一次函数A

合集下载

一次函数的定义和性质

一次函数的定义和性质

一次函数的定义和性质一次函数是指形如y=ax+b的函数,其中a和b为常数,且a不等于零。

它也被称为线性函数,因为它的图像是一条直线。

一次函数是数学中的基础概念之一,具有一些重要的性质和应用。

一. 定义一次函数是指以x为自变量,以y为因变量的函数,其表达式为y=ax+b,其中a和b为实数,且a不等于零。

其中,a称为一次项的系数,b称为常数项。

当x取不同的值时,y的取值也相应地发生变化,这种对应关系可以通过一条直线来表示。

二. 图像特征1. 直线特征:一次函数的图像总是一条直线,因此它具有线性特征;2. 斜率特征:一次函数的斜率表示为常数a,描述了图像在x轴正方向上的倾斜程度。

斜率为正时,表示图像向上倾斜;斜率为负时,表示图像向下倾斜;3. 截距特征:一次函数的截距表示为常数b,描述了图像与y轴的交点位置。

截距为正时,表示图像与y轴正半轴交于正值点;截距为负时,表示图像与y轴负半轴交于负值点。

三. 性质1. 单调性:一次函数的单调性由斜率的正负决定。

当a大于零时,函数单调递增;当a小于零时,函数单调递减;2. 定义域和值域:一次函数的定义域为所有实数;值域为所有实数,即函数的取值范围没有限制;3. 零点:一次函数的零点即为函数的根,表示当x取某个值时,函数的值等于零。

对于一次函数,当且仅当x=-b/a时,函数的值为零;4. 最值:一次函数没有最大值和最小值,因为它的图像是一条直线;5. 平移:通过给定一次函数的表达式,可以进行平移操作来得到新的函数。

平移操作可以在x轴和y轴上分别进行,通过改变常数a和b的值,可以使图像在平面上发生移动。

四. 应用一次函数在现实生活中有着广泛的应用,例如:1. 财务收入:一些经济指标和统计数据的变化趋势可以通过一次函数来表示,如年度收入的增长率;2. 运动模型:一次函数可以表示一些常见的运动模型,如匀速运动的位移和速度关系;3. 经济学模型:在经济学中,一次函数可以用来表示供求关系、成本和收益关系等;4. 工程预测:一次函数可以用来进行工程测量、预测物理量的变化趋势等。

数学一次函数知识点总结

数学一次函数知识点总结

数学一次函数知识点总结一次函数也叫线性函数,是指函数的最高次数为1的函数。

一次函数的一般形式为:f(x) = kx + b,其中k和b为常数。

1. 斜率:斜率是一次函数的一个重要属性,表示函数曲线的倾斜程度。

对于一次函数f(x) = kx + b,k即为斜率。

当k大于0时,函数递增;当k小于0时,函数递减;当k等于0时,函数水平。

2. 截距:截距是一次函数的另一个重要属性,表示函数曲线与坐标轴的交点。

对于一次函数f(x) = kx + b,b即为y轴截距,也是函数曲线与y轴的交点的纵坐标。

3. 零点:一次函数的零点是指函数曲线与x轴的交点。

对于一次函数f(x) = kx + b,可以通过x = -b/k计算出零点。

4. 图像特征:一次函数的图像是一条直线。

当斜率k大于0时,图像从左下方向右上方倾斜;当斜率k小于0时,图像从左上方向右下方倾斜;当斜率k等于0时,图像为一条水平直线。

5. 平行与垂直性:如果两个一次函数的斜率相等,则它们是平行的;如果两个一次函数的斜率互为倒数(即乘积等于-1),则它们是垂直的。

6. 函数的增减性:一次函数的增减性由斜率决定。

当斜率k大于0时,函数递增;当斜率k小于0时,函数递减;当斜率k等于0时,函数保持不变。

7. 解一次方程:一次函数可以用来解决一次方程的问题。

例如,给定一个一次函数f(x) = kx + b,若要求出f(x) = 0的解,则可将f(x) = kx + b = 0转化为kx = -b,再求出x的值。

总结起来,一次函数的关键是斜率和截距,通过它们可以确定函数的图像和特征。

一次函数可用于解决一次方程的问题,并能与其他一次函数进行比较和判断相互关系。

一次函数公式

一次函数公式

一次函数公式一次函数,又称线性函数,是函数的一种基本形式。

它的公式可以表示为y = kx + b,其中k和b是实数常数,x和y分别表示自变量和因变量。

本文将围绕一次函数公式展开讨论,介绍其基本概念、性质以及应用。

一、一次函数的基本概念一次函数是数学中最简单的函数类型之一,其公式形式为y = kx + b。

其中,k表示斜率,决定了直线的倾斜程度;b表示截距,决定了直线与y轴的交点位置。

一次函数的图像通常为一条直线。

二、一次函数的性质1. 斜率的意义:斜率k代表了变化率,即y值对x值的增量比。

当k为正数时,随着x的增加,y也增加;当k为负数时,随着x的增加,y减小;当k为0时,表明y值保持恒定,即直线平行于x轴。

2. 截距的意义:截距b表示了当x为0时,函数图像与y轴的交点位置。

若b为正数,则图像在y轴上方与之相交;若b为负数,则图像在y轴下方与之相交。

3. 零点的求解:一次函数的零点是指函数取值为0的点,即y = 0时对应的x值。

要求解零点,可以令y = 0,并代入一次函数的公式求解。

三、一次函数的应用1. 直线方程:一次函数的公式可以用来表示直线的方程。

通过给定的斜率和截距,可以方便地确定直线的方程式,进而研究直线的性质和特征。

2. 经济学模型:在经济学领域,一次函数常常用来描述供求关系、价格变动和市场需求等问题。

通过建立一次函数模型,可以从数学角度分析和解决经济学中的实际问题。

3. 运动模型:在物理学和机械工程中,一次函数可以用来描述运动的速度、加速度以及位置与时间的关系。

通过解析一次函数的图像,可以获得物体的运动规律和特征。

4. 统计学应用:在统计学中,一次函数可以用来拟合实验数据,从而得到最佳拟合直线。

拟合直线可以通过最小二乘法得到,进而用于描述和分析数据的相关性及预测。

总结:一次函数公式y = kx + b是一种基本的数学表示形式。

它具有一些重要的性质和应用,如斜率的意义、截距的概念以及零点的求解。

一次函数的知识点

一次函数的知识点

一次函数的知识点一、函数基本概念一次函数的定义:形如y = kx + b(其中k和b是常数,且k ≠ 0)的函数称为一次函数。

二、一次函数的性质1、斜率(k):当k > 0时,函数图像从左到右上升,即函数是增函数。

当k < 0时,函数图像从左到右下降,即函数是减函数。

斜率k表示函数图像与x轴正方向的夹角大小。

2、截距(b):当x = 0时,y = b,即点(0, b)为一次函数与y轴的交点,b称为y轴截距。

3、图象:一次函数的图象是一条直线。

当k > 0时,直线从左到右上升;当k < 0时,直线从左到右下降。

三、一次函数的表达式1、点斜式:y - y1 = k(x - x1),其中(x1, y1)是直线上的一点。

2、斜截式:y = kx + b,其中k是斜率,b是y轴截距。

3、两点式:当已知直线上的两点(x1, y1)和(x2, y2)时,可以使用两点式(y - y1) / (y2 - y1) = (x - x1) / (x2 - x1)。

四、一次函数的应用1、线性方程:一次函数常用于表示线性方程,如ax + by = c(其中a和b不全为0)可以转化为斜截式y = (-a/b)x + (c/b)。

2、实际问题建模:一次函数常用于建模实际问题中的线性关系,如物价增长、距离速度时间的关系等。

五、一次函数的平移和对称1、平移:2、上下平移:上加下减,即y = kx + b向上平移m个单位变为y = kx + (b + m),向下平移m个单位变为y = kx + (b - m)。

3、左右平移:左加右减,即y = kx + b向左平移m个单位变为y = k(x + m) + b,向右平移m个单位变为y = k(x - m) + b。

4、对称:一次函数图像关于x轴对称时,其解析式中的y变为-y,即y = -kx - b。

一次函数图像关于y轴对称时,其解析式中的x变为-x,即y = -kx + b。

一次函数基础知识总结

一次函数基础知识总结

一次函数基础知识总结
一次函数也被称为线性函数,是数学中的基础概念之一。

本文将总结一次函数的基础知识。

什么是一次函数
一次函数是指形如 $y = mx + c$ 的函数,其中 $x$ 和 $y$ 分别表示自变量和因变量,$m$ 和 $c$ 分别表示斜率和截距。

斜率和截距
一次函数的斜率 $m$ 表示函数图像上每单位横向变化所对应的纵向变化。

斜率可正可负,正斜率表示图像向上倾斜,负斜率表示图像向下倾斜。

一次函数的截距 $c$ 表示函数图像与纵轴($x$ 轴)的交点,也可称为 $y$ 轴截距。

函数图像
一次函数的图像是一条直线,其斜率和截距决定了直线的方向和位置。

- 当斜率为正时,直线向上倾斜;
- 当斜率为负时,直线向下倾斜;
- 当斜率为零时,直线平行于横轴。

截距决定了直线与纵轴的交点位置。

函数的图像特征
一次函数的图像具有以下特征:
- 当斜率为正时,函数的图像从左下方向上右上运动;
- 当斜率为负时,函数的图像从左上方向下右下运动;
- 当斜率为零时,函数的图像平行于横轴。

一次函数的应用
一次函数在实际生活中有广泛的应用。

例如:
- 经济学中,一次函数可以用于描述价格和需求、供应之间的关系;
- 物理学中,一次函数可以用于描述速度和时间、位移之间的关系;
- 工程学中,一次函数可以用于描述成本和产量之间的关系。

总结
一次函数是数学中的基础概念,具有重要的应用价值。

本文对一次函数的定义、斜率、截距以及图像特征进行了总结,并介绍了一次函数在实际生活中的应用领域。

参考文献:。

一次函数及其应用

一次函数及其应用

一次函数及其应用一次函数是数学中的一种基本函数形式,也称为线性函数。

它的形式可以表示为 y = ax + b,其中 a 和 b 为常数,x 和 y 分别表示自变量和因变量。

一次函数在数学和实际生活中都有广泛的应用,本文将探讨一次函数的定义、性质以及它在经济学和物理学中的应用。

一、一次函数的定义和性质一次函数是一种简单的函数形式,它的图像是一条直线。

在一次函数中,自变量 x 的一次幂为 1,因此它的图像是一条斜率为常数的直线。

一次函数的定义域和值域都是实数集。

一次函数的性质主要包括斜率和截距。

斜率表示了直线的倾斜程度,它等于函数的系数 a。

当 a 大于 0 时,函数图像从左下方向右上方倾斜;当 a 小于 0 时,函数图像从左上方向右下方倾斜;当 a 等于 0 时,函数图像为水平直线。

截距表示了直线与 y 轴的交点位置,它等于函数的常数项 b。

当 b 大于 0 时,函数图像与 y 轴的交点在 y 轴的正半轴上;当 b 小于 0 时,函数图像与 y 轴的交点在 y 轴的负半轴上;当 b 等于 0 时,函数图像与 y 轴相交于原点。

二、一次函数在经济学中的应用一次函数在经济学中有着广泛的应用,特别是在供求关系和成本收益分析中。

以下将以供求关系为例,介绍一次函数在经济学中的应用。

供求关系是经济学中的重要概念,它描述了商品市场上供给量和需求量之间的关系。

一次函数可以很好地描述供求关系。

假设某种商品的供给量和价格之间存在线性关系,可以表示为 S = aP + b,其中 S 表示供给量,P 表示价格,a 和 b 表示常数。

同样,需求量和价格之间的关系也可以用一次函数来表示,表示为 D = cP + d,其中 D 表示需求量,c 和 d 表示常数。

通过求解供给函数和需求函数的交点,可以得到市场均衡的价格和数量。

假设市场均衡的价格为 P*,数量为 Q*,则有 S = D,即 aP* + b = cP* + d。

通过解这个方程可以求得 P* 的值,进而可以计算出 Q* 的值。

一次函数的知识点

一次函数的知识点

一次函数的知识点数学中,一次函数是指形如 y = kx + b 的函数,其中 k 和 b 均为常数。

当 k 不等于零时,一次函数呈现出线性关系,即直线图像。

因此,一次函数也称为线性函数。

一次函数是初中数学和高中数学中最基本的内容之一,本文将介绍一些有关一次函数的知识点。

一、一次函数的基本形式一次函数的基本形式为 y = kx + b,其中 k 表示斜率,b 表示截距。

当 x 从 0 开始增加时,y 的变化率为 k,即 y 的变化量与 x 的变化量之比为 k。

当 x = 0 时,y 的值为 b,即 y 轴截距。

二、一次函数的图像一次函数的图像是一条直线,它可以用各种方法来绘制。

其中最简单的方法是使用 y 轴截距 b 和斜率 k。

首先,在坐标系中绘制y 轴和 x 轴,然后将点 (0, b) 标记在 y 轴上。

接下来,使用斜率 k 确定直线的倾斜程度,并用这个斜率来绘制直线。

在绘制直线之前,我们还需要找到一条直线上的另一个点。

最常用的方法是使用该直线与另一条坐标轴的交点。

当斜率为正时,可以在 x 轴上选择一个较小的正数,然后根据斜率 k 和 (0, b) 来计算出直线上的第二个点。

当斜率为负时,可以在 x 轴上选择一个负数,然后按相同的方法计算第二个点。

确定了直线上的两个点之后,我们就可以在它们之间画出直线了。

三、斜率和截距的关系斜率和截距是一次函数的两个核心概念。

它们之间的关系是 y= kx + b 的基础。

直观上来说,截距代表了一条直线与 y 轴的交点,斜率代表了这条直线的倾斜程度。

斜率越大,这条直线就越陡峭。

斜率为 0 时,直线呈现出水平,斜率为正时,直线向右倾斜,斜率为负时则向左倾斜。

当斜率为 1 时,直线与 x 轴夹角的正切值一定为 1,也就是说它与 x 轴交成 45 度角。

当斜率为 -1 时同理。

四、斜率的计算方法斜率 k 的计算公式为 k = (y2 - y1) / (x2 - x1),其中 (x1, y1) 和(x2, y2) 是直线上的两个点。

第12讲一次函数

第12讲一次函数

考点知识精讲
考点三 一次函数图象的性质
一次函数y=kx+b,当k>0时,y随x的增大而 增大 ,图象一定经 过第 一、三 象限;当k<0时,y随x的 增大 而减小,图象一定经过第 二、四 __________象限. 考点四 一次函数的应用
用一次函数解决实际问题的一般步骤为:①设定实际问题中的变量 ;②建立一次函数关系式;③确定自变量的取值范围;④利用函数性质解 决问题;⑤答.
第12讲 一次函数
考点知识精讲
考点一 一次函数的定义
一般地,如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.
特别地,当b= 0 时,一次函数y=kx+b就成为 y=kx(k是常数,
正比例函数. k≠0),这时,y叫做x的______________. 1.由定义知:y是x的一次函数⇔它的解析式是 y=kx+b ,其中k 、b是常数,且k≠0. 2.一次函数解析式y=kx+b(k≠0)的结构特征: (1)k ≠ 0;(2)x的次数是1;(3)常数项b可为任意实数. 3.正比例函数解析式y=kx(k≠0)的结构特征: (1)k ≠ 0;(2)x的次数是 1 ;(3)没有常数项或者说常数项为 0 .
6.如右图所示,直线l过A、B两点,A(0,-1),
B(1,0),则直线l的解析式为
y=x-1 .




7.小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山 顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路
长的2倍.小颖在小亮出发后50 min才乘上缆车,缆车的平均速度为180
b =5 , 2 解得 k=1, 4
1 5 所以 y 乙= x+ . 4 2

一次函数课件ppt

一次函数课件ppt

奇偶性
一次函数既不是奇函数也不是偶函数 ,因为它们的图像不关于原点或 y 轴 对称。
02 一次函数的表达式与系数
一次函数的表达式
01
一次函数的一般表达式为 $y = ax + b$,其中 $a$ 和 $b$ 是常 数,且 $a neq 0$。
02
当 $a > 0$ 时,函数为增函数; 当 $a < 0$ 时,函数为减函数。
已知函数与$x$轴和$y$轴的截距,使用截 距式$y = frac{x}{a} + frac{b}{a}$求函数解 析式。
一次函数的解题技巧
数形结合
利用函数图像直观理解 函数性质,如增减性、
最值等。
整体代入
在求解过程中,将表达 式整体代入,简化计算

分类讨论
根据不同情况分类讨论 ,得出不同情况下的函
斜率与图像
斜率决定了图像的倾斜程 度,当 a > 0 时,图像向 右倾斜;当 a < 0 时,图 像向左倾斜。
一次函数的性质
单调性
无界性
一次函数的单调性由斜率决定,当 a > 0 时,函数单调递增;当 a < 0 时 ,函数单调递减。
一次函数的值域是全体实数,即对于 任意实数 x,y = ax + b 总有一个对 应的值。
一次函数的系数
一次函数的斜率为 $a$,表示函数图 像的倾斜程度。
当 $a > 0$ 时,函数图像从左下到右 上倾斜;当 $a < 0$ 时,函数图像从 左上到右下倾斜。
一次函数的应用
一次函数在数学、物理、工程等领域都有广泛应用。
在实际生活中,一次函数可以用来描述一些简单的问题,如速度与时间的关系、 价格与数量的关系等。

一次函数

一次函数

一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b…… ① 和y2=kx2+b…… ②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。

s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。

一次函数详解

一次函数详解
函数之
一次函数
一次函数的定义
一般地,形如y=kx+b(k,b是常数,且k≠0)
的函数,叫做一次函数,其中x是自变量。当b=0 时,一次函数y=kx(k≠0),又叫做正比例函数 (正比例函数是一次函数的特例,一次函数包括 正比例函数)。
析式
形式是y=kx+b,判断一个函数是否是一次函数, 就是判断是否能化成这种形式。 注:一次函数一般形式 y=kx+b (k不为零) ① k不为零 ②x指数为1 ③ b取任意实数
图像
一次函数y=kx+b在直角坐标系中 的图像是一条直线。k是斜率(反 映直线对x轴的倾斜度)。
k>0时,图像从左到右上升,y随x 的增大而增大,经过的象限如图:
k<0时,图像从左到右下降,y 随x的增大而减小,经过的象限 如图:
性质
在一次函数上的任意一点P(x,y),都满足 等式:y=kx+b(k≠0)。
一次函数与y轴交点的坐标总是(0,b),与x轴 总是交于(-b/k,0),正比例函数的图像都是过 原点的。
最值
一般情况,一次函数没有最大值或最小值,但 是当自变量的取值范围有限制时,在端点可以 取到最大值或最小值。在应用题中要特别注意 自变量的取值范围。
过定点
正比例函数y=kx,过(0,0),(1,k) 一次函数y=kx+b,过(0,b),(-b/k,0) 例如直线y=kx-k,此时b=-k,套用(-b/k,0),可知y=kx-k 过定点(1,0)。 这种题也可以这样理解,对于y=kx-k,当x确定时y与k值有 关,所以y不确定,想过定点(x1,y1),需要使y与k无关。 由于参数k是字母,可以把它当作关于k的方程,即y=(x-1)k。 该方程有无数个解(无论k取何值,(x1,y1)都满足这个方程)

一次函数概念

一次函数概念

一次函数的有关概念
1、一次函数:一般地,,则称是的一次函数。

其中为一次项
系数,为常数项
2、正比例函数:当时,,则称是的正比例函数。

正比例函数是
一次函数的特例。

知识点二、一次函数的图像及其性质
1、作函数图像常用方法:五点作图法
2、一次函数图像与轴、轴的交点坐标:、;正比例函数图像必
经过原点。

3、一次函数的图像与、的关系的变化图像
经过一、二、四象限1、验证方法:五点作图法。

2、一次函数的图像是一条直线。

3、当时,一次函数中,总是随着的增大而增大。

4、当时,一次函数中,总是随着的增大而减小。

5、当,时,一次函数的图像必经过二、四象限;同理可得,当,时,一次函数的图像必经过一、三象限。

6、图像与轴的夹角(锐角)越大,的值越大。

7、于坐标轴围成的三角形面积为:
正比例函数式一次函数的特性,一次函数的性质也符合正比例函数,其图像性质,同学们可以自行通过五点作图法进行验证。

一次函数解析式的确定方法
1、待定系数法:先设出式子中的未知系数,再根据条件列出方程或
方程组求出未知系数,从而写出这个式子的方法;其中的未知系数
也称为待定系数。

(在一次函数中,待定系数指:和)
2、用待定系数法求函数解析式步骤
①、设:设含有待定系数的解析式(看是正比例函数还是一次函数)
②、列:根据已知条件列出方程(组)
③、解:解方程(组)
④、还原:将求出来的待定系数带入所设的解析式,得所求的解析式。

关于一次函数的所有知识点

关于一次函数的所有知识点

关于一次函数的所有知识点一、一次函数的定义。

1. 一般形式。

- 形如y = kx + b(k,b是常数,k≠0)的函数叫做一次函数。

当b = 0时,y=kx(k≠0),此时函数为正比例函数,正比例函数是特殊的一次函数。

2. 定义域。

- 一次函数的定义域是全体实数R。

二、一次函数的图象。

1. 图象形状。

- 一次函数y = kx + b(k≠0)的图象是一条直线。

- 例如y = 2x+1的图象是一条直线,我们可以通过取两个点来画出这条直线,一般取x = 0时,y=1;y = 0时,x=-(1)/(2),然后连接这两个点(0,1)和(-(1)/(2),0)就得到函数图象。

2. 图象与系数的关系。

- 斜率k的影响。

- 当k>0时,直线y = kx + b从左到右上升,y随x的增大而增大。

例如y = 3x+2,k = 3>0,函数图象是上升的。

- 当k<0时,直线y = kx + b从左到右下降,y随x的增大而减小。

比如y=-2x + 3,k=-2<0,函数图象是下降的。

- k的绝对值越大,直线越“陡”。

例如y = 5x+1比y = 2x+1的图象更陡。

- 截距b的影响。

- b为直线y = kx + b与y轴交点的纵坐标。

- 当b>0时,直线与y轴交于正半轴,如y = 2x + 3,直线与y轴交于点(0,3)。

- 当b<0时,直线与y轴交于负半轴,例如y=3x - 2,直线与y轴交于点(0,-2)。

- 当b = 0时,直线过原点,像y = 2x就是过原点的直线。

三、一次函数的性质。

1. 单调性。

- 由前面图象与系数关系可知,当k>0时,函数在R上单调递增;当k<0时,函数在R上单调递减。

2. 函数值的变化。

- 对于一次函数y = kx + b,当x增加Δ x时,y的变化量Δ y=kΔ x。

四、一次函数的解析式的确定。

1. 待定系数法。

- 如果已知一次函数y = kx + b的图象经过两个已知点(x_1,y_1)和(x_2,y_2),将这两个点代入函数解析式得到方程组y_1=kx_1 + b y_2=kx_2 + b,解这个方程组求出k和b的值,就得到一次函数的解析式。

一次函数讲义

一次函数讲义

一次函数讲义一.基础概念1.定义:如果y=kx+b(k≠0,k,b是常数),那么y叫做x的一次函数。

当b=0,一次函数y=kx(k不等于0,k是常数)叫做正比例函数。

2.一次函数的图像一次函数的图像是过(0,b),(-b/k,0)两点的一条直线正比例函数的图像是过(0,0),(1,k)两点的一条直线3.一次函数的性质(1)k>0,b>0时,图像经过一、二、三象限,y随x的增大而增大(2)k>0,b<0时,图像经过一、三、四象限,y随x的增大而增大(3)k<0,b>0时,图像经过一、二、四象限,y随x的增大而减小(3)k<0,b<0时,图像经过二、三、四象限,y随x的增大而减小4.一次函数的平移(1)将y=kx向上或向下平移|b|个单位就得到直线y=kx+b(2)将y=kx向左(或右)平移m(m>0)个单位,得到直线y=k(x+m)(或y=k(x-m))二、常见例题1.一次函数的图像与性质的应用【例一】如果一次函数y=kx+b的图象经过第一、三、四象限,那么().A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0【例二】如图1所示,如果kb<0,且k<0,那么函数y=kx+b 的图象大致是 ( )【例三】若直线y=-2x+b 与两坐标轴围成的三角形的面积是1,则常数b 的值为____________【例四】如图2,在同一坐标系内,直线l1:y=(k-2)x+k 和l2:y=kx+b 的位置可能为( )2.待定系数法求解析式【例五】若一次函数y=kx+b ,当-3≤x≤1时,对应的y 值为1≤y≤9,则一次函数的解析式 为________【例六】如图2,一次函数图象经过点A ,且与正比例函数y=-x 的图象交于点B ,则该一次函数的表达式为( ) A .2y x =-+ B .2y x =+C .2y x =-D .2y x =--【例七】已知直线l 与直线y=2x+1交点的横坐标为2,与直线y=x-8交点的纵坐标为-7,求直线l 的解析式. 3.一次函数的平移【例八】把直线y =-5x +6向下平移6个单位长度,得到的直线的解析式为( )图2A.y=-x +6B. y=-5x -12C. y=-11x +6D.y=-5x【例九】将直线y =2x 向右平移2个单位所得的直线的解析式是( )。

一次函数

一次函数

知识要点一、一次函数的概念(一)一次函数概念1、一般地,解析式形如y kx b =+(其中k 、b 是常数,且k ≠0)的函数叫做一次函数 定义域是一切实数2、正比例函数是一次函数的特例3、常值函数:一般地,我们把函数y c =(c 为常数)叫做常值函数(二)待定系数法求一次函数1、待定系数法:先设出待求函数的关系式,再根据条件求出未知系数,从而得到所求结果的方法,叫做待定系数法2、用待定系数法确定一次函数关系式的一般步骤:① 设函数关系式为y kx b =+(其中k 、b 为待定系数);② 将已知点的坐标代入函数关系式,解方程(组)③ 求出k 与b 的值,得到函数关系式二、一次函数的图像1、一次函数y kx b =+(其中k 、b 是常数,且k ≠0)的图像是一条直线。

一次函数y kx b =+的图像也称为直线y kx b =+2、一次函数图像的画法画一次函数的图像可通过“列表、描点、连线”获得。

也可由“两点确定一条直线”的知识,只需描出两个点,然后过这两点作一条直线一次函数与x 轴、y 轴的交点分别为,0b k ⎛⎫- ⎪⎝⎭、()0,b ,在画一次函数时,只需取者两点就可以了3、直线的截距一条直线与y 轴的交点的纵坐标叫做这条直线在y 轴上的截距,简称直线的截距 截距与距离是两个完全不一样的概念,截距可以是任意实数,而距离总是非负数4、一般地,一次函数y kx b =+(b ≠0)的图像可由正比例函数y kx =的图像平移得到。

当0b >时,向上平移b 个单位;当0b <时,向下平移b 个单位5、如果12b b ≠,那么直线1y kx b =+于直线2y kx b =+平行;反过来,如果直线12y k x b =+与直星之韵---睿思理科 2014 春季 一 次 函 数线22y k x b =+平行,那么12k k =,12b b ≠三、一次函数的性质0,0 0,0 0,0 0,0 k b y kx b k b y kx b k b y kx b k b y kx b >>=+⎧⎪><=+⎪⎨<>=+⎪⎪<<=+⎩直线经过第一、二、三象限直线经过第一、三、四象限直线经过第一、二、四象限直线经过第二、三、四象限题型1:一次函数的概念☆☆(一)选择题1、下列函数中,是y 关于x 的一次函数的是 ( )A. 2125y x =+ B. 2y =- C. 2、下列函数解析式中,属于一次函数的是( )① ()()20y a x a =+≠ ② ()10y ax a a=-≠ ③()()11y a x a =-+≠- ④ ()0a y a x a x =+≠ A ① B ①②③ C ①③ D 全部都是3、已知函数32y x =+,当x a =时的函数值为1,则a 的值为( ) A. 13 B. -1 C. -13D. 1 4、下列四个命题中,错误的是( )A. 正比例函数一定是一次函数B. 反比例函数不是一次函数C. 若1y -和x 成正比例,则y 是x 的一次函数D. 若1y -和x 成反比例,则y 是x 的一次函数5、下列函数:①()()50y m x m =-≠; ②()10y ax a a=+≠ ③()()33y k x k =-+≠- ④k y kx x =+()0k ≠ 其中是一次函数的有( )A. ①②③④B. ①C. ①②③D. ①③(二)填空题1、 已知常值函数()3f x =-,则()1f =____________2、 已知函数()52y m x b =+-+,当___________时,此函数是一次函数;当____________时,此函数是正比例函数。

一次函数总结

一次函数总结

一次函数总结一次函数是高中数学中的基础知识之一,也是最简单的一种函数类型。

它的表达式可以写成y = kx + b的形式,其中k和b 是常数,x和y是变量。

在本文中,我将对一次函数的定义、图像、性质和应用进行详细的总结和介绍。

一、一次函数的定义一次函数又称为线性函数,它满足以下两个条件:1)函数的自变量和因变量都是一次的;2)函数的图像是一条直线。

一次函数的一般形式是y = kx + b,其中k称为斜率,b称为截距。

二、一次函数的图像一次函数的图像是一条直线,可以通过两个点确定。

其中,截距b是函数图像与y轴交点的纵坐标,斜率k代表图像的倾斜程度。

当k为正数时,表示函数图像是从左下到右上的,斜率越大图像越陡峭;当k为负数时,表示函数图像是从左上到右下的,斜率越小图像越陡峭。

三、一次函数的性质1)斜率k:斜率表示函数图像的倾斜程度,可以通过两个点的坐标计算得到。

当斜率为正数时,函数图像是递增的;当斜率为负数时,函数图像是递减的;斜率为0时,函数图像是水平的。

2)截距b:截距表示函数图像与y轴的交点的纵坐标。

通过设定x=0,可以得到截距b的值。

3)增减性:当斜率k为正数时,函数图像是递增的;当斜率k为负数时,函数图像是递减的;4)单调性:当斜率k为正数时,函数图像是单调递增的;当斜率k为负数时,函数图像是单调递减的;5)零点:一次函数的零点是使得函数值等于0的自变量值x。

通过设定y=0,可以求得零点的值。

四、一次函数的应用一次函数在现实生活中具有广泛的应用。

以下是一些常见的应用场景:1)速度与时间的关系:在物理学中,一次函数可以用来描述物体的速度与时间的关系。

斜率代表速度的变化率,截距代表初始速度。

2)销售收益的关系:在经济学中,一次函数可以用来描述销售收益与销售数量的关系。

斜率代表每增加一个单位的销售数量所带来的收益变化,截距代表固定成本。

3)成绩与学习时间的关系:在教育领域中,一次函数可以用来描述学生的成绩与学习时间的关系。

一次函数的定义

一次函数的定义

一次函数的定义:在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k、b为常数,k≠0),那么我们就说y是x的一次函数,其中x是自变量,y是因变量。

①正比例函数是一次函数,但一次函数不一定是正比例函数;②一般情况下,一次函数的自变量的取值范围时全体实数;③如果一个函数是一次函数,则含有自变量x的式子是一次的,系数k不等于0,而b可以为任意实数。

一次函数基本性质:1.在正比例函数时,x与y的商一定(x≠0)。

在反比例函数时,x与y的积一定。

在y=kx+b(k,b为常数,k≠0)中,当x增大m时,函数值y则增大km,反之,当x减少m时,函数值y则减少km。

2.当x=0时,b为一次函数图像与y轴交点的纵坐标,该点的坐标为(0,b)。

3.当b=0时,一次函数变为正比例函数。

当然正比例函数为特殊的一次函数。

4.在两个一次函数表达式中:当两个一次函数表达式中的k相同,b也相同时,则这两个一次函数的图像重合;当两个一次函数表达式中的k相同,b不相同时,则这两个一次函数的图像平行;当两个一次函数表达式中的k不相同,b不相同时,则这两个一次函数的图像相交;当两个一次函数表达式中的k不相同,b相同时,则这两个一次函数图像交于y轴上的同一点(0,b);当两个一次函数表达式中的k互为负倒数时,则这两个一次函数图像互相垂直。

5.两个一次函数(y1=k1x+b1,y2=k2x+b2)相乘时(k≠0),得到的的新函数为二次函数,该函数的对称轴为-(k2b1+k1b2)/(2k1k2);当k1,k2正负相同时,二次函数开口向上;当k1,k2正负相反时,二次函数开口向下。

二次函数与y轴交点为(0,b2b1)。

6.两个一次函数(y1=ax+b,y2=cx+d)之比,得到的新函数y3=(ax+b)/(cx+d)为反比例函数,渐近线为x=-b/a,y=c/a。

一次函数的判定:①判断一个函数是否是一次函数,就是判断它是否能化成y=kx+b的形式;②当k≠0,b=0时,这个函数即是k≠0一次函数,k≠0又是正比例函数;③当k=0,b≠0时,这个函数不是一次函数;④一次函数的一般形式是关于x的一次二项式,它可以转化为含x、y的二元一次方程。

一次函数总结

一次函数总结

主要结论➢一次函数四种表达方式:1)斜截式:y=kx+b(k≠0)2)点斜式:(y−y0)=k(x−x0)(k≠0)3)两点式:y−y1y2−y1=x−x1x2−x14)方程式表达:Ax+By+C=0 (A,B≠0)➢点与点距离(弦长公式):d=√(1+k2)×|x1−x2|=√(1+1k2)×|y1−y2|➢点到直线距离:00√A2+B200√k2+1➢直线到直线距离:d=12√(A2+B2)2一、一次函数形式:1、斜截式:y=kx+b(k≠0)备注:也是直线常规表达方式,y轴交点为(0,b),2、点斜式:需知道斜率k,已知点(x0,y0)(y−y0)=k(x−x0)(k≠0)3、两点式:需知道直线上任意两点(x1,y1),(x2,y2)y−y1 y2−y1=x−x1 x2−x14、方程式表达:Ax+By+C=0 (A,B≠0)二、点与点距离(弦长公式):已知直角坐标系两点E(x1,y1),F(x2,y2),求EF线段长度三、点与直线关系:1、点到直线距离:1)已知直线L为Ax+By+C=0,直线外点P(x0,y0),则点P到直线距离为:|Ax+By+C|√A2+B22)已知直接L为y=kx+b,直线外点P(x0,y0),则点P到直线距离为:|kx−y+b|√k2+12、点关于直线的对称点:1)特殊情况:点P(x1,y1)关于x轴,y轴平行线对称2)特殊情况:点P(x1,y1)关于直线y=±x+c对称以上图y=x+c为例,将P点y1带入直线y1=x+c,求得的x即为对称点的x2;对应x1带如求得y2。

3)一般情况:点P(x1,y1)关于直线Ax+By+C=0对称本例题因为选择题,不用求解对称点,可用y 2−y 1x 2−x 1=−1k=−12,选出垂线上的点,如果有多选,可以用(x 1+x 22,y 1+y 22)过直线L 来筛选。

四、直线与直线关系设两条直线方程为Ax+By+C1=0Ax+By+C2=0则其距离公式为d=12222。

一次函数的概念

一次函数的概念

3
工程学
一次函数可以用于建筑工程的斜坡设计和道路的倾斜度计算。
一次函数的例题和习题
例题
如果一次函数的斜率为2,截距为3,求其方程。
例题
已知一次函数过点(2, 5)和(3, 7),求其方程。
习题
问一次函数y = -3x + 4的斜率和截距分别是多少?
பைடு நூலகம்
一次函数的定义
1 线性关系
一次函数描述了两个变量之间的线性关系,其中自变量的每个单位的变化引起因变量的 相应变化。
2 单一斜率
一次函数的斜率是恒定的,表示直线的倾斜程度。
3 常数截距
一次函数的截距是直线与y轴的交点。
一次函数的图像
直线
一次函数的图像是一条直线,可 以通过两个点来确定。
正斜率
负斜率
一次函数的一般形式是y = kx + b,其中k是斜率,b是截距。
点斜式
可以通过已知直线上的一点和 斜率来写出一次函数的方程。
两点式
可以通过已知直线上的两个点 来写出一次函数的方程。
一次函数的应用
1
经济学
一次函数可用于描述供应和需求曲线,分析市场平衡和价格变动。
2
物理学
一次函数可以模拟直线运动和速度变化,如自由落体运动和直线加速度。
一次函数的概念
一次函数是一个定义在实数集上的函数,其定义域为整个实数集。它的表达 式可以写作y = kx + b,其中k和b为常数,而x是自变量,y是因变量。
什么是一次函数?
一次函数是一种简单而重要的数学函数。它表示了一条直线在坐标平面上的 形状和位置。一次函数的方程可以用来描述很多实际问题,如直线运动和经 济曲线。
如果斜率是正数,直线向上倾斜。 如果斜率是负数,直线向下倾斜。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6章 一次函数(强化练习) 2014.11.28 A 组
一 填空
1若点A (m,3)、B (2,-1)在正比例函数y=kx 的图像上,则m=
2 直线y=3x-6与x 轴交点A 的坐标是 ,与y 轴交点B 的坐标是 ;△AOB 的面积为 。

若直线y=3x+b 与两坐标轴围成的面积为6个平方单位,则b= ;若直线y=kx+b 与y 轴交点的纵坐标是-2,且与两坐标轴围成的三角形面积为1,则k=
3 已知一次函数y=mx-m+2的图像过点(0,5),则m=
4 一次函数y=(m+4)x+2m-1的图像与y 轴的交点在x 轴的下方,则m 的取值范围是
5 已知一次函数y=-x-3当0≤x ≤3时,函数y 的最大值是
6直线y=kx+b 和直线y= -3x 平行,且过(0,-2)点,则它的解析式为 ,此直线与两坐标轴围成的三角形面积为 。

7 一次函数y=3x+m-1的图像不过第二象限,求m 的范围
8已知点P 1(x 1,y 1),p 2(x 2,,y 2)是一次函数y=-4x+3图像上的两点,且x 1<x 2,则y 1与y 2的大小关系是
9 已知直线l 1:y=x+4,l 2:y=kx+4,若l 1和l 2与x 轴围成的三角形面积为16,则k 的值为
10已知一次函数y=-2x+3,则此直线关于x 轴对称的直线解析式为 ,关于y 轴对称的直线解析式为
二 选择
1 一次函数的图像经过点A (-2,-1),且与直线y=2x-3平行,则此函数的解析式为( )
A y=x+1
B y=2x+3
C y=2x-1
D y=-2x-5
2 一条直线经过点(0,4),与x 轴交于点B ,且S △AOB =8,则直线AB 的解析式为( )
A y=x+4
B y=-x+4
C y=2x+4
D y=x+4 或 y=-x+4
3 某兴趣小组做试验,将一个装满水的啤酒瓶倒置(如图),并设法使瓶里的水从瓶中匀速流出,那么该倒置啤酒瓶内水面高度h 随水流出的时间变化的图像是( )
三 解下列各题
4 如图 ,一次函数y=ax+b 与正比例函数y=kx 的图像交于第三象限内一点A ,与y 轴交于
点B (0,-4),且AO=AB ,△AOB 的面积为6,求两函数解析式
5 已知一次函数的图像过点A (2,-1)和点B ,其中B 是直线y=-2
1x+3与y 轴的交点,求次一次函数的解析式
6直线y=kx+b 与坐标轴围成的三角形面积为4,直线向下平移3个单位过(0,-1),求原直线解析式
7已知一次函数y=kx+b 中自变量x 的取值范围是-2≤x ≤6,相应的函数值取值范围是-11≤y ≤9,求次函数解析式
8 如图已知A (-3,2)、(3,1),在x 轴y 轴上分别找一点使它到A 、B 两点距离之和
最短并画出图形
9 若一次函数y=kx+3的图像经过A 点,该点到x 轴的距离为2,到y 轴的距离为1,试
求出这个函数的解析式.
10. 已知y 与 x+1成正比例,当x=5时,y=12,求y 与x 的函数关系式。

11. 已知一次函数y=kx+b 的图像过(1,2),(2,0)。

(1)求其解析式; (2)自变量x 的取值范围是-4≤x ≤4时,求函数值y 的取值范围.
12. 一次函数y=ax -b 、y=bx -a 的图像相交于一点(3,3),求函数y=(a+b )x+ab 与x 轴的交点坐标。

13. 某车间有20名工人,每人每天加工甲种零件5件或乙种零件4个,在这20名工人中,派x 人加工甲种零件,其余的加工乙种零件,已知加工一个甲种零件可获利润6元,加工一个乙种零件可获利润24元.
⑴写出此车间每天所获利润y (元)与x (人)之间的函数表达式;
⑵若要使车间每天获利润1260元,问要派多少人加工甲种零件?
14. 直线y=12
x+2交x 轴于点A,交y 轴于点B,点P(x , y )是线段AB 上一动点(与A,B不重合),△PAO 的面积为S,求S与x 的函数关系式。

相关文档
最新文档