大学物理之气体动理论
合集下载
大学物理气体动理论基础
玻尔兹曼方程
玻尔兹曼方程是描述气体分子动理学行为的偏微分方程,它基于分子混沌 近似。
玻尔兹曼方程描述了气体分子速度分布随时间的变化,以及分子与器壁碰 撞后速度的改变。
通过求解玻尔兹曼方程,可以得到气体分子的速度分布、分子碰撞频率、 分子平均自由程等物理量。
输运过程的近似处理
01
输运过程是指气体分子通过器壁的传递过程,包括 扩散、热传导和粘性流动等。
气体动理论在新能源、环保、生物医 学等领域的应用前景广阔,为解决实 际问题提供了重要的理论基础。
THANKS
感谢观看
热传导的应用
在能源、化工、航空航天等领域,利用热传导原 理实现热量传递和热能利用。
气体扩散
扩散现象
气体分子在浓度梯度作用下,通过随机运动传递物质的过程。
扩散定律
扩散通量与浓度梯度成正比,与气体分子的扩散系数有关。
扩散的应用
在环保、化工、生物医学等领域,利用扩散原理实现物质的分离 和传输。
气体粘性
02
在处理输运过程时,可以采用近似方法来简化问题 ,如扩散系数近似、粘性系数近似等。
03
通过这些近似处理,可以得到输运过程的宏观规律 ,如菲克定律、斯托克斯定律等。
04
气体动理论的应用
气体热传导
热传导现象
气体分子在热能作用下,通过碰撞传递能量的过 程。
热传导定律
热能传递速率与温度梯度成正比,与气体分子间 的相互作用力有关。
粘性现象
01
气体分子在相对运动中,由于碰撞产生的阻力。
牛顿粘性定律
02
粘性力与速度梯度成正比,与气体分子的碰撞频率和分子间的
相互作用力有关。
粘性的应用
03
大学物理气体动理论
气体分子之间的相互作用力产生的势能, 由于气体分子之间的距离非常大,因此气 体分子的势能通常可以忽略不计。
分子动理论的基本假设
分子之间无相互作用力
气体分子之间不存在相互作用的力,它们之间只 存在微弱的范德华力。
分子运动速度服从麦克斯韦分布
气体分子的运动速度服从麦克斯韦分布,即它们 的速度大小和方向都是随机的。
分子碰撞的统计规律
分子碰撞的随机性
01
气体分子之间的碰撞是随机的,碰撞事件的发生和结果都是随
机的。
分子碰撞频率
02
单位时间内分子之间的碰撞次数与分子数密度、分子平均速度
和分子碰撞截面有关。
碰撞结果的统计规律
03
碰撞后分子的速度方向和大小的变化遵循一定的统计规律,可
以用概率密度函数来描述。
热现象的统计解释
大学物理气体动理论
• 引言 • 气体动理论的基本概念 • 气体动理论的基本定律 • 气体动理论的统计解释 • 气体动理论的应用 • 结论
01Biblioteka 引言主题简介气体动理论
气体动理论是通过微观角度研究气体 运动状态和变化的学科。它以分子运 动论为基础,探究气体分子运动的规 律和特性。
分子模型
气体动理论中,将气体分子视为弹性 小球,相互之间以及与器壁之间发生 弹性碰撞。通过建立分子模型,可以 更好地理解气体分子的运动特性。
对未来研究的展望
随着科学技术的发展,气体动理 论仍有很大的发展空间和应用前
景。
未来研究可以进一步探索气体分 子间的相互作用和气体在极端条 件下的行为,例如高温、高压或
低温等。
气体动理论与其他领域的交叉研 究也将成为未来的一个重要方向, 例如与计算机模拟、量子力学和
大学物理第六版第七章气体动理论基础总结
大学物理第六版第七章气体动理论基础总结
1. 气体分子模型:气体由大量无限小的分子组成,分子之间几乎没有相互作用,分子运动是无规则的。
2. 气体分子的运动:气体分子具有随机热运动,并遵循牛顿力学定律。
分子的速度和方向是随机的。
3. 气体的压强:气体分子与容器壁的碰撞会产生压强。
气体的压强与分子的速度、分子间平均自由程、分子总数等因素有关。
4. 理想气体状态方程:理想气体状态方程描述了气体的状态。
PV = nRT,其中P为气体压强,V为体积,n为物质的量,R为气体常数,T为温度。
5. 分子平均动能:气体分子的平均动能与气体的温度成正比。
分子平均动能与分子质量无关。
6. 温度和热力学温度:温度是描述物体热平衡状态的物理量。
热力学温度是温度的定量度量,它与分子平均动能的平方成正比。
7. 气体分子的速率分布:气体分子的速率分布服从麦克斯韦-波尔兹曼分布。
分子速率分布与温度相关,高温下分子速率分布图会变得更加平坦。
总结起来,第七章主要介绍了气体动理论的基本概念和定律,包括气体分子的运动、气体压强、气体状态方程、分子平均动能、温度和速率分布等内容。
大学物理-气体动理论
为漏气,经过若干时间后,压力降到原来的 5 8 ,温度降到 270c。
求: (1) 容器的容积,
(2) 漏去了多少氧气?
解: (1)
pv M RT
VM P RT8.21(升)
(2) 设漏气后的压力、温度、质量分别为 p' T' M'
p'V M' RT'
M' p'V0.06K 7 g
RT'
M 0 .1 0 0 .0 6 0 .0 7 K 3 3 g
平衡态: 在不受外界影响的条件下,一个系统的宏观性质不随时间
改变的状态。热动平衡
平衡过程:气体从一个状态变化到另一个状态,其间所经历的
过渡方式称为状态变化的过程.
如果过程所经历的所有中间状态都无限接近平衡状态,
该过程称为平衡过程.
2020/5/2
2
二、状态参量:
1、气体所占的体积 V: m 3
2、压强 P:
总的分子数密度为
n
n i
i
设 dA 法向为 x 轴
dA
一次碰撞单分子动量变化
vi dt
2 mvix
x 在 dt 时间内与dA碰撞的分子数
2020/5/2
ni vix dt dA 斜柱体体15积
dt 时间内传给 dA 的冲量为
dI = 2 mnivix2 dt dA
(vix>0)vx2= Nhomakorabeai
ni
vxi2
第三章 气体动理论
理想气体状态方程
麦克斯韦速率分布律
气体动理论的压强公式 玻耳兹曼分布律
气体动理论的温度公式
能量均分定理
2020/5/2
1
求: (1) 容器的容积,
(2) 漏去了多少氧气?
解: (1)
pv M RT
VM P RT8.21(升)
(2) 设漏气后的压力、温度、质量分别为 p' T' M'
p'V M' RT'
M' p'V0.06K 7 g
RT'
M 0 .1 0 0 .0 6 0 .0 7 K 3 3 g
平衡态: 在不受外界影响的条件下,一个系统的宏观性质不随时间
改变的状态。热动平衡
平衡过程:气体从一个状态变化到另一个状态,其间所经历的
过渡方式称为状态变化的过程.
如果过程所经历的所有中间状态都无限接近平衡状态,
该过程称为平衡过程.
2020/5/2
2
二、状态参量:
1、气体所占的体积 V: m 3
2、压强 P:
总的分子数密度为
n
n i
i
设 dA 法向为 x 轴
dA
一次碰撞单分子动量变化
vi dt
2 mvix
x 在 dt 时间内与dA碰撞的分子数
2020/5/2
ni vix dt dA 斜柱体体15积
dt 时间内传给 dA 的冲量为
dI = 2 mnivix2 dt dA
(vix>0)vx2= Nhomakorabeai
ni
vxi2
第三章 气体动理论
理想气体状态方程
麦克斯韦速率分布律
气体动理论的压强公式 玻耳兹曼分布律
气体动理论的温度公式
能量均分定理
2020/5/2
1
大学物理学第7章气体动理论(Temperature)
热力学着重阐明热现象的宏观规律,它是以大量实 验事实为基础,从能量的观点出发,分析研究热功转换的 关系和条件,以及消耗能量作功等一系列技术问题。二 者相辅相成,缺一不可。
4
研究对象:大量无规则热运动气体分子构成的系统 研究内容:物质与冷热有关的性质及这些性质的变化
对象特点:单个分子 无序性、偶然性、遵循力学规律 整体(大量分子):服从统计规律
mvx
l2
立直角坐标系。
a
O
-mvx
X
(2)选任意一个分子a作为研
究对象,求其对A1面的压力 Z
l1
分子“a” 的速度:
分子“ a”碰撞器壁A1面一次所受的冲量:
由牛顿第三定律可知,器壁A1面受分子碰撞一次所受的冲量:
23
分子“ a”相继碰撞器壁A1面两次所用的时间为: 单位时间内,分子“ a”与器壁A1面碰撞的次数为: 单位时间内,分子“ a”对器壁A1面的冲量即冲力为:
如压强 p、体积 V、温度 T等 .
平衡态:一定量的气体,在不受外界的影响下, 经过一 定的时间, 系统达到一个稳定的, 宏观性质不随时间变 化的状态称为平衡态 .(理想状态)
平衡态的特点
( p,V ,T )
p
*( p,V ,T )
o
V
1)单一性(
处处相等);
2)物态的稳定性---与时间无关;
3)自发过程的终点;
(2)在平衡态下,分子按位置的分布是均匀的 n dN N
则各处分子数密度是相同的。
dV V
(3) 分子速度指向任何方向的机会是一样, 或分子速度按方向的分布是均匀的。
vx2 vy2 vz2
各个方向的速度分量的平均值相等。
vx 2
v1 x 2
4
研究对象:大量无规则热运动气体分子构成的系统 研究内容:物质与冷热有关的性质及这些性质的变化
对象特点:单个分子 无序性、偶然性、遵循力学规律 整体(大量分子):服从统计规律
mvx
l2
立直角坐标系。
a
O
-mvx
X
(2)选任意一个分子a作为研
究对象,求其对A1面的压力 Z
l1
分子“a” 的速度:
分子“ a”碰撞器壁A1面一次所受的冲量:
由牛顿第三定律可知,器壁A1面受分子碰撞一次所受的冲量:
23
分子“ a”相继碰撞器壁A1面两次所用的时间为: 单位时间内,分子“ a”与器壁A1面碰撞的次数为: 单位时间内,分子“ a”对器壁A1面的冲量即冲力为:
如压强 p、体积 V、温度 T等 .
平衡态:一定量的气体,在不受外界的影响下, 经过一 定的时间, 系统达到一个稳定的, 宏观性质不随时间变 化的状态称为平衡态 .(理想状态)
平衡态的特点
( p,V ,T )
p
*( p,V ,T )
o
V
1)单一性(
处处相等);
2)物态的稳定性---与时间无关;
3)自发过程的终点;
(2)在平衡态下,分子按位置的分布是均匀的 n dN N
则各处分子数密度是相同的。
dV V
(3) 分子速度指向任何方向的机会是一样, 或分子速度按方向的分布是均匀的。
vx2 vy2 vz2
各个方向的速度分量的平均值相等。
vx 2
v1 x 2
大学物理 气体动理论
三、 温 度
决定一个系统是否与其它系统达到热平衡的宏观性质。
处于热平衡的多个系统具有相同的温度
具有相同温度的几个系统放在一起必然处于热平衡。
温度测量
酒精或水银
A
B
A 和 B 热平衡,TA = TB
热胀冷缩特性,标准 状态下,冰水混合, B 上留一刻痕, 水沸 腾,又一刻痕,之间 百等份,就是摄氏温 标(Co)。
生碰撞的�数目为:Ni = nivix dt d A 速度为 vi 分子在 dt 时间对 dA 的冲量为:
�
x
vxi
dA
vidt
nivixdAdt ⋅ (2mvix )
∑ 所有分子在
dt
时间内对
dA 产生的总冲量为:dI = 1 2
i
2mni
v
2
ix
dAdt
∑ ∑ 气体对器壁的宏观压强为:
p=
mni
T0
273.15
= 8.31(Jmol⋅K)
若写成 ν = N NA
N A = 6.023 × 1023 / mol
N为气体分子总数 阿伏伽德罗常量
µN
R
pV = RT = N T
µNA
NA
令
k
≡
R NA
=
1.38 × 10−23
J
K
玻耳兹曼常数
pV = NkT
p = N kT = nkT V
n:气体分子数密度
2
三、气体分子的平均总动能
设分子有: 平动自由度 t 转动自由度 r
分子平均总动能:
1 εk = (t + r) 2 kT
单原子分子 刚性双原子分子
3
大学物理第16章气体动理论
N2
pA
lim N
NA N
1 2
抛硬币的 统计规律
2020/1/15
DUT 余 虹
4
16.1 理想气体的压强
一、分子的作用力与压强
总数N 个,分子质量m ,摩尔质量,
体积V,温度T。
F
气体分子频繁碰撞 容器壁——给容器
壁冲量。大量分子在t 时间内给予I
的冲量,宏观上表现为对器壁的平均
vf
v
d
v
0
f
vd v
0
vf
v d
v
麦克斯韦分布律
v 1.60 RT
2020/1/15
DUT 余 虹
21
(3)方均根速率 v 2
一段速率区间v1~v2的方均速率
f v
v122
v2 v 2 d N N v v2 2 f v d v
v1 v2 d N
作用力
F I t
气体对容器壁的压强
P F I S S t
2020/1/15
DUT 余 虹
5
二、P 与微观量 的关系
分子按速度区 间分组
第i 组: 速度 近vi 似~ 认vi 为 都dv是i v i
分子数N
i ,分子数密度
ni
Ni V
考察这组分子给面元A的冲量
一 碰壁前速度 vix viy viz
一、速率分布函数
处于平衡态的气体,每个分子 朝各个方向运动的概率均等。
可是大量分子速度分 量的方均值相等。
一个分子,某一时刻速度
v
通常 v xv y v z
v
pA
lim N
NA N
1 2
抛硬币的 统计规律
2020/1/15
DUT 余 虹
4
16.1 理想气体的压强
一、分子的作用力与压强
总数N 个,分子质量m ,摩尔质量,
体积V,温度T。
F
气体分子频繁碰撞 容器壁——给容器
壁冲量。大量分子在t 时间内给予I
的冲量,宏观上表现为对器壁的平均
vf
v
d
v
0
f
vd v
0
vf
v d
v
麦克斯韦分布律
v 1.60 RT
2020/1/15
DUT 余 虹
21
(3)方均根速率 v 2
一段速率区间v1~v2的方均速率
f v
v122
v2 v 2 d N N v v2 2 f v d v
v1 v2 d N
作用力
F I t
气体对容器壁的压强
P F I S S t
2020/1/15
DUT 余 虹
5
二、P 与微观量 的关系
分子按速度区 间分组
第i 组: 速度 近vi 似~ 认vi 为 都dv是i v i
分子数N
i ,分子数密度
ni
Ni V
考察这组分子给面元A的冲量
一 碰壁前速度 vix viy viz
一、速率分布函数
处于平衡态的气体,每个分子 朝各个方向运动的概率均等。
可是大量分子速度分 量的方均值相等。
一个分子,某一时刻速度
v
通常 v xv y v z
v
大学物理学(下册)第10章 气体动理论
分子力f与分子间距离r的关系
分子力 f 与分子之间的距离r有关 存在一个r0——平衡位置
r= r0≈10-10m时,分子力为零 r < r 0分子力表现在排斥力 r > r0分子力表现在吸引力
10.1.2 统计规律 ⑴.统计规律
在一定的条件下,大量的偶然事件存在着一种必然的规 律性,这种规律性称为统计规律。气体分子热运动服从统 计规律。 ⑵.几率(概率) 定义:一定条件下,某个偶然事件出现可能性的大小。 ⑶.研究统计规律性的一个著名实验是伽尔顿板实验
同数量的分子。即在标准状态下,1摩尔任何气体所占有
的体积都为22.4升。
2. 理想气体的物态方程
形式1
或
pV m RT M
pVRT
m——气体质量 M ——气体摩尔质量 R=8.31J·mol-1·K-1——摩尔气体常量
形式2
p1V1 = p2V2
T1
T2
10.3 理想气体的压强
10.3.1 理想气体的微观模型
① 1cm3的空气中包含有2.7×1019 个分子 ②水和酒精的混合 2. 组成物质的分子(或原子)在不停地运动着,这种运动 是无规则的,其剧烈程度与物体的温度有关 ① 布朗运动 ②气体、液体、固体的扩散
3. 分子(或原子)之间存在相互作用力
如: 铅柱重新接合、流体很难压缩 吸引力——固、液体聚集在一起 排斥力——固、液体较难压缩
10.3.2 理想气体压强公式
1. 气体压强产生原理
压强是大量分子 对容器壁发生碰 撞, 从而对容器 壁产 生冲力的 宏观效果。
气体压强产生原理
压强是大量分子对容器壁发生 碰撞,从而对容器壁产生冲力的宏 观效果。
单个分子
多个分子
分子力 f 与分子之间的距离r有关 存在一个r0——平衡位置
r= r0≈10-10m时,分子力为零 r < r 0分子力表现在排斥力 r > r0分子力表现在吸引力
10.1.2 统计规律 ⑴.统计规律
在一定的条件下,大量的偶然事件存在着一种必然的规 律性,这种规律性称为统计规律。气体分子热运动服从统 计规律。 ⑵.几率(概率) 定义:一定条件下,某个偶然事件出现可能性的大小。 ⑶.研究统计规律性的一个著名实验是伽尔顿板实验
同数量的分子。即在标准状态下,1摩尔任何气体所占有
的体积都为22.4升。
2. 理想气体的物态方程
形式1
或
pV m RT M
pVRT
m——气体质量 M ——气体摩尔质量 R=8.31J·mol-1·K-1——摩尔气体常量
形式2
p1V1 = p2V2
T1
T2
10.3 理想气体的压强
10.3.1 理想气体的微观模型
① 1cm3的空气中包含有2.7×1019 个分子 ②水和酒精的混合 2. 组成物质的分子(或原子)在不停地运动着,这种运动 是无规则的,其剧烈程度与物体的温度有关 ① 布朗运动 ②气体、液体、固体的扩散
3. 分子(或原子)之间存在相互作用力
如: 铅柱重新接合、流体很难压缩 吸引力——固、液体聚集在一起 排斥力——固、液体较难压缩
10.3.2 理想气体压强公式
1. 气体压强产生原理
压强是大量分子 对容器壁发生碰 撞, 从而对容器 壁产 生冲力的 宏观效果。
气体压强产生原理
压强是大量分子对容器壁发生 碰撞,从而对容器壁产生冲力的宏 观效果。
单个分子
多个分子
大学物理D-03气体动理论
故漏出的氧气质量为
m m m 3.2 2.93Kg 0.27Kg
大学物理
3.2 理想气体的压强和温度
4.1.3 理想气体的微观模型
从微观的角度来看,理想气体满足以下三个前提条件: (1)气体分子的大小比分子之间的距离小得多,所以分子本 身的体积可忽略不计,可看作质点。它们的运动遵从牛顿运 动定律。 (2)除碰撞的瞬间外,气体分子间以及分子与容器器壁之间 的相互作用力忽略不计。分子所受的重力也可忽略不计。 (3)气体分子间的碰撞以及分子与器壁间的碰撞是完全弹性 碰撞。 在标准状态下,气体的密度大约是凝结成液体时密度的 千分之一,而液体的分子可以看作是紧密排列着,也就是说 液体分子的线度与两个相邻分子中心之间的距离相等。由此 可知气体分子之间的平均距离大约是分子本身线度的十倍。 所以与大气压相比气体的压强不太大,与室温相比气体的温 度不太低的情况下,实际气体可近似看成理想气体。
大学物理
研究物质热现象、热运动的学科 微 观 以气体分 子热运动 规律为基 础,用统 计方法。 理论体系 研究方法 宏 观
统 计 物 理 学
以事实 为基础, 应用热 力学基 本定律
热 力 学
分析宏观本质
相互关系
验证微观理论
大学物理
结构框图 结构框图
物质 微观 模型 分子 热运 动统 计规 律性 平均平动 动能与温 度的关系 能量 均分 定理 理想气 体内能
3、刚体
x
弹性物体+ 振动自由度 高温时分子类似于弹性体 要考虑振动自由度
(3 平动+2 转动) 位置 x y z 方向 ——多原子 自转角度 (常温)
i =6 (3 平动+3 转动)
大学物理 举例
第十二章气体动理论_大学物理
2π kT
式中μ为分子质量,T 为气体热力学温度, k 为玻耳兹曼常量
k = 1.38×10-23 J / K
理想气体在平衡态下,气体中分子速率在v~v+ dv 区间
内的分子数与总分子数的比率为
dN f (v )dv 4π ( )3/ 2v 2ev2 / 2kT dv
N
2π kT
这一规律称为麦克斯韦速率分布定律
在温度为T 的平衡状态下,分子的每个自由度的平均动能均
为 1 kT 。这样的能量分配原则称为能量按自由度均分定理 2
说明
(1) 能量按自由度均分是大量分子统计平均的结果,是分子 间的频繁碰撞而致。
(2) 若某种气体分子具有t 个平动自由度和r 个转动自由度, s 个振动自由度, 则每个气体分子的平均总动能为
f(v) T
·在dv 间隔内, 曲线下 的面积表示速率分布
O
vv·1 v·+vd2v
v
在v~v+ dv 中的分子
( 速率分布曲线 )
数与总分子数的比率
f (v)dv dN N
·在v1~v2 区间内,曲线下的面积表示速率分布在v1~v2 之间
的分子数与总分子数的比率
v2 f (v)dv N
v1
N
·曲线下面的总面积, 等于分布Байду номын сангаас整个速
§12.5 麦克斯韦速率分布定律
一. 分布的概念
·问题的提出 气体系统是由大量分子组成, 而各分子的速率通过碰撞 不断地改变, 不可能逐个加以描述, 只能给出分子数按 速率的分布。
·分布的概念 例如学生人数按年龄的分布
年龄
人数按年龄 的分布
人数比率按 年龄的分布
15 ~16 2000 20%
式中μ为分子质量,T 为气体热力学温度, k 为玻耳兹曼常量
k = 1.38×10-23 J / K
理想气体在平衡态下,气体中分子速率在v~v+ dv 区间
内的分子数与总分子数的比率为
dN f (v )dv 4π ( )3/ 2v 2ev2 / 2kT dv
N
2π kT
这一规律称为麦克斯韦速率分布定律
在温度为T 的平衡状态下,分子的每个自由度的平均动能均
为 1 kT 。这样的能量分配原则称为能量按自由度均分定理 2
说明
(1) 能量按自由度均分是大量分子统计平均的结果,是分子 间的频繁碰撞而致。
(2) 若某种气体分子具有t 个平动自由度和r 个转动自由度, s 个振动自由度, 则每个气体分子的平均总动能为
f(v) T
·在dv 间隔内, 曲线下 的面积表示速率分布
O
vv·1 v·+vd2v
v
在v~v+ dv 中的分子
( 速率分布曲线 )
数与总分子数的比率
f (v)dv dN N
·在v1~v2 区间内,曲线下的面积表示速率分布在v1~v2 之间
的分子数与总分子数的比率
v2 f (v)dv N
v1
N
·曲线下面的总面积, 等于分布Байду номын сангаас整个速
§12.5 麦克斯韦速率分布定律
一. 分布的概念
·问题的提出 气体系统是由大量分子组成, 而各分子的速率通过碰撞 不断地改变, 不可能逐个加以描述, 只能给出分子数按 速率的分布。
·分布的概念 例如学生人数按年龄的分布
年龄
人数按年龄 的分布
人数比率按 年龄的分布
15 ~16 2000 20%
大学物理 气体动理论
二、 能量按自由度均分定理
1 3 2 W m v kT 2 2
v x v y vz
2 2
2
1 2 v 3
1 1 1 1 1 2 2 2 2 mv x mv y mv z ( mv ) 2 2 2 3 2
1 2 1 2 1 2 1 mvx mv y mvz kT 2 2 2 2
(kT )
(RT )
(m T )
讨论
一瓶氦气和一瓶氮气密度相同,分子平均平动动 能相同,而且它们都处于平衡状态,则它们 (A)温度相同、压强相同。 (B)温度、压强都不同。 (C)温度相同,但氦气的压强大于氮气的压强. (D)温度相同,但氦气的压强小于氮气的压强. 解
Nm k k T T p nkT V m m
M i E R T 2
是温度的单值函数E=f(T)
§3.4 麦克斯韦速率分布律
Maxwells law of distribution of speeds
对于由大量分 子组成的热力学系 统从微观上加以研 究时,必须用统计 的方法 .
小球在伽 尔顿板中的分 布规律 .
单个粒子行为--- 偶然 大量粒子行为--- 必然
Kinetic Theory of Gases
第三章 气体动理论
主要内容
§3-1 气体动理论的基本概念 §3-2 理想气体的压强和温度 §3-3 能量按自由度均分定理 §3-4 麦克斯韦速率分布律 §3-5 气体分子的平均碰撞频率和平均自由程 §3-6 输运过程
热学概述
与热现象有关的性质和规律。
P P2 P3 ... 1
在一定温度下,混合气体的总压强等 于相混合的各种气体的分压强之和。
大学物理气体动理论
f(v)
v v+dv
v
在平衡态下, 设分子总数为N, 速率在v~v+dv区间的 分子数为dN个, 那么 表dN示:
N
——速率在v~v+dv区间的分子数占总分子数的比率。
或一个分子速率处于v~v+dv区间的概率。
dN ~ dv N ~ v f (v)
即 dN f (v)dv N
由 dN f (v)dv N
总之, 理想气体可看作是一群彼此间无相互作用 的无规运动的弹性质点的集合。
二、平衡态的统计假设——等几率原理
1、理想气体处于平衡态时, 分子出现在容器内 各处的几率相等。即分子数密度处处相等, 具 有分布的空间均匀性。
2、分子朝各个方向运动的几率相等, 具有运动 的各向同性。
v 0, vx vy vz 0
(4)粒子的平均速率、方均根速率和最概然速率。
解 (1) 按图所示的速率分布曲线形状, 应有
kv
f
(v)
0
(v v0 ) (v v0 )
由速率分布函数的归一化条件, 可得
f (v)dv
0
v0 0
kvdv
1 2
kv 02
1
故速率分布函数为
2v
f
(v)
v02 0
(v v0 ) (v v0 )
f(v)
得
f (v) dN
Ndv
v v+dv
v
f (v) 称为分子的速率分布函数。
其物理意义是:在速率v附近, 单位速率区间内的分子 数占总分子数的比率。
或一个分子速率出现在v附近单位速率区间内的概率。
所以 f (v) 也称为分子速率分布的概率密度。
3、关于速率分布函数的几点重要讨论:
v v+dv
v
在平衡态下, 设分子总数为N, 速率在v~v+dv区间的 分子数为dN个, 那么 表dN示:
N
——速率在v~v+dv区间的分子数占总分子数的比率。
或一个分子速率处于v~v+dv区间的概率。
dN ~ dv N ~ v f (v)
即 dN f (v)dv N
由 dN f (v)dv N
总之, 理想气体可看作是一群彼此间无相互作用 的无规运动的弹性质点的集合。
二、平衡态的统计假设——等几率原理
1、理想气体处于平衡态时, 分子出现在容器内 各处的几率相等。即分子数密度处处相等, 具 有分布的空间均匀性。
2、分子朝各个方向运动的几率相等, 具有运动 的各向同性。
v 0, vx vy vz 0
(4)粒子的平均速率、方均根速率和最概然速率。
解 (1) 按图所示的速率分布曲线形状, 应有
kv
f
(v)
0
(v v0 ) (v v0 )
由速率分布函数的归一化条件, 可得
f (v)dv
0
v0 0
kvdv
1 2
kv 02
1
故速率分布函数为
2v
f
(v)
v02 0
(v v0 ) (v v0 )
f(v)
得
f (v) dN
Ndv
v v+dv
v
f (v) 称为分子的速率分布函数。
其物理意义是:在速率v附近, 单位速率区间内的分子 数占总分子数的比率。
或一个分子速率出现在v附近单位速率区间内的概率。
所以 f (v) 也称为分子速率分布的概率密度。
3、关于速率分布函数的几点重要讨论:
大学物理 第二章 气体动理论1
何谓运动自由程度呢? 举例说明:单个质点 能在三维空间中运动的质点就比能在一固定线 或固定平面上运动的质点来得自由。
31
所谓自由度就是指 为了描述物体运动所需最多独立坐标的个数。
下面具体来讨论 (1) 单个质点自由度
z
P(x, y,z)
在一条固定直线上运动 1
o
y
在一条固定平面上运动 2 x
在空间中运动
必然沸腾
这类现象的 事先可以断定其结果
一个共同点是:
7
随机现象: 在一定条件下, 具有多种可能发生的结果现象
例如: 掷硬币 掷以一枚硬币,落下以后可能是正面朝上, 也可能是反面朝上; 掷一枚骰子,落下后可能是 1点, 也可能是2、3、4、5、6点朝上。
这类现象的
事先不可能预言多种可能结果中
一个共同点是: 究竟出现那一种结果
1
一.气体分子热运动的特征
看一组数字:
气体分子的线度(直径) ~ 10 -10 m (埃) 气体分子间距 ~ 10 -9 m (纳米) 室温下,气体分子运动的速率 10 2 ~ 10 3 m/s
分子在两次“碰撞”之间自由飞行的路程约为 10 - 7m分子自由飞行时间约10 -10 s
因而单个分子在 1s 内将会遇到约 1010 次碰撞
N = N = n 为一常数
V V
在容器内,气体的分子数密度 n 处处都相等
15
n = N V
说明:
ΔV
n 是对 V 内可能出现的分子数统计平均的结果
由于分子不停地无规则运动,不断有分子进进出出 V
这样各个时刻 V 的实际分子数 ni 可能大于 n 可能小于 n ,可能等于 n 。
ni n叫涨落,但取 V 得足够大时, Nhomakorabea3
31
所谓自由度就是指 为了描述物体运动所需最多独立坐标的个数。
下面具体来讨论 (1) 单个质点自由度
z
P(x, y,z)
在一条固定直线上运动 1
o
y
在一条固定平面上运动 2 x
在空间中运动
必然沸腾
这类现象的 事先可以断定其结果
一个共同点是:
7
随机现象: 在一定条件下, 具有多种可能发生的结果现象
例如: 掷硬币 掷以一枚硬币,落下以后可能是正面朝上, 也可能是反面朝上; 掷一枚骰子,落下后可能是 1点, 也可能是2、3、4、5、6点朝上。
这类现象的
事先不可能预言多种可能结果中
一个共同点是: 究竟出现那一种结果
1
一.气体分子热运动的特征
看一组数字:
气体分子的线度(直径) ~ 10 -10 m (埃) 气体分子间距 ~ 10 -9 m (纳米) 室温下,气体分子运动的速率 10 2 ~ 10 3 m/s
分子在两次“碰撞”之间自由飞行的路程约为 10 - 7m分子自由飞行时间约10 -10 s
因而单个分子在 1s 内将会遇到约 1010 次碰撞
N = N = n 为一常数
V V
在容器内,气体的分子数密度 n 处处都相等
15
n = N V
说明:
ΔV
n 是对 V 内可能出现的分子数统计平均的结果
由于分子不停地无规则运动,不断有分子进进出出 V
这样各个时刻 V 的实际分子数 ni 可能大于 n 可能小于 n ,可能等于 n 。
ni n叫涨落,但取 V 得足够大时, Nhomakorabea3
大学物理-气体动理论
dN N
f
(v ) dv
f (v) dN ⑩
Ndv
f(v) 称为速率分布函数,含义:分布在速率v 附近单位速率间
隔内的分子数与总分子数的比率。
第五章 气体分子运动论
三. 麦克斯韦速率分布定律
1. 麦克斯韦速率分布定律 理想气体在平衡态下分子的速率分布函数
f (v ) 4 ( m0 ) v e 3/ 2 2 m0v2 / 2kT ( 麦克斯韦速率分布函数 )
pV m RT M
mV
v2
3p
3 0.011.013105 1.24 102
m s1
494 m s-1
第五章 气体分子运动论
(2)根据物态方程,得
M m RT RT
Vp
p
1.24 102 8.31 273 kg mol -1 0.011.013 105
28 103 kg mol -1
vp
2kT μ
速率
v1 ~ v2 v2 ~ v3 … vi ~ vi +Δv
…
分子数按速率
的分布
ΔN1
ΔN2
…
ΔNi
…
分子数比率 按速率的分布
ΔN1/N
ΔN2/N
…
ΔNi/N
…
{ ΔNi }就是分子数按速率的分布
二. 速率分布函数 f(v)
设某系统处于平衡态下, 总分子数为 N ,则在v~v+ dv 区
间内分子数的比率为
y
踪其中一个分子, 某一时刻速 A2
A1
率为 vi与器壁A1碰撞, x 方向
动量的增量
m0 vix m0 vix 2m0 vix
O vi
x
大学物理第十章 气体动理论
分子间的相互作用力,
f
称分子力。此力为短程力,
引力、斥力视距离而定
斥
力
当 r = r0(r0 10-10 m)时 f = 0
当 r < r0 时 f 为斥力 当 r > r0 时 f 为引力 当 r > 10-9 m 时,分子力可忽略。
o
引 r0
力
r
§6-2气体的状态参量、平衡状态、理想气体状态方程
p
F A1
F l2l3
m l1 l 2 l 3
N
v
2 ix
i 1
1 mN V
v
2 ix
N
1 V
mN
v
2 x
v
2 x
1 v2
3
1
N
mv 2
3V
分子数密度n
理想气体压强公式
p 1 nmv 2 3
p 1 nmv 2 3
2 3
1 n(
2
mv2 )
2 3
得 P M RT Nm RT N R T nkT
V
VN 0 m
V N0
N0m
波尔兹曼常数
由压强公式
p nkT
p
2 3
n
k
k
3 kT 2
可见:从微观角度看,温度是分子
大小的量度,表征大
k
量气体分子热运动剧烈程度,是一统计平均值,对个别分子无
意义。
§6—5 能量按自由度均分原则、理想气体的内能
一、运动自由度:
确定运动物体在空间位置所需要的独立坐标数目,称为 该物体的自由度
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氢、氧、氮等
五个自由度
多原子分子:三个以上原子构成一个分子
水蒸汽、甲烷等
六个自由度
10-3-2 能量按自由度均分原理
单原子分子(前面的讨论中将分子按质点考虑)
k
1 2
m0
v2
1 2
m0
v
2 x
1 2
m0
v
2 y
1 2
m0 vz2
3 2
kT
vx2
vy2
vz2
1 v2 3
1 2
m0
vx2
1 2
m0
v
2 y
N
N
v vdN
vf (v)dv
N
0
v 8kT 8RT 1.60 RT
M
M
(2)均方根速率:
v2 v2 f (v)dv
v2 3kT 3RT 1.73 RT
m0
M
M
(3)最概然速率:
在平衡态条件下,理想气体分子速率分布在vp 附近的单位速率区间内的分子数占气体总分子数的
百分比最大。
作直线运动的质点: 作平面运动的质点: 作空间运动的质点:
一个自由度 二个自由度 三个自由度
运动刚体的自由度:
y
y’
cos2 cos2 cos2 1
结论: 自由刚体有六个自由度
C
x’
z’
三个平动自由度
x
z 三个转动自由度
单原子分子:一个原子构成一个分子
氦、氩等
三个自由度
双原子分子:两个原子构成一个分子
因为
k
1 2
m0
v2
3 kT 2
方均根速率:
v2 3kT 3RT
m0
M
说明: 压强是大量分子与器壁不断碰撞的结果;
温度是大量分子热运动剧烈程度的标志; 统计平均值; 对个别分子谈压强和温度毫无意义。
§10-3 能量按自由度均分原理
10-3-1 自由度
自由度:确定一个物体在空间的位置所必需的独 立坐标数目。
第十章
气体动理论
本章从物质的微观结构出发,以气体为研究对象,运用统计 的方法,研究大量气体分子热运动的规律,并对气体的某些 性质给予微观本质的说明
重点内容在于介绍统计物理学中处理问题的统计方法,同时揭 示气体的一些宏观性质的微观实质。
§10-1 气体动理论的基本概念
10-1-1 分子动理论的基本观点 1.宏观物体是由大量微观粒子(分子或原子)组成的。
1 2
m0
v
2 z
1 2
kT
能量均分定理:
在温度为T 的平衡态下,物质分子的每个自由
度都具有相同的平均动能,其值为 kT 2 。
Hale Waihona Puke 分子平均动能:ki kT 2
“i”为分子自由度数
单原子分子: i 3
k
3 2
kT
双原子分子: i 5
k
5 kT 2
多原子分子: i 6
k
6 2
kT
10-3-3 理想气体的内能 摩尔热容
内能: 气体中所有分子的动能和分子间相互作用势 能的总和。
理想气体内能: 气体中所有分子的动能。
一摩尔理想气体内能:
Emol
NA
i 2
kT
i 2
RT
质量为m,摩尔质量为M的理想气体内能:
E
m M
Emol
m M
i RT 2
§10-4 麦克斯韦速率分布
10-4-1 麦克斯韦速率分布函数
对某个气体分子来说,任意时刻速度的大小和方向 完全是偶然的 ,无规律的
O
vi dS
x
vixdt
z
因为只有 vix > 0 的分子才能与一侧器壁发生 碰撞,所以有:
dI nim0vi2xdtdS
i
作用于面元的压力:
dF dI dt
ni m0 vi2xdS
i
压强:
p dF dI dS dt dS
i
nim0 vi2x m0
i
ni vi2x
ni vi2x
克劳修斯指出:“气体对容器壁的压强 是大量分子对容器壁碰撞的平均效果”
统计假设
每个分子速度按方向的分布是均匀的
0 x y z
2 x
2 y
2 z
2
2 x
2 y
2 z
x2
2 y
z2
12
3
立方体容器: 设: 体积:V 分子数:N
分子数密度:n 分子质量:m0
将分子按速度分组,每
一组的分子具有相同的
v
v1~v2区间内
麦克斯韦速率分布曲线
的概率
0 f (v)dv 1
曲线下的总面积 恒等于1
10-4-3 三个统计速率
(1)平均速率:
设:速率为v1的分子数为N1个; 速率为v2的分子数为个N2 ;…。
总分子数: N = N1+ N2 + …+ Nn
v Nivi N1v1 N2v2 Nnvn
阿佛加德罗常数 NA=6.022×1023mol-1
2.分子之间存在相互作用力 分子之间存在的吸引 或排斥的相互作用力
3.分子在不停地作无规则的运动 布朗运动
10-1-2 分子热运动与统计规律
统计的基本思想
统计规律,是指大量偶然事件整体所遵循的规律。
例.伽尔顿板
实验内容: 一次投入大量小球, 或多次投入单个小球。 观察落入某个槽中的 小球数
n ni vi2x n
nvx2
p m0nvx2
p
m0
nv
2 x
1 3
m0
nv2
因为
k
1 2
m0
v2
所以
p
2 3
n k
道尔顿分压定律:混合气体的压强等于其中各种气 体分子组分压强之总和。
p p1 p2 p3
10-2-2 温度的微观意义
p
2 3
n k
p nkT
结论:
k
3 2
kT
温度标志着物体内部分子热运动的剧烈程度, 它是大量分子热运动的平均平动动能的量度。
10-1-3 理想气体的微观模型 理想气体的微观模型:
1、分子可以看作质点 本身的大小比起它们之间的平均距离可忽略不计。
2、除碰撞外,分子之间的作用可忽略不计。 3、分子间的碰撞是完全弹性的。
理想气体的分子模型是弹性的自由运动的质点。
§10-2 理想气体状态方程的微观解释
10-2-1 理想气体压强的统计意义
速度。假设每组的分子
z
数密度为 ni ,速率为 vi 。
n ni
y
O
vi dS
x
vixdt
x方向分子与器壁碰撞后动量的增量:
m0 vix m0 vix 2m0 vix 分子对器壁的冲量: 2m0 vix
同组中dt时间内与面元
y
dS碰撞的分子数:
ni vixdtdS
冲量:
nivixdtdS 2m0vix
例:有10个粒子,其速率分别是1,3,5,7, 8,9, 10,11,13,15ms-1,计算它们的平均速率和方均根 速率。
v
1 N
10
vi
i1
1 (1 3 5 7 8 9 10 1113 15) 8.2m S 1 10
v2
1 N
10
vi2
i1
1 (12 32 52 72 82 92 102 112 132 152) 9.19m S 1 10
热力学系统:单个分子的运动无规则,大量分子的集体 表现一定存在一种统计规律。 微观量:分子的质量、速度、动量、能量等
在宏观上不能直接进行测量和观察。 宏观量: 温度、压强、体积等
在宏观上能够直接进行测量和观察。
气体动理论的基本观点: 单个分子运动遵循力学规律 大量分子运动遵循统计规律
本章正是用这种统计的方法才能求出大量分子运动有关 的一些物理量的平均值,从而对于大量气体分子热运动 相联系的宏观现象的微观本质作出解释
碰撞频率: z z 2 dd22nnvv
10-6-2 平均自由程
平均自由程():分子在连续两次和其它分子发
生碰撞之间所通过的自由路程的平均值。
v
z
平均自由程:
1 2 d 2n
p nkT
结论:
kT 2 d 2 p
• 平均自由程只与分子的直径和密度有关,而与 平均速率无关。
• 当温度一定时,平均自由程与压强成反比,压 强越小,平均自由程越长。
vp
2kT M
f(v) T1
(1) T1 < T2
(2) 绿:氧 黄:氢
T2
v v p1 p2
v
§10-6 气体分子的平均自由程和碰撞频率
10-6-1 分子的平均碰撞频率
碰撞频率(z):单位时间内,分子与其它分子发 生碰撞的平均次数。
d d
分子直径:d,分子数密度: n
单位时间内有 d 2vn 个分子和其它分子发生碰撞
d f (v) 0 dv
f(v)
vp
2kT m0
2RT 1.41 RT
M
M
vpv v2
v
例. 图为同一种气体,处于不同温度状态下的速率分 布曲线,试问(1)哪一条曲线对应的温度高?(2) 如果这两条曲线分别对应的是同一温度下氧气和氢气
的分布曲线,问哪条曲线对应的是氧气,哪条对应的
是氢气?
解:
对于热力学系统,在温度为 T 的平衡态下 设在 v—v+d v 的速率区间 d v 内有dN 个分子
f (v)
0
v v dv
dv