1 离心泵的工作特性
离心泵特性
c2
α2
u2 w1
β1
r2
c1
α1
③ 稳态流动。
─→最大扬程──理论扬程,H 在叶片进出口列机械能衡算方程:
r1
u1
Δ p c H g 2g
PCE/ETP-BJTBU/ZYW
2
──动能、静压能均提高
■
〓
化工原理-流体输送机械/11.离心泵特性
8
Δp ── ρg
离心力作功
r2
r1
2 2 u u Fc dr 1 r 2 dr (r22 r12 ) 2 1 r1 2 2 r2 2
2 2 w w 1 2 动能→静压能 2
则:
2 2 2 u2 u12 w12 w2 c2 c12 H 2g 2g 2g
代入前面余弦定律
h
f1- 2
6 / 9.807 0.6118 m
■ 〓
PCE/ETP-BJTBU/ZYW
化工原理-流体输送机械/11.离心泵特性
20
得扬程:
H=5+2.2042/(2×9.807)+24.98+0.6118=30.84m
在1-1、3-3截面间列式,得泵的升扬高度,即
Z3=H-∑hf1-3=30.84-(0.6118+0.8)=29.4m
则有:
2 l u hf d 2g
Δp 2 2 H Δ Z KV A KV g
H
② ①
管路特性曲线为一抛物 线的右半支。如加大K(管 系阻力增大),该曲线上 翘:①→②。
PCE/ETP-BJTBU/ZYW
V ' n' V n V ' D' V D
离心泵的性能参数与特性曲线
离心泵的性能参数与特性曲线泵的性能及相互之间的关系是选泵和进行流量调节的依据。
离心泵的主要性能参数有流量、压头、效率、轴功率等。
它们之间的关系常用特性曲线来表示。
特性曲线是在一定转速下,用20℃清水在常压下实验测得的。
(一)离心泵的性能参数1、流量离心泵的流量是指单位时间内排到管路系统的液体体积,一般用Q表示,常用单位为l/s、m3/s或m3/h等。
离心泵的流量与泵的结构、尺寸和转速有关。
2、压头(扬程)离心泵的压头是指离心泵对单位重量(1N)液体所提供的有效能量,一般用H表示,单位为J/N或m。
压头的影响因素在前节已作过介绍。
3、效率离心泵在实际运转中,由于存在各种能量损失,致使泵的实际(有效)压头和流量均低于理论值,而输入泵的功率比理论值为高。
反映能量损失大小的参数称为效率。
离心泵的能量损失包括以下三项,即(1)容积损失即泄漏造成的损失,无容积损失时泵的功率与有容积损失时泵的功率之比称为容积效率ηv。
闭式叶轮的容积效率值在0.85~0.95。
(2)水力损失由于液体流经叶片、蜗壳的沿程阻力,流道面积和方向变化的局部阻力,以及叶轮通道中的环流和旋涡等因素造成的能量损失。
这种损失可用水力效率ηh来反映。
额定流量下,液体的流动方向恰与叶片的入口角相一致,这时损失最小,水力效率最高,其值在0.8~0.9的范围。
(3)机械效率由于高速旋转的叶轮表面与液体之间摩擦,泵轴在轴承、轴封等处的机械摩擦造成的能量损失。
机械损失可用机械效率ηm来反映,其值在0.96~0.99之间。
离心泵的总效率由上述三部分构成,即η=ηvηhηm(2-14)离心泵的效率与泵的类型、尺寸、加工精度、液体流量和性质等因素有关。
通常,小泵效率为50~70%,而大型泵可达90%。
4、轴功率N由电机输入泵轴的功率称为泵的轴功率,单位为W或kW。
离心泵的有效功率是指液体在单位时间内从叶轮获得的能量,则有Ne = HgQρ(2-15)式中Ne------离心泵的有效功率,W;Q--------离心泵的实际流量,m3/s;H--------离心泵的有效压头,m。
离心泵的性能参数与特性曲线
离心泵的性能参数与特性曲线泵的性能及相互之间的关系是选泵和进行流量调节的依据。
离心泵的主要性能参数有流量、压头、效率、轴功率等。
它们之间的关系常用特性曲线来表示。
特性曲线是在一定转速下,用20℃清水在常压下实验测得的。
(一)离心泵的性能参数1、流量离心泵的流量是指单位时间内排到管路系统的液体体积,一般用Q表示,常用单位为l/s、m3/s或m3/h等。
离心泵的流量与泵的结构、尺寸和转速有关。
2、压头(扬程)离心泵的压头是指离心泵对单位重量(1N)液体所提供的有效能量,一般用H表示,单位为J/N或m。
压头的影响因素在前节已作过介绍。
3、效率离心泵在实际运转中,由于存在各种能量损失,致使泵的实际(有效)压头和流量均低于理论值,而输入泵的功率比理论值为高。
反映能量损失大小的参数称为效率。
离心泵的能量损失包括以下三项,即(1)容积损失即泄漏造成的损失,无容积损失时泵的功率与有容积损失时泵的功率之比称为容积效率ηv。
闭式叶轮的容积效率值在0.85~0.95。
(2)水力损失由于液体流经叶片、蜗壳的沿程阻力,流道面积和方向变化的局部阻力,以及叶轮通道中的环流和旋涡等因素造成的能量损失。
这种损失可用水力效率ηh来反映。
额定流量下,液体的流动方向恰与叶片的入口角相一致,这时损失最小,水力效率最高,其值在0.8~0.9的范围。
(3)机械效率由于高速旋转的叶轮表面与液体之间摩擦,泵轴在轴承、轴封等处的机械摩擦造成的能量损失。
机械损失可用机械效率ηm来反映,其值在0.96~0.99之间。
离心泵的总效率由上述三部分构成,即η=ηvηhηm(2-14)离心泵的效率与泵的类型、尺寸、加工精度、液体流量和性质等因素有关。
通常,小泵效率为50~70%,而大型泵可达90%。
4、轴功率N由电机输入泵轴的功率称为泵的轴功率,单位为W或kW。
离心泵的有效功率是指液体在单位时间内从叶轮获得的能量,则有Ne = HgQρ(2-15)式中Ne------离心泵的有效功率,W;Q--------离心泵的实际流量,m3/s;H--------离心泵的有效压头,m。
卧式离心泵的工作特点介绍
卧式离心泵的工作特点介绍
1.结构紧凑:卧式离心泵由电机和泵体组成,采用水平布置,结构紧凑,占地面积小,便于安装和维护。
泵体和电机通过联轴器连接,实现高效的传动和运转。
2.能耗低:卧式离心泵工作时,通过电机带动叶轮高速旋转,将液体抽入泵体并迅速输送。
泵体内部的叶轮与泵体之间的间隙非常小,确保离心泵的高效率。
由于泵体和叶轮都是由高强度材料制成,使得泵的各部件寿命长。
另外,通过合理设计,减少了能量的损耗,实现了能耗低的工作特点。
3.流量稳定:卧式离心泵的工作特点之一是能够稳定输送液体。
在泵体中,叶轮和泵体之间形成一个密封腔,当叶轮转动时,液体被离心力推动,从入口进入泵体,然后经过叶轮的旋转将液体向出口方向输送。
卧式离心泵的泵体和叶轮均采用精密加工,内部流道形状设计合理,能够保证液体流动的稳定性,避免了流量波动引起的液压变化。
4.压力高:卧式离心泵的另一个工作特点是能够产生较高的压力。
在卧式离心泵的泵体中,叶轮受到电机驱动旋转产生离心力,使得液体获得较高的动能。
随着液体通过叶轮流动后,它的压力也随之增加。
因此,卧式离心泵能够产生较高的压力,满足不同工况下的需求。
5.使用范围广泛:卧式离心泵适用于水泵、石油、化工、制药、农业灌溉等领域。
不同于其他类型的泵,离心泵能够输送各种类型的液体,包括清水、污水、酸碱溶液、油类等。
另外,卧式离心泵还可以进行多级连接,实现更大的流量和更高的扬程。
离心泵特性曲线
离心泵特性曲线
离心泵特性曲线是衡量离心泵性能总体效率的一种重要标准,从它可以了解离心泵的流量、压力、运行电流强度之间的关系。
根据离心泵的结构,可以区分水力性能和电气性能,他们各自的特性曲线不完全一样。
离心泵的水力特性曲线,正输出量随压力的变化构成,是衡量特定离心泵的水力效率的基本依据。
水力特性曲线表明离心泵在静态工作条件下,输出流量与压力之间的变化关系,且一般情况下压力越高,可输出流量越低。
另一方面,电气性能特性曲线,它表述的是当离心泵输出流量变化时,所需的电功率的变化。
电气性能特性曲线表明,一般情况下,当输出液体流量增加,电功率也会增加。
离心泵特性曲线提供了对离心泵功能表现的观察和分析,有帮助于检查污染排放,故障排除,优化设计及宣传技术,运行状态查看等,所以它对于查验离心泵性能非常重要和实用。
此外,离心泵特性曲线也常常被用来研究离心泵的可靠性以及未来配置的升级,如加入变频器,以节约能源。
离心泵特性实验报告
离心泵特性测定实验报告一、实验目的1.了解离心泵结构与特性,熟悉离心泵的使用;2.测定离心泵在恒定转速下的操作特性,做出特性曲线; 3.了解电动调节阀、流量计的工作原理和使用方法。
二、基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。
由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。
1.扬程H 的测定与计算取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程:f h gug p z H g u g p z ∑+++=+++2222222111ρρ (1)由于两截面间的管长较短,通常可忽略阻力项f h ∑,速度平方差也很小故可忽略,则有 (=H gp p z z ρ1212)-+- 210(H H H ++=表值)(2) 式中: 120z z H -=,表示泵出口和进口间的位差,m ;ρ——流体密度,kg/m 3; g ——重力加速度 m/s 2;p 1、p 2——分别为泵进、出口的真空度和表压,Pa ;H 1、H 2——分别为泵进、出口的真空度和表压对应的压头,m ; u 1、u 2——分别为泵进、出口的流速,m/s ; z 1、z 2——分别为真空表、压力表的安装高度,m 。
由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。
2.轴功率N 的测量与计算k N N ⨯=电 (3)其中,N 电为电功率表显示值,k 代表电机传动效率,可取95.0=k 。
即:电N N 95.0= (4)3.效率η的计算泵的效率η是泵的有效功率Ne 与轴功率N 的比值。
有效功率Ne 是单位时间内流体经过泵时所获得的实际功,轴功率N 是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。
第一节离心泵的工作原理和性能特点
➢ 平坦形(中低比转数泵)
➢ 叶片出口角稍大,H 变化时Q变化较大
➢ 用于那些经常需要调 节Q而又不希望节流 损失太大的场合(凝水 泵、锅炉给水泵)
3-1-3实测的定速特性曲线
➢ 驼峰形
➢ 叶片出口角较大
➢ 其Q一H曲线就比 较平坦,而在小Q 时撞击损失又大, 于是Q—H曲线就 会出现驼峰
➢ 静压头Hu是一条水平线 ➢ 管路阻力h=Q2,是一
条二次抛物线
➢ 倾斜程度取决于阻力 ➢ 纵坐标起点位置取决于
管路的静压头 ➢ 当管路阻力变化,如K值
增加,曲线变陡 ➢ 如静压头变化,管路曲
线相应向上平移
3-1-4 管道特性曲线和泵的工况点
➢ 将特性曲线和管路的特 性曲线画在一张图上
➢ Q—H曲线与管路特性曲 线的交点即泵的工况点
3-1-1 离心泵的工作原理
➢ 充满在泵中的液体随叶轮回转, 产生离心力,向四周甩出
➢ 在叶轮中心形成低压,液体便 在液面压力作用下被吸进叶轮。
➢ 从叶轮流出的液体,压力和速 度增大。
➢ 蜗壳-汇聚并导流。扩压管A增 大,流速降低,大部分动能变 为压力能,然后排出。
➢ 叶轮不停回转,吸排就连续地 进行
过了其它类型泵。
3-1-6离心泵的缺点
4.本身没有自吸能力
➢ 为扩大使用范围
➢ 在结构上采取特殊措施制造各种自吸式离心泵 ➢ 在离心泵上附设抽气引水装置。
5.泵的Q随工作扬程而变
➢ H升高,Q减小 ➢ 达到封闭扬程时,泵即空转而不排液 ➢ 不宜作滑油泵、燃油泵等要求Q不随H而变的
场合
3-1-6离心泵的缺点
➢ 液体通过泵时所增加的能量, 是原动机通过叶轮对液体作功 的结果。
离心泵的介绍及维修
离心泵的介绍及维修离心泵是一种常见的水泵,广泛应用于工业、农业和民用领域。
下面将对离心泵的介绍及维修进行详细阐述。
一、离心泵的介绍离心泵主要由泵体、叶轮、轴、密封装置、轴承等组件构成。
其工作原理是通过叶轮旋转产生离心力,将液体吸入泵体,并通过离心力将液体推出。
离心泵的主要特点有:1.流量大:离心泵的流量非常大,能够满足大量液体的输送需求。
2.扬程高:离心泵能够产生较高的扬程,使液体能够轻松提升到较高的高度。
3.运行稳定:离心泵采用叶轮旋转的方式进行工作,运行稳定可靠。
4.适用范围广:离心泵适用于输送各种液体,包括清水、污水、酸碱溶液等。
离心泵的应用领域广泛,常见的应用包括:1.工业领域:用于工厂的供水、排水系统,以及化工、冶金、食品、制药等工艺过程中的液体输送。
2.农业领域:用于农田灌溉、排灌系统,提供农田所需的水源。
3.水利工程:用于水库、农田水利、船闸、水泥厂等。
二、离心泵的维修离心泵的正常维护和保养对于确保其长期稳定运行和延长使用寿命非常重要。
以下是离心泵的常见维修事项:1.定期检查:定期检查泵体、叶轮、轴承、液压系统等部件是否正常工作,有无松动、磨损或破损现象。
并及时清理泵体内积聚的杂物和堵塞物。
2.轴承维护:轴承是离心泵的重要组成部分,保持轴承的润滑状态十分关键。
定期检查轴承的润滑情况,如有需要,进行加注或更换润滑油。
3.密封装置保养:离心泵的密封装置对泵的正常运行十分重要。
定期检查密封装置的工作效果,并进行适时的维修或更换。
4.轴的维护:离心泵的轴是连接泵体和叶轮的关键部件,定期检查轴是否有变形、裂纹等情况,如有需要进行及时修复或更换。
5.泵的平衡:离心泵在运行过程中会产生振动,对于大型泵来说,必要时应进行平衡处理,以确保泵的平稳运行。
6.泵的性能检测:定期进行泵的性能测试,检测其流量、扬程等参数是否正常,必要时进行校准或调整。
在进行离心泵维修时,需要注意安全问题,确保断电和锁定电源,避免发生意外。
离心泵的工作原理和性能特点
出Qt-Ph曲线。
流量为零时,功率最小,适合采用 封闭启动。大功率离心泵此时电机的启 动电流最小,对船舶电站冲击最小。
35~50%N额
Q
武汉理工大学 轮机工程系
第一节 离心泵的工作原理和性能特点
三、离心泵的定速特性曲线分析
3)效率-流量曲线
H
N
η
η-Q
N-Q
② HTœ与β2有关,即与叶片型式有关;
ⅰ)后弯叶片(叶片弯曲方向与叶轮旋转方向相反)
ⅱ)径向叶片
ⅲ)前弯叶片
武汉理工大学 轮机工程系
第一节 离心泵的工作原理和性能特点
二、离心泵的压头方程式
2.离心泵的扬程方程式
3) 对离心泵基本方程式的讨论:
③与流量之间的关系 前弯式叶片
直叶式叶片
④与输送的液体性质无关(公式中无
cos α2 u1c1 cos α1 g
u2c2u u1c1u g
欧拉方程II式
①在离心泵设计中,为提高理论压头,一般使α1=90° (液体径向进入叶片间通 道),cosα1=0
HT
u2c2 cos α2 g
u2c2u g
欧拉方程II式
武汉理工大学 轮机工程系
第一节 离心泵的工作原理和性能特点
β2
β2
u2
α2 β2
将上两式代入欧拉方程II式后,得:
武汉理工大学 轮机工程系
第一节 离心泵的工作原理和性能特点
二、离心泵的压头方程式
2.离心泵的扬程方程式
2)对欧拉方程II式的分析(续)
称为离心泵的基本方程式
w2 β2
c2
α2
β2
u2
武汉理工大学 轮机工程系
离心泵特性曲线
离心泵特性曲线
离心泵特性曲线(Centrifugal pump performance curve)是描述离心泵在不同工作条件下流量、扬程、效率和功率
等性能参数的变化关系的曲线。
离心泵特性曲线通常由以下几个要素构成:
1. 流量(Flow):流经离心泵的液体体积或质量的量度,
通常以升/秒或立方米/小时表示。
2. 扬程(Head):液体在离心泵内获得的压力能量,通常以米或千帕表示。
3. 效率(Efficiency):离心泵将输入的功率转化为输出的液体动能的比例。
效率通常以百分比表示。
4. 功率(Power):离心泵所需的电功率或机械功率,通常以千瓦或马力表示。
离心泵特性曲线一般由实验测量得到,根据不同工作条件下的流量、扬程和功率等数据绘制而成。
典型的离心泵特性曲线通常呈现出以下特点:
1. 最大扬程点(Maximum Head Point):离心泵在某一流量下能够提供的最大扬程。
该点通常是离心泵特性曲线上的最高点,也是离心泵的额定扬程。
2. 最大效率点(Maximum Efficiency Point):离心泵在某一流量下能够达到的最高效率。
该点通常是离心泵特性曲线上的效率最大值点。
3. 关闭阻塞点(Shut-off Head Point):离心泵在流量为零时的扬程。
该点通常是离心泵特性曲线上的最低点。
离心泵特性曲线的形状和特点对于选型和运行离心泵都具有重要的参考价值,可以帮助用户了解离心泵在不同工况下的性能和适用范围,并进行合理的运行和维护。
离心泵特性曲线
式中QT:泵理论流量(m3/s);F2:叶轮的出口面积(m2);C2r:叶轮出口处水流绝对速度的径向(m/s)。
所以:HT=(u2 - ctgβ2)
式中β2、F2均为常数。当水泵转速一定时,u2也为常数。
故:HT= A–B QT是一个直线方程。其斜率是用β2来反映的:
一、离心泵的特性曲线定义
当转速n为常量时,列出扬程(H)、轴功率(N)、效率(η)以及允许吸上真空高度(Hs)等随流量(Q)变化的函数关系,即:H = f(Q);N = F(Q);Hs = Ψ(Q);η = φ(Q),我们把这些方程关系用曲线来表示,就称这些曲线为离心泵的特性曲线。
离心泵的特性曲线是液体在泵内运动规律的外在表现形式,这三条曲线需要根据试验的方 法(采用离心泵特性曲线的测定装置,逐渐开启水泵出口阀门改变其流量,测得一系列的流量及相应的扬程和轴功率,然后将H一Q、N —Q、η一Q曲线绘制在同一张坐标纸上,即为一定型式离心泵在一定转速下的特性曲线),不同的水泵特性曲线不同,水泵的特性曲线由设备生产厂家提供。严格意义上讲,每一台水泵都有特定的特性曲线。
β2> 90º时,HT= A + B QT,后弯式,上倾直线,扬程随流量的增加而减小。随理论流量的变化。
β2< 90º时,HT= A–B QT,前弯式,是一条下倾直线,理论扬程随理论流量的增加而增加。
四、实测特性曲线的讨论
它反映泵的基本性能的变化规律,可做为选泵和用泵的依据。各种型号离心泵的特性曲线不同,但都有共同的变化趋势。
二、影响离心泵特性曲线的因素
离心泵的特性曲线与很多因素有关,如液体的粘度与密度、叶轮出口宽度、叶片的出口安放角与叶片数及离心泵的压出室形状等均会对离心泵的特性曲线产生影响。
离心泵的工作特性和工况调节
② 切割叶轮外径:没有附加能量损失;只能作计算后长期调节,切割 后不能复原,可变泵的特性工况调节
③ 泵的串并联:流量和扬程调节范围宽,操作灵活。
六 离心泵的不稳定工作
低ns的离心泵H-Q特性呈驼峰状,这种特性曲线与管 路特性可能有两个交点M、M1,理论上都是工作点。
3、管路特性 h = hp + kQ2
4、工作点及其调节
• 管路特性调节:包括管路节流调节、旁路调节; • 泵的特性调节:包括改变工作转速、切割叶轮和串并联
等。
五 离心泵运转工况的调节
1 管路特性调节
③ 静液面变化调节:管路特性上下移动,也可达到调节目的,吸排液 罐中压力及液位变化。
五 离心泵运转工况的调节
2 改变泵的特性工况调节
① 改变工作转速:此法没有节流引起的附加损失,比较经济;取决于 原动机能否变转速,汽轮机、燃气轮机和电机变频等应用。
五 离心泵运转工况的调节
第六节 离心泵的工作特性和工况调节
在泵的实际运行中,泵和管路一起组成系统,系 统遵循质量守恒和能量守恒两个定律。泵和管路任一 方变化,均会引起系统工作参数变化。
一 离心泵的工作特性
1 固定转速泵的工作特性
H = a − bQ2−m
2 叶轮直径变化后泵的工作特性
H
=
a
D D0
−
b
D D0
m Q2−m
四 顺序输送时泵的特性
• 同一管道按顺序输送两种不同的油品; • 两种油品的粘性和密度都不同,设定ρB>ρA; • A和B油品的管路特性曲线分布为I和Ⅱ,泵所需
的能头不同。
五 离心泵运转工况的调节
改变运转泵的工作点称为工况调节。工作点是与管路特性的 交点,任何一曲线变化,工作点随之变化。
(化工原理实验)离心泵特性实验
曲线标注与说明
在曲线上标注关键点和数 据,提供必要的说明和解 释。
结果异常原因剖析
实验操作问题
检查实验操作过程是否存在问题,如测量误 差、操作不当等。
数据处理错误
检查数据处理过程是否存在错误,如计算错 误、数据筛选不当等。
设备故障或损坏
检查实验设备是否出现故障或损坏,导致实 验结果异常。
其他可能因素
数据记录与处理
详细记录实验过程中的各项数据,并进行必要的处理,如数据筛 选、计算等。
数据可视化
利用图表等方式将数据直观地呈现出来,便于分析和比较。
特性曲线绘制技巧分享
01
02
03
曲线类型选择
根据实验数据和需求选择 合适的曲线类型,如流量扬程曲线、效率-流量曲线 等。
坐标轴设置
合理设置坐标轴的范围和 刻度,使曲线更加清晰易 读。
工业应用前景展望
01
随着工业技术的不断发展,离心泵的 应用领域将不断扩大,对离心泵的性 能和可靠性要求也将不断提高。
02
未来离心泵的发展趋势将是高效、节 能、环保、智能化。例如,采用先进 的CFD技术对离心泵进行优化设计, 提高效率和可靠性;采用新材料和新 工艺减轻离心泵的重量和体积;应用 智能控制技术实现离心泵的远程监控 和自动调节等。
估其性能。
数据处理流程
数据整理
将实验测量得到的数据进行整理,包 括流量、扬程、功率等参数。
数据分析
对整理后的数据进行统计分析,如计 算平均值、标准差等,以评估数据的 可靠性和精度。
性能曲线绘制
根据实验数据,绘制离心泵的性能曲 线,如流量-扬程曲线、流量-效率曲 线等。
结果对比
将实验结果与理论值或其他实验结果 进行对比分析,以验证实验结果的准 确性和可靠性。
离心泵概述
离心泵前言离心泵是靠叶轮搅动流体旋转的离心力产生压力,输送流体。
在选用离心泵时,要确定泵的用途和性能并选择泵型。
这种选择首先得从选择泵的种类和形式开始,那么以什么原则来选泵呢?依据又是什么?泵选型原则1、使所选泵的型式和性能符合装置流量、扬程、压力、温度、汽蚀流量、吸程等工艺参数的要求。
2、机械方面可靠性高、噪声低、振动小3、经济上要综合考虑到设备费、运转费、维修费和管理费的总成本最低。
4、离心泵具有转速高、体积小、重量轻、效率高、流量大、结构简单、输液无脉动、性能平稳、容易操作和维修方便等特点。
因此除以下情况外,应尽可能选用离心泵:有计量要求时,选用计量泵。
扬程要求很高,流量很小且无合适小流量高扬程离心泵可选用时,可选用往复泵,如汽蚀要求不高时也可选用旋涡泵。
扬程很低,流量很大时,可选用轴流泵和混流泵。
介质粘度较大(大于650~1000mm2/s)时,可考虑选用转子泵或往复泵(齿轮泵、螺杆泵)。
介质含气量75%,流量较小且粘度小于37。
4mm2/s时,可选用旋涡泵。
对启动频繁或灌泵不便的场合,应选用具有自吸性能的泵,如自吸式离心泵、自吸式旋涡泵、气动(电动)隔膜泵。
泵的选型依据泵选型依据,应根据工艺流程,给排水要求,从五个方面加以考虑,既液体输送量、装置扬程、液体性质、管路布置以及操作运转条件等。
1、流量是选泵的重要性能数据之一,它直接关系到整个装置的的生产能力和输送能力。
如设计院工艺设计中能算出泵正常、最小、最大三种流量。
选择泵时,以最大流量为依据,兼顾正常流量,在没有最大流量时,通常可取正常流量的1。
1倍作为最大流量。
2、装置系统所需的扬程是选泵的又一重要性能数据,一般要用放大5%—10%余量后扬程来选型。
3、液体性质。
包括液体介质名称,物理性质,化学性质和其它性质,物理性质有温度c密度d,粘度u,介质中固体颗粒直径和气体的含量等,这涉及到系统的扬程,有效气蚀余量计算和合适泵的类型:化学性质,主要指液体介质的化学腐蚀性和毒性,是选用泵材料和选用那一种轴封型式的重要依据。
离心泵的工作特性
按设计泵和模型泵的参数Q、H、n计算所方比例i1。
1 1 DM H M 2 n sh DM QM n sh 3 i1 ( ) i1 ( ) D H nM Dsh Qsh n M sh sh 按照Dsh=DM/i1计算设计泵的各尺寸。算得的i1是不同的,一般选用 其中较大的值。
有了设计泵的各尺寸,即可绘制设计图,并根据模型泵的性能曲线 换算成设计泵的性能曲线。
改变装置特性曲线的调节
闸阀调节
液位调节
旁路分流调节
菜单
改变泵特性曲线的调节 a.转速调节 b.切割叶轮外径调节
c.改变前置导叶叶片角度的调节
d.改变半开式叶轮叶片端部间隙的调节
e.泵的串联或并联调节
改变装置特性曲线的调节
改变管路特性曲线的调节
a.闸阀调节
b.液位调节
c.旁路分流调节
2 离心泵的启动与运行
启动前的准备工作
启动前检查
润滑油的名称、型号、主要功能和加注数量是否符合技术文件 规定的要求; 轴承润滑系统、密封系统和冷却系统是否完好,轴承的油路、 水路是否畅通; 盘动泵的转子1~2转,检查转子是否有摩擦或卡住现象; 在联轴器附近或皮带防护装置处,是否有妨碍转动的杂物; 泵、轴承座、电动机的基础地脚螺栓是否松动; 泵工作系统的阀门或辅助装置均应处于泵运转时负荷最小的位 置,应关闭出口调节阀; 点动泵,看其叶轮转向是否与设计转向一致,若不一致,必需 使叶轮完全停止转动后,调整电动机接线后,方可再启动。
菜单
启动程序
离心泵泵腔和吸水管内全部充满水并无空气,出口阀关 闭。给水泵暖泵完毕。 对于强制润滑的泵,启动油泵向各轴承供油。
泵的特性实验报告
一、实验目的1. 了解泵的基本结构和工作原理。
2. 掌握泵性能参数的测量方法。
3. 通过实验,绘制泵的特性曲线,分析泵的工作特性。
4. 学习泵在不同工况下的性能变化规律。
二、实验原理泵是一种将能量传递给流体的机械设备,其性能参数主要包括流量Q、扬程H、轴功率N和效率η。
泵的特性曲线反映了泵在不同工况下的性能变化规律。
1. 流量Q:单位时间内泵输送的流体体积。
2. 扬程H:泵输送流体所需的能量,通常用泵出口与入口的压力差表示。
3. 轴功率N:泵轴上所传递的功率。
4. 效率η:泵输出功率与输入功率的比值。
泵的特性曲线主要包括以下三种:1. Q-H曲线:表示在恒定转速下,泵的流量与扬程之间的关系。
2. N-Q曲线:表示在恒定转速下,泵的轴功率与流量之间的关系。
3. η-Q曲线:表示在恒定转速下,泵的效率与流量之间的关系。
三、实验仪器与设备1. 离心泵一台2. 转速表一台3. 电磁流量计一台4. 涡轮流量计一台5. 压力表两台6. 电功率表一台7. 计时器一台8. 实验台一套四、实验步骤1. 将离心泵安装于实验台上,连接好相关仪表。
2. 启动泵,调整转速至预定值。
3. 逐步调节出口阀门,使泵的流量逐渐增加。
4. 在每个流量点,记录泵的扬程、轴功率、转速和效率等数据。
5. 重复步骤3和4,得到不同转速下的泵特性曲线。
五、实验结果与分析1. Q-H曲线:实验结果显示,泵的流量与扬程呈非线性关系。
在低流量区域,扬程随流量的增加而迅速增加;在高流量区域,扬程随流量的增加而逐渐减小。
这是由于泵内部流动状态的变化所导致的。
2. N-Q曲线:实验结果显示,泵的轴功率与流量呈非线性关系。
在低流量区域,轴功率随流量的增加而迅速增加;在高流量区域,轴功率随流量的增加而逐渐减小。
这是由于泵内部流动阻力增加所导致的。
3. η-Q曲线:实验结果显示,泵的效率与流量呈非线性关系。
在低流量区域,效率随流量的增加而迅速增加;在高流量区域,效率随流量的增加而逐渐减小。
离心泵的特性曲线
离心泵的特性曲线
离心泵是用于液体输送的工程设备,其具有流量、扬程、能量损耗等特性曲线。
离心泵的特性曲线,也叫性能曲线,是表示离心泵在不同工作条件下所取得的性能测试结果,其中包括流量曲线、扬程曲线、能量损失曲线等,可以根据这些曲线考查离心泵的性能情况。
1、流量曲线
流量曲线是离心泵性能曲线中最重要的一个曲线,它用抽水机的转速和流量的实验曲线做出来的,它表示离心泵在不同转速下输出的流量值。
流量曲线一般分为正端曲线和反比曲线。
正端曲线的表示,用抽水机的转速从低到高度和流量交点所构成的曲线,也说明着当抽水机转速提高1倍时,流量提高2倍。
反比曲线表示,流量与转速反比,当转速提高1倍时,流量减少1/2倍。
2、扬程曲线
扬程曲线表示离心泵在不同转速下所取得的扬程大小,即在1个固定的转速前提下,流量的增长会导致扬程的减小以及提高转速会带来扬程的增加。
从实际上来说,扬程曲线用于分析泵在不同转速下发出的压力,以及在设计离心泵的参数时的参照依据。
3、轴功率曲线
轴功率曲线是表示离心泵在不同情况下,轴承受的力和其产生的功率的相对大小的曲线,它可以用来检验泵的叶轮设计是否合理,以及它的效率,也可以用来加以改善泵的效率和能耗等。
4、能量损失曲线
能量损失曲线是表示泵在不同转速和扬程的情况下,其产生的能量损失的曲线。
能量损失曲线越平滑,表明扬程和流量在不同工况时的能量损失变化越不大,也就是泵的效率更高。
能量损失曲线可以用来预测离心泵的能耗情况,从而提高泵的性能。
离心泵的特性曲线知识介绍
离心泵的特性曲线知识介绍一、离心泵的特性曲线定义离心泵的扬程(H)、功率(P)、效率(η)与流量(qv)之间的关系曲线称为特性曲线。
其数值通常是指额定转数和标准状况(大气压101.325kPa,20℃清水)下的数值,可用实验测得。
二、下图为某型号离心水泵在转速n=2900r/min下用20℃清水测得的特性曲线,效率某型号离心水泵在转速n=2900r/min下用20℃清水测得的特性曲线,离心泵的特性曲线有3条,分别表示如下:(1)H-qv曲线表示H与qv的关系,通常H随qv的增大而减小。
不同型号的离心泵,H-qv曲线的形状有所不同。
有的离心泵)H-qv曲线较平坦,其特点是流量变化较大而压头变化不大;而有的泵H-qv 曲线陡降,当流量变动很小时扬程变化很大,适用于扬程变化大而流量变化小的情况。
(2)P-qv曲线表示P与qv 的关系,P随qv的增大而增大。
显然,当qv=0 时,P最小。
因此,启动离心泵时,应关闭出口阀,使电动机的启动电流减至最小,以保护电动机。
待转动正常后再开启出口阀,调节到所需的流量。
(3)η-qv曲线表示与qv的关系,开始η随qv的增大而增大,达到最大值后,又随qv的增大而下降。
曲线上最高效率点即为泵的设计工况点,在该点所对应的扬程和流量下操作最为经济。
实际生产中,泵不可能正好在设计工况点下运转,所以各种离心泵都规定一个高效区,一般取最高效率以下7%范围内为高效区。
工程上也将离心泵最高效率点定为额定点,与该点对应的流量称为额定流量。
三、离心泵的转速对特性曲线的影响离心泵的特性曲线是在一定转速n下测定的,当n改变时,泵的流量qv、扬程H及功率P也相应改变。
对同一型号泵、同一种液体,在效率η不变的条件下,扬程(H)、功率(P)、流量(qv)随n的变化关系如下式所示:qv2/qv1=n2/n1H2/H1=(n1/n2)2P2/P1=(n1/n2)3上式称为比例定律表达式。
当泵的转速变化小于20%时,效率基本不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/6/26
15
二、离心泵的应用特性
❖1、离心泵的特性
❖离心泵的扬程、功率、效率等参数 随流量的变化关系称为工作特性。
❖应用中,常将这种关系用直角坐标 系中的曲线表示,称为特性曲线。
2020/6/26
16
❖ 泵的生产厂家,
通过实验得到 H/m
每种同性能泵 N/kw
的各种特性曲 线,随泵的出
Qm
希腊字母(rou柔)表示:
物体的密度,单位㎏/m3
2020/6/26
3
❖ 2、扬程 ❖ 扬程是指单位质量流体通过泵所获得的有效能量值。
其单位为J/kg。 ❖ 为了应用的方便,泵的扬程常用被输送介质的液柱
高度表示,单位为m,有时也用压强单位pa(帕)、 MPa(兆帕)或mmHg(毫米汞柱)表示。
❖ 则1m水柱产生的压强为:
1m gH 10009.81 9800(Pa)
2020/6/26
5
❖ 水银的密度为: Hg 13604kg / m3
❖ 1mmHg柱产生的压强为:
1mm gH 13604 9.8 0.001
133 .32(Pa)
❖ 1atm(标准大气压)=760mmHg =133.32×760=101322.59pa ≈1.01×105pa
通常用符号ns表 ns
3
示。
H4
泵的流量, m3/s,双 吸叶轮时 取一半。
泵的单级扬 程,m
❖ 比转数的大小,大致代表了离心泵叶轮的形 状、离心泵的工作性能等。
2020/6/26
12
30≤ns<80 低比转数
80≤ns<150 中比转数
150≤ns<300 高比转数
300≤ns<500 混流泵
❖ 流量有体积流量和质量流量两种表示方法。 ❖ 体积流量常用符号Q表示,其常用单位有m3/s、
m3/h和m3/L。
❖ 质量流量常用符号m或G表示,其常用单位有 kg/s或kg/h。
❖ 体积流量常用于水力计算,质量流量常用于 经济比较。
2020/6/26
2
❖ 体积流量与质量流量的换算关系式为:
m Q
2020/6/26
14
❖ 比转数过大,流体将在叶轮出口处产生较强的 二次回流,使泵的运行效率降低,所以,一般 不大于1000。
❖ 在实际应用中,可先根据工艺需要Q、H, 结合驱动机的转速,计算出比转数;再由比 转数的大小初步确定所用泵的类型。
❖ 当比转数小于30时,一般考虑选用容积式泵; 当比转数大于300时,一般选用混流泵或轴 流泵;当比转数在30~300之间时,可考虑 选用离心泵。
❖ 功率的单位为瓦,用符号W表示,
❖ 1W=1J/s=1N·m/s。
❖ 在实际应用中,单位W太小, ❖ 常用KW表示,1kW=103W。
2020/6/26
7
❖泵在单位时间内对被输送介质所做的 功称为有效功率,用Ne表示:
Ne gHQ PQ(W )
被输介质 的密度,
kg/m3
泵的扬 程,m
泵的排 量, m3/s
❖ 由:1J=1N·m, ❖ 1kgf=9.8N;
❖ 得:1J/kg=1/9.8(m)
❖ 1 m =9.8(J/kg)
2020/6/26
4
❖ 由:1pa=1N/m2, p gH (Pa)
❖ H米水柱产生的压强为 : 清水的密度(4℃,1标准大气压):
(H20) 1000kg / m3
❖ 每千克质量物体受地球引力: g 9.8N / kg
η/%
厂说明书一起
供用户使用。
❖ 实验是以20 ℃ 的清水为介质 进行的。
2020/6/26
H-Q η-Q N-Q
Q/(m3/h)
17
❖ 从实验特性曲线可知: H
H-Q
❖ H-Q特性曲线在Q
=0时有最高点,随Q
的增大而下降,H随Q
的增大逐渐减小。
N
Q
❖ N-Q特性曲线随Q
的增大而上升,N
N-Q
随Q 的增大而增大。
电动机效 率,%
N d Nd
泵的轴功率,kW 电功率,kW
离心泵效 率,%
b
Ne N
泵的有效功率,kW 泵的轴功率,kW
电动离心泵机组 的效率,%
db
N Nd
Ne N
Ne Nd
2020/6/26
11
❖ 5、比转数
泵的转速,
❖ 离心泵的比转数 r/min
是一个表示离心
泵相似的概念,
3.65n Q
❖ 由于单位pa较小,在实际应用中,常用kpa和 Mpa。
❖ 1kpa=103pa,1Mpa=106pa。
2020/6/26
6
❖ 3、功率
❖ 功率是指设备在单位时间内所做的功,常用 符号N表示。
❖ 若某设备在1S钟内把1N重的物体移动1m的 距离,则该设备所做的功为1J(1N.m),其 功率为J/S,定义为1W。
500≤ns<1000 轴流泵
Q-H
Q-H
Q-H
Q-H
Q-H
2020/6/26
13
❖ 从图中可以看出,低比转数泵的叶轮窄高, 高比转数泵的叶轮宽矮。
❖ 低比转数泵的叶轮叶片呈柱面状,高比转数 泵的叶轮叶片呈扭曲状。
❖ 低比转数泵的Q-H性能曲线存在驼峰,高比 转数泵的Q-H性能曲线存在凹谷。
❖ 比转数过小,将造成叶轮流道过于狭长,这 不仅增加制造困难,而且增大流体流经叶轮 时的摩阻损失,使泵的运行效率降低,所以, 一般情况下,离心泵的比转数不小于30。
❖第三节 离心泵的参数与工作特性
❖ 一、离心泵的参数
❖ 离心泵的主要性能参数通常标注在铭 牌中。主要有:
❖ 流量、扬程、功率、效率、转速,比 转数、允许气蚀余量等。
❖ 铭牌中标注的为设备最高效率时的参 数,称为额定工作参数。
2020/6/26
1
❖ 1、流量
❖ 流量是指泵在单位时间内所输送流体的数量, 流量也称排量。
❖ 如电动机驱动的离心泵机组工作时,电动机 将电功率Nd转换为机械能传给泵轴,变为泵 的轴功率N,离心泵再将此机械能转换为被 输送液体的有效功率Ne。
❖ 这种能量在转换各个环节,都会存在一定的 能量损失,能量损失的程度用效率表示。
2020/6/26
10
❖ 效率是衡量离心泵工作经济性能的指标,常 用希腊字母η(艾塔 eta)表示。
泵的扬程, Pa
❖泵轴在单位时间内获得驱动机传给的
功称为轴功率,用N表示。
2020/6/26
8
❖驱动机(如电动机)在单位时间内消耗 的功称为驱动功率,用Nd表示。
Nd 3IV cos
电流/A
电压/V
电动机的功 率因数
2020/6/26
9
❖ 4、效率
❖ 离心泵一种是将电动机的电能或内燃机的燃 料内能转换为被输送液体动能或势能的能量 转换机械。