八下勾股定理复习PPT课件

合集下载

《勾股定理》复习课件ppt

《勾股定理》复习课件ppt

答案5
根据勾股定理和相似三角形的性质,BD² = AB² - AD² = AC² + BC² - (AC + CD)² = 4² + 6² - (4 + 2)² = 20。 所以 BD = √20 = 2√5。
THANKS
感谢您的观看
勾股定理公式
a² + b² = c²,其中a和b是直角三 角形的两条直角边,c是斜边。
勾股定理的证明方法
欧几里得证明法
利用相似三角形的性质和比例关系, 通过一系列的逻辑推理证明勾股定理 。
毕达哥拉斯证明法
利用正方形的性质和勾股定理的关系 ,通过构造两个正方形证明勾股定理 。
勾股定理的应用场景
实际问题求解
要点一
勾股定理在三维空间的应用
要点二
勾股定理在三维空间的应用示例
勾股定理不仅适用于平面图形,还可以应用于三维空间中 的几何体。
在解决三维几何问题时,可以使用勾股定理来计算空间几 何体的边长或体积。
04
勾股定理的解题技
巧和策略
利用勾股定理求边长
总结词
勾股定理是解决直角三角形问题的重要工具 ,通过已知两边长,可以求出第三边长。
详细描述
勾股定理公式为$c^2 = a^2 + b^2$,其中 $c$为斜边长,$a$和$b$为直角边长。已知 $a$、$b$和$angle C = 90^circ$,可以通
过勾股定理求出第三边长$c$。
利用勾股定理证明三角形为直角三角形
总结词
勾股定理也可以用来证明一个三角形是否为直角三角形。
详细描述
勾股定理复习课件理的回顾 • 勾股定理的常见题型解析 • 勾股定理的变式和推广 • 勾股定理的解题技巧和策略 • 勾股定理的练习题和答案解析

新人教版八年级下《勾股定理复习》超级经典课件【优质PPT】

新人教版八年级下《勾股定理复习》超级经典课件【优质PPT】
160
80
E
100
60
60
100
如图,公路MN和小路PQ在P处交汇,∠QPN=30°,点A处有一所学校,AP=160m,假设拖拉机行使时,周围100m内受噪音影响,那么拖拉机在公路MN上以18km/h的速度沿PN方向行驶时,学校是否受到噪音的影响?如果学校受到影响,那么受影响将持续多长时间?
CD=
C
A
B
直角三角形有哪些特殊的性质


面积
直角三角形的两锐角互余。
直角三角形两直角边的平方和等于 斜边的平方。
两种计算面积的方法。
符号语言:
在Rt△ABC中
a2+b2=c2
a
b
c
如何判定一个三角形是直角三角形呢?
(1)
(2)
有一个内角为直角的三角形是直角三角形
两个内角互余的三角形是直角三角形
符号语言:
5.若有两条线段分别为3,4,第三条线段为________时,才能组成一个直角三角形
5
4
3
2
1
观察下列图形,正方形1的边长为7,则 正方形2、3、4、5的面积之和为多少?
规律:
S2+S3+S4+S5=
S1
4′
3′
4
3
2′
2
1
如图,是一种“羊头”形图案,其作法是:从 正方形1开始,以它的一边为斜边,向外作 等腰三角形,然后再以其直角边为边,分别 向外作正方形2和2′,……依此类推,若 正方形1的边长为64,则正方形7的边长 为 。
C
A
B
a
b
c
a+b=14
c=10
a2+b2=102=100

人教版八年级下册 17.2 勾股定理的逆定理 课件 (共15张PPT)

人教版八年级下册 17.2 勾股定理的逆定理   课件 (共15张PPT)

知识点一:勾股定理逆定理的实际应用
学以致用
1.我国南宋著名数学家秦九韶的著作《数书九章》里记载有
这样一道题目:“问有沙田块,有三斜,其中小斜五里,中斜
十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一
块三角形沙田,三条边长分别为5里、12里13里,问这块沙
田面积有多大?题中的“里”是我国市制长度单位,1里=
7
• 解:设AD=x,则CD=10-x.
• 在 RtABD 中,

DB2 AB2 AD2
在RtCDQ中,
DB2 CQ2 CD2
62 x2 82 (10 x)2
解得: x 3.6
AD长为6.4n mile
8
知识点二:勾股定理逆定理在几何中的应用
3.如图,在四边形ABCD中,AB=8,BC=6,AC=10,
①若∠C- ∠B= ∠A,则△ABC是直角三角形;
②若c2=b2-a2,则△ABC是直角三角形,且∠C=90°;
③若(c+a)(c-a)=b2,则△ABC是直角三角形;
④若∠A:∠B:∠C=5:2:3,则△ABC是直角三
角形.
以上命题中的假命题个数是( A )
A.1个
B.2个
C.3个
D.4个
4.已知a、b、c是△ABC三边的长,且满足关系式 c2 +a2 - b2 + c - a = 0 ,则△ABC的形状是
典例讲评
解:根据题意: PQ=16×1.5=24 PR=12×1.5=18 QR=30
∵242+182=302, 即 PQ2+PR2=QR2 ∴∠QPR=90°
由”远航“号沿东北方向航行可知,∠1=45°.所以∠2=45°,

《勾股定理》PPT课件图文

《勾股定理》PPT课件图文

ca b
S正
?(a
?
b)2
?
4?
1 2
ab
?
c2 ,
化简得: a 2 ? b 2 ? c 2
方法三:
c
b b-a c
a c
c
S正
?
c2?
4?
1 2
ab
?
(b
?
a)2,
化简得: a 2 ? b2 ? c 2
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576



角的BC方向上的点C测得CA=130米,CB=120米,
则AB为 ( )
A
A.50米 B.120米 C.100米 D.130米
A
130
?
C
120 B
某楼房在 20米高处的楼层失火
,消防员取来 25米长的云梯救
火,已知梯子的底部离墙的距
ቤተ መጻሕፍቲ ባይዱ
离是15米。问消A防队员能否进
入该楼层灭火?
已知两直角 边求斜边
则 a2 ? b2 ? c2
议一议:判断下列说法是否正确,并说明理由: (1)在△ABC中,若a=3,b=4,则c=5 (2)在Rt△ABC中,如果a=3,b=4,则c=5. (3)在Rt△ABC中,∠C=90° , 如果a=3,b=4,则c=5.
勾 股
在中国古代,人们把弯曲成直角的手臂的上 半部分称为 勾 ,下半部分称为 股 。我国古代 学者把直角三角形较短的直角边称为“勾”,较 长的直角边称为“股”,斜边称为“弦”.
B
系吗?
图2
(图中每个小方格代表一个单位面积) SA+SB=SC

人教版八年级下册数学《勾股定理》说课研讨教学复习课件

人教版八年级下册数学《勾股定理》说课研讨教学复习课件

课堂检测
拓广探索题
如图,边长为1的正方体中,一只蚂蚁从顶点A出发沿着
正方体的外表面爬到顶点B的最短距离是( B )
A.3
B. 5
C.2
D.1
2
B
C
B
1
1
A
A
2
提示: 由于蚂蚁是沿正方体的外表面爬行的,
故需把正方体展开成平面图形(如图).
课堂小结
勾股定理 的应用
化非直角三角形为直角三角形 将实际问题转化为直角三角形模型
解:在Rt△AOB中,∵OA=5,OB=4, ∴AB2=OA2+OB2=52+42=41,
∴AB= 41 .
∴A、B两点间的距离为 41 .
课堂检测
4.一木杆在离地面3米处折断,木杆顶端落在离木杆底端4米处. 木杆折断之前有多高?
解:由题意可知,在Rt△RPQ中, ∵PR=3,PQ=4,
∴RQ2=PR2+PQ2=32+42=25, ∴RQ=5,PR+RQ=3+5=8.
小于AC即可. 3.怎样判定这块木板能否通过木框?
求出斜边的长,与木板的宽比较.
探究新知
解:在Rt△ABC中,根据勾股定理, AC2=AB2+BC2=12+22=5. AC= 5 ≈2.24. 因为AC大于木板的宽2.2 m,所
以木板能从门框内通过.
巩固练习
如图,池塘边有两点A,B,点C是与BA方向成直角的AC方 向上一点,测得BC=60 m,AC=20m.求A,B两点间的距离
1.求出下列直角三角形中未知的边.
B
B
AC=8 6
C
10
8
15
A
C

课件八年级数学人教版下册_勾股定理复习课课件

课件八年级数学人教版下册_勾股定理复习课课件

ABCD的面积。
A
D
B C
7.观察下列表格:
列举
3、4、5
……
5、12、13
7、24、25
13、b、c
猜想
32=4+5 52=12+13 72=24+25

o
西
A
南东Leabharlann 答:AB=30海里B
5 . 如 图 , 在 四 边 形 ABCD 中 , ∠BAD =900,∠DBC = 900 , AD = 3,AB = 4,BC = 12, 求CD;
D
A
C B
6.已知,如图,四边形ABCD中,
AB=3cm , AD=4cm , BC=13cm ,
CD=12cm,且∠A=90°,求四边形
解答题
3.已知:如图,在Rt△ABC中,∠C=90°, BC=6, AC=8
求:斜边上的高CD.
解:由勾股定理知
AB2=AC2+BC2
C
=82+62=100
∴AB=10
?
由三角形面积公式
B
D
A
½ ·AC ·BC=
½∴C·DA=B4·.8CD
4. 一艘轮船以16海里/时的速度离开港口向 东南方向,另一艘轮船在同时同地以12海 里/时的速度向西南方向航行,它们离开港 口一个半小时后相距多远?
A、24cm B、36cm C、48cm D、60cm 直角三角形的两条直角边长为a,b,斜边上的高为h,则下列各式中总能成立的是 ( )
2 ②三个角之比为3:4:5;
2
2
2
在西方又称毕达哥拉斯定理耶!
13.若等腰三角形中相等的两边长为10cm,第三边长为16 cm,那么第三边上的高为 ( C )

第十八章勾股定理复习课课件

第十八章勾股定理复习课课件

1、已知:在△ABC中, AC=10cm ,
BC=24cm,AB=26cm
求证:△ABC是直角三角形。
26 A 24 C B
10
3、若三角形的三边分别是: a2+b2,
提 示:
2ab,
a2-b2 ( a > b > 0 ),
判断这个三角形的形状。 把 a2+b2, 2ab, a2-b2 看成一个整体,
是否满足勾股定理的逆定理,
从而判断三角形的形状。
1.已知Rt△ABC中,∠C=90°,若a+b=14cm, c=10cm,则Rt△ABC的面积是( A ) A.24cm2 B.36cm2 C.48cm2 D.60cm2
c=10 a2+b2=102=100
a+b=14
(a+b)2=142=196 2ab=(a+b)2-(a2+b2) =196-100 =96
西北 东北 东 西
E
A
60° 30°
西南

东南
B
12
D
C
AB=15,AD=12,AC=13, 求:△ABC的周长和面积。
A 15 B 9 12 13 C
D 5
5、已知,如图,在Rt△ABC中,∠C=90°,
∠1=∠2,CD=1.5, BD=2.5, 求AC的长. 3
提示:作辅助线DE⊥AB,利用平分线的性质和勾股定理。
C D 1 2 B
A
8.如图所示:某机械零件的平面图, 求:两孔中心A, B之间的距离.
在边CD上取一点E,将△ADE折叠使
点D恰好落在BC边上的点F,
求:CE 的长.
解:由折叠得AFE ADE

勾股定理复习课件

勾股定理复习课件

h
1.如图,已知长方体的长、宽、高分 别为4cm、3cm、12cm,求BD’的长。
解:连结BD,在直角三角形 ABD中,根据勾股定理 A’
BD AB AD 4 3 5
2 2 2 2 2 2
D’ B’
C’
BD 5
在直角三角形D’ BD 中,根 据勾股定理
BD'2 DD '2 BD 2 12 2 52 13 2 BD' 13(cm)。
4.若一个三角形某两边的平方和不等于第三边的平 方,则这个三角形一定不是直角三角形( ).
选择: 直角三角形的两条直角边长为a,b, 斜边上的高为h,则下列各式中总能成立 的是 ( D )
A. ab=h
2
B. a +b =2h
2
2
2
1 1 1 C. + = a b h
1 1 1 D. 2 + 2 = 2 a b h
4.互逆命题与互逆定理的概念
无理数在数轴上的表示
在数轴上表示 13 , 17 , 5,20
4.勾股定理及其逆定理的应用
①勾股定理可以解决直角三角形当中一些
与边有关的问题(直角边、斜边、斜边上
的高、面积等)
②勾股定理的逆定理可以判断一个三角形
是否是直角三角形(此时先找到最长边,再
看看两较短边的平方和是否等于长边的平
本章知识框图:
实际问题
(直角三角形边长计算)
互逆 定理
由形到数
勾股定理
实际问题 (判定直角三角形)
由数到形
勾股定理 的逆定理
题设
勾股定理 在Rt△ABC 中,∠C=900
勾股定理的逆定理 在△ABC 中, 三边 a,b,c满足a2+b2=c2

第十七章 勾股定理 章末复习 课件(共23张PPT) 2024-2025学年人教版八年级数学下册

第十七章 勾股定理 章末复习 课件(共23张PPT) 2024-2025学年人教版八年级数学下册

巩固练习
1.如图,一个圆柱形油罐,要从A点环绕油罐建梯子,正好到A 点的正上方B点,请你算一算梯子最短需多少米? ( 已知油罐 的底面周长是12米,高是5米).
解:如图,将油罐侧面展开,
此时AB= 122 52 =13(m).
2.如图,已知在△ABC中,AB=17 , AC=10 , BC边上的高AD=8, 求:(1)BC边的长;(2)△ABC的面积.
A
思考:如何判定一个三角形是直角三角形呢?
1.有一个内角为直角的三角形是直角三角形.
2.两个内角互余的三角形是直角三角形.
3.如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角
形是直角三角形.
A
勾股定理的逆定理
c
几何语言:∵a2+b2=c2, b
∴△ABC是直角三角形.
C
a
B
典型例题
S阴影=S△CAD-S△ABC
=
1 2
AC·AD-
1 2
AB·BC
=24
互逆命题
勾股定理
题设:一个三角形 是直角三角形.
勾股定理 的逆定理
题设:一个三角形 的三边长a,b,c
满足a2+b2=c2.
结论:两条直角边的平 方和等于斜边的平方.
(a2+b2=c2)
结论:这个三角形 是直角三角形.
若两个命题的题设、结论正好相反,则这两个命题叫 做互逆命题.
知识框图 勾股定理
互逆定理
勾股定理的逆定理
直角三角形边 长的数量关系
直角三角形的判定
复习回顾
回顾思考:
1.直角三角形三边的长有什么特殊的关系? 2.赵爽证明勾股定理运用了什么思想方法? 3.已知一个三角形的三边长,怎样判断它是不是直角三 角形? 你作判断的依据是什么? 4.证明勾股定理的逆定理运用了什么方法? 5.一个命题成立,它的逆命题未必成立. 请举例说明.

勾股定理复习课课件

勾股定理复习课课件
B点最短路程是 25 .
20
15
如图是一个长8m,宽6m,高5m的仓库,在
其内壁的A处(长的四等分点)处有一只壁虎,
B(宽的三等分)处有一只蚊子,则壁虎抓到蚊
子的最短距离的平方为
m2
A B 21 02521 2 5
B
A
5
5 A
6
8
B
64
8
6B
46
A B 2 6 2 9 23 6 8 1 1 1 7
A、120
B、121 C、132
D、123
6.等腰三角形底边上的高为8,周长为32, 则三角形的面积为(B ) A、56 B、48 C、40 D、32
A x2+82=(16-x)2
x=6
16-x
BC=2x=12
8
SABC
1128B48 2
x
Dx
C
选择题
7.若等腰三角形中相等的两边长为10cm,第三 边长为16 cm,那么第三边上的高为 ( ) A. 12 cm B. 10 cm C. 8 cm D. 6 cm
C 20 A
在Rt△ADC中,(1 0x)22 02(3 0-x)2
解得x=5 ∴树高CD=BC+BD=10+5=15(m)
如图所示是2002年8月北京第24届国际数学 家大会会标“弦图”,它由4个全等的直角三 角形拼合而成。如果图中大、小正方形的面
积分别为52和4,那么一个直角三角形的两
直角边的和等于 10 。
P
30° 100
M 160
A
Q
有一棵树(如图中的CD)的10m高处B有两只猴子
,其中一只猴子爬下树走到离树20m处的池塘A

勾股定理期末复习课件(公开课)

勾股定理期末复习课件(公开课)

勾股定理
1:勾股定理的验证 2:求第三边 3:求斜边上的高 4:求面积 1:勾股数 2:逆定理(给出三边长度判断直角三角形)
第 一 章 股 股 定 理
勾股定理 逆定理
勾股定理 应用
1:折叠问题 2:最短路径问题
勾股定理: 如果用a,b,c表示直角三角形的两个直角边和斜 边,那么a2+b2=c2 B 变形: 2 2
例1:如图,已知圆柱体底面直径为2cm,高为4cm (1)求一只蚂蚁从A点到F点的距离。 (2)如果蚂蚁从A点到CG边中点H,求蚂蚁爬行的距 离。
F

H
A
例2、如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到
对角顶点C1处(三条棱长如图所示),问怎样走路线最短?最短路线长 为多少?
D1 A1 D A 4

C S3 A S1
S2 B
图3
变式1.如图1-1-3所示的图形中,所有的四边形都 是正方形,所有的三角形都是直角三角形,其中最 大的正方形的边长为7cm,则正方形A,B,C,D的面 积的和是_______
变式2:如图4,分别以Rt
ABC三边为边向外作三个 半圆,其面积分别用S1、S2、S3表示,容易得出S1、S2、
例1:在△ABC中, a : b : c 1:1: 确切形状是_____________。
2
,那么△ABC的
例2:如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12, AD=13, 求四边形ABCD的面积.
例1:如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB 为8cm,• 长BC为10cm.当小红折叠时,顶点D落在BC边上的点F处 (折痕为AE) D A (1)求BF的长; (2)求EC的长。

人教版数学八年级下册:17.1 勾股定理 课件(共35张PPT)

人教版数学八年级下册:17.1 勾股定理  课件(共35张PPT)

探究 如图,以Rt△ 的三边为边向外作正方形,
其面积分别为 S1 、S2、S3,请同学们想一想
S1 、S2、S3 之间有何关系呢?
S2 + S3 =a2+b2
S1=c2
B
S1c a S2
b
A S3 C
∵a2+b2=c2
S2 + S3 = S1
探究S1、S2、S3之间的关系
S2

S3

1 2


a 2
2

1 2


b 2
2
1 a2 1 b2
8
8
S1

1 2


c 2
2

1
8
c2
由勾股定理得 a2+b2=c2
∴S2+S3=S1
S2
c
SS3 2
A
S1
S1
动手操作:例2如图,Rt△ABC中
,AC=8,BC=6,∠C=90°,分别 以AB、BC、AC为直径作三个半圆 ,那么阴影部分的面积为__24_ .
A
E
D
B
F
C
A
A =625
225
400
81
B =144
225
2、如图所示的图形中,所 有的四边形都是正方形,所 有的三角形都是直角三角形 ,其中最大的正方形的边长 是8厘米,则正方形A,B, C,D的面积之和是 __6_4_____平方厘米
利用勾股定理解决平面几何问题3——折叠中的计算问题
能算好算直接算,不能算不好算,设未知数,列方程(勾股定理、全等、相似等)
利用勾股定理解决平面几何问题1— —最短路径问题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
∵CD=DE , AD=AD
2
A
∴ Rt△ACD Rt△AED
∴ AC=AE 令AC=x,则AB=x+2
在 Rt△ABC中,根据勾股定理,得 AC2+BC2=AB2 2020/12/9
即:x2+42=(x+2)2 ∴ x=3
C D EB
14
二、练习
(四)、思考题
如图,在△ABC中,AB=AC,P为BC上任意一点 请用学过的知识说明:AB2-AP2=PB×PC。
A PD
C
16
感谢你的阅览
Thank you for reading
温馨提示:本文内容皆为可修改式文档,下载后,可根据读者的需求 作修改、删除以及打印,感谢各位小主的阅览和下载
日期:
演讲者:蒝味的薇笑巨蟹
BC的距离分别等于 2, 2, 2 cm
O
2020/12/9
8
4.一架5cm长的梯子,斜立靠在一竖直的墙 上,这是梯子下端距离墙的底端1.4,若梯子 顶端下滑了图,要在高3m,斜坡5m的楼梯表面铺 地毯,地毯的长度至少需( )米
B
6.把直角三角形两条直角边
同时扩大到原来的3倍,则其 C
C 10 25-x B
11
二、练习
2、已知,△ABC中,AB=17cm,BC=16cm, BC边上的中线AD=15cm,试说明△ABC是等腰 三角形。
提示: 先运用勾股定理证明中线AD⊥BC,再利用 等腰三角形的判定方法就可以说明了.
2020/12/9
12
二、练习
3、已知,如图,在Rt△ABC中,∠C=90°, ∠1=∠2,CD=1.5, BD=2.5, 求AC的长.
2020/12/9
3
二、练习
(一)、选择题
1.已知一个Rt△的两边长分别为3和4,则第三
边长的平方是( D )
A、25 B、14 C、7 D、7或25 2.下列各组数中,以a,b,c为边的三角形不是
Rt△的是( A )
A、a=1.5,b=2,c=3 B、a=7,b=24,c=25 C、a=6,b=8,c=10 D、a=3,b=4,c=5
A
斜边( )
A.不变
B.扩大到原来的3倍
C.扩大到原来的9倍 D.减小到原来的1/3
二、练习
(三)、解答题
1、如图,铁路上A,B两点相距25km,C,D为
两村庄,DA⊥AB于A,CB⊥AB于B,已知
DA=15km,CB=10km,现在要在铁路AB上
建一个土特产品收购站E,使得C,D两村到
E站的距离相等,则E站应建在离A站多少km
勾股定理复习课
2020/12/9
1
一、知识要点
勾股定理
如果直角三角形两直角边分别为a,b,斜边为c, 那么
a2 + b2 = c2
即直角三角形两直角边的平方和等于斜边的平方.
2020/12/9
2
勾股逆定理
如果三角形的三边长a,b,c满足a2 +b2=c2 , 那么这个三角形是直角三角形
勾股数
满足a2 +b2=c2的三个正整数,称为勾股数
高与斜边的比为( D )
A、60∶13 B、5∶12
C、12∶13 D、60∶169
2020/12/9
5
二、练习
6.如果Rt△的两直角边长分别为n2-1,2n(n>1)
那么它的斜边长是( D )
A、2n B、n+1 C、n2-1 D、n2+1 7.已知Rt△ABC中,∠C=90°,若a+b=14cm,
处?
D
C
A
E
B
2020/12/9
10
解:
设AE= x km,则 BE=(25-x)km
根据勾股定理,得
D
AD2+AE2=DE2
BC2+BE2=CE2
15
又 DE=CE ∴ AD2+AE2= BC2+BE2
A xE
即:152+x2=102+(25-x)2
∴ x=10
答:E站应建在离A站10km处。
2020/12/9
c=10cm,则Rt△ABC的面积是( A )
A、24cm2 B、36cm2 C、48cm2 D、60cm2 8.等腰三角形底边上的高为8,周长为32,则三角
形的面积为( B )
A、56 B、48 C、40 D、32
2020/12/9
6
二、练习
(二)、填空题
1、在Rt△ABC中,∠C=90°,
①若a=5,b=12,则c=____1_3______; ②若a=15,c=25,则b=___2_0_______; ③若c=61,b=60,则a=__1_1_______; ④若a∶b=3∶4,c=10则SRt△ABC=___2_4____。
2、直角三角形两直角边长分别为5和12,则它
斜边上的高为___6_0_/_1_3___。
2020/12/9
7
二、练习
3 已知:如图,△ABC中,∠C = 90°,点O为 △ABC的三条角平分线的交点,OF⊥BC,OE ⊥AC,OD⊥AB,点D、E、F分别是垂足,且 BC = 8cm,CA = 6cm,则点O到三边AB,AC和
2020/12/9
4
二、练习
3.若线段a,b,c组成Rt△,则它们的比为(C )
A、2∶3∶4
B、3∶4∶6
C、5∶12∶13
D、4∶6∶7
4.Rt△一直角边的长为11,另两边为自然数,则
Rt△的周长为( C )
A、121 B、120 C、132 D、不能确定
5.如果Rt△两直角边的比为5∶12,则斜边上的
提示:作辅助线DE⊥AB,利用平 分线的性质和勾股定理。
1 2 A
C D B
2020/12/9
13
解:
过D点做DE⊥AB
∵ ∠1=∠2, ∠C=90°
∴ DE=CD=1.5
在 Rt△DEB中,根据勾股定理,得
x
BE2=BD2-DE2=2.52-1.52=4 ∴ BE=2
在Rt△ACD和 Rt△AED中,
A
B
C
P
2020/12/9
15
解:
过A点做AD⊥BC
在 Rt△ABD中,根据勾股定理,得:
AB2=AD2+BD2

同理: AP2=AD2+DP2

由①-②,得
B
AB2-AP2=BD2-DP2
=(BD+DP)(BD-DP)
=PB(BD+DP)
又 AB=AC, AD⊥BC ∴ BD=CD
20∴20/A12/B9 2-AP2=PB×PC
相关文档
最新文档