圆锥曲线解题技巧

合集下载

圆锥曲线的解题方法(精选4篇)

圆锥曲线的解题方法(精选4篇)

圆锥曲线的解题方法(精选4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、应急预案、演讲致辞、规章制度、合同协议、条据书信、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, work plans, emergency plans, speeches, rules and regulations, contract agreements, document letters, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!圆锥曲线的解题方法(精选4篇)圆锥曲线的七种题型归纳:篇1一、求圆锥曲线方程(1)轨迹法:设点建立方程,化简证明求得。

圆锥曲线求解技巧

圆锥曲线求解技巧

圆锥曲线求解技巧圆锥曲线是数学中重要的一个分支,包括圆、椭圆、抛物线和双曲线。

它们都具有各自独特的性质和方程形式。

在求解圆锥曲线的问题时,有一些常见的技巧和方法可以帮助我们简化计算和理解问题。

下面是一些圆锥曲线求解技巧的介绍。

1. 几何特征:首先,了解每种圆锥曲线的几何特征是非常重要的。

圆是所有圆锥曲线中最简单的一种,其方程形式为x²+ y²= r²,其中r是圆的半径。

椭圆具有中心点和两个焦点,其方程形式为(x - h)²/a² + (y - k)²/b² = 1,其中(h, k)是中心点的坐标,a和b是椭圆在x轴和y轴上的半径。

抛物线则有焦点和直线的焦点形式,其方程形式为y²= 4ax或x²= 4ay,其中a是抛物线的焦距。

双曲线也有焦点和直线的形式,其方程形式为(x - h)²/a² - (y - k)²/b² = 1或者(y - k)²/b² - (x - h)²/a² = 1,其中(h, k)是中心点的坐标,a和b 是双曲线在x轴和y轴上的半径。

2. 参数化表示:参数化是一种将一个曲线表示为参数的函数的方法。

通过引入新的参数,我们可以简化对曲线的表示和求解。

例如,对于椭圆,我们可以引入参数化坐标x = a cosθ和y = b sinθ,其中a和b是椭圆的半径。

这样,我们可以将椭圆的方程简化为极坐标形式r = a(1 - e²)/(1 + e cosθ),其中e是椭圆的离心率。

同样地,对于抛物线,我们可以引入参数化坐标x = at²和y = 2at。

通过参数化,我们可以更容易地计算和理解曲线的性质。

3. 极坐标表示:极坐标是一种将点表示为距离和角度的方式。

对于圆锥曲线,极坐标表示是很有用的,特别是当涉及到对称性和角度的问题时。

圆锥曲线七种技巧

圆锥曲线七种技巧

圆锥曲线技巧
一.对于圆锥曲线题目中直线的设法不同,可以优化解题。

一般是常规点斜式设法,会导致运算繁琐。

例:已知过定P2,0的直线l交抛物线y2=4x于A,B两点,求三角形AOB(O为坐标原点)面积的最小值.
例:已知直线l过椭圆x 2
4+y2
3
=1的左焦点F,与椭圆相交于A,B两点,且满足
AF
BF
=2,求直线l的方程.
二.在计算过程中的技巧是对计算式的处理,设而不求,整体代换。

这样的题目在复杂性上比较突出。

对于计算要求比较高,所以一定要做好审题,分析好算式。

例:点到直线的距离公式推导.(此例主要是加深对整体思想的理解和认识)例:求以直线ax+by=1与圆锥曲线Ax2+By2=1的公共弦为直径的圆方程.
三.利用直径圆公式进行求解。

例:已知抛物线C:x2=2py过点A(4,4),是否存在直线l:y=kx-2与曲线C交于点P,Q,使∆APQ是以PQ为斜边的直角三角形?
例:直角顶点P(1,2)的两直角边交抛物线y2=4x于A,B两点,求AB中点M 的轨迹.。

高中数学圆锥曲线解题技巧方法总结

高中数学圆锥曲线解题技巧方法总结

圆锥曲线1.圆锥曲线的两定义:第一定义中要重视“括号〞内的限制条件:椭圆中,与两个定点F1,F2的距离的和等于常数2a,且此常数2a一定要大于F1F,当常数等于F1F2时,轨迹是线段F1F2,当常数小于F1F2时,无2轨迹;双曲线中,与两定点F1,F2的距离的差的绝对值等于常数2a,且此常数2a一定要小于|F1F2|,定义中的“绝对值〞与2a<|F 1F2|不可无视。

假设2a=|F1F2|,那么轨迹是以F1,F2为端点的两条射线,假设2a﹥|F 1F2|,那么轨迹不存在。

假设去掉定义中的绝对值那么轨迹仅表示双曲线的一支。

如方程2222(x6)y(x6)y8表示的曲线是_____〔答:双曲线的左支〕2.圆锥曲线的标准方程〔标准方程是指中心〔顶点〕在原点,坐标轴为对称轴时的标准位置的方程〕:方程2222xyyx〔1〕椭圆:焦点在x轴上时1〔ab0〕,焦点在y轴上时=1〔ab0〕。

2222abab22AxByC表示椭圆的充要条件是什么?〔ABC≠0,且A,B,C同号,A≠B〕。

2y2假设x,yR,且3x26,那么xy的最大值是____,2y2x的最小值是___〔答:5,2〕2222xyyx〔2〕双曲线:焦点在x轴上:=1,焦点在y轴上:=1〔a0,b0〕。

方程2222abab 22AxByC表示双曲线的充要条件是什么?〔ABC≠0,且A,B异号〕。

如设中心在坐标原点O,焦点F、F2在坐标轴上,离心率e2的双曲线C过点P(4,10),1那么C的方程为_______〔答:226xy〕〔3〕抛物线:开口向右时22(0)ypxp,开口向左时22(0)ypxp,开口向上时22(0)xpyp,开口向下时22(0) xpyp。

3.圆锥曲线焦点位置的判断〔首先化成标准方程,然后再判断〕:〔1〕椭圆:由x 2,y2分母的大小决定,焦点在分母大的坐标轴上。

22xy如方程1m12m表示焦点在y轴上的椭圆,那么m的取值X围是__〔答:3(,1)(1,)〕2〔2〕双曲线:由x 2,y2项系数的正负决定,焦点在系数为正的坐标轴上;〔3〕抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。

圆锥曲线解题技巧和方法综合

圆锥曲线解题技巧和方法综合

圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为,,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。

如:(1)与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),)0(12222>>=+b a by a x 则有。

02020=+k by a x (2)与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则)0,0(12222>>=-b a by a x 有02020=-k by a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线。

过A (2,1)的直线与双曲线交于两点及,求线段的中点P 的轨迹方程。

(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点、构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(x,y)为椭圆上任一点,,为焦点,,。

(1)求证离心率;βαβαsin sin )sin(++=e (2)求的最值。

(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA⊥OB,求p 关于t 的函数f(t)的表达式。

(4)圆锥曲线的相关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。

<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。

<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。

圆锥曲线解题技巧和方法综合

圆锥曲线解题技巧和方法综合

圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为,,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。

如:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。

(2))0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有0220=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线。

过A (2,1)的直线与双曲线交于两点及,求线段的中点P 的轨迹方程。

(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点、构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(x,y)为椭圆上任一点,,为焦点,,。

(1)求证离心率βαβαsin sin )sin(++=e ;(2)求的最值。

(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

(4)圆锥曲线的相关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。

<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。

<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。

圆锥曲线解题技巧归纳

圆锥曲线解题技巧归纳

圆锥曲线解题技巧归纳1.球面坐标系与圆锥曲线:在球面坐标系中,圆锥曲线可以看作是一个直线在球面上的投影。

通过利用球面坐标系的相关性质,可以简化圆锥曲线的解题过程。

2.圆锥曲线的标准方程:圆锥曲线的标准方程是通过平移和旋转的方式将一般方程转化成一种特殊形式的方程。

通过将一般方程转化成标准方程,可以方便地研究圆锥曲线的性质。

3.圆锥曲线的分类与特点:根据圆锥曲线的二次项和四次项的系数可以将圆锥曲线分为椭圆、双曲线和抛物线三类。

每一类圆锥曲线都有其特有的性质和特点,熟悉这些特点可以帮助我们更好地解题。

4.圆锥曲线的参数方程:圆锥曲线的参数方程是通过引入一个参数来表示曲线上的点的坐标。

通过使用参数方程,可以简化圆锥曲线的分析和解题过程。

5.圆锥曲线的对称性:圆锥曲线具有多种对称性,包括关于坐标轴、原点和直线的对称性。

利用这些对称性可以简化问题的分析和解题过程。

6.圆锥曲线的焦点与准线:焦点和准线是圆锥曲线的两个重要特点。

了解焦点和准线的性质可以帮助我们理解圆锥曲线的形状和性质,并解决相关的问题。

7.圆锥曲线的参数化方程:圆锥曲线的参数化方程是通过引入一个或多个参数来表示曲线上的点的坐标。

通过使用参数化方程,可以更灵活地处理圆锥曲线上的点和相关的问题。

8.圆锥曲线的极坐标方程:圆锥曲线的极坐标方程是通过将直角坐标系中的变量用极坐标表示来得到的。

利用极坐标方程,可以方便地研究圆锥曲线的性质,并解决相关的问题。

9.圆锥曲线的参数方程与极坐标方程的转换:圆锥曲线的参数方程和极坐标方程可以相互转换。

通过掌握参数方程和极坐标方程之间的转换关系,可以灵活地处理圆锥曲线的问题,并得到更加深入的理解。

圆锥曲线解题技巧和方法综合全

圆锥曲线解题技巧和方法综合全

圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。

如:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k by a x 。

(2))0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。

过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。

(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(x,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。

(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。

(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。

y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

解圆锥曲线问题常用的八种方法与七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型一、解圆锥曲线问题常用的八种方法:1.直线的交点法:利用直线与圆锥曲线的交点来解题,求出直线与曲线的交点坐标,从而得到问题的解。

该方法适用于直线与圆锥曲线有交点的情况。

2.过顶点的直线法:通过过顶点的直线与圆锥曲线的交点性质来解题。

一般情况下,过顶点的直线与圆锥曲线有两个交点,利用这两个交点可以得到问题的解。

3.平行线法:对于平行线与圆锥曲线的交点性质进行分析,可以得到问题的解。

一般情况下,平行线与圆锥曲线有两个交点,通过求解这两个交点可以得到问题的解。

4.切线法:利用切线与圆锥曲线的交点性质来解题。

一般情况下,切线与圆锥曲线有一个交点,通过求解这个交点可以得到问题的解。

5.对称法:通过对称性质,将圆锥曲线转化为标准形式或特殊形式,从而简化问题的求解过程。

6.几何平均法:利用几何平均的性质,将圆锥曲线的方程进行变换,从而得到问题的解。

7.参数方程法:通过给定的参数方程,求解参数,从而得到与曲线相关的问题的解。

8.解析几何法:通过解析几何的方法,将问题抽象为代数方程,从而求解问题。

二、解圆锥曲线问题常规题型:1.已知曲线方程,求曲线的性质:如给定椭圆的方程,求椭圆的长短轴、焦点、离心率等。

2.已知曲线性质,求曲线方程:如给定一个椭圆的长短轴、焦点、离心率等,求椭圆的方程。

3.已知曲线方程和一个点,判断该点是否在曲线上:如给定一个椭圆的方程和一个点P,判断点P是否在椭圆上。

4.已知曲线方程和一个直线,判断该直线是否与曲线有交点:如给定一个椭圆的方程和一条直线L,判断直线L是否与椭圆有交点。

5.已知曲线方程和一个点,求该点到曲线的距离:如给定一个椭圆的方程和一个点P,求点P到椭圆的距离。

6.已知曲线方程和一个点,求该点在曲线上的切线方程:如给定一个椭圆的方程和一个点P,求点P在椭圆上的切线方程。

7.已知曲线方程和两个点,求该曲线上两点之间的弧长:如给定一个椭圆的方程和两个点A、B,求椭圆上从点A到点B的弧长。

圆锥曲线解题技巧和方法综合

圆锥曲线解题技巧和方法综合

圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。

如:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。

(2))0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。

过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。

(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(x,y)为椭圆x a y b22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。

(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。

(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。

y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

(完整版)高中数学圆锥曲线解题技巧总结,推荐文档

(完整版)高中数学圆锥曲线解题技巧总结,推荐文档

AQP BFH2 2 2 21、定义法解圆锥曲线问题的常用方法大全(1) 椭圆有两种定义。

第一定义中,r 1+r 2=2a 。

第二定义中,r 1=ed 1r 2=ed 2。

(2) 双曲线有两种定义。

第一定义中, r 1- r 2 = 2a ,当 r 1>r 2 时,注意 r 2 的最小值为 c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。

(3) 抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题, 最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。

设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦 AB 中点为 M(x 0,y 0),将点 A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关 系,这是一种常见的“设而不求”法,具体有:x 2 y 2x y (1) + = 1(a > b > 0) 与直线相交于 A 、B ,设弦 AB 中点为 M(x 0,y 0),则有 0 + 0 k = 0 。

a 2b 2 a 2 b 2(2) x 2 - y 2 = 1(a > 0, b > 0) 与直线 l 相交于 A 、B ,设弦 AB 中点为 M(x ,y )则有 x y - 0 = 00 00 k a 2 b 2 a 2 b 2(3) y 2=2px (p>0)与直线 l 相交于 A 、B 设弦 AB 中点为 M(x 0,y 0),则有 2y 0k=2p,即 y 0k=p.【典型例题】例 1、(1)抛物线 C:y 2=4x 上一点 P 到点 A(3,4 )与到准线的距离和最小,则点 P 的坐标为(2)抛物线 C: y 2=4x 上一点 Q 到点 B(4,1)与到焦点 F 的距离和最小,则点 Q 的坐标为 。

圆锥曲线解题技巧和方法综合

圆锥曲线解题技巧和方法综合

圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为,,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。

如:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。

(2))0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有0220=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线。

过A (2,1)的直线与双曲线交于两点及,求线段的中点P 的轨迹方程。

(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点、构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(x,y)为椭圆上任一点,,为焦点,,。

(1)求证离心率βαβαsin sin )sin(++=e ;(2)求的最值。

(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

(4)圆锥曲线的相关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。

<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。

<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。

圆锥曲线解题技巧

圆锥曲线解题技巧

圆锥曲线解题技巧圆锥曲线是代数几何学中的重要概念,它包括了直线、圆、椭圆、双曲线和抛物线。

在实际问题中,如果能够利用圆锥曲线解题,可以帮助我们更好地理解问题并处理它们。

在本文中,我们将介绍一些圆锥曲线解题的技巧。

一、圆锥曲线的基本方程在解题的时候,我们需要掌握圆锥曲线的基本方程。

圆锥曲线的方程通常是二次方程,它们可以写成以下形式:(1)直线的方程:Ax + By + C = 0(2)圆的方程:(x - h)2 + (y - k)2 = r2(3)椭圆的方程:(x - h)2/a2 + (y - k)2/b2 = 1(4)双曲线的方程:(x - h)2/a2 - (y - k)2/b2 = 1 或(y -k)2/b2 - (x - h)2/a2 = 1(5)抛物线的方程:y = ax2 + bx + c 或x = ay2 + by + c其中,(h,k)是圆心的坐标,r 是圆的半径,a 和 b 是椭圆的坐标轴长度,a 和 b 是双曲线的距离,a 是抛物线的焦距,b 是抛物线的对称轴。

上述方程是我们在解题中常用的方程。

二、解题步骤在使用圆锥曲线解题的时候,我们需要遵循以下步骤:(1)确定题目要求解的对象是哪一种圆锥曲线,例如是直线、圆、椭圆、双曲线还是抛物线。

(2)根据题目给定的信息,写出方程。

(3)对方程进行分析,求解未知量,确定圆心、坐标轴长度、焦距等参数。

(4)根据已知信息和已解出的参数,给出具体结果。

三、解题技巧1. 判断圆锥曲线类型在面对一个问题时,我们首先要判断这个问题要求解的对象是哪一种圆锥曲线,然后才能选择正确的方程进行分析求解。

例如,如果问题中给定了一个圆心以及一个点,我们可以求这个点到圆心的距离,如果这个距离和圆的半径相等,那么这个问题就是关于圆的;如果这个距离大于或小于圆的半径,那么这个问题就是关于椭圆或者双曲线的。

同样的,当我们遇到一个问题,知道了一条直线以及一个点,我们可以利用这个信息判断这个问题是关于直线的。

圆锥曲线解题技巧和方法综合

圆锥曲线解题技巧和方法综合

圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为,,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。

如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。

(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 典型例题 给定双曲线。

过A (2,1)的直线与双曲线交于两点及,求线段的中点P 的轨迹方程。

(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点、构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(x,y)为椭圆上任一点,,为焦点,,。

(1)求证离心率βαβαsin sin )sin(++=e ;(2)求的最值。

(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

(4)圆锥曲线的相关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。

<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。

<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。

圆锥曲线解题技巧和方法综合

圆锥曲线解题技巧和方法综合

圆锥曲线的解题技巧一、常规七大题型: (1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为,,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。

如:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。

(2))0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线。

过A (2,1)的直线与双曲线交于两点 及,求线段的中点P 的轨迹方程。

(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点、构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(x,y)为椭圆上任一点,,为焦点,,。

(1)求证离心率βαβαsin sin )sin(++=e ;(2)求的最值。

(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

(4)圆锥曲线的相关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。

<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。

<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。

圆锥曲线大题解题技巧

圆锥曲线大题解题技巧

圆锥曲线大题解题技巧圆锥曲线是数学中一个重要的几何分支,它包括椭圆、双曲线和抛物线等曲线。

在解决圆锥曲线相关的大题时,掌握一些解题技巧是非常有帮助的。

以下是一些常见的解题技巧:1. 熟悉基本定义和性质:-掌握圆锥曲线的标准方程形式,了解它们的焦点、准线、偏心率等基本性质。

-理解直线与圆锥曲线的位置关系,包括相切、相交和相离。

2. 利用坐标法:-将圆锥曲线问题转化为代数问题,通过建立坐标系,将曲线方程转化为标准形式。

-利用坐标法求解直线与圆锥曲线的交点、弦长、面积等。

3.应用韦达定理:-韦达定理在解决圆锥曲线问题时非常有用,特别是在求解直线与圆锥曲线的交点问题时。

-利用韦达定理可以快速找到交点的坐标。

4. 利用参数方程:-对于某些复杂的圆锥曲线问题,可以尝试使用参数方程来简化问题。

-参数方程可以帮助我们更好地理解曲线的形状和性质。

5. 利用极坐标:-在处理与极点和极线相关的问题时,极坐标方法可以提供简洁的解决方案。

-极坐标方法特别适用于求解与焦点、准线相关的问题。

6. 利用图形工具:-利用几何画板等图形工具可以帮助我们直观地理解圆锥曲线的性质和问题。

-图形工具可以帮助我们验证答案的正确性。

7. 注意特殊情况:-在解决圆锥曲线问题时,要注意特殊点的存在,如顶点、焦点、准线等。

-特殊点的性质往往在解题中起到关键作用。

8. 练习和总结:-定期练习圆锥曲线相关的题目,总结解题方法和技巧。

-学习并掌握常见的解题模式和思路。

通过以上技巧的运用,可以大大提高解决圆锥曲线大题的效率和准确性。

重要的是要理解每个技巧背后的数学原理,这样才能在遇到不同问题时灵活运用。

高中数学圆锥曲线解题方法归纳

高中数学圆锥曲线解题方法归纳

高中数学圆锥曲线解题方法归纳圆锥曲线是高中数学中的一个重要部分,包括椭圆、双曲线和抛物线。

这些曲线通常通过平面截取圆锥的不同部分来形成。

为了更好地理解和解决这类问题,我们需要掌握一些基本的解题方法。

1. 定义法:根据圆锥曲线的定义来解题。

例如,椭圆和双曲线的定义是两个焦点到曲线上任一点的距离之和或差为一个常数。

抛物线的定义是一个点到固定点(焦点)和固定直线(准线)的距离相等。

2. 参数方程法:对于一些复杂的圆锥曲线问题,我们可以使用参数方程来表示曲线上点的坐标。

这样可以将几何问题转化为代数问题,便于计算。

3. 切线法:对于一些与圆锥曲线切线相关的问题,我们可以使用切线性质来解题。

例如,切线到曲线上任一点的距离在切点处达到最小值。

4. 极坐标法:将问题转化为极坐标形式,利用极坐标的性质来解题。

例如,在极坐标下,距离和角度的关系可以简化为数学表达式。

5. 几何法:利用圆锥曲线的几何性质来解题。

例如,椭圆的焦点到椭圆中心的距离等于椭圆上任一点到椭圆中心的距离减去椭圆半径。

6. 代数法:通过代数运算来解题。

例如,解联立方程来找到满足多个条件的点的坐标。

7. 数形结合法:结合图形和数学表达式来解题。

通过观察图形,可以更好地理解问题的本质,从而找到合适的解题方法。

以上是高中数学中圆锥曲线解题的一些基本方法。

需要注意的是,每种方法都有其适用的范围和局限性,需要根据具体问题选择合适的方法。

同时,这些方法也不是孤立的,有时需要综合运用多种方法来解决一个复杂的问题。

通过大量的练习和总结,我们可以提高解决圆锥曲线问题的能力。

圆锥曲线解题技巧

圆锥曲线解题技巧

圆锥曲线解题技巧
解题技巧 for 圆锥曲线包括以下几个方面:
1. 了解基本定义:圆锥曲线包括圆、椭圆、抛物线和双曲线。

熟悉每种曲线的定义、特征方程和性质。

2. 观察方程形式:观察给定的方程形式,确定曲线的类型。

每种类型的曲线有特定的方程形式。

3. 找出关键参数:找出曲线方程中的关键参数,如圆心坐标、半径、焦点、准线等。

这些参数可以帮助确定曲线的
位置、形状和大小。

4. 利用性质解题:利用圆锥曲线的性质解题。

例如,椭圆
的焦点到准线的距离之和等于椭圆的长轴长度;抛物线的
对称轴平行于焦点之连线等。

根据不同的问题,选择合适
的性质来解题。

5. 数学工具:利用数学工具来解题,如坐标系、直线方程、二次方程、参数方程等。

根据具体问题的要求,灵活选择
和运用工具。

6. 运用变换:对于复杂的问题,可以考虑将坐标系进行平移、旋转或缩放等变换,以简化问题的解决过程。

7. 综合分析:在解题过程中,进行综合分析,考虑所有已
知条件和约束条件,找出合适的解决方案。

圆锥曲线解题的万能套路

圆锥曲线解题的万能套路

圆锥曲线解题的万能套路可以归纳为以下步骤:
1. 确定焦点位置:根据题目给定的条件,确定圆锥曲线的焦点位置,是位于X 轴上还是Y轴上。

2. 设而不求:设定圆锥曲线上的两点坐标,然后根据点在曲线上的性质,列出方程,但不求解。

3. 点差法:如果题目涉及弦的中点问题,可以使用点差法。

将两个点在曲线上的坐标分别带入方程,然后作差,化简后可以求得中点的坐标。

4. 联立方程:将题目给定的图形方程与圆锥曲线方程联立,形成一元二次方程组。

5. 使用韦达定理:利用韦达定理,将方程组的解用函数的k表示出来。

6. 求切线方程:如果需要求切线方程,可以通过图形的一个切点代入,求得切线斜率,进而得到切线方程。

7. 弦长公式:如果需要求弦长,可以使用弦长公式,将直线方程与图形方程联立,化简后得到一元二次不等式,通过韦达定理求解。

8. 求最值:根据题目给定的条件,利用函数关系或几何关系求出最值。

9. 求轨迹方程:根据题目给定的条件,利用待定系数法或定义法求出轨迹方程。

以上步骤可以作为圆锥曲线解题的万能套路,但具体解题过程中还需根据题目的具体情况进行灵活应用。

圆锥曲线解题技巧综合运用不同解题方法

圆锥曲线解题技巧综合运用不同解题方法

圆锥曲线解题技巧综合运用不同解题方法圆锥曲线是高中数学中的一个重要内容,经常在各类考试中出现。

掌握圆锥曲线的解题技巧,可以帮助我们高效解答题目。

本文将介绍几种常见的圆锥曲线解题方法,并综合运用它们来解决各类题目。

一、直接法直接法是最常用的解题方法之一,它适用于给定了圆锥曲线的方程,要求我们找出特定点或确定一些性质的情况。

以二次曲线为例,我们可以通过将方程标准化,然后研究其各项系数的符号、平方项的系数与常数项的关系等来推导出特定点的坐标、曲线的类型等信息。

二、参数法参数法常用于求解曲线上的点的坐标或曲线的方程。

当我们遇到较复杂的曲线方程,难以直接分析时,可以通过引入参数的方法,将曲线的方程转化为参数方程进行处理。

例如,对于椭圆和双曲线,我们可以通过引入参数来表示曲线上的点的坐标。

设参数为θ,则椭圆的参数方程为x=acosθ,y=bsinθ;双曲线的参数方程为x=asecθ,y=btanθ。

通过选取不同的参数值,我们可以得到曲线上的不同点,进而求解问题。

三、几何法几何法是通过几何图形的性质来解决问题的方法。

在圆锥曲线的学习过程中,我们会学到各种曲线的几何性质,如椭圆的离心率、焦点定理、双曲线的渐近线等。

利用这些性质,我们可以通过绘制几何图形,运用几何关系来解决问题。

四、导数法导数法常用于求解曲线的切线、法线以及曲率等问题。

对于给定的曲线方程,我们可以通过求导数来得到曲线的斜率,从而得到切线或法线的方程。

同时,导数还可以帮助我们研究曲线的凸凹性、极值等性质,进一步推导出曲线的特点。

五、解析法解析法是一种基于代数分析的方法,适用于较复杂的曲线方程求解。

通过对方程进行代数运算、化简等操作,我们可以得到曲线的一些基本性质或特定点的坐标。

在解析法中,我们常用的技巧包括配方法、消元法、代入法等,根据方程的特点和题目要求来灵活选择合适的方法。

此外,还需要注意方程中的各项系数和常数项之间的关系,以便得到准确的解答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线:概念、方法、题型、及技巧总结1.圆锥曲线的定义:(1)定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。

若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

如 (1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 A .421=+PF PF B .621=+PF PF C .1021=+PF PF D .122221=+PF PF(2)方程8=表示的曲线是_____2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+by a x (0a b >>)⇔{cos sin x a y b ϕϕ==(参数方程,其中ϕ为参数),焦点在y 轴上时2222bx a y +=1(0a b >>)。

方程22Ax By C +=表示椭圆的充要条件是什么?如(1)已知方程12322=-++ky k x 表示椭圆,则k 的取值范围为____(2)若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是___(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222bx a y -=1(0,0a b >>)。

方程22Ax By C +=表示双曲线的充要条件是什么?如(1)双曲线的离心率等于25,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______(2)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C过点)10,4(-P ,则C 的方程为_______(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。

3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆:由x 2,y2分母的大小决定,焦点在分母大的坐标轴上。

如已知方程12122=-+-my m x 表示焦点在y 轴上的椭圆,则m 的取值范围是__(2)双曲线:由x 2,y 2项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。

特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F 1,F 2的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,a b ,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向; (2)在椭圆中,a 最大,222a b c =+,在双曲线中,c 最大,222c a b =+。

4.圆锥曲线的几何性质:(1)椭圆(以12222=+by a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④离心率:ce a=,椭圆⇔01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。

如(1)若椭圆1522=+m y x 的离心率510=e ,则m 的值是__ (2)以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,则椭圆长轴的最小值为__(2)双曲线(以22221x y a b-=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为22,0x y k k -=≠;④离心率:ce a=,双曲线⇔1e >,等轴双曲线⇔e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:by x a=±。

如 (1)双曲线的渐近线方程是023=±y x ,则该双曲线的离心率等于______(2)双曲线221ax by -=:a b =(3)设双曲线12222=-by a x (a>0,b>0)中,离心率e ∈[2,2],则两条渐近线夹角θ的取值范围是________(3)抛物线(以22(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2p,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);④准线:一条准线2p x =-; ⑤离心率:ce a=,抛物线⇔1e =。

如设R a a ∈≠,0,则抛物线24ax y =的焦点坐标为________5、点00(,)P x y 和椭圆12222=+by a x (0a b >>)的关系:(1)点00(,)P x y 在椭圆外⇔2200221x y a b +>;(2)点00(,)P x y 在椭圆上⇔220220b y a x +=1;(3)点00(,)P x y 在椭圆内⇔2200221x y a b+<6.直线与圆锥曲线的位置关系:(1)相交:0∆>⇔直线与椭圆相交; 0∆>⇒直线与双曲线相交,但直线与双曲线相交不一定有0∆>,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0∆>是直线与双曲线相交的充分条件,但不是必要条件;0∆>⇒直线与抛物线相交,但直线与抛物线相交不一定有0∆>,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故0∆>也仅是直线与抛物线相交的充分条件,但不是必要条件。

如(1)若直线y=kx+2与双曲线x 2-y 2=6的右支有两个不同的交点,则k 的取值范围是_____(2)直线y ―kx ―1=0与椭圆2215x y m+=恒有公共点,则m 的取值范围是_______ (3)过双曲线12122=-y x 的右焦点直线交双曲线于A 、B 两点,若│AB ︱=4,则这样的直线有_____条(2)相切:0∆=⇔直线与椭圆相切;0∆=⇔直线与双曲线相切;0∆=⇔直线与抛物线相切;(3)相离:0∆<⇔直线与椭圆相离;0∆<⇔直线与双曲线相离;0∆<⇔直线与抛物线相离。

特别提醒:(1)直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:相切和相交。

如果直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点;(2)过双曲线2222by a x -=1外一点00(,)P x y 的直线与双曲线只有一个公共点的情况如下:①P 点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;②P 点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;③P 在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;④P 为原点时不存在这样的直线;(3)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线。

如(1)过点)4,2(作直线与抛物线x y 82=只有一个公共点,这样的直线有______; (2)过点(0,2)与双曲线116922=-y x 有且仅有一个公共点的直线的斜率的取值范围为______;(3)过双曲线1222=-y x 的右焦点作直线l 交双曲线于A 、B 两点,若=AB 4,则满足条件的直线l 有____条。

(4)对于抛物线C :x y 42=,我们称满足0204x y <的点),(00y x M 在抛物线的内部,若点),(00y x M 在抛物线的内部,则直线l :)(200x x y y +=与抛物线C 的位置关系是_______;(5)过抛物线x y 42=的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则=+qp 11_______; (6)设双曲线191622=-y x 的右焦点为F ,右准线为l ,设某直线m 交其左支、右支和右准线分别于R Q P ,,,则PFR ∠和QFR ∠的大小关系为___________(填大于、小于或等于);(7)求椭圆284722=+y x 上的点到直线01623=--y x 的最短距离 ; (8)直线1+=ax y 与双曲线1322=-y x 交于A 、B 两点。

①当a 为何值时,A 、B 分别在双曲线的两支上?②当a 为何值时,以AB 为直径的圆过坐标原点?7、焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题:常利用定义和正弦、余弦定理求解。

设椭圆或双曲线上的一点00(,)P x y 到两焦点12,F F 的距离分别为12,r r ,焦点12F PF ∆的面积为S ,则在椭圆12222=+b y a x 中, ①θ=)12arccos(212-r r b ,且当12r r =即P 为短轴端点时,θ最大为θmax =222arccos a c b -;②20tan ||2S b c y θ==,当0||y b =即P 为短轴端点时,max S 的最大值为bc ;对于双曲线22221x y a b-=的焦点三角形有:①⎪⎪⎭⎫ ⎝⎛-=21221arccos r r b θ;②2cot sin 21221θθb r r S ==。

如 (1)短轴长为5,离心率32=e 的椭圆的两焦点为1F 、2F ,过1F 作直线交椭圆于A 、B 两点,则2ABF ∆的周长为________;(2)设P 是等轴双曲线)0(222>=-a a y x 右支上一点,F 1、F 2是左右焦点,若0212=⋅F F PF ,|PF 1|=6,则该双曲线的方程为 ;(3)椭圆22194x y +=的焦点为F 1、F 2,点P 为椭圆上的动点,当PF 2→ ·PF 1→ <0时,点P 的横坐标的取值范围是;(4)双曲线的虚轴长为4,离心率e =26,F 1、F 2是它的左右焦点,若过F 1的直线与双曲线的左支交于A 、B 两点,且AB 是2AF 与2BF 等差中项,则AB =__________;(5)已知双曲线的离心率为2,F 1、F 2是左右焦点,P 为双曲线上一点,且6021=∠PF F ,31221=∆F PF S .求该双曲线的标准方程 ;8、抛物线中与焦点弦有关的一些几何图形的性质:(1)以过焦点的弦为直径的圆和准线相切;(2)设AB 为焦点弦, M 为准线与x 轴的交点,则∠AMF =∠BMF ;(3)设AB 为焦点弦,A 、B 在准线上的射影分别为A 1,B 1,若P 为A 1B 1的中点,则PA ⊥PB ;(4)若AO 的延长线交准线于C ,则BC 平行于x 轴,反之,若过B 点平行于x 轴的直线交准线于C点,则A ,O ,C 三点共线。

相关文档
最新文档