PLC与变频器控制的自动恒压供水系统解析
用PLC与变频实现恒压供水
用PLC与变频实现恒压供水摘要:恒压供水调速系统实现水泵电动机无级调速,依据用水量的变化(实际上为供水管网的压力变化)自动调节系统的运行参数。
在用水量发生变化时保持水压恒定以满足用水要求。
变频恒压供水技术变频恒压供水相关产品正向着高可靠性、全数字化微机控制、多品种系列化的方向发展。
追求高度智能化、系列化、标准化是未来供水设备适应城镇建设中成片开发智能楼宇、网络供水调度和整体规划要求的必然趋势。
在短短的几年内,调速恒压供水系统经历了一个逐步完善的发展过程,早期的单泵调速恒压系统逐渐为多泵系统所代替。
单泵产品系统设计简易可靠,但单泵电动机深度调速造成水泵、电动机运行效率低,而多泵型产品的投资更为节省,运行效率高,已发展成为主导产品。
变频恒压供水控制方式根据水泵工作原理,水泵消耗功率与转速的三次方成正比,即N=Kn,(其中Ⅳ为水泵消耗功率,为水泵运行时的转速,为比例系数)。
而水泵是按工频运行时速设计的,但供水时除高峰外,大部分时间流量较小,由于采用了变频技术及微机控制技术,因此可以使水泵运行的转速随流量的变化而变化,最终达到节能的目的。
实践证明,使用变频设备可使水泵运行平均转速比工频转速降低20%,从而大大降低能耗,节能效率可达20%~40%。
带PID回路调节器和/或PkO的控制方式在该方式中,变频器的作用是为电动机提供可变频率的电源,实现电动机的无级调速,从而使管网水压可控。
传感器的任务是检测管网水压;压力设定单元为系统提供满足用户需要的水压期望{直|压力设定信号和压力反馈信号输入可编程控制器后,经可编程控制器内部PID控制程序的计算,输送给变频器一个频率控制信号。
还有一种办法是将压力设定信号和压力反馈信号送入PID回路调节器,由后者进行运算后,输给变频器一个频率控制信号。
[b][align=center]详细内容请点击:用PLC与变频实现恒压供水[/align][/b]。
基于PLC 和变频器控制的恒压供水系统
基于PLC 和变频器控制的恒压供水系统摘要本文设计介绍了一种基于PLC和变频器的变频恒压供水系统,由PLC 进行逻辑控制,由变频器进行压力调节。
PLC和变频器作为控制系统的核心部件,经过变频器内部的PID运算,通过PLC控制变频与工频的切换,通过传感器反馈压力信号,实现闭环自动调节恒压供水,基本实现了高质量恒压供水,降低电能损耗,延长了加压泵的使用寿命,通过故障处理基本实现了不间断供水。
关键词PLC;变频器;传感器0 引言在城乡供水系统中,随着高层建筑的广泛建设以及居民小区的规模化发展,原有的高位水塔供水系统已经不能满足恒压供水的要求,采用变频恒压控制是现代供水控制系统的新型方式,变频恒压供水系统可有效地降低“水锤”对泵体冲击、节约电能、维持管网水压恒定、实现无人值守等。
具有较大的经济和社会意义。
本文论述了一种基于PLC的变频恒压供水系统。
利用PLC加以不同功能的传感器、变频器,根据压力传感器测得管网压力的大小及变化来控制加压泵的转速及数量,使水管的压力始终保持在合适的范围内,从而达到恒压供水的目的。
1 恒压供水系统原理恒压供水的基本思路是:采用电机调速装置控制泵的转速,并自动调整泵的运行台数,完成供水压力的闭环控制,在管网流量变化时达到稳定供水压力和节能的目的。
系统的控制目标是泵站总管的出水压力。
系统任意设定供水压力值,其与反馈总管的压力值通过PID调节后控制调速装置,以调节加压泵的运行速度,从而调节系统的供水压力。
与传统的恒速泵供水系统、水塔高位水箱供水系统和气压罐供水系统相比,调速恒压供水系统具有供水质量高、灵活性强、能耗少、电动机起制动平稳、无水锤效应等优点,从而获得了广泛应用。
2 系统总体设计2.1 系统概况本系统拟在控制2台55kW和3台30kW加压泵相互配合完成恒压供水。
本文将以“一拖三”(一台变频器拖动三台加压泵,加压泵功率为30kW),“一拖二”(一台变频器拖动两台加压泵,加压泵功率为55kW)的设备介绍PLC与变频器组成的恒压供水系统的工作原理。
PLC和变频器控制的恒压供水系统
图4-48 生 对三泵生活/消防双恒压供水系统的基本要求如下。 (1)生活供水时,系统低恒压值运行,消防供水时高恒压 值运行。 (2)三台泵根据恒压的需要,采取“先开先停”的原则接 入和退出。 (3)在用水量小的情况下,如果一台泵连续运行时间超过 3h,则要切换下一台泵,避免某一台泵工作时间过长。 (4)三台泵都要软启动。 (5)要有完善的报警功能。 (6)对泵的控制要有手动控制功能,以便在应急或检修时 临时使用。
主机单元 FX2N-32MR
模拟量输入模块 FX2N-4AD
模拟量输出模块 FX2N-2DA
图4-49 恒压供水控制系统PLC系统组成
.4.电气控制系统原理图 电气控制系统原理图包括主电路、控制电路及PLC外围接线 图。 1)主电路 图4-50为电控系统主电路。三台电动机分别为M1、M2、M3。 接触器KM1、KM3、KM5分别控制M1、M2、M3的工频运行; 接触器KM2、KM4、KM6分别控制M1、M2、M3的变频运行; FR1、FR2、FR3分别为三台水泵电动机过载保护的热继电器; QS1、QS2、QS3、QS4分别为变频器和三台泵电动机主电路的 隔离开关;FU1为主电路的熔断器,VVVF为通用变频器。
X005
X006 X007 X010
绿灯:待机指示
红灯:禁止下料指示 黄灯:允许下料指示 输 出 信 号 蜂鸣器:气缸未复位提示
HL2
HL3 HL1 HA
Y000
Y001 Y002 Y003
气缸A伸出
气缸A退回 气缸B伸出 气缸B退回
YA1
YA2 YA3 YA4
Y004
Y005 Y006 Y007
电机运转/停止
表4-10 工件分拣装置PLC控制系统输入/输出设备分配
变频器与plc恒压供水工作原理
变频器与plc恒压供水工作原理
恒压供水系统是用于保持水压稳定的自动化系统,可以根据水压需求自动调节
水泵的运行速度和水量。
变频器和PLC(可编程逻辑控制器)是恒压供水系统中
重要的组成部分,它们协同工作来实现恒压供水。
首先,让我们了解变频器的工作原理。
变频器是一种电力调节设备,可以通过
调节电源的频率来控制电机的转速。
在恒压供水系统中,变频器用来控制水泵的转速,根据实时水压的反馈信号调整电机的运行频率。
当水压低于设定值时,变频器将增加电机的转速以增加水的流量;当水压高于设定值时,变频器将降低电机的转速以减少水的流量,从而保持水压稳定。
其次,PLC是恒压供水系统的主控制器。
它通过读取传感器收集的水压信号,
以及根据预设的控制算法来控制变频器的运行。
PLC可以接收来自传感器的信号,并根据这些信号做出决策,例如控制变频器调整电机的转速,或者打开/关闭阀门
来调节水的流量。
PLC可以通过触摸屏或计算机进行编程和监控,以便操作人员
可以实时监测系统的运行状态并进行必要的调整。
综上所述,变频器和PLC通过协同工作来实现恒压供水。
变频器控制水泵的
转速,根据实时水压信号对电机的运行频率进行调整;而PLC则是整个系统的主
控制器,读取传感器信号并根据预设的控制算法来控制变频器的运行。
这种自动化控制系统可以确保恒定的水压,提高供水系统的运行效率和稳定性。
总之,变频器和PLC是恒压供水系统中关键的组成部分,它们的工作原理是
通过协同工作来实现恒压供水。
这种自动化控制系统能够有效地维持水压稳定,提高供水系统的性能和运行效率。
基于PLC的变频恒压供水系统的设计
基于PLC的变频恒压供水系统的设计一、本文概述随着工业技术的不断发展和城市化进程的加速,供水系统的稳定性和效率成为现代社会不可或缺的一部分。
传统的供水系统往往存在压力不稳定、能耗高等问题,难以满足现代社会的需求。
因此,基于PLC (可编程逻辑控制器)的变频恒压供水系统应运而生,成为解决这些问题的有效手段。
本文旨在探讨基于PLC的变频恒压供水系统的设计原理、系统构成、控制策略以及实际应用,以期为提高供水系统的稳定性和效率提供理论和技术支持。
本文将介绍基于PLC的变频恒压供水系统的基本设计原理,包括PLC 的工作原理、变频器的控制原理以及恒压供水的实现原理。
文章将详细阐述该系统的构成部分,包括硬件组成和软件设计,以便读者能够全面了解系统的整体架构。
在此基础上,本文将深入探讨系统的控制策略,包括PLC的编程实现、变频器的调速控制以及恒压供水的控制算法等,以展示系统如何实现精准的压力控制和节能运行。
本文还将通过实际案例分析,展示基于PLC的变频恒压供水系统在实际应用中的表现,包括系统的稳定性、节能效果以及运行效率等方面的评估。
文章将总结该系统的设计经验和教训,并提出改进和优化的建议,以期为推动供水系统的技术进步和可持续发展做出贡献。
本文旨在全面介绍基于PLC的变频恒压供水系统的设计原理、系统构成、控制策略以及实际应用,以期为供水系统的稳定性和效率提升提供理论和技术支持。
二、PLC与变频技术基础PLC,即可编程逻辑控制器(Programmable Logic Controller),是一种专为工业环境设计的数字运算操作电子系统。
它采用可编程的存储器,用于在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程。
PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。
随着微电子技术的发展,PLC的性能得到了不断提升,其应用领域也越来越广泛。
plc变频器控制恒压供水系统
城市恒压供水系统、尸■、■前言1、供水系统概述城市规模的不断扩大,高层建筑的不断增长,对于高层的用户来说,在白天或者用水高峰时供水系统的电动机负荷最大,常常需要满负荷或超负荷运行,而在晚上或休闲是,所需水量减少很多,但是电动机依然处于满负荷运行状态,这样既浪费了大量的资源,对电动机的损耗也较大。
所以需要根据不同的需求条件来调节电动机的转速以实现恒压供水。
在供水系统中,当用水量需要变化时,传统的调节方法是通过人工改变阀门的开度来调整, 但是此类方法无法对供水管道内的压力和水位变化做出及时、恰当的反应,往往会造成用水高峰期时供水压力不足,用水低峰期时供水压力过高,不仅十分浪费能源而且存在事故隐患(例如压力过高容易造成爆管事故)。
因此无法满足城市供水系统的要求。
采用变频调速的供水系统可以有效解决以上的问题。
根据用水量的大小,控制水泵的转速,即用水量增大时,调高变频,使水泵转速升高,增加供水量。
当用水量超过一台水泵的供水量时启动新的水泵以增加供水量,当用水量减少时,使水泵转速降低或减少投入运行的水泵数量,减少供水量。
2、供水系统功能城市供水系统的主要功能是在用水量不断变化的情况下,维持管内的压力在一定范围内,既能满足用水的需求,又能最大程度节约能源,延长设备寿命。
变频供水的控制器经历了从继电器-接触器,到单片机,再到PLC而变频器也从多端速度控制、模拟量输入控制发展到专用变频器,为实现城市供水系统简单、高效、低能耗的功能,并且实现自动化的控制过程,采用PLC乍为核心控制器是个较好的方案。
PLC具有体积小、设计周期短、数据处理和通信方便、易于维护和操作、明显降低成本等优点,可满足城市供水系统的控制要求。
除此以外,PLC作为城市供水控制系统使设计过程变得更加简单,可实现的功能变得更多。
由于PLC勺CPU 强大的网络通信能力,是城市供水系统的数据传输与通信变得可能,并且也可以实现其远程监控。
利用PLC乍为控制器的城市供水系统主要涉及两个方面:一是信号输入;二是控制输出信号。
PLC控制变频器的恒压供水系统的设计
PLC控制变频器的恒压供水系统的设计恒压供水系统是一种能够根据管网压力变化自动调节水泵运行速度的系统,常用于公共建筑、工业厂房和住宅小区的水供应系统中。
PLC(可编程逻辑控制器)控制变频器的恒压供水系统设计是一种自动化控制方案,能够有效地提高供水系统的稳定性和能效。
1.系统布局设计:需要根据实际的供水系统布局来确定变频器的安装位置和水泵的布置,以确保系统的整体效果最优。
通常情况下,变频器和PLC控制器会安装在一个控制柜中,方便集中控制和管理。
2.传感器选择与安装:恒压供水系统需要通过传感器来实时监测管网压力的变化,常用的传感器包括压力传感器和流量传感器。
这些传感器需要适当地安装在管道上,并与PLC控制器相连接,以便实时采集和反馈数据。
3.变频器选择与参数设置:根据水泵的功率和变频器的性能需求,选择合适的变频器,并进行参数设置。
在供水系统中,变频器的作用是通过控制电机的转速来调整水泵的出水量,从而满足恒压供水的需求。
4.PLC程序设计:根据实际的供水系统需求,编写PLC程序进行控制逻辑的设计。
程序中需要包括对传感器数据的采集和处理、对变频器的频率设置和控制、对水泵的启停控制等功能。
5.系统调试与优化:在完成PLC程序的设计后,需要进行系统的调试与优化。
通过实际操作和测试,确定系统的参数设置和控制策略是否满足恒压供水系统的要求,并对系统进行优化,提高供水系统的工作效率和稳定性。
6.联动控制与报警功能设计:为了确保供水系统的安全性和稳定性,在PLC控制变频器的恒压供水系统设计中,还需要考虑系统的联动控制和报警功能。
例如,当系统发生故障或异常情况时,PLC控制器可以发出报警信号,并采取相应的措施来保护设备和系统的运行。
总而言之,PLC控制变频器的恒压供水系统设计是一项复杂而重要的工作,它能够实现供水系统的自动化控制,提高系统的稳定性和能效。
要设计一个好的恒压供水系统,需要充分了解供水系统的要求和实际情况,并合理选择和配置设备,进行有效的控制策略设计和系统优化。
《PLC实现恒压变频供水系统的设计》范文
《PLC实现恒压变频供水系统的设计》篇一一、引言随着工业自动化水平的不断提高,PLC(可编程逻辑控制器)在供水系统中的应用越来越广泛。
恒压变频供水系统作为一种高效、节能的供水方式,其设计及实现成为现代供水工程的重要课题。
本文将详细介绍PLC在恒压变频供水系统设计中的应用,包括系统构成、工作原理、设计方法及实施效果等方面。
二、系统构成恒压变频供水系统主要由水源、水泵、压力传感器、PLC控制器、变频器等部分组成。
其中,水源提供系统所需的水资源,水泵负责将水输送到指定地点,压力传感器实时监测水管中的水压,PLC控制器则负责整个系统的控制与调节,变频器则用于调节水泵电机的转速,实现恒压供水。
三、工作原理恒压变频供水系统的工作原理是通过PLC控制器实时采集压力传感器的数据,根据设定的压力值与实际压力值的差异,通过变频器调节水泵电机的转速,从而保持水管中的水压恒定。
当实际水压低于设定值时,PLC控制器会增加水泵电机的转速,提高水压;反之,则会降低水泵电机的转速,降低水压。
此外,系统还具有过载、过流、过压等保护功能,确保系统的安全稳定运行。
四、设计方法1. 确定系统参数:根据实际需求,确定供水系统的流量、扬程、工作压力等参数。
2. 选择设备:根据系统参数,选择合适的水泵、压力传感器、PLC控制器及变频器等设备。
3. 设计电路:设计PLC控制电路及变频器驱动电路,确保电路的稳定性和可靠性。
4. 编程控制:使用编程软件对PLC进行编程,实现恒压控制、故障诊断及保护等功能。
5. 安装调试:将设备安装到现场,进行系统调试,确保系统正常运行。
五、实施效果PLC实现恒压变频供水系统的设计具有以下优点:1. 节能:通过实时调节水泵电机的转速,实现恒压供水,避免了能源的浪费。
2. 稳定:系统具有较高的稳定性,能够根据实际需求自动调节水压,保证供水的稳定性和连续性。
3. 智能:通过PLC控制器实现智能化控制,具有故障诊断及保护等功能,提高了系统的安全性。
PLC控制的恒压供水系统设计分析
PLC一、引言恒压供水系统是一种能够保证水压稳定的供水系统,在现代城市建设中得到了广泛的应用。
PLC 控制恒压供水系统是利用PLC 控制器实现对水泵的控制和监测,使水泵自动调节输出水压,保证水压始终在设定范围内。
本文将就PLC 控制恒压供水系统的设计与分析进行探讨。
二、恒压供水系统的原理恒压供水系统是通过调整水泵的输出水压来使得供水管网的水压始终保持在一个合理的范围内,这种供水系统的组成部分主要包括:水源地、进水管道、水泵、水箱、水管及其控制系统等。
在恒压供水系统中,水泵的输出水压是由水泵的运行状态和电机的功率来决定的。
水泵的运行状态可以通过PLC 控制器来控制,通过PLC 控制器读取水压传感器采集的压力信号,并根据控制程序计算出控制命令,调节水泵工作状态与转速,使水泵可以准确地输出所需的水压。
通过这种方式,恒压供水系统可以保证供水管网的水压恒定。
三、PLC 控制系统的设计PLC 控制器通常由CPU、I/O 接口和存储单元等组成。
在这种设计中,我们选择使用PLC 控制器作为控制系统,以控制水泵的运行。
1.硬件设计PLC 控制系统的硬件设计主要包括PLC 主机、输入输出模块、玻璃管电位器、压力传感器和液位传感器等。
其中PLC 主机是控制系统的核心,输入输出模块用于PLC 主机与外部设备之间的控制信号传输,玻璃管电位器用于控制水泵转速,压力传感器和液位传感器则用于监测水压与水位变化。
2.软件设计软件设计是PLC 控制系统中最为重要的部分,它是实现控制逻辑的核心。
软件设计需要分为以下几个步骤:1.选择编程语言在这里我们选择使用Ladder Logic (绝缘逻辑)作为编程语言,因为它是针对PLC 系统开发的。
这种语言比较容易理解,也可以方便地进行调试和修改。
2.编写控制程序控制程序是PLC 控制系统的核心部分,通过编写控制程序,可以实现对水泵的控制。
控制程序需要使用Ladder Logic 编写,简单易懂。
PLC和变频器在恒压供水系统中的应用
PLC和变频器在恒压供水系统中的应用摘要:本文阐述了PLC、变频器和触摸屏在恒压供水系统中的应用,分别介绍了变频恒压供水系统的基本构成,调节器的基本功能以及PLC在恒压供水系统中所发挥的功能,使用PLC和变频器能够使泵站的出水量始终保持恒压,以达到管路出水量始终保持恒定的目的。
关键词:PLC、变频器、调节器、触摸屏一、恒压供水系统1、概述PLC变频调速恒压供水系统(PLC&Inverter Controlled System of Constant Hydraulic Pressure),它集PLC和变频器、控制于一体,整套设备硬、软件配套齐全,可以进行单独操作和PLC及变频器的组合运行,具有智能化、网络化的特点,充分体现出现代工业控制“快捷”、“高效”、“集中”的特点。
2、变频恒压供水系统的基本构成如图1-1所示为恒压供水泵站的构成示意图,压力传感器用于检测管网中的水压,常装设在泵站的出口处。
当用水量大时,水压降低,用水量小时,水压升高。
水压传感器将水压的变化转变为电流或电压的变化送给调节器。
图1-1 变频器恒压供水泵站的构成示意图3、调节器是一种电子装置,在系统中完成以下几种功能:(1)调节器设定水管压力的给定值。
恒压供水水压的高低根据需要而设定,供水距离越远,用水地点越高,系统所需供水压力越大。
给定值即是系统正常工作时的恒压值。
另外有些供水系统可能有多种用水目的,如将生活用水与消防用水共用一个泵站,水压的设定值可能不止一个,一般消防用水的水压要高一些。
调节器具有给定值设定功能,可以用数字量进行设定,有的调节器也可以模拟量方式设定。
(2)调节器接受传感器送来的管网水压的实测值。
管网实测水压回送到泵站控制装置称为反馈,调节器是反馈的接收点。
(3)调节器根据给定值与实测值的综合,依一定的调节规律发出系统调节信号。
调节器接收了水压的实测反馈信号后,将它与给定值比较,得到给定值与实测值之差。
如果给定值大于实测值,说明系统水压低于理想水压,要加大水泵电动机的转速;如果水压高于理想水压,要降低水泵电机的转速。
PLC与变频器控制的自动恒压供水系统
目录摘要 (1)一、引言 (1)二、系统组成及实现原理 (1)三、控制系统硬件设计 (2)四、系统软件设计 (5)五、变频恒压供水系统的构成及原理 (6)六、设备选型说明 (6)七、系统简介 (7)八、系统方案 (7)九、系统实现功能 (9)十、系统构成及其参数 (10)十一、系统工作原理 (10)十二、功能预置及保护功能 (11)十三、系统主要性能与特点 (12)十四、实施效果 (12)总结 (13)致谢 (14)参考文献 (15)PLC与变频器控制的自动恒压供水系统摘要:介绍了一种恒压供水系统的构成及设计原理,系统采用变频器和智能供水控制器,无级调节水泵的转速,并能根据设定的水压确定循环软启动水泵的数量,从而使水压维持恒定。
运行结果表明,循环软启动的平稳切换能有效地减小系统的机械、电气冲击,切换时压力波动很小,而且丰富的功能指令和自动报警保护措施显著延长了水泵机组等和元器件的寿命。
水泵作为供水工程中的通用机械,消耗着大量的能源,电耗往往占制水成本的60%以上,在我国,每年水泵的电能消耗占电能总消耗的21%。
为了节约降耗,必须采取调节措施使泵站适应负荷变化的运行。
关键词:自动控制技术;变频调速;恒压供水;循环软启动;P I D自整定一、引言随着变频器技术的日益成熟,变频调速技术在各个领域得到了广泛的应用。
变频调速恒压供水设备以其节能、安全、高品质的供水质量等优点,在小区供水和工厂供水控制中发挥了很大的作用。
根据某洗衣机进水电磁阀生产厂家的需要,为了给该厂电磁阀性能测试生产线提供基准恒压水源,本文利用PLC控制技术和变频调速技术设计的全自动恒压供水系统,能较好地满足生产需求,水压精度较高。
为了不浪费水资源,系统还具有自动水循环功能。
二、系统组成及实现原理恒压供水的基本控制策略是:采用可编程控制器(plc)与变频调速装置构成控制系统,进行优化控制泵组的调速运行,并自动调整泵组的运行台数,完成供水压力的闭环控制,即根据实际设定水压自动调节水泵电机的转速和水泵的数量,自动补偿用水量的变化,以保证供水管网的压力保持在设定值,既可以满足生产供水要求,还可节约电能,使系统处于可靠工作状态,实现恒压供水。
基于PLC与变频器实现恒压供水控制系统
基于PLC与变频器实现恒压供水控制系统基于PLC与变频器实现恒压供水控制系统一、项目描述传统的生活及生产供水的方法是通过建造水塔维持水压。
但是,建造水塔需要花费财力,水塔还会造成水的二次污染。
那么,可不可以不借助水塔来实现恒压供水呢?当然可以,但是要解决水压随用水量的大小变化的问题,通常的办法是:用水量大时,增加水泵数量或提高水泵的转动速度以保持管网中的水压不变,用水量小时又需做出相反的调节。
这就是恒压供水的基本思路。
交流变频器的诞生和PLC的运用为水泵转速的平滑性连续调节提供了方便。
恒压供水控制系统的基本控制策略采用电动机调速装置与可编程控制器(PLC)构成控制系统,进行优化控制泵组的调速运行,并自动调整泵组的运行台数,完成供水压力的闭环控制,在管网流量变化时达到稳定供水压力和节约电能的目的。
系统的控制目标是泵站总管的出水压力,系统设定的给水压力值与反馈的总管压力实际值进行比较,其差值输入CPU运算处理后,发出控制指令,控制运行变量泵电动机的转速,从而达到给水总管压力稳定在设定的压力值上。
恒压供水就是利用变频器的PID或PI功能实现的工业过程的闭环控制。
即将压力控制点测的压力信号(4-20mA)直接输入到变频器中,由变频器将其与用户设定的压力值进行比较,并通过变频器内置PID运算将结果转换为频率调节信号调整水泵电机的电源频率,从而实现控制水泵转速。
供水系统选用原则水泵扬程应大于实际供水高度,水泵流量总和应大于实际最大供水量。
二、项目要求1.水泵功率:7.5kw.2.恒定压力:3.5mpa三、现恒压供水的方案设计供水系统采用一台三菱(FX2N系列)PLC控制一台三菱(FR-E500)变频器,并通过接触器切换实现一台变频器控制三台水泵的运转,为保证系统的可靠性,本系统采用转换开关来实现工频/变频之间的转换,在变频操作方式下,交流接触器之间采用互锁控制方式,同理,在工频操作方式下,交流接触器之间也采用互锁控制方式。
基于PLC的变频调速恒压供水系统的分析
号发送到变频器 ,调节水泵 电机的转速。开始启动 泵站中各个水泵有相 同的运行时间 ,避免产生备用 时, 台水泵在变频器的控制下稳定加速运行 , 一 当变 泵因长期 闲置发生锈蚀不能运转现象。此外 , 在上位 频器输 出频率达到 5 z OH ,电机转速达到最大时 , 机 中, 出 通过 Wi C n C的编程 , 自动统计各 台水 泵 的运 水管道压力仍没有达到设定压力时 ,可编程控制器 行时间, 于设备的维护工作 。 便
发 出控制 信 号 , 自动 地 将第 一 台水 泵 切换 到 工频 运 行 , 频 器 启 动第 二 台水 泵 , 压 力 仍 未 达 到 , 继 变 如 则
续投入第 三台水泵 。当外部 的生产设备用水量减少
时 , 环 管 道 中 的水 压压 力 将会 提 高 , 循 压力 传 感器 将
会检测并发送给 P C L ,通过计算 自动降低变频器 的
采用 、 v Ⅳ F变频 器调 节 电机 转 速 方 式 自动 调 节供 水 泵 电机 的转 速 和 投入 、 除运 行 水 泵 。将 原 来 “ 启后 停 ” 式 变 为 切 先 方 “ 启 先停 ” 式 , 自动 完 成 水 泵 的 启 动 运 行 及 切 换 , 先 方 全 保证 供 水 水 压 稳 定 ,L 控 制 的 电机 轮 换 程 序 , 各 台 水 泵 进 行 PC 使 轮 转 , 长 了水 泵 的使 用 寿命 。 延
循环 水 泵 站采 用 3台 12k 的水 泵并 联 运 行 , 3 W
设有截止阀, 便于维护使用。 安装 西 门子 S— 0 , 7 20 内部配备 PD控制算法 , I 根据设定 的 每一台水泵入 口出口 在出水管道上压力传感器,检测 出口冷却水压力的大 供水压力信号与安装在管道上压力传感器的反馈信 2 m 号进行分析、 计算 和 比较 , 到 管道 压 力偏 差 和偏 差 小 ,并通过压力变送器将压力信号转换成 4— 0 A 得 7 20 L 控 的变化率 ,经 由 P C内部 的 PD运算后 ,L L I P C通过 的电信号,输入到 s— 0P C的模拟量输人模块 , Pob s 讯将 控制 电机转速 的信号输 出到 V V 制器根据需要的压力设定值与实际检测的压力值进行 r u通 i f VF 变频器 ,调节水泵电机 的运行速度和水泵的运行数 比例积分微分(I ) PD 运算 , 通过 Pob s r u 网络将控制信 i f
浅析PLC恒压供水系统
【 1 】 朱思亮 . 基于 P L C的 恒 压供 水 监 控 系 统设 计 与实 现 【 D ] . 电子 科 技 大学 , 2 0 1 3 . [ 2 ] 殷 智坚 , 谭杰 . P L C恒 压 供 水 系 统 变 频 节 能 的优 化 研 究 m . 科 技
风, 2 0 1 2 。 2 1 : 1 0 5 .
P L C恒压供水系统的主要控制部分有 P L C 、 变频器、 电控设备 。其中 P L C是整个恒压供水系统的控制核心 , 主要作用是获取整个系统运行过程 中的各种 重要信号 , 根据监控信号来实现对供水系统运行状态的控制 ,在变 频器的作用下实现供水系统中水泵机组运行状态 的及时 调整 ;恒压供水系统 中的变频器 主要作用是对水泵机组 进行控制,其 内置 的 P I D功能可以对 P L C信号进行实施 检测 ,进而保证水泵频率工作在正常范围内。
2 . 2 控 制部 分
系 ,即扬程 H越小 ,流量 Q越大。如果可 以保证 阀门开 度和水泵转速保持恒定值不变 ,那么我们就可以简单 的 将流量 Q的大小与用户实际用水量联系起来 ,同样只有 保持水泵转速恒定,对管阻特性进行研究才会具 有一定 的意 义 。 所 谓 管阻 特性 即是 指在 阀门开度 恒定 的前提 下 , 扬 程 H 与流 量 Q之 间存 在 的 函数关 系 H = Q ) 。此 外 ,管 阻特 性 直 接 表 明 出水 泵 能量 在 克 服泵 系统 的 水 位 及压 力 差 、液体在管道 中流动 阻力等过程 中消耗掉 ,符合能量 守恒定律。从扬程 H与流量 Q之 间关系 Q ) 曲线图可以 直 接 看 出 ,阀 门 开度 变 化 时 ,只 是改 变 了某 一 扬 程 下 , 供水 系统 向用户供水的能力 ,扬程特性 曲线与管阻特性 曲线 的焦点正是供水系统的工作点 ,在该工作点处 ,供 水 系统 的供水量 Q与用户的用水量 Q始终保持着相对平 衡关 系,换句话说 ,只有供水系统满 足了扬程和管阻两 个特性时 ,才能够保证供水系统稳定可靠的运行。 Q ^ 源自O ( m 2 / s )
基于PLC的变频调速恒压供水系统设计与实现
基于PLC的变频调速恒压供水系统设计与实现一、本文概述随着工业自动化的发展,变频调速技术在供水系统中的应用越来越广泛。
基于PLC(可编程逻辑控制器)的变频调速恒压供水系统,以其高效、稳定、节能的特点,成为当前供水系统设计的重要趋势。
本文旨在探讨基于PLC的变频调速恒压供水系统的设计与实现方法,以期为相关领域的工程应用提供有益的参考。
文章首先介绍了供水系统的基本构成和功能需求,包括恒压供水的重要性以及变频调速技术在供水系统中的应用优势。
随后,详细阐述了基于PLC的变频调速恒压供水系统的总体设计方案,包括硬件选型、软件编程、系统控制策略等方面。
在此基础上,文章重点探讨了系统实现过程中的关键技术问题,如PLC编程实现、变频器的选择与配置、压力传感器信号的采集与处理等。
通过本文的研究,期望能够为供水系统的设计与实现提供一种有效、可靠的解决方案,同时推动变频调速技术在供水领域的应用和发展。
二、系统需求分析和设计目标随着现代工业技术的快速发展,供水系统的稳定性和效率成为了评价一个城市或企业基础设施水平的重要指标。
传统的供水系统往往存在能耗高、调节性差、压力不稳定等问题,无法满足现代供水系统的要求。
为了解决这些问题,本文提出了一种基于PLC的变频调速恒压供水系统设计方案。
稳定性需求:供水系统需要保持长时间的稳定运行,确保供水压力的稳定性,避免因压力波动对供水质量造成影响。
节能性需求:传统的供水系统往往存在能耗高的问题,新的供水系统需要采用先进的控制技术,降低能耗,提高能源利用效率。
调节性需求:供水系统需要能够根据实际需求,自动调节供水流量和压力,以满足不同时段、不同区域的供水需求。
实现供水系统的恒压供水:通过PLC控制系统,实时监测供水压力,根据压力变化自动调节变频器的输出频率,从而控制水泵的转速,实现恒压供水。
提高供水系统的稳定性:采用先进的控制算法,确保供水系统在各种工况下都能保持稳定的运行状态,避免因压力波动对供水质量造成影响。
(完整word版)plc变频器控制恒压供水系统
城市恒压供水系统一、前言1、供水系统概述城市规模的不断扩大,高层建筑的不断增长,对于高层的用户来说,在白天或者用水高峰时供水系统的电动机负荷最大,常常需要满负荷或超负荷运行,而在晚上或休闲是,所需水量减少很多,但是电动机依然处于满负荷运行状态,这样既浪费了大量的资源,对电动机的损耗也较大。
所以需要根据不同的需求条件来调节电动机的转速以实现恒压供水。
在供水系统中,当用水量需要变化时,传统的调节方法是通过人工改变阀门的开度来调整, 但是此类方法无法对供水管道内的压力和水位变化做出及时、恰当的反应,往往会造成用水高峰期时供水压力不足,用水低峰期时供水压力过高,不仅十分浪费能源而且存在事故隐患(例如压力过高容易造成爆管事故)。
因此无法满足城市供水系统的要求。
采用变频调速的供水系统可以有效解决以上的问题。
根据用水量的大小,控制水泵的转速,即用水量增大时,调高变频,使水泵转速升高,增加供水量。
当用水量超过一台水泵的供水量时启动新的水泵以增加供水量,当用水量减少时,使水泵转速降低或减少投入运行的水泵数量,减少供水量。
2、供水系统功能城市供水系统的主要功能是在用水量不断变化的情况下,维持管内的压力在一定范围内,既能满足用水的需求,又能最大程度节约能源,延长设备寿命。
变频供水的控制器经历了从继电器- 接触器,到单片机,再到PLC。
而变频器也从多端速度控制、模拟量输入控制发展到专用变频器,为实现城市供水系统简单、高效、低能耗的功能,并且实现自动化的控制过程,采用PLC作为核心控制器是个较好的方案。
(完整word版)plc变频器控制恒压供水系统PLC具有体积小、设计周期短、数据处理和通信方便、易于维护和操作、明显降低成本等优点,可满足城市供水系统的控制要求.除此以外,PLC作为城市供水控制系统使设计过程变得更加简单,可实现的功能变得更多。
由于PLC的CPU强大的网络通信能力,是城市供水系统的数据传输与通信变得可能,并且也可以实现其远程监控.利用「1。
plc控制恒压供水系统
plc控制恒压供水系统plc控制恒压供水系统plc控制恒压供水系统简介plc控制恒压供水系统是一种新型的节能供水设备。
plc控制恒压供水系统系运用当今最先进的微电脑控制技术,将变频调速器与电机水泵组合而成的机电一体化高科技节能供水装置。
plc控制恒压供水系统以水泵出水端水压(或用户用水流量)为设定参数,通过微机自动控制变频器的输出频率从而调节水泵电机的转速,实现用户管网水压的闭环调节,使供水系统自动恒压稳于设定的压力值:即用水量增加时,频率提高,水泵转速加快;用水量减少时,频率降低,水泵转速减慢。
这样就保证了整个用户管网随时都有充足的水压(与用户设定的压力一致)和水量(随用户的用水情况变化而变化)。
随着二次供水加压技术的发展,plc控制恒压供水系统从根本上解决了这些问题。
据“供水设备推广中心”的资料显示,plc控制恒压供水系统不需建造水塔,投资小、占地少,采用水气自动调节、自动运转、节能与自来水自动并网,停电后仍可供水,调试后数年不需看管。
比建造水塔节约投资70%,比建造高位水箱节约投资60%,大大节约土建投资。
plc控制恒压供水系统广泛用于企事业单位、住宅区及农村的生产、生活、办公用水。
供水户在20-2000户。
日供水量在20-50000m3,供水高度达150米,即50层楼房。
plc控制恒压供水系统保养方法plc控制恒压供水系统泵机组应经常检查,定期保养并加注润滑油。
离心泵和止回阀如发现漏水现象,应及时紧固法兰螺丝或更换石棉根,检查机泵底脚螺栓不能松动,以防损坏机器。
罐体如发现漆皮脱落,应及时涂漆保养,以延长使用寿命。
plc控制恒压供水系统电器自动控制系统,应防水、防尘、经常检查线路绝缘情况,连接螺栓是否松动和保险丝完好等情况。
压力表外部最好用透明材料包裹,以防损坏。
plc控制恒压供水系统使用范围1、高层建筑、居民小区、别墅等居民生活用水。
2、企事业单位、宾馆、写字楼、百货商场,大型桑拿浴、医院、学校,体育馆,高尔夫球场,机场等场所的日常用水。
PLC与变频器控制的自动恒压供水系统
PLC与变频器控制自动恒压供水系统2004-10-22PLC&FA 文章介绍了PLC与变频器控制自动恒压供水系统实施过程以及实施效果。
1 系统简介为改善生产环境,沱牌公司投资清洁水技改工程并建成一座日产水2.5万顿供水系统,分别建立了抽水泵系统、加压泵系统与高位水池。
根据公司用水需求特点,从抽水泵系统过来水一局部直接供应生产用水部门,一局部那么需通过加压泵输送到高位水池,而供应生产用水部门水压与供应高位水池水压相差较大。
同时高位水池距抽水泵房较远达十多公里,高位水池液位上下与加压泵系统设计以及如何与抽水泵系统“联动〞也是较难解决。
鉴于以上特点,从技术可靠与经济实用角度综合考虑,我们设计了用PLC控制与变频器控制相结合自动恒压控制供水系统,同时通过主水管线压力传递较经济地实现了加压泵系统与抽水泵系统“远程联动〞控制目。
2 系统方案系统主要由三菱公司PLC控制器、ABB公司变频器、施耐德公司软启动器、电机保护器、数据采集及其辅助设备组成〔见图1〕。
2.1 抽水泵系统整个抽水泵系统有150KW深井泵电机四台,90KW深井泵电机两台,采用变频器循环工作方式,六台电机均可设置在变频方式下工作。
采用一台150KW与一台90KW软起动150KW与90KW电机。
当变频器工作在50HZ,管网压力仍然低于系统设定下限时,软起动器便自动起动一台电机投入到工频运行,当压力到达高限时,自动停掉工频运行电机。
一次主电路接线示意图见图2所示。
系统为每台电机配备电机保护器,是因为电机功率较大,在过载、欠压、过压、过流、相序不平衡、缺相、电机空转等情况下为确保电机良好使用条件,到达延长电机使用寿命目。
系统配备水位显示仪表,可进展上下位报警,同时通过PLC可确保取水在合理水位水质监控,同时也保护电机制正常运转工况。
系统配备流量计,既能显示一段时间累积流量,又能显示瞬时流量,可进展出水量统计与每台泵出水流量监控。
2.2 公司内不同压力供水需求解决为稳定可靠地满足公司内局部区域供水太力〔0.4~0.45Mpa〕低于主管网水压力〔0.8~0.9Mpa〕要求,配备稳压减压阀来调节,可调范围为0.1~0.8Mpa。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PLC与变频器控制的自动恒压供水系统
1 系统简介
为改善生产环境,沱牌公司投资清洁水技改工程并建成一座日产水2.5万顿的供水系统,分别建设了抽水泵系统、加压泵系统和高位水池。
根据公司用水需求特点,从抽水泵系统过来的水一部分直接供给生产用水部门,一部分则需通过加压泵输送到高位水池,而供给生产用水部门的水压与供给高位水池的水压相差较大。
同时高位水池距抽水泵房较远达十多公里,高位水池的液位高低和加压泵系统的设计以及如何与抽水泵系统“联动”也是较难解决的。
鉴于以上特点,从技术可靠
和>'/jingjilunwen/' target='_blank'
class='infotextkey'>经济实用角度综合考虑,我们设计了用PLC控制与变频器控制相结合的自动恒压控制供水系统,同时通过主水管线压力传递
较>'/jingjilunwen/' target='_blank'
class='infotextkey'>经济地实现了加压泵系统与抽水泵系统“远程联动”的控制目的。
2 系统方案
系统主要由三菱公司的PLC控制器、ABB公司的变频器、施耐德公司的软启动器、电机保护器、数据采集及其辅助设备组成(见图1)。
2.1 抽水泵系统
整个抽水泵系统有150KW深井泵电机四台,90KW深井泵电机两台,采用变频器循环工作方式,六台电机均可设置在变频方式下工作。
采用一台
150KW和一台90KW的软起动150KW和90KW的电机。
当变频器工作在50HZ,管网压力仍然低于系统设定的下限时,软起动器便自动起动一台电机投入到工频运行,当压力达到高限时,自动停掉工频运行电机。
一次主电路接线示意图见图2所示。
系统为每台电机配备电机保护器,是因为电机功率较大,在过载、欠压、过压、过流、相序不平衡、缺相、电机空转等情况下为确保电机的良好使用条件,达到延长电机的使用寿命的目的。
系统配备水位显示仪表,可进行高低位报警,同时通过PLC可确保取水在合理水位的水质监控,同时也保护电机制正常运转工况。
系统配备流量计,既能显示一段时间的累积流量,又能显示瞬时流量,可进行出水量的统计和每台泵的出水流量监控。
2.2 公司内不同压力供水需求的解决
为稳定可靠地满足公司内部分区域供水太力(0.4~0.45Mpa)低于主管网水压力(0.8~0.9Mpa)的要求,配备稳压减压阀来调节,可调范围为
0.1~0.8Mpa。
2.3 加压泵系统
由于抽水泵房距离高位水池较远,直接供水到高位水池抽水泵的扬程不足,为此在距离高位水池落差为36米处设计有一加压泵房,配备立式离心泵两台(一用一备)电机功率为75KW,扬程36米。
该加压泵的控制系统需考虑以下条件:
(1)若高位水池水位低和主管有水,则打开进水电动蝶阀和起动加压泵向高位水池供水;
(2)若高位水池水位满且主管有水,则给出报警信号并关闭加压泵和进水电动蝶阀;
(3)若主管无水表明用水量增大或抽水泵房停止供水,必须开启出水电动蝶阀由高位水池向主管补充不。
像抽水泵一样,我们为加压泵配备了软起动器和电机保护器,确保加压泵长期可靠地运转,同时配备了高位水池的水位传感器和数显仪和缺水传感器。
为保证整个主水管网的恒压供不,当高位水池满且主水管有水时,加压泵停止,此时主管压力将“憋压”,最终导致主管压力上升,并将此压力传递到抽水泵房,抽水泵的控制系统检测到此压力进行恒压变频控制,进而达到整个主管网的恒压供水,这是整个控制系统设计的关键。
3 系统实现功能
3.1 全自动平稳切换,恒压控制
主水管网压力传感器的压力信号4~20mA送给数字PID控制器,控制器根据压力设定值与实际检测值进行PID运算,并给出信号直接控制变频器的转速以使管网的压力稳定。
当用水量不是很大时,一台泵在变频器的控制下稳定运行;当用水量大到变频器全速运行也不能保证管网的压和稳定时,控制器的压力下限信号与变频器的高速信号同时被 PLC检测到,PLC自动将原工作在变频状态下泵投入到工频运行,以保持压力的连续性,同时将一台备用的泵用变频器起动后投入运行,以加大管网的供水量保证压力稳定。
若两台泵运转仍,则依次将变频工作状态下的泵投入到工频运行,而将另一台备用泵投入变频运行。
当用水量减少时,首先表现为变频器已工作在最低速信号有效,这时压力上限信号如仍出现,PLC首先将工频运行的泵停掉,以减少供水量。
当上述两个信号仍存在时,PLC再停掉一台工频运行的电机,直到最后一台泵用主频器恒压供水。
另外,控制系统设计六台泵为两组,每台泵的电机累计运行时间可显示,24小时轮换一次,既保证供水系统有备用泵,又保证系统的泵有相同的运行时间,确保了泵的可靠寿命。
控制系统图见图3。
3.2 半自动运行
当PLC系统出现问题时,自动控制系统失灵,这时候系统工作处于半自动状态,即一台泵具有变频自动恒压控制功能,当用水量不够时,可手动投入另外一台或几台工频泵运行。
3.3 手动
当压力传感器故障或变频器故障时,为确保用水,六台泵可分别以手动工频方式运行。
4 实施效果
实际运行证明本控制系统构成了多台深井泵的自动控制的
最>'/jingjilunwen/' target='_blank'
class='infotextkey'>经济结构,在软件设计中充分考虎变频与工频在切换时的瞬间压力与电流冲击,每台泵均采用软起动是解决该问题关键。
变频器工作的上下限频率及数字PID控制的上下限控制点的设定对系统的误差范围也有不可忽视的作用。
①采用变频恒压供水,消除了主管网压力波动,保证了供水质量,而且
节能效果明显,并延长了主管网及其阀门的使用寿命。
②用稳压减压阀>'/jingjilunwen/'
target='_blank' class='infotextkey'>经济地解决了不同用水压力的问题。
③拓宽运用变频恒压控制原理,较好地解决了加压泵房与抽水泵房的远程通讯总是并达到异地连锁控制的目的。
④在抽水泵房设置连续液位显示,并将信号传与PLC,防止泵缺水烧坏电机,设定的取水位置,确保水的质量。
⑤电机既有电机保护器,又有软起动器,克服了起动时的大电流冲击,相对延长了电机制使用寿命。
⑥由于采用PLC控制的压力自动控制,可以实现无人远程操作,系统的PLC预留有RS485接口,可与公司总调度室计算机网络进行连接。
⑦由于系统采用闭环恒压控制,电机在满足主水很容易网的压力的前提下,节能效果显著,年节电61万度,折合为人民币36万元。
⑧通过采用变频器控制,可在不同季节、节假日、日夜及上下班等全面调控水量,按日节水100吨计,则年可节水36500吨。