180°-(∠PBC+∠PCB)=180°-(90°-12∠A)=90°+12∠A;则∠BPC=122°;(2)理由如下:∵BP、CP为△ABC两外角∠ABC、∠ACB的平分线,∠A为x°∴∠BCP=12(∠A+∠ABC)、∠PBC=12(∠A+∠ACB),由三角形内角和定理得,∠BPC=180°-∠BCP-∠PBC,=180°-12[∠A+(∠A+∠ABC+∠ACB)],=180°-12(∠A+180°),=90°-12∠A;则∠BPC=58°;(3)如图:∵BP为∠ABC的内角平分线,CP为△ABC外角∠ACE的平分线,两角平分线交于点P,∴∠1=∠2,∠5=12(∠A+2∠1),∠3=∠4,在△ABE中,∠A=180°-∠1-∠3∴∠1+∠3=180°-∠A----①在△CPE中,∠P=180°-∠4-∠5=180°-∠3-12(∠A+2∠1),即2∠P=360°-2∠3-∠A-2∠1=360°-2(∠1+∠3)-∠A----②,把①代入②得2∠P=∠A.则∠BPC=32°;(4)若BP、CP是两外角的平分线,则∠BPC=90°-12∠A;若BP 、CP 是一内角的平分线,一外角的平分线,则∠BPC =12∠A . 故填为:(1)122°;(2)58°;(3)32°. 【点睛】此类题目考查的是三角形内角与外角的关系,角平分线的性质,三角形内角和定理,属中学阶段的常规题.9.如图①.ABC 中,AB AC =,P 为底边BC 上一点,PE AB ⊥,PF AC ⊥,CH AB ⊥,垂足分别为E 、F 、H .易证PE PF CH +=.证明过程如下:如图①,连接AP .∵PE AB ⊥,PF AC ⊥,CH AB ⊥,∴12ABPSAB PE =⋅,12ACPSAC PF =⋅,12ABCS AB CH =⋅ 又∵ABPACPABCSSS+=,∴AB PE AC PF AB CH ⋅+⋅=⋅∵AB AC =,∴PE PF CH +=.如图②,P 为BC 延长线上的点时,其它条件不变,PE 、PF 、CH 又有怎样的数量关系?请写出你的猜想,并加以证明.【答案】PE PF CH -= 【解析】 【分析】参考题设的证明过程,主要思路就是等面积法:ABPACPABCS SS+=,同样,P 为BC延长线上的点时,也可以用类似的等面积法:ABPACPABCS SS=-,即可得出结论.【详解】∵PE AB ⊥,PF AC ⊥,CH AB ⊥,∴12ABPSAB PE =⋅,12ACPS AC PF =⋅,12ABCSAB CH =⋅ 又∵ABPACPABCSSS=-,∴AB PE AC PF AB CH ⋅-⋅=⋅∵AB AC =,∴PE PF CH -=.故答案为:PE PF CH-=.【点睛】本题考查几何图形中等面积法的应用,读懂题目,灵活运用题设条件是解题的关键.10.(问题背景)(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D;(简单应用)(2)如图2,AP、CP分别平分∠BAD.∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数;(问题探究)(3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,请猜想∠P的度数,并说明理由.(拓展延伸)(4)在图4中,若设∠C=α,∠B=β,∠CAP=13∠CAB,∠CDP=13∠CDB,试问∠P与∠C、∠B之间的数量关系为: ______ (用α、β表示∠P,不必证明)【答案】(1)证明见解析;(2)26°;(3)26°;(4)∠P=23α+13β.【解析】【分析】(1)根据三角形内角和定理即可证明.(2)根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据(1)的结论列出整理即可得解;(3)表示出∠PAD和∠PCD,再根据(1)的结论列出等式并整理即可得解;(4)列出方程组即可解决问题.【详解】(1)证明:在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D;(2) 如图2,∵AP、CP分别平分∠BAD、∠BCD,∴∠1=∠2,∠3=∠4,∵∠2+∠B=∠3+∠P,∠1+∠P=∠4+∠D,∴2∠P=∠B+∠D,∴∠P=12(∠B+∠D)=12×(36°+16°)=26°;(3)如图3,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴∠PAD=180°-∠2,∠PCD=180°-∠3,∵∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,∴2∠P=∠B+∠D,∴∠P=12(∠B+∠D)=12×(36°+16°)=26°;(4)∠P=23α+13β.。

人教版小学数学四年级下册第5单元三角形单元练习(word版 含解析)

人教版小学数学四年级下册第5单元三角形单元练习(word版 含解析)

人教版小学数学四年级下册第5单元三角形单元练习一、单选题1.一个三角形其中的两条边的长度分别是4cm、6cm,那么第三条边的长度可能是()。

A.2cm B.5cm C.11cm2.一个等腰三角形相邻的两边分别长15分米和7分米,这个等腰三角形的周长是()A.37分米B.29分米C.29分米或37分米3.三角形中是轴对称图形的是()。

A.所有三角形B.等腰三角形C.等边三角形和等腰三角形4.如图,有()个三角形。

A.7B.8C.9D.105.在学习三角形特征时,四名同学分别选取了三根小棒。

不可以围成三角形的是()。

A.B.C.D.6.在一个三角形中,三个内角度数的比是1:3:5,这个三角形是()。

A.锐角三角形B.直角三角形C.钝角三角形D.不能确定7.下面的()线段,能围成一个三角形。

A.5cm、7cm和2cm B.4cm、6cm和8cm C.1cm、1cm和3cm 8.一个三角形三个角的度数的比是1:3:5,这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形9.下面各组线段中,能围成三角形的是()A.4cm 7cm 3cm B.5cm 5cm 1cm C.3cm 6cm 10cm10.房屋的屋架运用了三角形的()。

A.有三条边的特性B.易变形的特性C.稳定不变形的特性二、判断题11.一个钝角三角形里有两个钝角。

12.一个等腰三角形,顶角是75 o,底角肯定是52.5o.13.任意一个三角形至少有两个锐角。

()14.用长度分别是10厘米、4厘米和3厘米的一根小棒,头尾相连,一定能摆出一个三角形。

()15.判断对错.直角三角形的内角和大于锐角三角形的内角和.三、填空题16.一个等腰直角三角形的一条直角边长26厘米,这个三角形的面积是平方厘米.17.一个等腰三角形的底长是5cm,它的腰长是8cm,这个三角形的周长是cm.18.求角的度数.∠5=°19.李老师用一根27厘米长的铁丝正好围成了一个三角形,并且三条边长的厘米数是三个不同的质数,这个三角形的最长边与最短边相差厘米.20.三角形的内角和是°,一个等腰三角形,它的一个底角是26°,它的顶角是。

(完整word版)北师大版七年级数学下册三角形难题全解

(完整word版)北师大版七年级数学下册三角形难题全解

来源:2011-2012学年广东省汕头市潮南区中考模拟考试数学卷(解析版)考点:三角形如图,已知,等腰Rt△OAB中,∠AOB=90o,等腰Rt△EOF中,∠EOF=90o,连结AE、BF.求证:(1)AE=BF;(2)AE⊥BF.【答案】见解析【解析】解:(1)证明:在△AEO与△BFO中,∵Rt△OAB与Rt△EOF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90o-∠BOE=∠BOF,∴△AEO≌△BFO,∴AE=BF;( 2)延长AE交BF于D,交OB于C,则∠BCD=∠ACO,由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90o,∴AE⊥BF.(1)可以把要证明相等的线段AE,CF放到△AEO,△BFO中考虑全等的条件,由两个等腰直角三角形得AO=BO,OE=OF,再找夹角相等,这两个夹角都是直角减去∠BOE的结果,所以相等,由此可以证明△AEO≌△BFO;(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以证明AE⊥BF来源:2012-2013学年吉林省八年级上期中考试数学试卷(解析版)考点:四边形如图,在正方形ABCD中,E是AD的中点,F是BA延长线上的一点,AF=AB,已知△ABE≌△ADF.(1)在图中,可以通过平移、翻折、旋转中哪一种方法,使△ABE变到△ADF 的位置;(2)线段BE与DF有什么关系?证明你的结论.【答案】(1)绕点A旋转90°;(2)BE=DF,BE⊥DF.【解析】本题考查的是旋转的性质,全等三角形的判断和性质(1)根据旋转的概念得出;(2)根据旋转的性质得出△ABE≌△ADF,从而得出BE=DF,再根据正方形的性质得出BE⊥DF.(1)图中是通过绕点A旋转90°,使△ABE变到△ADF的位置.(2)BE=DF,BE⊥DF;延长BE交DF于G;由△ABE≌△ADF,得BE=DF,∠ABE=∠ADF;又∠AEB=∠DEG;∴∠DGB=∠DAB=90°;∴BE⊥DF.来源:2012年江苏省东台市七年级下学期期中考试数学试卷(解析版)如图,在△a bc中,已知∠abc=30°,点d在bc上,点e在ac上,∠bad=∠ebc,ad交be于f.1.求的度数;2.若eg∥ad交bc于g,eh⊥be交bc于h,求∠heg的度数.【答案】1.∠BFD=∠ABF+∠BAD (三角形外角等于两内角之和)∵∠BAD=∠EBC,∴∠BFD=∠ABF+∠EBC,∴∠BFD=∠ABC=30°;2.∵EG∥AD,∴∠BFD=∠BEG=30°(同位角相等)∵EH⊥BE,∴∠HEB=90°,∴∠HEG=∠HEB-∠BEG=90°-30°=60°.【解析】1.∠BFD的度数可以利用角的等效替换转化为∠ABC的大小,2.在直角三角形中,有平行线,利用同位角即可求解.三角形强化训练和深化☣1、如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c 中的∠CFE的度数是_________°.解析:由题意可知折叠前,由BC//AD得:∠BFE=∠DEF=25°将纸带沿EF折叠成图b后,∠GEF=∠DEF=25°所以图b中,∠DGF=∠GEF+∠BFE=25°+25°=50°又在四边形CDGF中,∠C=∠D=90°则由:∠DGF+∠GFC=180°所以:∠GFC=180°-50°=130°将纸带再沿BF第二次折叠成图C后∠GFC角度值保持不变且此时:∠GFC=∠EFG+∠CFE所以:∠CFE=∠GFC-∠EFG=130°-25°=1052、在Rt△ABC中,∠A=90°,CE是角平分线,和高AD相交于F,作FG∥BC交AB于G,求证:AE=BG.解法1:【解析】证明:∵∠BAC=900AD⊥BC∴∠1=∠B∵CE是角平分线∴∠2=∠3∵∠5=∠1+∠2∠4=∠3+∠B∴∠4=∠5∴AE=AF过F作FM⊥AC并延长MF交BC于N∴MN//AB∵FG//BD∴四边形GBDF为平行四边形∴GB=FN∵AD⊥BC,CE为角平分线∴FD=FM在Rt△AMF和RtNDF中∴△AMF≌△NDF∴AF=FN∴AE=BG解法2:解:作EH⊥BC于H,如图,∵E是角平分线上的点,EH⊥BC,EA⊥CA,∴EA=EH,∵AD为△ABC的高,EC平分∠ACD,∴∠ADC=90°,∠ACE=∠ECB,∴∠B=∠DAC,∵∠AEC=∠B+∠ECB,∴∠AEC=∠DAC+∠ECA=∠AFE,∴AE=AF,∴EG=AF,∵FG∥BC,∴∠AGF=∠B,∵在△AFG和△EHB中,∠GAF=∠BEH∠AGF=∠BAF=EH,∴△AFG≌△EHB(AAS)∴AG=EB,即AE+EG=BG+GE,∴AE=BG.3、如图,等腰直角三角形ABC中,∠ACB=90°,AD为腰CB上的中线,CE⊥AD交AB于E.求证∠CDA=∠EDB.解:作CF⊥AB于F,交AD于G ,如图,∵△ABC为等腰直角三角形,∴∠ACF=∠BCF=45°,即∠ACG=45°,∠B=45°,∵CE⊥AD,∴∠1+∠ACE=∠2+∠ACE=90°,∴∠1=∠2,在△AGC和△CEB中∠1=∠2AC=CB∠ACG=∠CBE,∴△AGC≌△CEB(ASA),∴CG=BE,∵AD为腰CB上的中线,∴CD=BD,在△CGD和△BED中CG=BE∠GCD=∠BCD=BD,∴△CGD≌△BED(SAS),∴∠CDA=∠EDB.4、如图,已知AD和BC相交于点O ,且均为等边三角形,以平行四边形ODEB,连结AC,AE和CE。

(完整word版)八上等腰三角形精品提高题系列

(完整word版)八上等腰三角形精品提高题系列

1.如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角两边分别交AB,AC边于M,N两点,连接MN.( I)探究:线段BM,MN,NC之间的关系,并加以证明.(Ⅱ)若点M是AB的延长线上的一点,N是CA的延长线上的点,其它条件不变,请你再探线段BM,MN,NC之间的关系,在图②中画出图形,并说明理由.2.如图,点P为△ABC内部一点,使得∠PBC=30°,∠PBA=8°,且∠PAB=∠PAC=22°,求∠APC的度数.3.如图,已知P是△ABC边BC上一点,且PC=2PB,若∠ABC=45°,∠APC=60°,求∠ACB的大小.5.在△ABC中,BD平分∠ABC(∠ABC<60°)(1)如图1,当点D在AC边上时,若∠ABC=42°,∠ACB=32°,直接写出AB,DC和BC之间的数量关系.(2)如图2,当点D在△ABC内部,且∠ACD=30°时,①若∠BDC=150°,直接写出AB,AD和BC之间的数量关系,并写出结论成立的思路.②若∠ABC=2α,∠ACB=60°-α,请直接写出∠ADB的度数(用含α的式子表示).6.如图,已知△ABC中,AB=AC,D是△ABC外一点且∠ABD=60°,求证:AC=BD+CD.在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于E.(1)如图1,连接CE,求证:△BCE是等边三角形;(2)如图2,点M为CE上一点,连结BM,作等边△BMN,连接EN,求证:EN∥BC;(3)如图3,点P为线段AD上一点,连结BP,作∠BPQ=60°,PQ交DE延长线于Q,探究线段PD,DQ与AD之间的数量关系,并证明.如图,过△ABC的边BC的中点M作直线垂直于∠A的平分线AA′,且分别交直线AB,AC于点E,F,已知:如图在△ABC中,BD,CE为两条高线,F为BD上一点,G为CE延长线上一点,BF=AC,CG=AB.(1)请你判断△AFG的形状并证明.(2)当F为BD反向延长线上一点,G为CE反向延线上一点,其它条件不变,(1)中的结论是否仍然成立?请你画出图形,并证明你的结论.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点E,F为线段BC上的两点,且CE=BF,连接AF,过点C 作CD⊥AF于点G,交AB于点D,连接DE,交AF于点M.(1)求证:∠ACD=∠AFC;(2)求证:ME=MF在△ABC中,BD为∠ABC的平分线.(1)如图1,∠C=2∠DBC,∠A=60°,求证:△ABC为等边三角形;(2)如图2,若∠A=2∠C,BC=8,AB=4.8,求AD的长度;(3)如图3,若∠ABC=2∠ACB,∠ACB的平分线OC与BD相交于点O,且OC=AB,求∠A的度数.1.如图,已知AM∥BN,AC平分∠MAB,BC平分∠NBA.(1)过点C作直线DE,分别交AM、BN于点D、E,则AB、AD、BE三条线的长度之间存在何种等量关系?请直接写出关系式_______(2)如图,若将直线DE绕点C转动,使DE与AM交于点D,与NB的延长线交于点E,则AB、AD、BE三条线的长度之间存在何种等量关系?请你给出结论并加以证明.2.如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B 同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.3.已知△ABC,∠BAC=45°,以AB、AC为边在△ABC外作等腰△ABD和△ACE,AD=AB、AE=AC,且∠BAD=∠CAE,连CD、BE交于F,连AF.(1)①如图1,若∠BAD=60°,则∠AFE=_______度;②如图2,若∠BAD=90°,则∠AFE=_______度;(2)如图3,若∠BAD=a°,猜想∠AFE的度数(用a表示),并予以证明.4.如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC 于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△ADC≌△AEB;(2)判断△EGM是什么三角形,并证明你的结论;(3)判断线段BG、AF与FG的数量关系并证明你的结论1.如图,点D是△ABC三条角平分线的交点,∠ABC=68°(1)求证:∠ADC=124°;(2)若AB+BD=AC,求∠ACB的度数2.已知:在△ABC中,AB=3AC,AD平分∠BAC,BE⊥AD交AD的延长线于点E.设△ACD的面积是S.(1)求△ABD的面积;(2)求证:AD=DE;(3)探究BE-AC和BD-CD之间的大小关系并证明你的结论3.在△ABC中,∠BAC=90°,射线AM∥BC,点D在射线AM上(不与点A重合),连接BD,过点D作BD的垂线交CA的延长线于点P(1)如图①,若∠C=30°,且AB=DB,求∠APD的度数;(2)如图②,若∠C=45°,当点D在射线AM上运动时,PD与BD之间有怎样的数量关系?请写出你的结论,并加以证明;(3)如图③,在(2)的条件下,连接BP,设BP与射线AM的交点为Q,∠AQP=α,∠APD=β,当点D在射线AM上运动时,α与β之间有怎样的数量关系?请写出你的结论,并加以证明.4.已知等边△ABC的边长为4cm,点P,Q分别从B,C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点Q沿CA,AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s),(1)如图(1),当x为何值时,PQ∥AB;(2)如图(2),若PQ⊥AC,求x;(3)如图(3),当点Q在AB上运动时,PQ与△ABC的高AD交于点O,OQ与OP是否总是相等?请说明理由.1.在锐角三角形ABC中,AF是BC边上的高,分别以AB、AC为一边,向外作△ABD和△ACE,使得AB=AD,AC=AE,∠BAD=∠CAE=90°,连接BE、DE、DC,DE与FA的延长线交于点G,下列结论:①BE=DC;②BE⊥DC;③AG是△ADE的中线;④∠DAG=∠ABC.其中正确的结论有哪些?2.在△ABC中,AB≠AC,分别以AB,AC为边作等腰△ABD和△ACE,AD=AB,AC=AE,且∠ACB=∠BAD=∠CAE=α,连接DE,交CA延长线于点M,求证:M为DE中点3.如图,已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE.G、F分别是DC与BE的中点.(1)求证:DC=BE;(2)当∠DAB=80°,求∠AFG的度数;(3)若∠DAB=α,求∠AFG与α的数量关系.4.如图,△ABC中,AB=AC,∠BAC=90°,点D在CB上,连接AD,EA⊥AD,∠ACE=∠ABD.(1)求证:AD=AE;(2)若点F为CD中点,AF交BE于点G,求∠AGE的度数.1.如图△ABD和△ACE是△ABC外两个等腰直角三角形,∠BAD=∠CAE=90°.(1)判断CD与BE有怎样的数量关系;(2)探索DC与BE的夹角的大小;(3)求证:FA平分∠DFE;(4)取BC的中点M,连MA,探讨MA与DE的数量关系和位置关系2.如图1,已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE.(1)求证:△DAC≌△BAE;(2)F、H分别是BE与DC的中点;①如图2.当∠DAB=∠CAE=90°时,求∠AFH的度数;②请探究当∠DAB等于多少度时,AF=FH?请说明理由.3.如图,△ABC向外侧作等腰Rt△ABD与Rt△ACE,∠BAD=∠CAE=90°,F为BC的中点,连接F、A并延长交DE于G点,请问:AF与DE之间存在怎样的数量关系和位置关系?4.已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE,G、F分别是DC与BE的中点.(1)如图1,若∠DAB=60°,则∠AFG=_______;如图2,若∠DAB=90°,则∠AFG=_______.(2)如图3,若∠DAB=α,试探究∠AFG与α的数量关系,并给予证明;(3)如果∠ACB为锐角,AB≠AC,∠BAC≠90°,点M在线段BC上运动,连接AM,以AM为一边以点A为直角顶点,且在AM的右侧作等腰直角△AMN,连接NC;试探究:若NC⊥BC(点C、M重合除外),则∠ACB等于多少度?画出相应图形,并说明理由.(画图不写作法)5.在等腰△ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过B点作∠BDE=90°,且点D 在直线MN上(不与点A重合).(1)如图①,当DE与AC交于P时,求证:BD=DP;(2)如图②,当DE与AC的延长线交于点P时,(1)中的结论还成立吗?请说明理由.(3)如图③,当DE与CA的延长线交于点P时,请直接写出DB与PD的数量关系,此时过D作DF⊥AB于F,求证:AP+AB=2AF.6.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合),如图1,DE与AC交于点P,易证:BD=DP.(无需写证明过程)(1)在图2中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由;(2)在图3中,DE与AC延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.1.已知:在△ABC中,AC=BC,∠ACB=90°,过点C作CD⊥AB于点D,点E是AB边上一动点(不含端点A、B),连接CE,过点B作CE的垂线交直线CE于点F,交直线CD于点G(如图①).(1)求证:AE=CG;(2)若点E运动到线段BD上时(如图②),试猜想AE、CG的数量关系是否发生变化,请直接写出你的结论;(3)过点A作AH垂直于直线CE,垂足为点H,并交CD的延长线于点M(如图③),找出图中与BE 相等的线段,并证明.2.如图,已知在△ABC中,AB=AC,P是BC边上的-点,过点P引直线分别交AB于点M,交AC的延长线于点N,且PM=PN.(1)写出图中除AB和AC,PM和PN外的其他相等的线段.(2)证明你的结论3.在Rt△ABC中,∠BAC=90°,AB=AC,D,E为边AC上的两动点,以相同的速度D从A向C,E从C 向A运动,AM⊥BD交BC于N,连NE并延长交BD延长线于F.①说明∠ABD=∠NAC②当D,E运动到如图2所示的位置时,试作出图形,并判断FD与FE的数量关系,请写出你的结论.(不要求证明)③对图1证明△FED为等腰三角形.4.已知:△ABC和△ADE是两个不全等的等腰直角三角形,其中BA=BC,DA=DE,连接EC,取EC的中点M,连接BM和DM.(1)如图1,如果点D、E分别在边AC、AB上,那么BM、DM的数量关系与位置关系是_______(2)将图1中的△ADE绕点A旋转到图2的位置时,判断(1)中的结论是否仍然成立,并说明理由.5.如图,△ABD与△ACE中,AB=AC,∠ACE+∠ABD=180°,BD=CE,BC延长线交ED于F.(1)求证:∠DBF=∠ECF;(2)图中是否存在与DF相等的线段?若存在,请找出,并加以证明;若不存在,说明理由6.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)DG=CF;(3)直接写出CF与DE的数量关系.1.已知等腰直角△ABC和等腰直角△CDE中,AB=BC,CD=DE,∠ABC=90°,∠CDE=90°,CD>BC,取线段AE的中点M,连结BM、DM、BD.(1)如图1,当BC⊥CE时,连接AE,试猜想BM与MD的数量关系和位置关系,请直接写出答案;(2)如图2,当点A、C、E三点在同一条直线上时,其他条件不变,试探究BM与MD的数量关系和位置关系,请说明理由.2.如图1,△ABC中,AB=AC,连B,C分别作BD⊥AB,CD⊥AC,BD、CD相交于D点,P为BC上一点,过P的直线交AB于E,AC延长线于F,且满足PE=PF,连结DP.(1)求证:DP⊥EF;(2)如图2,若P为BC延长线上,其它条件不变,(1)中结论是否成立?3.(1)如图①,已知:△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)拓展:如图②,将(1)中的条件改为:△ABC中,AB=AC,D、A、E三点都在直线m上,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.4.如图,D是Rt△ABC斜边AB上一点,且BD=BC=AC=1,P为CD上任意一点,PF⊥BC于点F,PE⊥AB于点E,则PE+PF的值是()A.B.C.D.5.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H(1)求∠APB度数;(2)求证:△ABP≌△FBP;(3)求证:AH+BD=AB6.已知:在△ABC中,AB=AC,∠BAC=90°,点D是BC的中点,点P是BC边上的一个动点,连接AP.直线BE垂直于直线AP,交AP于点E,直线CF垂直于直线AP,交AP于点F.(1)当点P在BD上时(如图①),求证:CF=BE+EF;(2)当点P在DC上时(如图②),CF=BE+EF还成立吗?若不成立,请画出图形,并直接写出CF、BE、EF之间的关系(不需要证明).(3)若直线BE的延长线交直线AD于点M(如图③),找出图中与CP相等的线段,并加以证明.8.如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC 于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△EGM为等腰三角形;(2)判断线段BG、AF与FG的数量关系并证明你的结论.9.在△ABC中,AB=AC,D在AC上,AE=AC交BD的延长线于点E,AF平分∠CAE交BE于F. (1)如图1,连CF,求证:∠ABE=∠ACF;(2)如图2,当∠ABC=60°时,且BD平分∠ABC,请写出AF、EF、BF的数量关系,不需证明;(3)如图3,若∠BAC=90°,且BD平分∠ABC,求证:BD=2EF.1.在△ABC中,∠ACB=90°,AC=BC,点D为线段AC上的一点(不和点A、C重合),点E在线段BD 的延长线上,点F在线段BD上,连接CE、CF、AE,且∠ECF=90°,CE=CF,过点F作FG⊥BD分别交线段BC、线段AC的延长线于点P、G.(1)如图l,求证:AC=CG;(2)如图2,延长线段GF交线段AB于点H,连接DH,当AH=BH时,求证:∠BHG=∠AHD.2.如图,在△ABC中,AB=AC,BC=6,点P从点B出发沿线段BA移动,同时,点Q从点C出发沿线段AC的延长线移动,当点P运动到A时,点P、Q随即停止运动,若点P、Q移动的速度相同,PQ与直线BC相交于点D.(1)如图①,当点P自点B出发在线段BA上运动是,过点P作AC的平行交BC于点F,连接PC、FQ,判断四边形PFQC的形状,并证明你的结论.(2)如图②,过点P作PE⊥BC,垂足为E,请说明在点P、Q在移动的过程中,DE长度保持不变.4.如图,等腰三角形ABC中,∠AC=90°,D,E分别为AB,AC边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD,交BE于点G,交AC于点M.(1)求证:GM=GE;(2)求证:BG=AF+FG.1.在Rt△ABC中,∠ACB=90°,AC=BC,D为直线AC上一点,直线AE⊥直线BD,垂足为E,直线AE 和直线BC交于点H,过点C作AB的平行线,交直线AE于F,连DF.(1)若D在线段AC上(如图1),求证:∠CDB=∠CDF;(2)若D在AC延长线上(如图2),求证:∠CDB+∠CDF=180°.2.已知:如图,△ABC中,AB=AC,占M在线段AC上(不与C重合),BM延长线与过点C的直线交于D,连接AD,∠MAD=∠DBC,AE⊥BM于E,当M在线段AC上时,求证:BD-CD=2DE3.已知△ABC,∠BAC=90°,等腰直角△BDE,∠BDE=90°,BD=DE,点D在线段AC上.(1)如图1,当∠ACB=30°,点E在BC上时,试判断AD与CE的数量关系,并加以证明;(2)如图2,当∠ACB=45°,点E在BC外时,连结EC、BD并延长交于点F,设ED与BC交于点N,(完整word版)八上等腰三角形精品提高题系列图中是否存在与BN相等的线段?若存在.请加以证明.若不存在,请说明理由.。

(完整word版)三角形的方程练习题

(完整word版)三角形的方程练习题

(完整word版)三角形的方程练习题三角形的方程练题1. 已知三角形的三个顶点分别为A(x1, y1),B(x2, y2),C(x3, y3),求三角形的边长。

- 用两点之间的距离公式求出AB、AC和BC的长度:AB的长度= √((x2-x1)² + (y2-y1)²)AC的长度= √((x3-x1)² + (y3-y1)²)BC的长度= √((x3-x2)² + (y3-y2)²)2. 已知三角形的三个顶点分别为A(x1, y1),B(x2, y2),C(x3, y3),求三角形的周长。

- 周长 = AB的长度 + AC的长度 + BC的长度3. 已知三角形的三个顶点分别为A(x1, y1),B(x2, y2),C(x3, y3),求三角形的面积。

- 利用海伦公式计算三角形的面积:AB的长度= √((x2-x1)² + (y2-y1)²)AC的长度= √((x3-x1)² + (y3-y1)²)BC的长度= √((x3-x2)² + (y3-y2)²)s = (AB的长度 + AC的长度 + BC的长度) / 2面积= √(s * (s-AB的长度) * (s-AC的长度) * (s-BC的长度)) 4. 已知三角形的三边长分别为a,b,c,求三角形的角度。

- 利用余弦定理计算三角形的每个角度:cosA = (b² + c² - a²) / (2 * b * c)cosB = (a² + c² - b²) / (2 * a * c)cosC = (a² + b² - c²) / (2 * a * b)A的角度= acos(cosA) * 180 / πB的角度= acos(cosB) * 180 / πC的角度= acos(cosC) * 180 / π5. 已知三角形的一个角度A和两个边长a,b,求另外两个角度。

(完整word版)初三相似三角形压轴题专题复习

(完整word版)初三相似三角形压轴题专题复习

1.如图①,四边形ABCD中,AD∥BC,DC⊥BC,AD=6cm,DC=8cm,BC=12cm.动点M在CB上运动,从C点出发到B点,速度每秒2cm;动点N在BA上运动,从B点出发到A点,速度每秒1cm.两个动点同时出发,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒).(1)求线段AB的长.(2)当t为何值时,MN∥CD?(3)设三角形DMN的面积为S,求S与t之间的函数关系式.(4)如图②,连接BD,是否存在某一时刻t,使MN与BD互相垂直?若存在,求出这时的t值;若不存在,请说明理由.2.(2017?二模)如图①,已知矩形ABCD中,AB=60cm,BC=90cm.点P从点A出发,以3cm/s的速度沿AB运动:同时,点Q从点B出发,以20cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动.设点P、Q运动的时间为t(s).(1)当t=s时,△BPQ为等腰三角形;(2)当BD平分PQ时,求t的值;(3)如图②,将△BPQ沿PQ折叠,点B的对应点为E,PE、QE分别与AD交于点F、G.探索:是否存在实数t,使得AF=EF?如果存在,求出t的值:如果不存在,说明理由.3.(2016?苏州一模)如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC 向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q 也同时停止.连结PQ,设运动时间为t(t>0)秒.(1)求线段AC的长度;(2)当点Q从B点向A点运动时(未到达A点),求△APQ的面积S关于t的函数关系式,并写出t的取值范围;(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为l:①当l经过点A时,射线QP交AD于点E,求AE的长;②当l经过点B时,求t的值.4.如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q 两点运动时间为t秒.(1)当t为何值时,PQ∥BC?(2)设四边形PQCB的面积为y,求y关于t的函数关系式;(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)5.如图,平面直角坐标系中,菱形OABC的边OA在x轴正半轴上,OA=10,cos∠COA=.一个动点P从点O出发,以每秒1个单位长度的速度沿线段OA方向运动,过点P作PQ⊥OA,交折线段OC﹣CB于点Q,以PQ为边向右作正方形PQMN,点N在射线OA 上,当P点到达A点时,运动结束.设点P的运动时间为t秒(t>0).(1)C点的坐标为,当t=时N点与A点重合;(2)在整个运动过程中,设正方形PQMN与菱形OABC的重合部分面积为S,直接写出S 与t之间的函数关系式和相应的自变量t的取值范围;(3)如图2,在运动过程中,过点O和点B的直线将正方形PQMN分成了两部分,请问是否存在某一时刻,使得被分成的两部分中有一部分的面积是菱形面积的?若存在,请求出对应的t的值;若不存在,请说明理由.6.在Rt△AOB中,OA=3,sin B=,P、M、分别是BA、BO边上的两个动点.点M从点B出发,沿BO以1单位/秒的速度向点O运动;点P从点B出发,沿BA以a单位/秒的速度向点A运动;P、M两点同时出发,任意一点先到达终点时,两点停止运动.设运动的时间为t.(1)线段AP的长度为(用含a、t的代数式表示);(2)如图①,连结PO、PM,若a=1,△PMO的面积为S,试求S的最大值;(3)如图②,连结PM、AM,试探究:在点P、M运动的过程中,是否存在某个时刻,使得△PMB为直角三角形且△PMA是等腰三角形?若存在,求出此时a和t的取值,若不存在,请说明理由.7.(2018?常熟市一模)如图,四边形ABCD是矩形,点P是对角线AC上一动点(不与A、C重合),连接PB,过点P作PE⊥PB,交射线DC于点E,已知AD=3,sin∠BAC=.设AP的长为x.(1)AB=;当x=1时,=;(2)①试探究:否是定值?若是,请求出这个值;若不是,请说明理由;②连接BE,设△PBE的面积为S,求S的最小值.(3)当△PCE是等腰三角形时.请求出x的值;8.△ABC,△DEC均为直角三角形,B,C,E三点在一条直线上,过D作DM⊥AC于M.(1)如图1,若△ABC≌△DEC,且AB=2BC.①过B作BN⊥AC于N,则线段AN,BN,MN之间的数量关系为:;(直接写出答案)②连接ME,求的值;(2)如图2,若AB=CE=DE,DM=2,MC=1,求ME的长.9.如图,正方形ABCD的边AD与矩形EFGH的边FG重合,将正方形ABCD以1cm/s的速度沿FG方向移动,移动开始前点A与点F重合,在移动过程中,边AD始终与边FG 重合,连接CG,过点A作CG的平行线交线段GH于点P,连接PD.已知正方形ABCD 的边长为1cm,矩形EFGH的边FG,GH的长分别为4cm,3cm,设正方形移动时间为x (s),线段GP的长为y(cm),其中0≤x≤2.5.(1)试求出y关于x的函数关系式,并求当y=3时相应x的值;(2)记△DGP的面积为S1,△CDG的面积为S2.试说明S1﹣S2是常数;(3)当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段PD的长.10.已知四边形ABCD是边长为4的正方形,以AB为直径在正方形内作半圆,P是半圆上的动点(不与点A、B重合),连接PA、PB、PC、PD.(1)如图①,当PA的长度等于时,∠PAD=60°;当PA的长度等于时,△PAD是等腰三角形;(2)如图②,以AB边所在直线为x轴、AD边所在直线为y轴,建立如图所示的直角坐标系(点A即为原点O),把△PAD、△PAB、△PBC的面积分别记为S1、S2、S3.设P 点坐标为(a,b),试求2S1S3﹣S22的最大值,并求出此时a、b的值.11.如图,在平面直角坐标系中,O为坐标原点,已知直线y=﹣x+8与x轴、y轴分别交于A、B两点.直线OD⊥直线AB于点D.现有一点P从点D出发,沿线段DO向点O运动,另一点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到O时,两点都停止.设运动时间为t秒.(1)点A的坐标为;线段OD的长为.(2)设△OPQ的面积为S,求S与t之间的函数关系(不要求写出取值范围),并确定t 为何值时S的值最大?(3)是否存在某一时刻t,使得△OPQ为等腰三角形?若存在,写出所有满足条件的t的值;若不存在,则说明理由.12.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为()A.18B.C.D.13.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=.14.如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC 交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF=,则CE=.15.如图,在一块直角三角板ABC中,∠C=90°,∠A=30°,BC=1,将另一个含30°角的△EDF的30°角的顶点D放在AB边上,E、F分别在AC、BC上,当点D在AB边上移动时,DE始终与AB垂直,若△CEF与△DEF相似,则AD=.16.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.B.C.D.17.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()A.1:3B.1:4C.1:5D.1:2518.如图,四边形ABCD中,AD∥BC,CM是∠BCD的平分线,且CM⊥AB,M为垂足,AM=AB.若四边形ABCD的面积为,则四边形AMCD的面积是.19.如图,AC⊥BC,AC=BC,D是BC上一点,连接AD,与∠ACB的平分线交于点E,连接BE.若S△ACE=,S△BDE=,则AC=.。

(word完整版)三角形基础练习题

(word完整版)三角形基础练习题

三角形基础练习题1、已知:如图已知△ABC求证:∠A+∠B+∠C=180°.证法一:作BC的延长线CD,过点C作CE∥BA,证法二:过点C作DE∥AB,证法三:在BC上任取一点D,作DE∥BA交AC于E,DF∥CA交AB于F,证法四:过点C作CD∥BA,2、在△ABC 中,2∠A=∠B+∠C,则∠A=度;∠A∶∠B∶∠C=1∶3∶5,则∠A= ∠B= ∠C= .3、如图,已知五角星ABCDE,求∠A+∠B+∠C+∠D+∠E的度数和为。

4、以4cm,8cm,10cm,12cm四根木条中的三根组成三角形,可以构成的三角形的个数是:;5、已知一个三角形的两边长分别是2cm和4cm,则第三边长x的取值范围是;若x是奇数,则x的值是;此三角形的周长p的取值范围是;6、一个等腰三角形的一边是2cm,另一边是9cm,则这个三角形的周长是 cm;一个等腰三角形的一边是5cm,另一边是7cm,则这个三角形的周长是 cm7、三角形的三条中线,三条角平分线,三条高_____,其中直角三角形的高线交点为直角三角形的_____,钝角三角形三条高的交点在_____.8、三角形ABC中,D为BC上的一点,且S△ABD=S△ADC,则AD为( )。

9、如图,已知AD、AE分别是三角形ABC的中线、高,且AB=5cm,AC=3cm,则三角形ABD与三角形ACD的周长之差为,三角形ABD与三角形ACD的面积之间的关系为 .DCE BF10、如图,△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,∠B=46°,∠C=72°,则∠EAD=11、如图,△ABC 中BC 边上的高为12、如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是 13、在△ABC 中,AD 为中线,BE 为角平分线,则在以下等式中:①∠BAD=∠CAD;②∠ABE=∠CBE ;③BD=DC ;④AE=EC .正确的是_________________.14、给出下列命题:①三条线段组成的图形叫三角形②三角形相邻两边组成的角叫三角形的内角③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外⑤任何一个三角形都有三条高、三条中线、三条角平分线 ⑥三角形的三条角平分线交于一点,且这点在三角形内.正确的是_________________.15、如图,在△ABC 中,∠A=70°,点O 是内心,则∠BOC=_____ .16、如图,在△ABC 中,∠ACB=90°,CD ⊥AD ,垂足为点D ,有下列说法:①点A 与点B 的距离是线段AB 的长;②点A 到直线CD 的距离是线段AD 的长;③线段CD 是△ABC 边AB 上的高;④线段CD 是△BCD 边BD 上的高. 正确的是_________________. 17、如图,D 、E 在线段BC 上.下列说法:①以A 为顶点的角共有6个;②图中有2对互补的角;③若∠BAE=m°,∠CAD=n°,则∠BAC+∠DAE=(m+n)°;④若BC=11,BD :CE=2:l,DE= 21BD+3,则S △ABD :S △ADE :S △ACE =4:5:2.其中说法正确的是_________________。

(word完整版)相似三角形动点问题题型

(word完整版)相似三角形动点问题题型

动点问题 题型方法归纳动态几何特点—---问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置.) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨. 一、三角形边上动点1、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式;(3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.提示:第(2)问按点P 到拐点B 所有时间分段分类;图(3)B图(1)B图(2)2、如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60º. (1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形. 注意:第(3)问按直角位置分类讨论OM AD∥.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.(1)求该抛物线的解析式;t s.问当t (2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为()为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位(3)若OC OB的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t()s,连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.Array注意:发现并充分运用特殊角∠DAB=60°当△OPQ面积最大时,四边形BCPQ的面积最小。

(完整word版)《第十一章三角形》练习题精选

(完整word版)《第十一章三角形》练习题精选

第11题图2题图D C B ACC7题图D C B C《第十一章 三角形》单元测试卷一、选择题:是( ) A .59°B.60°C.56°D.22°2题图3.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C 中,能确定△ABC 是直角三角形的条件有( )4.如图,△ABC 中,∠C =75°,若沿图中虚线截去∠C ,则∠1+∠2=( ) A. 360° B. 180° C. 255° D. 145°5.若三条线段中a =3,b =5,c 为奇数,那么由a ,b ,c 为边组成的三角形共有( ) A. 1个 B. 3个 C. 无数多个 D. 无法确定6.有四条线段,它们的长分别为1cm ,2cm ,3cm ,4cm ,从中选三条构成三角形,其中正确的选法有( ) A. 1种 B. 2种 C. 3种 D. 4种7.能把一个三角形分成两个面积相等的三角形是三角形的( ) A. 中线 B. 高线C. 角平分线D. 以上都不对 8.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( ) A. 锐角三角形 B. 钝角三角形 C. 直角三角形 D.不能确定9.下列图形中具有稳定性的是( ) A. 直角三角形 B. 正方形 C. 长方形 D. 平行四边形10.如图,在△ABC 中,∠A =80°,∠B =40°.D 、E 分别是AB 、AC 上的点,且DE ∥BC ,则∠AED 的度数是( ) A.40° B.60° C.80° D.120° 11.已知△ABC 中,∠A =80°,∠B 、∠C 的平分线的夹角是( )A. 130°B. 60°C. 130°或50° D. 60°或120° 12.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和45°角的 三角板的一条直角边重合,则∠1的度数为( )A.45° B.60°C.75°D.85°4题图 12题图13、下列四个图形中,线段BE 是△ABC 的高的图形是( )14.如图3,在△ABC 中,点D 在BC上,且AD=BD=CD ,AE 是BC 边上的高,若沿AE 所在直线折叠,点C 恰好落在点D 处,则∠B 等于( )A .25° B.30° C.45° D.60°第8题图C A A图5D D D D C BA CCC C B B BB A A A A 图4C A DBE 图2图5(3)A /第16题图DC B A 15. 如图4,已知AB=AC=BD ,那么∠1和∠2之间的关系是( )A. ∠1=2∠2B. 2∠1+∠2=180°C. ∠1+3∠2=180°D. 3∠1-∠2=180°16.如图5,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABC S = 42cm ,则S 阴影等于( )A .22cm B. 12cm C.122cm D. 142cm 17.等腰三角形两边长分别为3,7,则它的周长为( )A 、13 B 、17 C 、13或17 D 、不能确定18.下列图形中具有稳定性有( )A 、 2个 B 、 3个 C 、 4个 D 、 5个 19.在下列各图形中,分别画出了△ABC 中BC 边上的高AD ,其中正确的是( )20.已知△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,则∠BOC 一定( ) A.小于直角 B.等于直角 C.大于直角 D.不能确定21.直角三角形的两锐角平分线相交成的角的度数是( )A .45° B .135°C .45°或135°D .以上答案均不对 22、等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为( )A.150°B.80°C.50°或80°D.70° 23. 工人师傅常用角尺平分一个任意角.做法如下:如图2所示,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是 【 】.(A )AAS (B )SSS (C )SAS (D )ASA24、 在图3所示的3×3正方形网格中,∠1+∠2+∠3+∠4+∠5等于 【 】. (A )145° (B )180° (C )225° (D )270° 25. 根据下列条件,能判定△ABC ≌△A ′B ′C ′的是 【 】. (A )AB =A ′B ′,BC =B ′C ′,∠A =∠A ′ (B )∠A =∠A ′,∠B =∠B ′,AC =B ′C ′(C )∠A =∠A ′,∠B =∠B ′,∠C =∠C ′ (D )AB =A ′B ′,BC =B ′C ′,△ABC 的周长等于△A ′B ′C ′的周长26. 如图4所示,△ABC 中,∠C =90°,点D 在AB 上,BC =BD ,DE ⊥AB 交AC 于点E .△ABC 的周长为12,△ADE 的周长为6.则BC 的长为 【 】. (A )3 (B ) 4 (C )5 (D )627. 将一副直角三角尺如图5所示放置,已知AE BC ∥,则AFD ∠的度数是 ( )(A )45 (B)50 (C )60(D )75二、填空题1.如图,△ABC 中,AD⊥BC,AE 平分∠BAC,∠B=70°,∠C=34°.则∠DAE的大小是度.1题图4题图 7题图 8题图(1)(2)(3)(4)(5)(6)8题图150︒50︒321︒图1112CA DB EF M N O D A O E C B D A CB 2.已知等腰三角形两边长是4cm 和9cm ,则它的周长是 . 3.直角三角形两锐角的平分线的夹角是 . 4.如图,已知AB∥CD,BE 平分∠ABC,∠CDE=150°,则∠C= °. 5.已知三角形三边分别为1,x ,5,则整数x = .6.一个三角形的周长为81cm ,三边长的比为2︰3︰4,则最长边比最短边长 .7.如图,Rt ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上的A /处,折痕为CD ,则∠A /DB = 8.用黑白两种颜色的正六边形地板砖按图所示的规律镶嵌成若干个图案:⑴第四个图案中有白色地板砖 块; ⑵第n 个图案中有白色地板砖 块. 9、如图9,则∠1=______,∠2=______,∠3=______,10. 等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为___ . 11.如图所示,AB =29,BC =19,AD =20,CD =16,若AC =x ,则x 的取值范围为 .9题图12. 已知,CD 是△ABC 的中线,AC 与BC 相差2cm ,则△ACD 与△BCD 的周长之差= cm 。

(完整word)初中数学相似三角形知识库平行线分线段成比例经典例题与变式练习(精选题目)

(完整word)初中数学相似三角形知识库平行线分线段成比例经典例题与变式练习(精选题目)

平行线分线段成比例平行线分线段成比例定理及其推论1. 平行线分线段成比例定理如下图,如果1l ∥2l ∥3l ,则BC EF AC DF =,AB DE AC DF =,AB ACDE DF=. l 3l 2l 1FE D CB A2. 平行线分线段成比例定理的推论:如图,在三角形中,如果DE BC ∥,则AD AE DEAB AC BC==ABCDEEDC B A3. 平行的判定定理:如上图,如果有BCDEAC AE AB AD ==,那么DE ∥ BC 。

专题一、平行线分线段成比例定理及其推论基本应用【例1】 如图,DE BC ∥,且DB AE =,若510AB AC ==,,求AE 的长。

EDCBA【例2】 如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证:111c a b=+.FE DCBA【巩固】如图,AB BD ⊥,CD BD ⊥,垂足分别为B 、D ,AC 和BD 相交于点E ,EF BD ⊥,垂足为F .证明:111AB CD EF+=. FEDCBA【巩固】如图,找出ABD S ∆、BED S ∆、BCD S ∆之间的关系,并证明你的结论.FE DCBA【例3】 如图,在梯形ABCD 中,AB CD ∥, 129AB CD ==,,过对角线交点O 作EF CD ∥交AD BC ,于E F ,,求EF 的长。

OFED CBA【巩固】(上海市数学竞赛题)如图,在梯形ABCD 中,AD BC ∥,AD a BC b E F ==,,,分别是AD BC ,的中点,AF 交BE 于P ,CE 交DF 于Q ,求PQ 的长。

QPFED CBA专题二、定理及推论与中点有关的问题 【例4】 (2007年北师大附中期末试题)(1)如图(1),在ABC ∆中,M 是AC 的中点,E 是AB 上一点,且14AE AB =, 连接EM 并延长,交BC 的延长线于D ,则BCCD=_______. (2)如图(2),已知ABC ∆中,:1:3AE EB =,:2:1BD DC =,AD 与CE 相交于F ,则EF AFFC FD+ 的值为( )A.52 B.1 C.32D.2(1)MEDC BA(2)F ED CA【例5】 (2001年河北省中考试题)如图,在ABC ∆中,D 为BC 边的中点,E 为 AC 边上的任意一点,BE 交AD 于点O . (1)当1A 2AE C =时,求AOAD的值;E AO(2)当11A 34AE C =、时,求AOAD的值; (3)试猜想1A 1AE C n =+时AOAD的值,并证明你的猜想.【例6】 (2003年湖北恩施中考题)如图,AD 是ABC ∆的中线,点E 在AD 上,F 是BE 延长线与AC 的交点.(1)如果E 是AD 的中点,求证:12AF FC =; (2)由(1)知,当E 是AD 中点时,12AF AEFC ED=⋅成立,若E 是AD 上任意一点(E 与A 、D 不重合),上述结论是否仍然成立,若成立请写出证明,若不成立,请说明理由.F E DCBA【巩固】(天津市竞赛题)如图,已知ABC ∆中,AD 是BC 边上的中线,E 是AD 上的一点,且BE AC =,延长BE 交AC 于F 。

八年级全等三角形专题练习(word版

八年级全等三角形专题练习(word版
13.如图所示,等边三角形的边长依次为2,4,6,8,……,其中 , , , , ,……,按此规律排下去,则 的坐标为()
【答案】60°
【解析】
【分析】
此题需分三步:第一步是作出△CEF的周长最小时E、F的位置(用对称即可);第二步是证明此时的△CEF的周长最小(利用两点之间线段最短);第三步是利用对称性求此时∠ECF的值.
【详解】
分别作出C关于AD、AB的对称点分别为C1、C2,连接C1C2,分别交AD,AB于点E、F再连接CE、CF此时△CEF的周长最小,理由如下:
6.已知如图,每个小正方形的边长都是 都在格点上, 都是斜边在 轴上,且斜边长分别为 .的等腰直角三角形.若 的三个顶点坐标为 ,则依图中规律,则 的坐标为___________
【答案】
【解析】
【分析】
根据相邻的两个三角形有一个公共点,列出与三角形的个数与顶点的个数的关系式,再求出A19所在的三角形,并求出斜边长.然后根据第奇数个三角形,关于直线x=1对称,第偶数个三角形关于直线x=2对称,求出OA19,写出坐标即可.
【详解】
如图1,当∠AMB=90°时,
∵O是AB的中点,AB=8,
∴OM=OB=4,
又∵∠AOC=∠BOM=60°,
∴△BOM是等边三角形,
∴BM=BO=4,
∴Rt△ABM中,AM= = ;
如图2,当∠AMB=90°时,
∵O是AB的中点,AB=8,
∴OM=OA=4,
又∵∠AOC=60°,
∴△AOM是等边三角形,
【答案】D
【解析】
【分析】
根据周角的定义先求出∠BPC的度数,再根据对称性得到△BPC为等腰三角形,∠PBC即可求出;根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与三角形有关的线段练习题
1.等腰三角形的底边BC=8 cm,且|AC-BC|=2 cm,则腰长AC为( )
A.10 cm或6 cm
B.10 cm
C.6 cm
D.8 cm或6 cm
2.如果三角形的两边分别为7和2,且它的周长为偶数,那么第三边的长为()
A.5
B.6
C.7
D.8
3.如果三角形的三边长是三个连续自然数,则下面判断错误的是 ( ).
A.周长大于6
B.周长可以被6整除
C.周长可以被3整除
D.周长有时是奇数
4.三角形三边长a、b、c满足(a-b-c)(b-c)=0,则这个三角形是()
A.等边三角形
B.等腰三角形
C.斜三角形
D.任意三角形
5.等腰三角形周长为23,且腰长为整数,这样的三角形共有()个
A.4个
B.5个
C.6个
D.7个
7.用7根火柴首尾顺次连结摆成一个三角形,能摆成不同的三角形的个数是___________
8.古希腊数学家把数1,3,6,10,15,21,…,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为
9.探究规律:如图,已知直线m∥n,A、B为直线n上的两点,C、P为直线m上的两点。

(1)请写出图中面积相等的各对三角形:______________________________。

(2)如果A、B、C为三个定点,点P在m上移动,那么无论P点移动到任何位置总有:与△ABC的面积相等;理由是:
10.已知△ABC的周长是24cm,三边a、b、c满足c+a=2b,c-a=4cm,求a、b、c的长.
11.一个等腰三角形的周长为32 cm,腰长的3倍比底边长的2倍多6 cm.求各边长.
12.已知:△ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求:△ABC的各边的长。

13.图中的每个小正方形的边长都为1,请写出以A、B、C、D、E、F中的三点为顶点且面积为1的三角形.。

相关文档
最新文档