电磁场理论复习题(含答案)

合集下载

电磁场理论习题

电磁场理论习题

电磁场理论习题一1、求函数ϕ=xy+z-xyz 在点(1,1,2)处沿方向角πα=3,4πβ=,3πγ=的方向的方向导数.解:由于 M ϕ∂∂x =y -M yz = -1M y ϕ∂∂=2x y -(1,1,2)xz =0 Mzϕ∂∂=2z(1,1,2)xy -=31cos 2α=,cos 2β=,1cos 2γ=所以1cos cos cos =∂∂+∂∂+∂∂=∂∂γϕβϕαϕϕz y x lM2、 求函数ϕ=xyz 在点(5, 1, 2)处沿着点(5, 1, 2)到点(9, 4, 19)的方向的方向导数。

解:指定方向l 的方向矢量为l =(9-5) e x +(4-1)e y +(19-2)e z =4e x +3e y +17e z其单位矢量zy x z y x e e e e e e l 314731433144cos cos cos ++=++=γβα5,10,2)2,1,5(==∂∂==∂∂==∂∂MMMMMxyzxzyyzxϕϕϕ所求方向导数314123cos cos cos =•∇=∂∂+∂∂+∂∂=∂∂ l z y x lMϕγϕβϕαϕϕ3、 已知ϕ=x 2+2y 2+3z 2+xy+3x-2y-6z ,求在点(0,0,0)和点(1,1,1)处的梯度。

解:由于ϕ∇=(2x+y+3) e x +(4y+x-2)e y +(6z-6)e z所以,(0,0,0)ϕ∇=3e x -2e y -6e z(1,1,1)ϕ∇=6e x +3e y4、运用散度定理计算下列积分:2232[()(2)]x y z sxz e x y z e xy y z e ds+-++⎰⎰I=S 是z=0 和 z=(a 2-x 2-y 2)1/2所围成的半球区域的外表面。

解:设:A=xz 2e x +(x 2y-z 3)e y +(2xy+y 2z)e z 则由散度定理Ω∇⎰⎰⎰⎰⎰sA ds=Adv可得2I r dvΩΩΩ=∇==⎰⎰⎰⎰⎰⎰⎰⎰⎰222Adv (z +x +y )dv2244220sin sin aar drd d d d r dr ππππθθϕϕθθ==⎰⎰⎰⎰⎰⎰525a π=5、试求▽·A 和▽×A:(1) A=xy 2z 3e x +x 3ze y +x 2y 2e z(2)22(,,)cos sin z A z e e ρρφρφρφ=+ (3 ) 211(,,)sin sin cos r A r r e e e r r θφθφθθθ=++解:(1)▽·A=y 2z 3+0+0= y 2z 3▽×A=23232(2)(23)x yx y x e xy xy z e ∂∂∂=---∂∂∂x y z23322e e e x y z xy z x z x y(2) ▽·A=()[()]z A A A z φρρρρρφ∂∂∂++∂∂∂1 =33[(cos )(sin )]ρφρφρρφ∂∂+∂∂1=3cos ρφ▽×A=ρφρφρρρφρ∂∂∂∂∂∂z ze e e 1z A A A =221cos 0ρφρρρφρφρφ∂∂∂∂∂∂z e e e z sin=cos 2sin sin ze e e ρφρφρφρφ-+(3) ▽·A=22(sin )()1[sin ]sin r A A r A r r r r φθθθθθφ∂∂∂++∂∂∂ =2322sin cos ()()1(sin )[sin ]sin r r r r r r r θθθθθθφ∂∂∂++∂∂∂ =222212[3sin 2sin cos ]3sin cos sin r r r θθθθθθ+=+▽×A=21sin rr r r rr θφθφθθθφθ∂∂∂∂∂∂e e rsin e A A rsin A =21sin 1sin sin cos rr r r r θφθθθφθθθθ∂∂∂∂∂∂e e rsin e rsin=33cos 2cos cos sin r e e e r r θφθθθθ+-习题二1、总量为q 的电荷均匀分布于球体中,分别求球内,外的电场强度。

电磁学复习题集及答案

电磁学复习题集及答案

电磁学复习题集及答案电磁学是物理学的重要分支之一,涉及电场、磁场以及它们之间的相互作用。

为了帮助大家复习电磁学知识,本文将提供一系列电磁学的复习题及答案。

希望通过这些题目的练习,能够加深对电磁学概念和原理的理解。

一、选择题1. 电场是指:A. 带电粒子所在空间B. 带电物体周围决定其它带电敏感物体运动状态的场C. 带电物体周围由于电介质作用而存在的场答案:B2. 磁感应强度的单位是:A. 特斯拉B. 高斯C. 法拉第答案:A3. 电路中最基本的电路元件是:A. 电源B. 电容器C. 电阻器答案:C4. 以下哪个物理量与电势差有关:A. 电场强度B. 电荷量C. 电容答案:A5. 以下哪个式子描述了法拉第电磁感应定律:A. U = IRB. F = maC. ε = -dφ/dt答案:C二、填空题1. 应用安培环路定理,计算通过一圈电流为2A的闭合回路的磁场的磁感应强度,如果这一圈回路的面积为0.5平方米,则磁感应强度大小为_________.答案:4特斯拉2. 自感系数也被称为________,单位是亨利。

答案:互感系数3. 电感为0.1亨的线圈通以频率为50Hz的交流电流,求其电感应电动势的峰值_________.答案:31.4伏三、解答题1. 一个长直导线中传过电流I,求与这根导线距离为r处点的磁感应强度B。

导线的长度为L。

解答:根据比奥-萨伐尔定律,磁感应强度B与电流I、距离r和导线长度L的关系为:B = (μ0 * I)/(2πr)其中,μ0 为真空中的磁导率,其数值为4π*10^(-7) 特斯拉·米/安培。

2. 有一个平行板电容器,两个平行金属板之间的空气介电常数为ε,两板间的距离为d,面积为A。

如果在这个电容器中加上电压U,求电场强度大小E以及电场能量密度u。

解答:电场强度E与电压U和板间距离d的关系为:E = U/d电场能量密度u与介质电容率ε、电场强度E的关系为:u = ε * E^2 / 2根据上述关系,将U和d代入公式可得到答案。

大学电磁场考试题及答案

大学电磁场考试题及答案

大学电磁场考试题及答案一、选择题(每题2分,共20分)1. 电磁场中,电场与磁场的相互作用遵循以下哪个定律?A. 高斯定律B. 法拉第电磁感应定律C. 安培环路定律D. 洛伦兹力定律答案:D2. 在真空中,电磁波的传播速度是多少?A. 100,000 km/sB. 300,000 km/sC. 1,000,000 km/sD. 3,000,000 km/s答案:B3. 一个点电荷产生的电场强度与距离的平方成什么关系?A. 正比B. 反比C. 对数关系D. 线性关系答案:B4. 以下哪种介质不能支持电磁波的传播?A. 真空B. 空气C. 玻璃D. 金属答案:D5. 麦克斯韦方程组中描述变化电场产生磁场的方程是?A. 高斯定律B. 高斯磁定律C. 法拉第电磁感应定律D. 安培环路定律答案:C6. 一个均匀带电球壳内部的电场强度是多少?A. 零B. 与球壳内的电荷分布有关C. 与球壳外的电荷分布有关D. 与球壳的总电荷量成正比答案:A7. 电磁波的频率和波长之间有什么关系?A. 频率与波长成正比B. 频率与波长成反比C. 频率与波长无关D. 频率越大,波长越小答案:B8. 根据洛伦兹力公式,一个带电粒子在磁场中运动时,其受到的力的方向与什么因素有关?A. 粒子的速度B. 磁场的方向C. 粒子的电荷D. 所有上述因素答案:D9. 电磁波的偏振现象说明电磁波是横波,这是因为?A. 电磁波的振动方向与传播方向垂直B. 电磁波的振动方向与传播方向平行C. 电磁波的传播不需要介质D. 电磁波在真空中传播速度最快答案:A10. 一个闭合电路中的感应电动势遵循以下哪个定律?A. 欧姆定律B. 基尔霍夫电压定律C. 法拉第电磁感应定律D. 安培环路定律答案:C二、填空题(每题2分,共20分)11. 电磁波的传播不需要______,因此它可以在真空中传播。

答案:介质12. 根据麦克斯韦方程组,电荷守恒定律可以表示为:∇⋅ E =______。

电磁场理论基础试题集

电磁场理论基础试题集

电磁场理论基础习题集(说明:加重的符号和上标有箭头的符号都表示矢量)一、填空题1.矢量场的散度定理为(1),斯托克斯定理为(2)。

【知识点】:1.2 【难易度】:C 【参考分】:3【答案】:(1)()∫∫⋅=⋅∇SS d A d A v v v ττ (2)()S d A l d A SCvv v v ⋅×∇=⋅∫∫2.矢量场A v满足(1)时,可用一个标量场的梯度表示。

【知识点】:1.4 【难易度】:C 【参考分】:1.5【答案】:(1) 0=×∇A v 3.真空中静电场的基本方程的积分形式为(1),(2),微分形式为(3),(4)。

【知识点】:3.2 【难易度】:B【参考分】:6【答案】:(1) 0=⋅∫c l d E v v (2) ∑∫=⋅q S d D Sv v 0(3) 0=×∇E v (4)()r D vv ρ=⋅∇04.电位移矢量D v 、极化强度P v 和电场强度E v满足关系(1)。

【知识点】:3.6 【难易度】:B【参考分】:1.5【答案】:(1) P E P D D vv v v v +=+=00ε 5.有面电流s 的不同介质分界面上,恒定磁场的边界条件为(1),(2)。

【知识点】:3.8 【难易度】:B【参考分】:3【答案】:(1) ()021=−⋅B B n v v v (2) ()s J H H n v v vv =−×21 6.焦耳定律的微分形式为(1)。

【知识点】:3.8 【难易度】:B 【参考分】:1.5【答案】:(1) 2E E J p γ=⋅=v v 7.磁场能量密度=m w (1),区域V中的总磁场能量为=m W (2)。

【知识点】:5.9 【难易度】:B 【参考分】:3【答案】:(1) 221H μ (2) ∫Vd H τμ2218.理想导体中,时变电磁场的=(1),=(2) 。

【知识点】:6.1 【难易度】:A 【参考分】:3【答案】:(1)0 (2)0 9.理想介质中,电磁波的传播速度由(1)决定,速度=v (2)。

电磁场理论习题及答案

电磁场理论习题及答案

电磁场理论习题及答案电磁场理论是电磁学的基础,它描述了电荷和电流产生的电磁场在空间中的分布和演化规律。

在学习电磁场理论时,习题是巩固和深化理解的重要方式。

本文将介绍一些电磁场理论的习题及其答案,帮助读者更好地掌握这一理论。

一、电场和电势1. 问题:一个均匀带电球体,半径为R,总电荷为Q。

求球心处的电场强度。

答案:根据库仑定律,电场强度E与电荷Q和距离r的关系为E = kQ/r^2,其中k为库仑常数。

对于球体内部的点,距离球心的距离r小于半径R,所以电场强度为E = kQ/r^2。

对于球体外部的点,距离球心的距离r大于半径R,所以电场强度为E = kQ/R^3 * r。

2. 问题:一个无限长的均匀带电线,线密度为λ。

求距离线上一点距离为r处的电势。

答案:根据电势公式V = kλ/r,其中k为库仑常数。

所以距离线上一点距离为r处的电势为V = kλ/r。

二、磁场和磁感应强度1. 问题:一根无限长的直导线,电流为I。

求距离导线距离为r处的磁感应强度。

答案:根据安培环路定理,磁感应强度B与电流I和距离r的关系为B =μ0I/2πr,其中μ0为真空中的磁导率。

所以距离导线距离为r处的磁感应强度为B = μ0I/2πr。

2. 问题:一根长为L的直导线,电流为I。

求距离导线距离为r处的磁场强度。

答案:根据比奥萨伐尔定律,磁场强度H与电流I和距离r的关系为H = I/2πr。

所以距离导线距离为r处的磁场强度为H = I/2πr。

三、电磁场的相互作用1. 问题:一个半径为R的导体球,带电量为Q。

求导体球表面的电荷密度。

答案:导体球表面的电荷密度σ等于导体球上的电荷总量Q除以导体球表面的面积A。

导体球表面的面积A等于球的表面积4πR^2。

所以导体球表面的电荷密度为σ = Q/4πR^2。

2. 问题:一个平行板电容器,两个平行金属板之间的距离为d,电介质的介电常数为ε。

一块电介质板插入到电容器中间,使得电容器的电容增加了n倍。

电磁场理论习题及答案_百度文库

电磁场理论习题及答案_百度文库

习题5.1 设x0的半空间充满磁导率为的均匀介质,x0的半空间为真空,今有线电流沿z轴方向流动,求磁感应强度和磁化电流分布。

5.2 半径为a的无限长圆柱导体上有恒定电流J均匀分布于截面上,试解矢势A 的微分方程,设导体的磁导率为0,导体外的磁导率为。

5.3 设无限长圆柱体内电流分布,J azrJ0(r a)求矢量磁位A和磁感应B。

5.4载有电流的细导线,右侧为半径的半圆弧,上下导线相互平行,并近似为向左侧延伸至无穷远。

试求圆弧中心点处的磁感应强度。

5.5 两根无限长直导线,布置于x1,y0处,并与z轴平行,分别通过电流I 及I,求空间任意一点处的磁感应强度B。

5.6 半径的磁介质球,具有磁化强度为M az(Az2B)求磁化电流和磁荷。

5.7已知两个相互平行,相隔距离为d,共轴圆线圈,其中一个线圈的半径为a(a d),另一个线圈的半径为b,试求两线圈之间的互感系数。

5.8 两平行无限长直线电流I1和I2,相距为d,求每根导线单位长度受到的安培力Fm。

5.9 一个薄铁圆盘,半径为a,厚度为b b a,如题5.9图所示。

在平行于z轴方向均匀磁化,磁化强度为M。

试求沿圆铁盘轴线上、铁盘内、外的磁感应强度和磁场强度。

5.10 均匀磁化的无限大导磁媒质的磁导率为,磁感应强度为B,若在该媒质内有两个空腔,,空腔1形状为一薄盘,空腔2像一长针,腔内都充有空气。

试求两空腔中心处磁场强度的比值。

5.11 两个无限大且平行的等磁位面D、N,相距h,mD10A,mN0。

其间充以两种不同的导磁媒质,其磁导率分别为10,220,分界面与等磁位面垂直,求媒质分界面单位面积受力的大小和方向。

题5.11图5.12 长直导线附近有一矩形回路,回路与导线不共面,如题5.12图 a所示。

证明:直导线与矩形回路间的互感为M0aln2R2b R2C22b2R2题5.12图a5.13 一环形螺线管的平均半径r015cm,其圆形截面的半径a2cm,铁芯的相对磁导率r1400,环上绕N1000匝线圈,通过电流I0.7A。

电磁场理论复习试题

电磁场理论复习试题

1. 两导体间的电容与_A__有关A. 导体间的位置B. 导体上的电量C. 导体间的电压D. 导体间的电场强度2. 下面关于静电场中的导体的描述不正确的是:____C__A. 导体处于非平衡状态。

B. 导体内部电场处处为零。

C. 电荷分布在导体内部。

D. 导体表面的电场垂直于导体表面3. 在不同介质的分界面上,电位是__B_。

A. 不连续的B. 连续的C. 不确定的D. 等于零4. 静电场的源是AA. 静止的电荷B. 电流C. 时变的电荷D. 磁荷5. 静电场的旋度等于__D_。

A. 电荷密度B. 电荷密度与介电常数之比C. 电位D. 零6. 在理想导体表面上电场强度的切向分量DA. 不连续的B. 连续的C. 不确定的D. 等于零7. 静电场中的电场储能密度为BA. B. C. D.8. 自由空间中静电场通过任一闭合曲面的总通量,等于BA. 整个空间的总电荷量与自由空间介电常数之比B. 该闭合曲面内所包围的总电荷量与自由空间介电常数之比。

C. 该闭合曲面内所包围的总电荷量与自由空间相对介电常数之比。

D. 该闭合曲面内所包围的总电荷量。

9. 虚位移法求解静电力的原理依据是GA. 高斯定律B. 库仑定律C. 能量守恒定律D. 静电场的边界条件10. 静电场中的介质产生极化现象,介质内电场与外加电场相比,有何变化?A. 变大B. 变小C. 不变D. 不确定11. 恒定电场中,电流密度的散度在源外区域中等于B____A. 电荷密度B. 零C. 电荷密度与介电常数之比D. 电位12. 恒定电场中的电流连续性方程反映了___A_A. 电荷守恒定律B. 欧姆定律C. 基尔霍夫电压定律D. 焦耳定律13. 恒定电场的源是___B_A. 静止的电荷B. 恒定电流C. 时变的电荷D. 时变电流14. 根据恒定电场与无源区静电场的比拟关系,导体系统的电导可直接由静电场中导体系统的DA. 电量B. 电位差C. 电感D. 电容15. 恒定电场中,流入或流出闭合面的总电流等于__C___A. 闭合面包围的总电荷量B. 闭合面包围的总电荷量与介电常数之比C. 零D. 总电荷量随时间的变化率16. 恒定电场是DA. 有旋度B. 时变场C. 非保守场D. 无旋场17. 在恒定电场中,分界面两边电流密度矢量的法向方向是BA. 不连续的B. 连续的C. 不确定的D. 等于零18. 导电媒质中的功率损耗反映了电路中的_D____A. 电荷守恒定律B. 欧姆定律C. 基尔霍夫电压定D. 焦耳定律19. 下面关于电流密度的描述正确的是AA. 电流密度的大小为单位时间垂直穿过单位面积的电荷量,方向为正电荷运动的方向。

电磁复习题(部分答案)

电磁复习题(部分答案)

电磁场与波复习题一、简答题:1、 静电场的基本方程(积分形式,微分形式)。

2、 恒定磁场的基本方程(积分形式,微分形式)。

3、 无外源区域中恒定电流场的基本方程(积分形式,微分形式)。

4、 麦克斯韦方程组的积分形式和微分形式。

5、 齐次波动方程。

6、 什么是传导电流?7、 什么是运流电流?8、 简述三类边值问题。

9、 简述镜像法的依据、实质和关键。

10、什么是唯一性定理? 11、什么是色散?12、什么是电磁波的极化?13、写出时变电磁场中的能量定理方程,并简述其物理意义。

14、简述分离变量法求解静态场的定解问题的一般步骤。

15、判断下面电磁波的传播方向和极化方式?a 、 00cos()cos()x y E t z E t z ωβωβ=-+-E e e 答:线极化,+z 方向b 、 )sin()sin(00z t E e z t E e E y x βωβω-+-= 答:线极化,+z 方向c 、 )cos()sin(00z t E e z t E e E y x βωβω-+-= 答:左旋圆极化,+z 方向d 、 0()j zx y j E eβ-=-E e e答:右旋圆极化,+z 方向e 、 00sin()cos()44x y E t z E t z ππωβωβ=-++--E e e答:线极化,+z 方向 f 、 0()j xy z E e β-=+E e e答:线极化,+x 方向 g 、 0()jk zx y j E e-=-+E e e答:右旋圆极化,+z 方向 h 、 3cos()4sin()44y z t x t x ππωβωβ=--+-+E e e答:线极化,+x 方向二、证明推导题1. 证明0=∇⨯∇u2. 证明0)(=⨯∇⋅∇A0)()()()]()()([)()]()[()()(=∂∂-∂∂∂∂+∂∂-∂∂∂∂+∂∂-∂∂∂∂=∂∂-∂∂+∂∂-∂∂+∂∂-∂∂⋅∂∂+∂∂+∂∂=++⨯∂∂+∂∂+∂∂⋅∂∂+∂∂+∂∂=⨯∇⋅∇yA x A z x A z A y z A y A x y A x A e x A z A e z A y A e z e y e x e A e A e A e ze y e x e z e y e x e A x y z x y z x y z z x y y z x z y x z z y y x x z y x z y x3. 有人将一般时变场的场方程写成:∇⨯=H J t∂∇⨯=-∂B E 0=⋅∇B 0∇⋅=D你认为他写得对不对?如有错,请在错的式子旁边打叉,并写出正确的方程和名称。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1~2章 矢量分析 宏观电磁现象的基本规律1. 设:直角坐标系中,标量场zx yz xy u ++=的梯度为A,则M (1,1,1)处 A = ,=⨯∇A 0 。

2. 已知矢量场xz e xy e z y e A z y x ˆ4ˆ)(ˆ2+++= ,则在M (1,1,1)处=⋅∇A 9 。

3. 亥姆霍兹定理指出,若唯一地确定一个矢量场(场量为A),则必须同时给定该场矢量的 旋度 及 散度 。

4. 写出线性和各项同性介质中场量D 、E 、B 、H、J 所满足的方程(结构方程): 。

5. 电流连续性方程的微分和积分形式分别为 和 。

6. 设理想导体的表面A 的电场强度为E 、磁场强度为B,则(a )E 、B皆与A 垂直。

(b )E 与A 垂直,B与A 平行。

(c )E 与A 平行,B与A 垂直。

(d )E 、B 皆与A 平行。

答案:B7. 两种不同的理想介质的交界面上,(A )1212 , E E H H == (B )1212 , n n n n E E H H == (C) 1212 , t t t t E E H H == (D) 1212 , t t n n E E H H ==答案:C8. 设自由真空区域电场强度(V/m) )sin(ˆ0βz ωt E eE y -=,其中0E 、ω、β为常数。

则空间位移电流密度d J (A/m 2)为:(a ) )cos(ˆ0βz ωt E ey - (b ) )cos(ˆ0βz ωt ωE e y - ˆˆˆ222x y z e e e ++A⋅∇A ⨯∇EJ H B E D σ=μ=ε= , ,t q S d J S∂∂-=⋅⎰ t J ∂ρ∂-=⋅∇(c ) )cos(ˆ00βz ωt E ωey -ε (d ) )cos(ˆ0βz ωt βE e y -- 答案:C 9. 已知无限大空间的相对介电常数为4=εr ,电场强度(V/m) 2cos ˆ0dxeE x πρ=,其中0ρ、d 为常数。

则d x =处电荷体密度ρ为:(a )d 04πρ-(b )d 004ρπε- (c )d 02πρ- (d )d02ρπε- 答案:d 10. 已知半径为R 0球面内外为真空,电场强度分布为⎪⎪⎩⎪⎪⎨⎧>θ+θ<θ+θ-=θθ )R ( )sin ˆcos 2ˆ()R ( )sin ˆcos ˆ(20300r e e rB r e e RE r r求(1)常数B ;(2)球面上的面电荷密度;(3)球面内外的体电荷密度。

Sol. (1) 球面上由边界条件 t t E E 21=得:sin sin 2300θ=θR BR 202R B =→(2)由边界条件s n n D D ρ=-21得:θε=-ε=-ε=ρcos 6)()(0210210R E E E E r r n n s (3)由ρ=⋅∇D得:⎩⎨⎧><=θ∂θ∂θε+∂∂ε=⋅∇ε=ρθ )R (0)R (0)sin (sin 1)(10002200r r E r r E r r E r即空间电荷只分布在球面上。

11. 已知半径为R 0、磁导率为的球体,其内外磁场强度分布为⎪⎩⎪⎨⎧>θ+θ<θ-θ=θθ )R ( )sin ˆcos 2ˆ(A)R ( )sin ˆcos ˆ(2030r e e r r e e H r r且球外为真空。

求(1)常数A ;(2)球面上的面电流密度J S 大小。

Sol. 球面上(r =R 0):r H 为法向分量;θH 为法向分量 (1)球面上由边界条件n n B B 21=得:r r H H 201μ=μ300R A μμ=→(2)球面上由边界条件s t t J H H =-21得θμμ+-=-==θθsin )2(|)(0210R r s H H J第3章 静电场及其边值问题的解法1. 静电场中电位与电场强度E的关系为 ;在两种不同的电介质(介电常数分别为1ε和2ε)的分界面上,电位满足的边界条件为 。

2. 设无限大真空区域自由电荷体密度为ρ,则静电场:=⨯∇E0 ,E⋅∇=。

3. 电位 和电场强度E 满足的泊松方程分别为 、 。

4. 介电常数为 的线性、各向同性的媒质中的静电场储能密度为 。

5. 对于两种不同电介质的分界面,电场强度的 切向 分量及电位移的 法向 分量总是连续的。

6. 如图,1E 、2E分别为两种电介质内静电场在界面上的电场强度,,30°,则60°,=||||21E E。

7. 理想导体与电介质的界面上,表面自由电荷面密度s ρ与电位沿其法向的方向导数n∂φ∂的关系为 。

8. 如图,两块位于x = 0 和 x = d 处无限大导体平板的电位分别为0、U 0,其内部充满体密度e xd) 的电荷(设内部介电常数为)。

(1)利用直接积分法计算0 <x <d 区域的电位及电场强度E;(2)x =0处导体平板的表面电荷密度。

1θ2θ1E 2E 1ε2εE φ=-∇121212 n n φφφφεε∂∂==∂∂;2ρφε∇=-2 E ρε∇∇=2E 21ε=m w 3s n ρ-=∂φ∂ε1=φ02U =φoxdSol. 为一维边值问题:)(x φ=φ )1(d d 00222d xe x--ερ-=φ⇒ερ-=φ∇边界条件:0)0(==φx , 0)(U d x ==φ(1)直接积分得:x e d d d U e x e x d d d x )]1([)2()(2000200---+-ερ-++-ερ=φ)]1()([ˆˆ)(200000d d x x x e d dd U xe e dx d e x E --+-ερ-+-ερ-=φ-=φ-∇=(2)由s nρ-=∂φ∂ε得:00000)(==ε=∂φ∂ε-=∂φ∂ε-=ρx x s x E x n)]11(1[20000de d d d U d -+--ρερ-=-9. 如图所示横截面为矩形的无限长直导体槽,内填空气。

已知侧壁和底面的电位为零,而顶盖的电位为V 0 。

写出导体槽内电位所满足的微分方程及其边界条件,并利用直角坐标系分离变量法求出该导体槽内的电位分布。

Sol. (略)见教材第82页例3.6.110. 如图所示,在由无限大平面和突起的半球构成的接地导体上方距离平面为d 处有一个点电荷q 0 。

利用镜像法求z 轴上z > a 各点的电位分布。

Sol. 空间电荷对导体表面上部空间场分布的影响等效于:无限大接地导体平面 + 接地导体球边界条件:0=φ=φ球面平面使0=φ平面,引入镜像电荷:0,q q d z -='-='使0=φ球面,引入镜像电荷:⎪⎪⎩⎪⎪⎨⎧=''-=-='-=-==022220121||,||,q d a q z a q d a z a z q d a q d a zz 轴上z > a 各点的电位:zd xq o az 'q '2z 1z 1q 2q⎥⎦⎤⎢⎣⎡+'+-+-+-πε=φd z q z z q z z q d z q 221100||41⎥⎦⎤⎢⎣⎡+----πε=d z a d z a d z q 12||14422300 11. 已知接地导体球半径为R 0,在x 轴上关于原点(球心)对称放置等量异号电荷+q 、-q ,位置如图所示。

利用镜像法求(1)镜像电荷的位置及电量大小;(2)球外空间电位;(3)x 轴上x >2R 0各点的电场强度。

Sol. (1) 引入两个镜像电荷:22001q q R R q -=-=,220021R R R x ==2)(2002qq R R q =--=,2200202R R R x -=-=(2)=⎪⎪⎭⎫ ⎝⎛'-++πε=φR q R q R q R q z y x 2211041),,((略)2220)2(z y R x R ++-=, 22201)2/(z y R x R ++-=22202)2/(z y R x R +++=,2220)2(z y R x R +++='(3)x 轴上x >2R 0各点的电场强度:⎥⎦⎤⎢⎣⎡++++--+-=20202020)2()2/(2/)2/(2/)2(ˆR x qR x q R x q R x q e E x 12. 如图所示,两块半无限大相互垂直的接地导体平面,在其平分线上放置一点电荷q ,求(1)各镜像电荷的位置及电量;(2)两块导体间的电位分布。

Sol. (1)01q q -=,)0 ,0 ,(a - 02q q +=,)0 , ,0(a -03q q -=,)0 ,0 ,(a(2)⎪⎪⎭⎫ ⎝⎛+++πε=φ33221100041),,(R q R q R q R q z y x(略)其中:o q+q-xR 0R 0R 1q 1x 2x 2q yx0q 45 ()0,,0P a451q 2q 3q )0 ,,0(a -)0 ,0 ,(a -)0 ,0 ,(a2220)(z a y x R +-+= 2221)(z y a x R +++= 2222)(z a y x R +++=2223)(z y a x R ++-=第4章 恒定电场与恒定磁场1. 线性和各项同性的均匀导电媒质内部电荷体密度等于 0 ,净余电荷只能分布在该导电媒质的 表面 上。

2. 线性和各项同性的均匀导电媒质中,=⋅∇J 0 ;=⋅∇D0 。

3. 在电导率不同的导电媒质分界面上,电场强度E和电流密度J 的边界条件为: 、 。

4. 在电导率为的导电媒质中,功率损耗密度p c 与电场强度大小E 的关系为 。

5. 恒定磁场的矢量磁位A 与磁感应强度B的关系为 ;A 所满足的泊松方程为 。

6. 对线性和各项同性磁介质(磁导率设为),恒定磁场(磁场强度大小为H )的磁能密度=m w ,V 空间磁能W m = 。

7. 已知恒定电流分布空间的矢量磁位为:Cxyz e x y e y x eA z y x ˆˆˆ22++= ,C 为常数,且A 满足库仑规范。

求(1)常数C ;(2)电流密度J ;(3)磁感应强度B。

(直角坐标系中:)(ˆ)(ˆ)(ˆya x a e x az a ez a y a ea x y z z x y y z x ∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=⨯∇) Sol. (1) 库仑规范:0=⋅∇A 4022-=⇒=++=∂∂+∂∂+∂∂⇒C Cxy xy xy zA y A x A zy x (2) 由J μA -=∇2,xyz e x y e y x eA z y x 4ˆˆˆ22-+= 得: ()x e y e z A y A x A A J y x 2ˆ2ˆ112222222+μ-=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂μ-=μ∇-=(3) A B⨯∇=)(ˆ4ˆ4ˆ22x y e yz e xz ez y x -++-= 8. . 习题 在平板电容器的两个极板间填充两种不同的导电媒质(11,εσ和22,εσ),其厚度分别为1d 和2d 。

相关文档
最新文档