初二数学特殊的平行四边形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特殊的平行四边形
中考要求
知识点睛
1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.
2.菱形的性质
菱形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质:
① 边的性质:对边平行且四边相等.
② 角的性质:邻角互补,对角相等.
③ 对角线性质:对角线互相垂直平分且每条对角线平分一组对角.
④ 对称性:菱形是中心对称图形,也是轴对称图形.
菱形的面积等于底乘以高,等于对角线乘积的一半.
点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半.
3.菱形的判定
判定①:一组邻边相等的平行四边形是菱形.
判定②:对角线互相垂直的平行四边形是菱形.
判定③:四边相等的四边形是菱形.
4.三角形的中位线
中位线:连结三角形两边的中点所得的线段叫做三角形的中位线.
也可以过三角形一边的中点作平行于三角形另外一边交于第三边所得的线段也是中位线.
以上是中位线的两种作法,第一种可以直接用中位线的性质,第二种需要说明理由为什么是中位线,再用中位线的性质.
中点中点平行
中点
定理:三角形的中位线平行第三边且长度等于第三边的一半.
5.正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.
6.正方形的性质
正方形是特殊的平行四边形、矩形、菱形.它具有前三者的所有性质:
① 边的性质:对边平行,四条边都相等.
② 角的性质:四个角都是直角.
③ 对角线性质:两条对角线互相垂直平分且相等,•每条对角线平分一组对角.
④ 对称性:正方形是中心对称图形,也是轴对称图形.
平行四边形、矩形、菱形和正方形的关系:(如图)
正
方形
菱形
矩形平行四边形
7.正方形的判定
判定①:有一组邻边相等的矩形是正方形. 判定②:有一个角是直角的菱形是正方形.
例题精讲
板块一、菱形的性质及判定
【例1】 如图,E 是菱形ABCD 的边AD 的中点,EF AC ⊥于H ,交CB 的延长线于F ,交AB 于P ,
证明:AB 与EF 互相平分.
P H
F
E D
C
B
A
【解析】省略
【答案】连接BD 、AF 、EB
∵菱形ABCD 中BD AC ⊥,EF AC ⊥,∴BD ∥EF ∵AD ∥FC ,∴四边形BDEF 是平行四边形,∴ED FB = ∵AE ED =,∴AE FB =
又∵AE FB ∥,∴四边形AFBE 是平行四边形 ∴AB 与EF 互相平分
【例2】 已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,若AE AF EF AB ===,求C ∠的度数.
F
E
D
C
B
A
【解析】∵AE AB = ∴B AEB ∠=∠
同理D AFD ∠=∠ ∵四边形ABCD 是菱形
∴AD BC B D BAD C ∠=∠∠=∠∥,,,∴AEB AFD ∠=∠ ∵B D ∠=∠ ∴BAE DAF ∠=∠
∵DE EF AF ==,∴AEF △是等边三角形,∴60EAF ∠=︒ 设BAE x ∠=,则602BAD x ∠=︒+
∵180ABE ABE BAE ∠+∠+∠=︒,∴902
x
ABE ∠=︒- ∵AD BC ∥,∴180B BAD ∠+∠=︒,∴906021802
x
x ︒-+︒+=︒ ∴20x =︒ ∴602100C BAD x ∠=∠=︒+=︒
【答案】100︒
【例3】 已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:
CEF ∠的度数.
F
E
D
C
B
A
【解析】连接AC ,∵四边形ABCD 为菱形
∴AB BC CD AD ===
∴ABC △和ACD △为等边三角形 ∴60AB AC B ACD BAC =∠=∠=∠=︒, ∵60EAF ∠=︒ ∴BAE CAF ∠=∠ ∴ABE ACF △≌△ ∴AE AF = ∵60EAF ∠=︒ ∴AEF △为等边三角形 ∴60AEF ∠=︒
∵AEC B BAE AEF CEF ∠=∠+∠=∠+∠ ∴18CEF ∠=︒
分析:在矩形、菱形的定理题中,有时也常连对角线,把四边形问题转化为三角形问题.
【答案】18︒
A
B
C
D
E
F
【例4】 如图,ABC ∆中,90ACB ∠=︒,AD 是BAC ∠的平分线,交BC 于D ,CH 是AB 边上的高,交AD
于F ,DE AB ⊥于E ,求证:四边形CDEF 是菱形.
H
F D
E
C
B
A
【解析】省略
【答案】∵CH AB ⊥,∴90HAF AFH ∠+∠=︒
∵90ACB ∠=︒,∴90CAD ADC ∠+∠=︒
∵AD 平分CAB ∠,∴CAD HAF ∠=∠,∴AFH CDF ∠=∠ ∵AFH CFD ∠=∠,∴CDF CFD ∠=∠,∴CF CD = ∵AD 平分CAB ∠,DC AC ⊥,DE AB ⊥ ∴CD DE =,∴CF DE = 又∵CH AB ⊥,DE AB ⊥
∴CF ∥DE ,故四边形ABCD 是平行四边形 ∵CD DE =,∴四边形ABCD 是菱形
【例5】 已知:如图,在平行四边形ABCD 中,AE 是BC 边上的高,将ABE ∆沿BC 方向平移,使点E 与
点C 重合,得GFC ∆.若60B ∠=︒,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.
G
F E D
C
B
A
【解析】省略 【答案】当3
2
BC AB =
时,四边形ABFC 是菱形. ∵AB GF ∥,AG BF ∥ ∴四边形ABFG 是平行四边形 ∵Rt ABE ∆中,60B ∠=︒