气溶胶化学与物理1
气溶胶
影响人体健康
凝聚过程、化学反应 湿度小的时后有吸水性, 其它方面与烟效应相同
三、气溶胶源和汇 --气溶胶来源
天然源、人为源
(按颗粒物形成机制)气溶胶
一次气溶胶粒子、二次气溶胶粒子 一次气溶胶粒子
天然污染源和人为污染源释放。
二次气溶胶粒子
大气污染气体组分(如二氧化硫、氮氧化物、碳氢化合物等)之间, 或与大气中的正常组分(如氧气)之间通过光化学氧化反应、催化氧化 反应或其它化学反应转化生成的颗粒物。
表面积分布曲线(峰值 ) 0.25m
大气颗粒物的粒度:即艾根核模、积聚模和粗粒模。
由蒸汽凝结或光化学反应使气体经成核作用而形成的颗粒,粒 度为0.005~0.05m,属于核模型。
粒径在0.05~2m范围的颗粒物是由核模型颗粒凝聚或通过蒸气 凝结气而长大的,属于积聚模型。
以上颗粒物合称为细粒(小于2m)
10
气溶胶源和汇—气溶胶天然来源
一次气溶胶粒子天然源 地面扬尘(风吹灰尘)、海浪浪沫、火山爆发喷出物、
森林火灾燃烧物、陨星尘及生物界产生的颗粒物,如花粉、 袍子等。
二次气溶胶粒子天然源
森林排出碳氢化合物(主要是萜烯类)--光化学反应--产生微小 颗粒;与自然界硫、氮、碳循环有关的转化产物如由H2S、SO2经氧 化生成的硫酸盐;由NH3、NO和NO2氧化生成的硝酸等。
一 气溶胶粒子成核过程
SO2转化成硫酸或硫酸盐气溶胶的过程如下: 1. SO2气体的氧化g) mH 2SO4 nH2O
3.粒子成长过程
mH 2SO4 nH2O H 2SO4 其它气体、固体微粒 硫酸盐粒子
(液相硫酸雾核)
粒子(液体)
(固体)
二、气溶胶的分类
根据颗粒物的物理状态不同,可将气溶胶分为以下三类: ✓ 固态气溶胶——烟和尘; ✓ 液态气溶胶——雾;
大气科学中的大气化学和气溶胶物理
大气科学中的大气化学和气溶胶物理大气科学是研究地球大气现象的学科,主要包括大气物理、大气化学、大气动力学和气象学等领域。
其中,大气化学和气溶胶物理是大气科学中非常重要的研究领域,它们对于理解大气污染、气候变化和生态环境等方面都具有巨大的意义。
大气化学是研究大气中化学反应和物质输运的学科,它主要研究大气组成、化学反应、污染物的形成和转化、大气环境中的化学平衡等问题。
大气化学的研究内容非常广泛,在大气环境中,大气化学过程既有自然形成的化学反应和物质输运,也有人为污染物的排放和大气中的化学反应。
大气化学的研究成果对于解决大气污染问题和改善大气环境意义重大。
气溶胶物理是研究大气中气溶胶物理化学性质和对气候变化的影响的学科,主要涉及气溶胶的来源、物理化学性质、组成结构和光学特性等。
气溶胶是指悬浮在大气中的液体或固体微小颗粒,对于大气的辐射平衡、空气污染、气候变化和人类健康都具有重要影响。
在大气科学中,大气化学和气溶胶物理研究的实验方法和分析技术都非常复杂和细致。
通常需要采集和分析大量的大气样品,包括气体和气溶胶等,同时需要借助高级仪器和设备如质谱仪、光谱仪、拉曼仪等进行分析。
大气化学和气溶胶物理研究非常跨学科,需要多个学科的专业知识和技能,如化学、物理、材料科学、环境科学等。
大气化学和气溶胶物理的研究对于我们了解大气环境的复杂性和多样性非常有帮助。
通过揭示大气化学反应和气溶胶的物理化学特性,我们可以更好地了解大气污染的成因和特点,有利于制定和实施更加有效的大气污染防治和治理措施。
同时,气溶胶对于大气的辐射平衡和气候变化有重要影响,通过研究气溶胶物理,可以更好地了解气候变化规律和趋势,有助于我们制定更加准确的气候预测和气候变化应对策略。
总之,大气科学中的大气化学和气溶胶物理是非常重要的学科,它们对于我们了解和改善大气环境,探究气候变化规律,保护生态环境等方面都具有巨大的意义。
相信在未来的研究中,大气化学和气溶胶物理领域的研究会越来越深入,为人类的生存和发展做出更大的贡献。
气溶胶的基本特征课件
THANKS
感谢观看
改变云的形成和降水过程
01
影响地面对太阳辐射的吸收和反射
02
增加温室效应
03
对空气质量的影响
降低能见度
增加大气污染
形成光化学烟雾
对人类健康的影响
呼吸系统疾病 心血管系统疾病 增加死亡率
05
气溶胶的监测与测量方法
监测站点布局与采样方法
监测站点布局
采样方法
气溶胶测量仪器与技术
仪器
气溶胶测量仪器包括颗粒物计数器、粒子质量浓度测量仪、气溶胶质谱仪等。这 些仪器可以测量不同物理和化学性质的气溶胶,如颗粒物大小、成分和数量浓度 等。
06
气溶胶的控制与减排策略
减少排放源的措施
工业生产
控制工业生产过程中的废弃物排放,推广清洁生产技术,降低气 溶胶颗粒物产生。
能源利用
优化能源结构,减少燃煤和燃油使用,发展清洁能源,降低硫氧 化物、氮氧化物等气溶胶前体物的排放。
农业活动
推广有机肥和低毒农药使用,减少土壤和农作物中气溶胶颗粒物 的产生和排放。
控制大气中已有的气溶胶的措施
颗粒物排放控制
大气中已有气溶胶的去除
发展新型的气溶胶控制技术
新材料应用
研发新型材料,降低气溶胶颗粒物的产 生和排放,如低散发材料、水性涂料等。
VS
技术创新
推动清洁能源技术创新,提高能源利用效 率,减少气溶胶颗粒物的排放。如发展高 效、低成本的清洁能源转换技术、废弃物 资源化利用技术等。
气溶胶的性 质
物理性质
化学性质 环境影响
02
气溶胶的物理特性
粒子尺寸分布
气溶胶粒子大小通常在0.1-100 微米之间,其中大部分粒子在1-
分析气溶胶的形成和物理性质
分析气溶胶的形成和物理性质气溶胶是由固体或液体微粒悬浮在气相中的复杂混合物。
它们的来源包括天然和人工的过程,如火山喷发、森林火灾、工业排放、机动车辆尾气等。
气溶胶对公共健康和环境有着重要的影响,因为它们能够吸收或反射太阳辐射,影响地球能量平衡和气候,同时也能够对呼吸系统等产生负面影响。
本文将介绍气溶胶的形成机制和物理性质,为进一步了解气溶胶的环境影响提供更深入的理解。
一、气溶胶的形成机制气溶胶形成主要分为两种机制:核化和凝聚。
核化是指气态物质原子或分子自由组合形成稳定的固体或液体微粒的过程。
例如,大气中的氧、硫和氮等元素能够通过光和化学反应形成具有一定大小的微粒,成为大气气溶胶的一部分。
凝聚是指气溶胶微粒之间的相互作用力超过它们之间的热运动能量时,微粒彼此凝聚形成更大的微粒的过程。
这种过程可能是由于物理或化学作用导致的。
二、气溶胶的物理性质气溶胶化学和物理性质的复杂性导致了它们影响因素的巨大不确定性。
然而,它们的一些物理性质可以通过实验测量和数学模型进行研究。
大小和形状:气溶胶微粒的大小和形状可以对其行为和环境影响产生重要影响。
较小的微粒可以更容易地穿过人体呼吸系统并进入肺部,从而可能对健康造成负面影响。
形状和表面特性也与气液界面能量有关。
成分:气溶胶的成分对其环境化学和物理性质产生关键影响。
它们的化学成分取决于它们的来源。
例如,来自森林火灾的气溶胶中能够检测到碳和有机污染物,而来自工业排放的气溶胶中则可能含有重金属和硫酸盐等化学成分。
光学性质:气溶胶对太阳辐射的吸收和散射能够影响大气能量平衡和气候。
气溶胶的反射能力、散射角度和发散性不同,导致它们的光学性质也不同。
结论气溶胶的物理性质和影响因素非常复杂。
需要通过实验和数学模型的结合来建立气溶胶的化学和物理特征,进一步研究它们对公共卫生和环境的影响。
希望通过深入研究气溶胶,为缓解大气污染和气候变化等问题提供更有效的解决方案。
气溶胶物理与化学特性研究
气溶胶物理与化学特性研究一、气溶胶的概念和来源气溶胶,简单来说就是指空气中的悬浮物质。
这些物质非常小,一般都在0.01-10微米之间。
它们可以来自于不同的源头,比如工业废气、汽车尾气、露天焚烧等。
另外,还有一些气溶胶是自然界中形成的,比如海盐、沙尘、植物花粉等等。
二、气溶胶的物理特性1.粒径分布气溶胶的颗粒大小对其物理特性有着非常大的影响,因为颗粒大小不同,其在空气中的运动方式也不同。
一般来说,气溶胶的颗粒大小越小,越容易被悬浮在空气中,也越容易被吸入到人体内部。
2.相对湿度的影响气溶胶的物理特性还受到相对湿度的影响。
当相对湿度较高时,气溶胶中的水分子会充分吸收空气中的水分,使得颗粒变得更加稳定,也更容易被人体吸入。
3.电荷特性气溶胶的颗粒表面带有电荷,这些电荷的性质对颗粒的物理特性也有很大的影响。
比如说,负电荷的颗粒更容易聚集在一起,形成更大的颗粒,而正电荷的颗粒则更容易被空气中的负离子吸引并沉积下来。
三、气溶胶的化学特性1.组分分析气溶胶的化学特性主要表现在其组分的分析上。
根据不同的来源和环境,气溶胶中的成分可以有非常大的差异。
其中有些成分是重金属、有机物等毒性较大的物质,对人体健康造成的危害也更加严重。
2.化学反应气溶胶在大气中还会参与各种化学反应,从而产生不同的化学物质。
比如说,氮氧化物和挥发性有机物在光照、湿润的条件下可以相互反应,形成臭氧和一氧化碳等有害物质。
四、气溶胶的研究方法1.化学分析方法气溶胶的组分分析主要依靠现代化学分析技术,比如说气相色谱-质谱联用技术,能够非常精确地检测出气溶胶中的各种成分,并对其化学特性进行详细的研究和分析。
2.物理测量方法气溶胶的物理特性研究主要依靠物理测量技术,比如说激光粒径仪、光散射仪等。
通过这些测量手段,可以更加准确地确定气溶胶的颗粒大小、数目和浓度等特性。
五、气溶胶物理与化学特性研究的重要性气溶胶对环境和健康造成的影响非常大,因此对其物理和化学特性进行深入的研究对于环境污染监测和人体健康保护都有着非常重要的意义。
气溶胶的关键物理化学特性探究
气溶胶的关键物理化学特性探究气溶胶是指大气中悬浮的微粒状物质,其颗粒直径通常小于10微米。
气溶胶对全球气候变化、大气污染和健康状况等方面都会产生深远的影响,因此对气溶胶的特性进行探究具有重要意义。
气溶胶的成因气溶胶的成因极为复杂,包括自然因素和人为因素两部分。
自然因素主要涉及火山喷发、沙尘暴、森林火灾等,而人为因素则包括工业排放、机动车尾气、农业活动等。
气溶胶由于来源的多样性,在成分、形态、大小等方面也存在着很大的差异性。
气溶胶的物理特性气溶胶的物理特性表现为光学特性、机械特性、热学特性等方面。
其中光学特性是较为突出的一个特点。
气溶胶的粒径决定了其对光的散射、吸收及透过的能力,因此,气溶胶的光学性质是反映其物理特性的重要指标之一。
气溶胶的化学特性气溶胶的化学特性表现为其组成成分及含量的不同,涉及到无机物、有机物等方面。
无机物主要包括硫酸盐、硝酸盐、铵盐等,而有机物则包括多环芳烃、脂肪酸、醇酸等。
气溶胶的化学成分对其环境效应有着至关重要的影响。
气溶胶的对环境的影响气溶胶对全球气候变化、大气污染、健康状况等方面产生着重要的影响。
气溶胶通过反射、吸收、散射、辐射等方式影响着大气中的辐射平衡,从而影响全球气候的变化。
例如,黑碳是气溶胶的一种,它的存在对全球气候变暖有着重要贡献。
气溶胶对于大气污染形成、发展,起着十分重要的作用。
气溶胶可以促进二次污染的形成。
例如,氮氧化物和挥发性有机物在大气中光化反应形成气相氧化物,这些气相氧化物可以在气溶胶表面吸附和反应产生二次污染。
气溶胶对健康状况也会产生很大的影响。
气溶胶中存在的有害物质对空气质量和人体健康产生危害。
例如,PM2.5的存在不仅会影响人类的呼吸系统,还会对人类的心血管系统产生不利影响。
结语气溶胶是大气中不可缺少的一个组成部分。
对气溶胶的物理化学特性进行深入研究,对于深入了解其环境效应、制定科学合理的环保政策有着重要的意义。
气溶胶灭火原理
气溶胶灭火原理
气溶胶灭火技术是一种新型的灭火方式,它利用微小的气溶胶颗粒来扑灭火灾,具有快速、高效、安全等优点,逐渐受到人们的关注和重视。
那么,气溶胶灭火的原理是什么呢?
首先,我们需要了解气溶胶是什么。
气溶胶是由固体或液体微粒悬浮在气体中
而形成的混合物,其粒径范围一般在0.001~100微米之间。
在气溶胶灭火技术中,
气溶胶颗粒的大小对灭火效果有着重要的影响。
较小的颗粒能够更快速地扩散到火灾现场,与火焰和热量发生作用,从而达到灭火的目的。
其次,气溶胶灭火的原理主要包括物理灭火和化学灭火两种方式。
物理灭火是
指气溶胶颗粒在火灾现场与火焰和热量发生作用,通过吸热和降温的方式将火焰和热量消除,从而达到灭火的效果。
而化学灭火则是指气溶胶颗粒中的化学成分与火焰中的自由基和自由基链反应发生作用,抑制火焰的燃烧过程,从而达到灭火的效果。
此外,气溶胶灭火技术还具有对多种火灾类型的适用性。
不同于传统的灭火方式,气溶胶灭火技术可以用于固体火灾、液体火灾、气体火灾以及电气设备火灾等多种场景,具有灵活性和多功能性的特点。
在实际应用中,气溶胶灭火技术还具有一些独特的优势。
首先,它可以在火灾
初期就进行灭火,有效控制火势蔓延,减少火灾造成的损失。
其次,气溶胶灭火设备体积小、重量轻,便于携带和操作,适用于各种场所和环境。
此外,气溶胶灭火技术不会对人体和环境造成危害,是一种绿色环保的灭火方式。
总的来说,气溶胶灭火技术是一种高效、安全、灵活的灭火方式,具有广阔的
应用前景。
随着科技的不断发展和进步,相信气溶胶灭火技术将会在未来的灭火领域发挥越来越重要的作用。
气溶胶
气溶胶灭火系统近年楼下作为哈龙替代技术之一的所了溶胶灭火技术发展较快,国内外研究人员对各类气溶胶及其应用技术进行了大量有效的研究、开发、并取得一定成果。
1.气溶胶分类气溶胶是指液体或固体的微细颗粒悬浮于气体介质中的一种物质。
按气溶胶悬浮物质存在的不同状态,可分为:分散性和凝聚性两类。
1.1分散性气溶胶(冷气溶胶)分散性气溶胶是通过固体或液体的雾化形成的,这种气溶胶在气溶胶灭火剂释放之前,气体介质和被分散介质是分别稳定存在的。
气溶胶灭火剂的释放即是气体分散液体或固体灭火剂,形成气溶胶的过程。
这种气溶胶属于非高温技术气溶,通常称“冷气溶胶”,主要包括细水雾灭火技术和超细干粉灭火技术。
1.2凝聚性气溶胶(热气溶胶)凝聚性气溶胶是通过过热蒸气的凝聚或气相中的化学反应形成的。
这种气溶胶灭火剂在反应前是以化学物质混合物的固体形态存在。
气溶胶灭火剂的释放是靠自身的燃烧反应,反应产物中既有固体又有气体,气体分散固体形成气溶胶。
这种气溶胶属于高温技术气溶胶,通常称“热气溶胶”。
目前我国消防行业的气溶胶产品都属热气溶胶范畴。
2.热气溶胶灭火剂的组成热气溶胶灭火剂的配方和工艺采用了固体火箭推进剂的原理,由氧化剂、还原剂和粘合物结合组成含能灭火剂。
3.气溶胶的灭火机理气溶胶的灭火机理是通过燃烧反应生成大量固体微粒气溶胶,这种微粒在火焰中可以熔化、气化和分解来吸热降温;还可以干预火焰燃烧链反应,终止火焰燃烧,起负催化作用。
4.气溶胶的安全性4.1气溶胶的温度由于第一代产品的影响,有人把降低气溶胶的温度作为主要问题,甚至以气溶胶出口处温度的高低作为衡量产品质量的主要指标,其实热气溶胶的特征之一就是温度,要把热气溶胶的温度降到很低甚至达到室温是不现实的。
因为要降低热气溶胶出口温度就必须采取降温措施,不管是采取物理方法还是用化学方法,都会在一定程度上影响灭火效率。
现出口处温度一般为不大于250℃。
4.2工作压力热气溶胶灭火剂是一种固体燃料混合物,平时常压贮存。
气溶胶知识讲解
气溶胶本节内容要点:气溶胶的定义、分类、源、汇、粒径分布、气溶胶粒子的化学组成、气溶胶的危害、气溶胶污染源的推断等1)气溶胶的定义和分类气溶胶(aerosol)是指液体或固体微粒均匀地分散在气体中形成的相对稳定的悬浮体系。
微粒的动力学直径为0.002〜100卩m由于粒子比气态分子大而比粗尘颗粒小,因而它们不象气态分子那样服从气体分子运动规律,但也不会受地心引力作用而沉降,具有胶体的性质,故称为气溶胶。
实际上大气中颗粒物质的直径一般为o.ooi〜ioo卩m大于io ym的颗粒能够依其自身重力作用降落到地面,称为降尘;小于1oym的颗粒,在大气中可较长时间飘游,称为飘尘。
按照颗粒物成因不同,可将气溶胶分为分散性气溶胶和凝聚性气溶胶两类。
分散性气溶胶是固态或液态物质经粉碎、喷射,形成微小粒子,分散在大气中形成的气溶胶。
凝聚性气溶胶则是由气体或蒸汽(其中包括固态物升华而成的蒸汽)遇冷凝聚成液态或固态微粒,而形成的气溶胶。
例如二氧化硫转化成硫酸或硫酸盐气溶胶的过程如下:•二氧化硫气体的氧化过程•气相中的成核过程(液相硫酸雾核)在过饱和的H2SO4蒸气中,由于分子热运动碰撞而使分子(n个)互相合并成核,形成液相的硫酸雾核。
它的粒径大约是几个埃。
硫酸雾核的生成速度,决定于硫酸的蒸气压和相对湿度的大小。
粒子成长过程硫酸粒子通过布朗运动逐渐凝集长大。
如果与其他污染气体(如氨、有机蒸气、农药等)碰撞,或被吸附在空中固体颗粒物的表面,与颗粒物中的碱性物质发生化学变化,生成硫酸盐气溶胶。
根据颗粒物的物理状态不同,可将气溶胶分为以下三类:⑴固态气溶胶--烟和尘;⑵液态气溶胶--雾;(3)固液混合态气溶胶--烟雾(smog)。
烟雾微粒的粒径一般小于1卩m (见表2-13)。
气溶胶按粒径大小又可分为:(1)总悬浮颗粒物(total suspended particulates 或TSP)用标准大容量颗粒采样器(流量在1.1〜1.7m3/min)在滤膜上所收集到的颗粒物的总质量,通常称为总悬浮颗粒物,它是分散在大气中各种粒子的总称。
气溶胶物理学中的重要参数研究
气溶胶物理学中的重要参数研究第一章引言气溶胶是指在空气中悬浮的液态或固态细小颗粒物质,具有很大的表面积和活性,在大气环境和人类健康等方面都具有重要影响。
气溶胶物理学是研究气溶胶的基本物理过程,包括气溶胶的形成、演化和变化等。
气溶胶的特性和参数是气溶胶物理学研究的核心,其中一些参数的研究在大气环境、工业生产和医疗卫生等领域具有重要应用价值。
第二章气溶胶的重要参数2.1 粒径大小气溶胶的粒径大小是气溶胶的一个重要参数,它决定了气溶胶的吸收和散射特性以及对人体健康的影响程度。
粒径大小一般使用单位为微米(μm)或纳米(nm)来表示,通常根据其粒径大小可以将气溶胶分为超细颗粒(小于0.1μm)、细颗粒(小于2.5μm)和粗颗粒(小于10μm)。
研究气溶胶的粒径大小,可以帮助我们更好地了解气溶胶对环境和人类健康的影响。
2.2 光学参数气溶胶的光学参数是指气溶胶在光学波段内,如紫外线、可见光和红外线等波段内对光线的吸收和散射等。
光学参数通常包括消光系数、散射系数和吸收系数等。
这些参数的测定可以帮助我们研究气溶胶对光学效应的影响,为我们了解大气环境中的光强和透射率等提供参考。
2.3 化学成分化学成分是气溶胶的一个重要参数,它关系到气溶胶的来源、组成和变化等,同时也决定了气溶胶的生态手段和生化过程。
气溶胶的化学成分一般包括有机物、无机物、微生物和放射性核素等。
通过研究气溶胶的化学成分,可以帮助我们了解气溶胶在环境中的形成和演化过程及其对人类健康和自然环境的影响。
2.4 形态和结构特征气溶胶的形态和结构特征是另一个重要参数,它决定了气溶胶的附着属性和过滤效率等。
气溶胶的形态和结构特征通常可以通过电子显微镜和扫描电子显微镜等科学仪器进行观察和分析。
通过研究气溶胶的形态和结构特征,可以帮助我们了解气溶胶粒子在环境中的分布和物理特性,从而提高精确控制和过滤的效率。
第三章气溶胶重要参数的测定方法3.1 气溶胶粒径大小的测定气溶胶粒径大小的测定方法较多,常用的包括激光粒度分析法、电阻法和光学显微镜观察法等。
气溶胶的物理特性及其环境影响研究
气溶胶的物理特性及其环境影响研究气溶胶是一种复杂的大气污染物,它对生态环境与公共卫生造成的影响已经越来越引起人们的关注。
本文将重点探讨气溶胶的物理特性以及其对环境的影响。
1. 气溶胶的定义和分类气溶胶是一种固体或液体微粒子的混合物,由细小的颗粒物、液滴及其它微结构组成。
这些微粒子直径小于10微米,可以悬浮在空气中。
根据对颗粒物直径的定义不同,气溶胶的分类标准也不同。
我们通常采用的分类标准为颗粒物直径小于2.5微米为PM2.5,颗粒物直径小于10微米为PM10。
2. 气溶胶的来源气溶胶的来源有很多,包括自然源和人为源。
自然源包括火山喷发、森林火灾、海水中的气溶胶、植物花粉等。
而人为源则包括燃烧物质所排放的气溶胶、工业废气的排放、交通运输等。
3. 气溶胶的物理特性气溶胶的物理特性包括颗粒物的大小、形状、化学成分等。
这些特性会直接影响到气溶胶的光学、电学等性质,从而影响到对环境的影响程度。
3.1 颗粒物大小颗粒物大小是气溶胶最基本的物理特性之一。
气溶胶中颗粒物的大小范围很广,从纳米级别到数十微米都有。
其中,PM2.5可直接进入人体内部,对人体健康造成严重影响。
而PM10则更容易附着在人体外部,对呼吸道造成刺激性影响。
3.2 颗粒物形状颗粒物形状不同会对颗粒物的性质产生影响。
近年来,有研究表明,球形颗粒物比非球形颗粒物更容易在环境中形成难处理的气溶胶。
3.3 颗粒物化学成分颗粒物的化学成分直接影响气溶胶对人体健康的影响程度。
不同的颗粒物化学成分有不同的健康影响,如焦油、石棉、重金属等都有很强的毒性。
4. 气溶胶对环境的影响气溶胶对环境的影响主要体现在两个方面,一个是生态环境方面,另一个是公共卫生方面。
4.1 生态环境方面气溶胶能够降低阳光照射量,降低气温,影响植物生长。
此外,气溶胶还可落入土壤和水体,造成土壤、水体污染,导致生态系统的生物多样性下降。
4.2 公共卫生方面气溶胶对人类健康的影响主要是通过呼吸系统造成的。
储能气溶胶消防原理
储能气溶胶消防原理一、引言储能气溶胶消防技术作为一种新型的灭火方法,具有高效、环保、安全等优势,被广泛应用于各类场所。
本文将详细介绍储能气溶胶消防的原理及其应用。
二、储能气溶胶消防原理储能气溶胶消防是利用储能气溶胶灭火装置释放高浓度的气溶胶来抑制火灾的蔓延。
其原理主要包括两个方面:化学反应和物理作用。
1. 化学反应储能气溶胶消防装置内部储存着高能量的化学物质,当火灾发生时,装置会自动启动,将化学物质释放出来。
这些化学物质在与火焰接触时,会发生剧烈的化学反应,产生大量的灭火气体。
这些灭火气体可抑制火焰的燃烧,并降低火灾现场的温度。
2. 物理作用储能气溶胶消防装置释放的气溶胶具有微粒化的特点,这些微粒可以迅速扩散到整个火灾现场,并通过物理作用来灭火。
首先,气溶胶微粒中的颗粒会吸收火焰周围的热量,使火焰温度下降,从而抑制火势的蔓延。
其次,气溶胶微粒会与火焰中的自由基发生反应,破坏火焰的化学链反应,进一步抑制火势的扩大。
此外,气溶胶微粒还能吸附燃烧产物中的有害物质,净化空气,保护人员免受有害气体的侵害。
三、储能气溶胶消防的应用储能气溶胶消防技术广泛应用于各类场所,如机房、变电站、仓库、船舶等。
其应用主要有以下几个方面的优势:1. 高效灭火储能气溶胶消防装置释放的气溶胶微粒能够迅速扩散到整个火灾现场,高效抑制火焰的蔓延,有效控制火势。
2. 环保安全储能气溶胶消防装置所释放的气溶胶微粒不会对环境和人体造成污染和伤害,具有较高的环保安全性。
3. 经济节能储能气溶胶消防装置具有体积小、重量轻、安装方便等特点,能够节省空间和成本,提高灭火效率。
4. 可靠性高储能气溶胶消防装置采用先进的控制技术,具有快速启动、可靠性高等特点,能够在火灾发生时及时响应,有效灭火。
结论储能气溶胶消防技术以其高效、环保、安全等优势,成为现代消防领域的重要技术之一。
通过化学反应和物理作用,储能气溶胶消防装置能够快速灭火,并在火灾现场提供安全保护。
气溶胶
气溶胶科技名词定义中文名称:气溶胶英文名称:aerosol定义1:悬浮在大气中的固态粒子或液态小滴物质的统称。
应用学科:大气科学(一级学科);大气物理学(二级学科)定义2:悬浮在大气中的固态粒子或液态小滴物质的统称。
应用学科:海洋科技(一级学科);海洋科学(二级学科);海洋气象学(三级学科)定义3:空气中的液态或固态微粒悬浮物。
应用学科:生态学(一级学科);全球生态学(二级学科)以上内容由全国科学技术名词审定委员会审定公布气溶胶成品气溶胶是液态或固态微粒在空气中的悬浮体系。
它们能作为水滴和冰晶的凝结核(见大气凝结核、大气冰核)、太阳辐射的吸收体和散射体,并参与各种化学循环,是大气的重要组成部分。
雾、烟、霾、轻雾(霭)、微尘和烟雾等,都是天然的或人为的原因造成的大气气溶胶。
目录编辑本段一般说来,半径小于1微米的粒子,大都是由气体到微粒的成核、凝结、凝聚等过程所生成;而较大的粒子,则是由固体和液体的破裂等机械过程所形成。
它们在结构上可以是均相的,也可以是多相的。
已生成的气溶胶在大气中仍然有可能再参加大气的化学反应或物理过程。
液体气溶胶微粒一般呈球形,固体微粒则形状不规则,其半径一般为10-3~102微米。
粒径在10-1~101微米的气溶胶在大气光学、大气辐射、大气化学、大气污染和云物理学等方面具有重要作用。
小粒径气溶胶的浓度受凝聚作用所限制,而大粒子的浓度则受沉降作用所限制。
微粒在大气中沉降的过程中,受的阻力和重力的作用达到平衡时,各种粒子的沉降速度不同。
编辑本段消除气溶胶的消除,主要靠大气的降水、小粒子间的碰并、凝聚、聚合和沉降过程。
气溶胶仪器编辑本段特性科学发明莱尔·达维·古德休美国气溶胶:凡分散介质为气体的胶体物系成为气溶胶。
它们的粒子大小约在100~10000纳米之间,属于粗分散物系。
气溶胶粒子是悬浮在大气中的多种固体微粒和液体微小颗直接喷射性气溶胶仪器粒,有的来源于自然界,如火山喷发的烟尘、被风吹起的土壤微粒、海水飞溅扬入大气后而被蒸发的盐粒、细菌、微生物、植物的抱子花粉、流星自然产生的气溶胶天然气溶胶:云、雾、霭、烟、海盐等。
大气气溶胶物理化学特性及其影响因素分析
大气气溶胶物理化学特性及其影响因素分析随着人类活动的不断发展,大气环境污染越来越严重。
而气溶胶是大气污染的主要成分之一,它对人类健康、气候变化等方面都有着深远的影响。
本文将从大气气溶胶的物理化学特性以及影响因素两个方面进行分析。
一、大气气溶胶的物理化学特性1. 气溶胶粒径分布气溶胶的粒径大小决定了它的光学性质和生物学影响。
由于不同来源的气溶胶物质不同,其粒径分布也不同。
一般来说,气溶胶的粒径分布范围在0.01-100微米之间,其中直径小于2.5微米的气溶胶颗粒称为PM2.5,是大气中能够进入人体呼吸道的颗粒物之一。
2. 化学成分气溶胶的化学成分包括有机物、无机盐、碳和水。
其中,有机物和无机盐是气溶胶主要的组成成分。
有机物包括芳香烃、脂肪酸、脂类等,它们对光学性质和生物学影响非常重要。
而无机盐包括硫酸盐、硝酸盐、铵盐等,它们是气溶胶中的主要溶液组成部分,对气溶胶的水分输运和化学反应具有重要影响。
3. 光学性质气溶胶的光学性质取决于其大小和形状,同时也与其化学成分相关。
气溶胶能够吸收、散射和透过光线,这些特性是通过对光线的不同散射方式来实现的。
散射和吸收会使得大气的辐射平衡发生变化,从而影响到气候。
二、大气气溶胶的影响因素1. 天气天气是影响大气气溶胶形成和扩散的重要因素。
当气温和湿度较高时,气溶胶会被吸附到水滴表面,从而形成云雾。
而在较为干燥的环境中,气溶胶会比较容易扩散。
2. 人类活动人类活动也是影响大气气溶胶形成的重要因素。
工业排放、交通排放等都会产生大量的气溶胶,对大气环境造成污染。
此外,农业作业、木材的燃烧等活动也会产生气溶胶。
3. 自然因素自然因素对大气气溶胶的形成和扩散也有一定影响。
例如,火山喷发和沙尘暴等天然事件会产生大量的气溶胶,同时又会携带遥远地区的气溶胶传输到其他地方。
总结:大气气溶胶作为大气环境污染的主要成分之一,具有一系列的物理化学特性,其影响因素也是十分复杂的。
研究大气气溶胶的物理化学特性和影响因素对于进一步了解大气环境污染的形成机理,以及为大气环境污染的治理提供理论依据和技术支持具有重要的意义。
常见形成气溶胶的原因
常见形成气溶胶的原因
形成气溶胶的原因有很多,主要包括以下几个方面:机械过程、物理过程和化学过程。
机械过程是指气溶胶的形成过程中,由于机械运动或外力作用而导致的气体和固体或液体之间的相互作用。
这包括物料破碎、摩擦、磨削等过程。
例如,当固体物料被磨碎或撞击时,会产生大量的悬浮微粒,形成气溶胶。
此外,当气体通过过滤器或除尘设备时,也会产生气溶胶。
物理过程是指气体和固体或液体之间通过物理作用形成气溶胶的过程。
其中,包括凝结、冷凝和析出等过程。
例如,当湿气冷却到其饱和水汽压以下时,水蒸气会凝结成液态水,形成雾滴。
此外,当气体通过低温设备时,也会发生凝结现象,形成气溶胶。
化学过程是指气体和固体或液体之间通过化学反应形成气溶胶的过程。
其中,包括氧化、还原和气体溶解等过程。
例如,当燃料燃烧时,气体中的氧气会和燃烧产物进行反应,生成气溶胶。
此外,当气体中的有害物质被溶解在液体中时,也会形成气溶胶。
此外,还有一些其他原因也会导致气溶胶的形成。
例如,自然过程中的火山喷发和森林火灾会产生大量的火山灰和烟尘,形成气溶胶。
工业过程中的冶炼、焚烧和化学反应等也会产生大量的气溶胶。
总之,形成气溶胶的原因很多,主要包括机械过程、物理过程和化学过程。
这些过程中,由于机械运动、物质转化或外界作用力的影响,气体和固体或液体之间会发生相互作用,从而形成气溶胶。
对于环境和人体健康来说,了解气溶胶的形成机制及其传输规律是十分重要的。
只有深入研究气溶胶的形成原因,才能有效地控制和减少气溶胶对环境和人体健康的影响。
第二章第一节气溶胶
小知识
随着粒子尺度的变化,粒子也会表现出不同 的物理特性。例如,100μm的铝粒子爆炸性很 微弱,其最低引燃能量为200mj,而10μm的铝 粒子,最低引燃能量仅为10mj,爆炸性很强 烈。这正是比如面粉加工厂等多粉尘的地方需 要特别注意的。
4、粒子浓度和粒子浓度随高度的分布
粒子浓度 是描述大气气溶胶特性的另一个 重要物理量。表示粒子浓度的方法有好几种, 如数浓度、质量浓度和化学成分质量浓度等 等。数浓度定义为单位体积空气中悬浮的粒子 的数目。气溶胶的质量浓度定义为单位体积空 气中气溶胶物质的质量。有时也用气溶胶粒子 的质量与空气的质量之比来度量气溶胶粒子的 质量浓度。
3、粒子的等效尺度和常用特征尺度
空气动力学等效直径 在气流中,如果所研 究的粒子与一个有单位密度的球形粒子的空气 动力学效应相同.则这个球形粒子的直径就被 定义为所研究粒子的空气动力学等效直径. 一切根据惯性原理设计的撞击式测量仪器所 测量的粒子直径都是空气动力学等效直径;根 据带电粒子的迁移速率与粒子尺度的关系设计 的粒子尺度测量仪器所测量的也是空气动力学 等效直径。 例1
常用的特征尺度
核模态(r<0.05μm),积聚模态(0.05<r <1.oμm=和粗模态(r>1.0μm)。 大气物理学(云、降水物理)中常把凝结核分 为爱根核、大核和巨核。所谓爱根核即指半径 小于0.1μm的质粒,因爱根(Aitken)最先使用 凝结核计数器对这种尺度的质粒进行测量而得 名。大核的半径范围为o.1μm~1.0μm,巨核 指半径大于l.0μm的质粒,它们在尺度范围的 区分上与三模态基本一致。
实际大气的经验描述
观测的大气气溶胶粒子数谱分布可分成三个模 态,实际上大气气溶胶还有另一种由气体转化成的更 小的粒子,一般光学仪器探测不到。这样,大气气溶 胶是由4种尺度谱分布不同的气溶胶混合面成的。4种 气溶胶体系的粒子数谱分布的峰值分别出现在半径为 0.0l~0.05μm , 0.15 ~ 0.3μm , 0.5 ~ lμm 和 5— 10μm范围之内。因此,要描述大气气溶胶在整个尺 度范国内的粒子数谱分布,最好用一个四项式。每一 项代表一种气溶胶。考虑到气溶胶粒子的形成过程的 随机特点,每一种气溶胶的粒子数谱分布可用一个正 态分布函数表示,即整个大气气溶胶的粒子数谱分布 函数是4个参数不同的正态分布函数组成的四项式。
气溶胶——精选推荐
气溶胶的产生及其在细胞培养中的注意事项1.气溶胶定义及其产生气溶胶是液态或固态微粒在空气中的悬浮体系。
它们能作为水滴和冰晶的凝结核(见大气凝结核、大气冰核)、太阳辐射的吸收体和散射体,并参与各种化学循环,是大气的重要组成部分。
雾、烟、霾、轻雾(霭)、微尘和烟雾等,都是天然的或人为的原因造成的大气气溶胶。
一般说来,半径小于1微米的粒子,大都是由气体到微粒的成核、凝结、凝聚等过程所生成;而较大的粒子,则是由固体和液体的破裂等机械过程所形成。
它们在结构上可以是均相的,也可以是多相的。
已生成的气溶胶在大气中仍然有可能再参加大气的化学反应或物理过程。
液体气溶胶微粒一般呈球形,固体微粒则形状不规则,其半径一般为10-3~102微米。
粒径在10-1~101微米的气溶胶在大气光学、大气辐射、大气化学、大气污染和云物理学等方面具有重要作用。
小粒径气溶胶的浓度受凝聚作用所限制,而大粒子的浓度则受沉降作用所限制。
微粒在大气中沉降的过程中,受的阻力和重力的作用达到平衡时,各种粒子的沉降速度不同。
2.生物安全柜生物安全柜(Biological safety cabinets,BSCs)是利用空气净化技术,实现第一道物理隔离的技术产品,是为操作原代培养物、菌毒株以及诊断性标本等具有感染性的实验材料时,用来保护操作者本人、实验室环境以及实验材料,使其避免暴露于上述操作过程中可能产生的感染性气溶胶和溅出物而设计的。
当操作液体或半流体,例如摇动、倾注、搅拌,或将液体滴加到固体表面上或另一种液体中时,均有可能产生气溶胶。
在对琼脂板划线接种、用吸管接种细胞培养瓶、采用多道加样器将感染性试剂的混悬液转移到微量培养板中、对感染性物质进行匀浆及涡旋振荡、对感染性液体进行离心以及进行动物操作时,这些实验室操作都可能产生感染性气溶胶。
由于肉眼无法看到直径小于5μm 的气溶胶以及直径为5~100μm 的微小液滴,因此实验室工作人员通常意识不到有这样大小的颗粒在生成,并可能吸入或交叉污染工作台面的其他材料。
气溶胶物理化学性质研究
气溶胶物理化学性质研究气溶胶是指在大气中悬浮的微观颗粒物,它们的大小通常在0.01-10微米之间。
气溶胶对于大气环境、气候变化、人类健康等方面都有着重要的影响。
因此,研究气溶胶的物理化学性质对于我们理解气溶胶的形成机制、来源、作用等方面都具有重要意义。
1.气溶胶的物理化学性质气溶胶的物理化学性质包括大小、形状、密度、化学成分、光学特性、导电性、磁性等方面。
其中,气溶胶的大小和形状对于它们的来源和影响非常重要。
根据气溶胶的形状和大小,可以将其分为不同的类型,如球形气溶胶、棒状气溶胶、带状气溶胶、晶体气溶胶等。
而不同类型的气溶胶还表现出不同的化学成分和光学特性。
2.气溶胶的形成和来源气溶胶的形成和来源很复杂,可能包括人类活动、自然过程等因素。
其中,常见的人类活动源包括燃煤、燃油、工业生产等;自然来源则包括沙尘暴、火山活动、海洋波动等。
气溶胶的来源和形成机制对于我们理解气溶胶的影响和控制都有着非常重要的意义。
3.气溶胶的作用气溶胶对于大气环境、气候变化、人类健康等方方面面都有着重要的影响。
它可以影响全球的气候变化、空气质量、降水、光学环境等;同时还可以影响人类的呼吸健康、致癌性等。
因此,研究气溶胶的作用对于我们理解气溶胶的影响和控制都有着非常重要的意义。
4.气溶胶的研究方法气溶胶的研究方法包括实验和模拟计算两种。
实验方法包括气溶胶采集、化学分析、物理特性测量等;模拟计算方法包括计算机模拟、数值模拟、统计学分析等。
这些方法可以帮助我们更深入地研究气溶胶的物理化学性质、来源、作用等,为保护环境和人类健康提供科学依据。
5.气溶胶的控制气溶胶对于环境和人类健康的影响非常重要,因此控制气溶胶的释放和传播对于减轻其影响具有重要意义。
控制气溶胶的方法包括降低排放源、改变生产方式、工程处理等。
此外,还可以利用天然气溶胶清除现有的气溶胶,例如利用植物的吸附、海洋沉积等方式。
综上所述,气溶胶的物理化学性质、来源、作用等方面的研究对于我们理解气溶胶的影响和控制都有着非常重要的意义。
液溶胶 气溶胶 固溶胶
液溶胶、气溶胶和固溶胶是三种不同的分散体系,它们在化学和物理学中描述了不同的物质分散态形式。
1. 液溶胶(Liquid Aerosol): 液溶胶是指微小液滴悬浮在气体或其他液体中形成的分散体系。
通常情况下,液体溶质被分散成微小的液滴,悬浮在空气中或者其他液体中。
2. 气溶胶(Gas Aerosol): 气溶胶是指微小的固体或液体颗粒悬浮在气体中形成的分散体系。
这些颗粒可以是固体物质,也可以是液滴。
例如,空气中的灰尘、烟雾颗粒以及空气中的水蒸气都属于气溶胶。
3. 固溶胶(Solid Aerosol): 固溶胶是指微小固体颗粒悬浮在液体中形成的分散体系。
固溶胶中的固体颗粒尺寸通常很小,分散在液体中并保持悬浮状态。
这种分散体系可通过加热或其他方式将固体颗粒沉淀下来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不同粒径气溶胶对人体健康的危害
气溶胶的大小表征
1. 2. 3. 球形气溶胶的几何直径dp 体积等效直径 dve 光学等效直径 所研究的不规则形状粒子与直径为doe的球形粒子具有相同的 光散射能力,则定义doe为所研究粒子的光学等效直径。应该 指出的是,此定义只适用于粒子群的统计特征;粒子的光散射 能力与光波波长有关,一般以0. 55 μm绿光为标准来定义光学 等效直径。
• 分子热运动速度为Maxwell-Boltzmann分布, 其平均值为
单位时间内分子碰撞次数zm
• 相对运动速率
• 单位时间某个分子经过的 圆柱体内分子的数目
大气标准状况下分子平均自由程和 气溶胶纽森数
• 标准大气(1013 hPa压力和293 K温度)
• 对于10nm颗粒物,纽森数为13,自由分子态 • 对于1000nm颗粒物,纽森数为0.13,连续态 • 通常的大气颗粒物在两者之间的过渡态
空气动力学直径和体积等效直径的 关系
• 在连续态(大颗粒物),Cc约等于1 • 在自由分子态(小颗粒), • 此时da又称为真空空气动力学直径
电迁移率直径dm
电迁移率直径dm
• 静电末速VTE: 在电场中电场力与摩擦阻力相等时颗粒物的速度
• 电迁移率直径dm:同一电场中与被研究颗粒物具有相同电迁移速 率的球体的直径。直径相同的球体,带电荷不一样,dm不一样。 仅当与参考球体带有相等电荷时,其dm与dve相等。
Cunningham滑流修正系数
球形颗粒物的沉降末速
• 重力等于摩擦力时的恒定速度
大气中颗粒物的沉降末速
• 压力决定平均分子自由程,进而决定纽森数和 Cunningham修正系数 • 大颗粒物在连续态时Cc约等于1,VTS几乎跟压力无关 • 小颗粒在自由分子态,VTS˜1/p
修正非球形颗粒物所受到的阻力
归趋
– 碰并成大粒子,进入积聚模态(老化)
积聚模(condensation mode/droplet mode)
来源
– 燃烧过程所产生的蒸气冷凝、凝聚,以及由大气化 学反应所产生的各种气体分子转化成的二次气溶胶
归趋
– 碰并减弱,不易沉降和扩散去除 – 云中过程分化出condensation mode 和droplet mode
气溶胶形态和主要形成特征
3. 按气溶胶粒径大小分
总悬浮颗粒物(total suspended particulates或TSP):用标准大容量采样器(流量在1.1一1.7 m3/min)在滤
膜上所收集到的颗粒物总质量,通常称为总悬浮颗粒物。它是分散在大气中的各种粒子的总称,也
是大气质量评价中一个通用的重要污染指标。其粒径绝大多数在100 μm以下,多数在10 μm以下。 飘尘:可在大气中长期飘浮的悬浮物。主要是粒径小于10 μm的颗粒物。飘尘粒径小,能被人直接吸 入呼吸道内造成危害,其在大气中长期飘浮,易将污染物带到很远的地方,使污染范围扩大,同时 在大气中还可为化学反应提供反应床。因此,飘尘是最受人们关注的研究对象之一。 降尘:用降尘罐采集到的大气颗粒物。在总悬浮颗粒物中属粒径大于30 μm的粒子,由于其自身的重 力作用会很快沉降下来,所以将这部分微粒称为降尘。单位面积的降尘量可作为评价大气污染程度 的指标之一。 可吸入颗粒物(inhalable particles , IP)或PM10: 根据可进入呼吸道的粒径范围,把粒径Dp<10 μm的粒子 称为可吸人粒子。PM10是指粒径Dp 小于10 μm颗粒物的质量浓度。 细粒子(fine particle)或PM2.5: 根据气溶胶粒子的组成及来源随着粒径大小而明显不同的特点,也可 将气溶胶粒子分为细粒子(粒径Dp >2. 5 μm)和粗粒子(粒径DP >2.5 μm)两大类。PM2.5是指粒径Dp≤ 2.5 μm颗粒物的质量浓度。
4. 空气动力学直径
气体中颗粒物的运动
• 连续态(continuum regime)、自由分子态(kinetic regime) 和过渡态(transition regime) • 纽森数 Knudsen number (Kn):气态分子平均自由程与颗 粒物直径的比值
平均自由程
• 分子连续两次碰撞之间经过的平均距离 (=分子平均热运动速度/单位时间内分子碰 撞次数)
大气气溶胶的形貌
气溶胶的分类
1. 按颗粒物成因 一次气溶胶(primary aerosol ):由排放源直接排放到大气中 的颗粒物。 二次气溶胶(secondary aerosol):在大气中通过与气体组分的 化学反应生成的颗粒物。 2. 按颗粒物的物理状态 (1) 固态气溶胶:如烟和尘。烟是指燃烧过程产生的或燃 烧产生的气体通过转化形成的粒径小于1 μm 粒子;尘是 指通过各种碎裂过程而直接产生的粒径小于1 μm固体粒 子。 (2)液态气溶胶:如雾。 (3)固液混合态气溶胶:如烟雾( smog=smoke+fog),烟雾微 粒的粒径一般小于1 μm
颗粒物在流体中所受到的摩擦阻力
• 颗粒物在层流中,满足stokes定律
• 对于小于1 μm的小颗粒物,湍流状态,必 须做Cunningham滑流修正。 • Cc与纽森数有关,也即与颗粒物粒径有关
Cunningham滑流修正系数
• 参数化经验公式
• 当Kn趋近于0时,连续态, • 当Kn趋近于无穷时,自由分子态,
气溶胶化学与物理
环境科学与工程学院C510 余老师 2046376331@
课程基本情况
• 课程类别:学科基础课程
• 基础课程:物理化学,大气环境学,大学 化学,有机化学,流体力学 • 课程学分:2 学分 • 课程总学时: 32 学时,其中讲课:30学时, 考试 2学时 • 开课学期:第3学期
内容与课时安排
一、绪论(概念、分类、粒径分布、浓度、对人 体健康的危害) 二、气溶胶化学成分 三、气溶胶热力学基础 四、气溶胶生命周期(成核、凝结、碰并、激发、 沉降) 五、气溶胶表面非均相化学 六、气溶胶水相和液滴中的液相化学 七、气溶胶测量分析技术
一、绪论
• 大气污染物 气态+气溶胶颗粒 • 气溶胶定义 液体或固体微粒均匀地分散在气体中形成 的相对稳定的悬浮体系。所谓液体或固体微粒, 通常称为颗粒物或粒子( particles ),是指空气 动力学直径为0. 003-100 μm的液滴或固态粒子。 该粒径范围的下限来自目前能测出的最小尺度; 上限则相应于在空气中不能长时间悬浮而较快 降落的尺度。 1 m=103 mm=106 μm=109 nm
大气气溶胶谱分布函数的经验描述
• 总浓度 • 平均粒径 • 方差σ
对数正态分布
以对数正态分布表示 实际大气粒径分布
典型大气气溶胶三个模态的参数
气溶胶粒子的三模态及形成机制
实际大气的三模态分布
核模(Nucleation mode/Aitken mode)
来源
– 燃烧过程所产生的一次气溶胶 – 化学反应均相成核
研究大气气溶胶的意义
1. 气溶胶直接参与大气中云的形成和湿沉降(雨、 雪、冰和雾等)过程; 2. 当太阳光通过大气时,气溶胶粒子能够散射 或吸收太阳光,使大气能见度降低,削弱太 阳辐射,进而改变环境温度和植物的生长速 率; 3. 大气中的化学反应提供了良好的反应床,气 态污染物的最终归宿; 4. 气溶胶粒子通过呼吸道进人人体时,部分粒 子可以附着在呼吸道上,甚至进入肺部沉积 下来,直接影响人的呼吸,危害人体健康。
• 以上公式针对球形颗粒物。实际大气气溶 胶一般不是球形 • 动力学形状系数dynamic shape factor χ • 非球形颗粒物所受到的阻力为同体积球形 颗粒物受到的阻力乘以χ
• 体积等效直径dve
典型形状物体和颗粒物的动力学形 状系数
χ一般大于1
空气动力学直径和stokes直径
• Stokes直径ds:一个颗粒物的stokes直径定义 为与该颗粒物有相同密度和沉降速度的球 形颗粒物的直径 • 空气动力学直径da:一个颗粒物的da定义为 与该颗粒物有相同沉降速度的密度为1 g/cm3的球形颗粒物的直径
学习目标与任务
本课程的学习目标是掌握大气气溶胶的基础 知识、物理和化学特性、气溶胶在大气环 境污染形成过程中起着重要作用、基本测 量方法,了解气溶胶中有害物质对大气环 境的影响及对人类的危害。
参考书目
1. 大气环境化学(第二版),唐孝炎,张远航,邵敏主编, 2006年,高等教育出版社。 2. Atmospheric Chemistry And Physics: From Air Pollution To Climate Change, Second Edition, John H. Seinfeld, Spyros N. Pandis著 3. 气溶胶测量原理、技术及应用(第二版),(美) 巴伦,(美)维勒克编著,白志鹏等译 4. Basic Physical Chemistry for the Atmospheric Sciences, 2nd Edition, Peter V. Hobbs, 2000年出版 5. Introduction to Atmospheric Chemistry, Peter V. Hobbs, 2000年出版
• dm与真空空气动力学直径的关系
气溶胶的粒径分布的表示方法
同一群颗粒物,不同仪器测量粒径范围不同。若以粒子浓度作为纵坐标:
以dN/d(dp)作为纵坐标
• 两台仪器 测量粒径 不同,得 到的粒径 分布一样
气溶胶的粒径谱分布函数
气溶胶数浓度分布函数
气溶胶表面积浓度分布函数
气溶胶体积浓度分布函数
基于对数的谱分布函数
粗粒子模态
来源
– 粗粒子模主要来源于机械过程所造成的扬尘、海盐溅 沫、火山灰和风砂等一次气溶胶粒子。这种粒子的化 学成分与地表土的化学成分相近,而且各地区的平均 值变化不大。