应用二元一次方程组—鸡兔同笼练习题
《应用二元一次方程组-鸡兔同笼》典型例题
《应用二元一次方程组---鸡兔同笼》典型例题
例1要在155m的距离内安装25根水管,一种水管每根长5m,另一种水管每根长8m,问两种水管各需多少根,可以恰好铺设完?
例2甲、乙两人从相距28千米的两地同时相向出发,经过3小时30分钟相遇,如果乙先走2小时,然后甲才出发,这样甲经过2小时45分钟就与乙相遇,求甲、乙两人每小时各走多少千米?
参考答案
例1 分析 设5m 长的水管需x 根,8m 长的水管需y 根,则5m 长的水管总长为5x m ,8m 长的水管总长为8x m ,再利用两个数量关系来列方程.
解 设5m 长水管需x 根,8m 长的水管需y 根,根据题意,得
⎩⎨⎧=+=+.15585,25y x y x 解得⎩
⎨⎧==.10,15y x 答:5m 长的水管需15根,8m 长的水管需10根.
例 2 分析 相向而行相遇的问题一般可以找到两个关系,即两人所走的距离之和等于两地间的距离.
解 设甲的速度为x 千米/时,乙的速度为y 千米/时,根据题意可得
⎪⎪⎩
⎪⎪⎨⎧=++=+,284114112,282727y x y y x 整理,得⎩⎨⎧=+=+)2( .1121911)1( ,8y x y x (2)-(1)×11,得.3248==y y ,把3=y 代入(1),得5=x .
答:甲的速度为5千米/时,乙的速度为3千米/时.。
应用二元一次方程组-鸡兔同笼(重点练)(解析版)
一、选择题.1.(2020 •澄迈县期末)某班分组活动,若每组6人,则余下5人:若每组7人,则又少4人.设总人数为x ,组数为y ,则可列方程组( )A .{6x +5=y 7x −4=yB .{6y =x +57y −4=xC .{6y =x −57y +4=xD .{6y =x −57y =x +4【答案】D【解析】每组6人得到的关系式为6y =x ﹣5;每组7人得到的关系式为7y =x +4.可列方程组为:{6y =x −57y =x +4.故选:D . 2.(2020•绥化)“十•一”国庆期间,学校组织466名八年级学生参加社会实践活动,现已准备了49座和37座两种客车共10辆,刚好坐满,设49座客车x 辆,37座客车y 辆.根据题意,得( )A .{x +y =1049x +37y =466B .{x +y =1037x +49y =466C .{x +y =46649x +37y =10D .{x +y =46637x +49y =10【答案】A【解析】依题意,得:{x +y =1049x +37y =466.故选:A . 3.(2020•江阴市一模)某校春季运动会比赛中,八年级(1)班和(5)班的竞技实力相当.关于比赛结果,甲同学说:(1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x 分,(5)班得y 分,根据题意所列的方程组应为( )A .{6x =5y x =2y −40B .{6x =5y x =2y +40C .{5x =6y x =2y +40D .{5x =6y x =2y −40【答案】D【解析】设(1)班得x 分,(5)班得y 分,根据题意得:{5x =6y x =2y −40,故选:D . 4(2020 •衡阳期末)为鼓励在疫情期间参加“春日宅家阅读”活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品,已知1个文具盒、1支钢笔共需22元,5个文具盒、10支钢笔共需145元.若设每个文具盒为x 元,每支钢笔为y 元,列二元一次方程组得( )3 应用二元一次方程组-鸡兔同笼(重点练) 第五章 二元一次方程组A .{x +y =225(x +y)=145B .{x +y =225x +10y =145C .{x +y =2210x +5y =145D .{x +y =225x +y =145【答案】B【解析】依题意,得:{x +y =225x +10y =145.故选:B . 5.(2020 •魏都区月考)用一块A 型钢板可制成2块C 型钢板、3块D 型钢板;用一块B 型钢板可制成1块C 型钢板、4块D 型钢板.某工厂现需14块C 型钢板、36块D 型钢板,设恰好用A 型钢板x 块,B 型钢板y 块,根据题意,则下列方程组正确的是( )A .{2x +y =143x +4y =36B .{3x +2y =144x +y =36C .{2x +3y =14x +4y =36D .{x +2y =144x +3y =36【答案】A【解析】设恰好用A 型钢板x 块,B 型钢板y 块,根据题意,得:{2x +y =143x +4y =36,故选:A . 6.(2019 •栾城区期末)鸡兔同笼问题是我国古代著名趣题之一,大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡、兔同在一个笼子里,从上上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?经计算可得( )A .鸡20只,兔15只B .鸡12只,兔23只C .鸡15只,兔20只D .鸡23只,兔12只【答案】D【解析】设笼中有x 只鸡,y 只兔,根据题意得:352494x y x y +=⎧⎨+=⎩,解得:2312x y =⎧⎨=⎩. 故选:D .二、填空题.7.(2019•揭西县期末)超市中有A 、B 两种饮料,小洋买了4瓶A 种饮料,3瓶B 种饮料,一共花了16元,其中B 种饮料比A 种饮料贵0.2元,若设A 种饮料的单价为x 元,B 种饮料的单价为y 元,可列方程组为 .【答案】{4x +3y =16y =x +0.2【解析】设A 种饮料的单价为x 元,B 种饮料的单价为y元,根据题意得:{4x +3y =16y =x +0.2.故答案为:{4x +3y =16y =x +0.2. 8.某班为了奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲,乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲、乙两种奖品各买多少件?该问题中,若设购买甲种奖品x 件,乙种奖品y 件,则可根据题意可列方程组为 .【答案】{x +y =3016x +12y =400【解析】设购买甲种奖品x 件,乙种奖品y 件,则可根据题意可列方程组{x +y =3016x +12y =400, 故答案为:{x +y =3016x +12y =400. 9.(2019•龙湖区期末)程大位,明代商人,珠算发明家,被称为珠算之父、卷尺之父.少年时,读书记为广博,对数学颇感兴趣,60岁时完成其杰作《直指算法统宗》(简称《算法统宗》).在《算法统宗》里记载了一道趣题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?如果设大和尚有x 人,小和尚有y 人,那么根据题意可列方程组为 .【答案】 {x +y =1003x +13y =100【解析】设大和尚有x 人,小和尚有y 人,根据题意得:{x +y =1003x +13y =100. 故答案是:{x +y =1003x +13y =100. 三、解答题.10.如图:用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?解:设小长方形的长是x 厘米,宽是y 厘米题中的两个相等关系:(1)小长方形的长+ =大长方形的宽可列方程为: ;(2)小长方形的长= ,可列方程为: .解:(1)小长方形的长+小长方形的一个宽=大长方形的宽;可列方程为x +y =48, 故答案为:小长方形的一个宽;x +y =48.(2)小长方形的长=小长方形的宽×3,可列方程为x =3y ,故答案为:小长方形的宽×3;x =3y .11.一张方桌由一个桌面和四根桌腿做成,已知1立方米木料可以做桌面50个或桌腿300根,现有5立方米木料,恰好能做多少张桌子?解:设用x 立方米木料做桌面,用y 立方米木料做桌腿。
应用二元一次方程组-鸡兔同笼(练习题)
第五章二元一次方程组
应用二元一次方程组——鸡兔同笼(课后练习题)
1、古有一捕快,一天晚上他在野外的一个茅屋里,听到外边来了一群人在吵闹,他隐隐约约地听到几个声音,下面有这一古诗为证:
隔壁听到人分银,
不知人数不知银。
每人五两多六两,
每人六两少五两。
多少人数多少银?
2、一只蛐蛐6条腿,一只蜘蛛8条腿,现有蛐蛐和蜘蛛共10只,共有68条腿,若设蛐蛐有x只,蜘蛛有y只,则列出方程组为。
3、甲、乙两人赛跑,若乙先跑10米,甲跑5秒即可追上乙;若乙先跑2秒,则甲跑4秒就可追上乙.设甲速为x米/秒,乙速为y米/秒,则可列方程组为。
4、用一根绳子环绕一棵大树,若环绕大树3周,则绳子还多 4尺,若环绕大树4周,则绳子又少了3尺,则环绕大树一周需要多少尺?。
北师大版八年级数学第五章《应用二元一次方程组-鸡兔同笼》课时练习题(含答案)
北师大版八年级数学第五章《3.应用二元一次方程组-鸡兔同笼》课时练习题(含答案)一、单选题1.甲是乙现在的年龄时,乙8岁,乙是甲现在的年龄时,甲26岁,那么()A.甲20岁,乙14岁B.甲22岁,乙16岁C.乙比甲大18岁D.乙比甲大34岁2.五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为()A.30 B.26 C.24 D.223.《九章算术》中有这样一道题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其译文是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现有30钱,买得2斗酒.问醇酒、行酒各买得多少?设醇酒买得x斗,行酒买得y斗,则可列二元一次方程组为()A.2501030x yx y+=⎧⎨-=⎩B.2501030x yx y-=⎧⎨+=⎩C.2105030x yx y+=⎧⎨+=⎩D.2501030x yx y+=⎧⎨+=⎩4.《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x,y,则可列方程组为()A.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503x yy x⎧-=⎪⎪⎨⎪-=⎪⎩C.2502503x yx y+=⎧⎪⎨+=⎪⎩D.2502503x yx y-=⎧⎪⎨-=⎪⎩5.我国古代数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊三,直金十二两.问牛、羊各直金几何?”题目大意是:5头牛、2只羊共19两银子;2头牛、3只羊共12两银子,每头牛、每只羊各多少两银子?设1头牛x两银子,1只羊y两银子,则可列方程组为()A.52192312x yx y+=⎧⎨+=⎩B.52122319x yx y+=⎧⎨+=⎩C.25193212x yx y+=⎧⎨+=⎩D.25123219x yx y+=⎧⎨+=⎩6.用如图的长方形和正方形纸板作侧面和底面,做成如图的竖式和横式两种无盖纸盒.现在仓库里有500张正方形纸板和1000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?若设做竖式纸盒x个,横式纸盒y个,则可列方程组()A.+=5004+3=1000x yx y⎧⎨⎩B.+2=5004+3=1000x yx y⎧⎨⎩C.2+=50003+4=1000x yx y⎧⎨⎩D.2+2=5003+4=1000x yx y⎧⎨⎩7.现用190张铁皮做盒子,每张铁皮可做8个盒身,或做22个盒底,一个盒身与两个盒底配成一个盒子.设用x张铁皮做盒身,y张铁皮做盒底正好配套,则可列方程组为()A.1902822x yx y+=⎧⎨⨯=⎩B.1902228x yy x+=⎧⎨⨯=⎩C.2190822y xx y+=⎧⎨=⎩D.21902822y xx y+=⎧⎨⨯=⎩8.普通火车从绵阳至成都历时大约2小时,成绵城际快车开通后,时间大大缩短至几十分钟,现假定普通火车与城际快车两列对开的火车于同一时刻发车,其中普通火车由成都至绵阳,城际快车由绵阳至成都,这两车在途中相遇之后,各自用了80分钟和20分钟到达自己的终点绵阳、成都,则城际快车的平均速度是普通火车平均速度的()倍.A.2 B.2.5 C.3 D.4二、填空题9.一名学生问老师:“你今年多大了?”老师风趣地说“我像你这样大的时候,你才2岁;你到我这么大时,我已经38岁了”,则今年老师的岁数是_____.10.《孙子算经》是中国古代重要的数学著作,其中记载了这样一道有趣的问题:“一百马,一百瓦,大马一拖三,小马三拖一.”意思是:“现有100匹马恰好拉100片瓦.已知1匹大马能拉3片瓦,3匹小马能拉1片瓦.”则共有大马_____匹.11.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十,问甲、乙持钱各几何?”译文是:今有甲、乙两人持钱不知道各有多少,甲若得到乙所有钱的12,则甲有50钱,乙若得到甲所有钱的23,则乙也有50钱,问甲、乙各持钱多少?设甲持钱数为x钱,乙持钱数为y钱,列出关于x,y的二元一次方程组是______.12.某中学为积极开展校园足球运动,计划购买A和B两种品牌的足球,已知一个A品牌足球价格为120元,一个B品牌足球价格为150元.学校准备用3000元购买这两种足球(两种足球都买),并且3000元全部用完,请写出一种购买方案:买_______个A品牌足球,买________个B品牌足球.13.《九章算术》记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两,问一牛一羊共直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问一头牛和一只羊共值金多少两?”根据题意可得,一头牛和一只羊共值金____两.三、解答题14.一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?15.某村经济合作社决定把22吨竹笋加工后再上市销售,刚开始每天加工3吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工5吨,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?16.有A、B两种型号的货车:用2辆A型货车和1辆B型货车装满货物一次可运货10吨;用1辆A型货车和2辆B型货车装满货物一次可运货11吨.请用学过的方程(组)知识解答下列问题:(1)求A型、B型两种货车装满货物每辆分别能运货多少吨?(2)现某物流公司有31吨货物,计划同时租用A型车m辆,B型车n辆,一次运完,且恰好每辆车都装满货物.若A 型货车每辆需租金100元/次,B 型货车每辆需租金120元/次.请你帮该物流公司选出最省钱的租车方案,并求出最少租车费用.17.某地区2020年进出口总额为520亿元.2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额. (1)设2020年进口额为x 亿元,出口额为y 亿元,请用含x ,y 的代数式填表:(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额度分别是多少亿元?18.今年(2022年)4月20日,是云大附中建校95周年暨云大附中恢复办学40周年校庆日,我校初一年级数学兴趣小组的小明同学发现这样一个有趣的巧合;小明的爸爸和爷爷都是云附的老校友,且爸爸和妹妹的年龄差恰好与爷爷和小明的年龄差的和为95,而爸爸的年龄恰好比爷爷的年龄小40.已知小明今年13岁,妹妹今年4岁.(1)求今年小明的爸爸和爷爷的年龄分别是多少岁?(要求用二元一次方程组解答) (2)假如小明的爸爸和爷爷都是15岁初中华业的,请问小明的爸爸和爷爷分别是哪一年毕业的云附学子?19.某企业有A ,B 两条加工相同原材料的生产线,在一天内,A 生产线共加工a 吨原材料,加工时间为()41a +小时;在一天内,B 生产线共加工b 吨原材料,加工时间为()23b +小时. (1)当1a b ==时,两条生产线的加工时间分别时多少小时?(2)第一天,该企业把5吨原材料分配到A .B 两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到两条生产线的的吨数是多少?(3)第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A 生产线分配了m 吨原材料,给B 生产线分配了n 吨原材料,若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则m 和n 有怎样的数量关系?若此时m 与n 的和为6吨,则m 和n 的值分别为多少吨?参考答案1.A2.B3.D4.A5.A6.B7.A8.A 9.26 10.2511.15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩12. 10 12 13.187##42714.解:设用x 立方米的木料做桌面,y 立方米的木料做桌腿,即做桌面50x 个,做桌腿300y 条,此时恰好能配成方桌50x 张,根据题意得10450300x y x y +=⎧⎨⨯=⎩ 解得64x y =⎧⎨=⎩ 则能配成方桌650300⨯=(张)故用6 m 3的木料做桌面,4 m 3的木料做桌腿,恰好能配成方桌300张. 15.解:设改进加工方法前用了x 天,改进加工方法后用了y 天, 则6,3522.x y x y +=⎧⎨+=⎩解得4,2.x y =⎧⎨=⎩ 经检验,符合题意.答:改进加工方法前用了4天,改进加工方法后用了2天.16.(1)设1辆A 型车装满货物一次可运货x 吨,1辆B 型车装满货物一次可运货y 吨,依题意,得:210211x y x y +=⎧⎨+=⎩,解得:34x y =⎧⎨=⎩.答:1辆A 型车装满货物一次可运货3吨,1辆B 型车装满货物一次可运货4吨. (2)由题意可得:3m +4n =31,即3134mn -=, ∵m ,n 均为整数,∴有17m n =⎧⎨=⎩,54m n =⎧⎨=⎩,91m n =⎧⎨=⎩三种情况.设租车费用为W 元, 则W =100m +120n =100m +120•3134m- =10m +930, ∵10>0,∴W 随m 的增大而增大,∴当m =1时,W 最小,此时W =10×1+930=940.∴当租用A 型车1辆,B 型车7辆,最少租车费用为940元. 17.(1)解:故答案为:1.25x +1.3y ; (2)解:根据题意1.25x +1.3y =520+140,∴5201.25 1.3520140x y x y +=⎧⎨+=+⎩,解得:320200x y =⎧⎨=⎩,2021年进口额1.25x =1.25320400⨯=亿元,2021年出口额是1.3 1.3200260y =⨯=亿元. 18.(1)设今年小明的爸爸x 岁,爷爷y 岁.()()4139540x y y x ⎧-+-=⎨-=⎩. 解得:3676x y =⎧⎨=⎩答:今年小明的爸爸36岁,爷爷76岁; (2)202236152001-+=(年) 202276151961-+=(年)小明的爸爸是2001年华业,爷爷是1961年毕业的云附学子. 19.(1)解:当1a b ==时, 415a +=,235b +=; 即两条生产线的的加工时间分别为5小时和5小时.(2)解∶设分配到A 生产线x 吨,则分配到B 生产线y 吨,根据题意得:54123x y x y +=⎧⎨+=+⎩,解得23x y =⎧⎨=⎩, 即分配到A 生产线2吨,则分配到B 生产线3吨; (3)解:根据题意得:()()421233m n ++=++, 整理得:2m n =, ∵6m n +=, ∴2m =,4n =,答:m 与n 的关系为2m n =,当6m n +=吨时,m 为2吨,n 为4吨.。
初中数学应用二元一次方程组——鸡兔同笼
初中数学应用二元一次方程组——鸡兔同笼1. 某公司有生手工和熟手工两个工种的工人,已知一个生手工每天制造的零件比一个熟手工少30个,一个生手工与两个熟手工每天共可制造180个零件,求一个生手工与熟手工每天各能制造多少个零件?设一个生手工每天能制作x 个零件,一个熟手工每天能制造y 个零件,根据题意可列方程组为( )A. {y −x =30,x +2y =180,B.{x −y =30,x +2y =180,C.{y −x =30,2x +y =180,D.{x −y =30,2x +y =180,2. 《九章算术》中有这样的问题:只闻隔壁人分银,不知多少银和人:每人6两少6两,每人半斤多半斤:试问各位善算者,多少人分多少银(注:这里的斤是指市斤,1市斤=10两)?设共有x 人、y 两银子,下列方程组中正确的是( )A.{6x +6=y ,5x −5=yB.{6x +6=y ,5x +5=yC.{6x −6=y ,5x −5=yD.{6x −6=y ,5x +5=y3. 元宵节又称灯节,我国各地都有挂灯笼的习俗.灯笼又分为宫灯,纱灯等.若购买1个宫灯和1个纱灯共需75元,小田用690元购买了6个同样的宫灯和10个纱灯.若根据题意可得二元一次方程组{x +y =75,6x +10y =690,则方程组中x 、y 分别表示为( ) A.每个宫灯的价格,每个纱灯的价格B.每个纱灯的价格,每个宫灯的价格C.宫灯的数量,纱灯的数量D.纱灯的数量,宫灯的数量4. 《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现在一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有x 个人,这个物品价格是y 元.则可列方程组为( )A.{8x =y +3,7x =y −4B.{8x =y −3,7x =y +4C.{8x =y +4,7x =y −3D.{8x =y −4,7x =y +35. 《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文为:现有一些人共同购买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少元?设共同购买该物品的有x 人,该物品的价格是y 元,则根据题意,列出的方程组为( )A.{8x −y =−3,7x −y =4B.{8y −x =−3,7y −x =−4C.{8x −y =3,7x −y =−4D.{8y −x =3,7y −x =46. 若正多边形的内角和是1080∘,则该正多边形的一个外角为( )A.30∘B.45∘C.60∘D.72∘7. 端午节前夕,某超市用1680元购进A ,B 两种商品共60件,其中A 种商品每件24元,B 种商品每件36元,设购买A 种商品x 件,B 种商品y 件,依题意列出的方程组是________.8. 为了预防新冠肺炎疫情的发生,学校免费为师生提供防疫物品.某校花4200元购进洗手液与84消毒液共300瓶,已知洗手液的价格是20元/瓶,84消毒液的价格是5元/瓶.该校购进洗手液和84消毒液各多少瓶?设该校购进洗手液x 瓶,购进84消毒液y 瓶,则可列方程组为________.9. (5分) 列方程(组)解应用题为了绿化校园环境,某学习小组共10人去校园空地参加植树活动,其中男生每人植树2棵,女生每人植树1棵,该小组一共植树16棵,问男生与女生各多少人?10. (5分) 某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?11. (12分) 某校为了鼓励在数学竞赛中获奖的学生,准备买若干本课外读物送给他们,如果每人送3本,则还剩8本;如果每人送5本,则最后一人得到的课外读物不足3本,求该校的获奖人数及所买的课外读物的本数.12.(12分) 某班举行迎新年诗歌朗诵比赛,为鼓励大家参加,班委购买了A ,B 两种奖品对参加的选手进行奖励.已知购买2个A 奖品和3个B 奖品共需27元,购买2个A 奖品和6个 B 奖品共需42元.(1)分别求A,B两种奖品的单价;(2)班委准备购买A,B两种奖品共18个,且A奖品的数量不少于B奖品数量的1.请设计2出最省钱的购买方案,并说明理由.参考答案与试题解析初中数学应用二元一次方程组——鸡兔同笼一、 选择题 (本题共计 6 小题 ,每题 2 分 ,共计12分 )1.【答案】A【考点】由实际问题抽象出二元一次方程组二元一次方程组的应用——产品配套问题【解析】此题暂无解析【解答】解:根据一个生手工每天制造的零件比一个熟手工少30个,可得y −x =30, 根据一个生手工与两个熟手工每天共可制造180个零件,可得x +2y =180,列方程组为{y −x =30,x +2y =180,故选A .2.【答案】D【考点】由实际问题抽象出二元一次方程组【解析】设哥哥的张数为x ,弟弟的张数为y ,根据“弟弟给哥哥10张后,哥哥的张数就是弟弟的2倍,若哥哥给弟弟10张,两人的张数就一样多.”列出方程组即可.【解答】解:根据题意得,{6x −6=y ,5x +5=y.故选D .3. 【答案】A【考点】由实际问题抽象出二元一次方程组【解析】设每个宫灯x 元,每个纱灯y 元,根据“购买1个宫灯和1个纱灯共需75元,购买6个言灯和10个纱灯共需690元”,即可得出关于x ,y 的二元一次方程组,此题得解.【解答】解:设每个宫灯x 元,每个纱灯y 元,依题意,得:{x +y =75,6x +10y =690.4.【答案】A【考点】由实际问题抽象出二元一次方程组【解析】此题暂无解析【解答】解:由题意可得方程组{8x =y +3,7x =y −4.故选A .5.【答案】C【考点】由实际问题抽象出二元一次方程组【解析】根据“每人出8元,还盈余3元;每人出7元,则还差4元”,即可得出关于x ,y 的二元一次方程组,此题得解.【解答】解:依题意,得:{8x −y =3,7x −y =−4.故选C .6.【答案】B【考点】多边形内角与外角【解析】首先设这个正多边形的边数为n ,根据多边形的内角和公式可得180(n −2)=1080,继而可求得答案.【解答】解:设这个正多边形的边数为n ,∵ 一个正多边形的内角和为1080∘,∴ 180(n −2)=1080,解得:n =8,∴ 这个正多边形的每一个外角是:360∘÷8=45∘.故选B .二、 填空题 (本题共计 2 小题 ,每题 1 分 ,共计2分 )7.【答案】{x +y =6024x +36y =1680【考点】由实际问题抽象出二元一次方程组根据A 、B 两种商品共60件以及用1680元购进A 、B 两种商品分别得出等式组成方程组即可.【解答】设购买A 型商品x 件、B 型商品y 件,依题意列方程组:{x +y =6024x +36y =1680. 8.【答案】{x +y =300,20x +5y =4200【考点】由实际问题抽象出二元一次方程组【解析】设该校购进洗手液x 瓶,该校购进84消毒液y 瓶,根据“共300瓶;花费4200元”,即可得出关于x ,y 的二元一次方程组.【解答】解:设该校购进洗手液x 瓶,该校购进84消毒液y 瓶,依题意有{x +y =300,20x +5y =4200.故答案为:{x +y =300,20x +5y =4200.三、 解答题 (本题共计 4 小题 ,共计34分 )9.【答案】男生有6人,女生有4人【考点】二元一次方程组的应用——行程问题二元一次方程组的应用——其他问题一元一次方程的应用——其他问题二元一次方程的应用一元一次方程的应用——工程进度问题【解析】设男生有x 人,女生有y 人,根据该小组10人共植树16棵,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.【解答】设男生有x 人,女生有y 人,依题意,得:{x +y =102x +y =16, 解得:{x =6y =4. 10.【答案】解:设每节火车车厢平均装x 吨化肥,每辆汽车平均装y 吨化肥,依题意,得:{6x +15y =360,8x +10y =440,解得:{x =50,y =4.【考点】二元一次方程组的应用——其他问题【解析】设每节火车车厢平均装x 吨化肥,每辆汽车平均装y 吨化肥,根据“第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.【解答】解:设每节火车车厢平均装x 吨化肥,每辆汽车平均装y 吨化肥,依题意,得:{6x +15y =360,8x +10y =440,解得:{x =50,y =4.11.【答案】该校的获奖人数为6人,所买的课外读物的本数为26本【考点】一元一次不等式的实际应用【解析】首先设获奖人数为x ,则课外读物本数为3x +8,根据“最后一人得到的课外读物不足3本”列出不等式方程即可求解.【解答】设该校获奖为x 人,则课外读物为(3x +8)本,则有0≤3x +8−5(x −1)<30≤3x +8−5x +5<30≤−2x +13<3−13≤−2x <−10解得5<x ≤132因为x 是整数,故x =6,所以3x +8=3×6+8=26(本).12.【答案】解:(1)设A 奖品的单价为x 元,B 奖品的单价为y 元.根据题意,得{2x +3y =27,2x +6y =42,解得{x =6,y =5.答:A 奖品的单价为6元.B 奖品的单价为5元.(2)设购买A 奖品m 个,则购买B 奖品(18−m )个,购买奖品的费用为W 元, 由题意可知,m ≥12(18−m ),∴ m ≥6.W =6m +5(18−m )=90+m ,当m =6时,W 有最小值,且最小值为96元,即购买A 奖品6个,B 奖品12个的总花费最少.【考点】二元一次方程组的应用——销售问题一次函数的应用一元一次不等式的运用【解析】【解答】解:(1)设A 奖品的单价为x 元,B 奖品的单价为y 元.根据题意,得{2x +3y =27,2x +6y =42,解得{x =6,y =5.答:A 奖品的单价为6元.B 奖品的单价为5元.(2)设购买A 奖品m 个,则购买B 奖品(18−m )个,购买奖品的费用为W 元, 由题意可知,m ≥12(18−m ),∴ m ≥6.W =6m +5(18−m )=90+m ,当m =6时,W 有最小值,且最小值为96元,即购买A 奖品6个,B 奖品12个的总花费最少.。
_八级数学上册5.3应用二元一次方程组_鸡兔同笼练习题新版北师大版1123156
应用二元一次方程 --- 鸡兔同笼班级: ___________姓名: ___________ 得分: __________一.选择题(每题4 分,40 分)1.某校课外小组的学生准备分组出门活动,若每组 7 人,则余下 3 人;若每组 8 人,则少5 人,求课外小组的人数x 和应分红的组数 y .依题意得()A . 7 y x 3B . 7 x 3 y8y 5 x8 x 5 yC . 7 y x 3D . 7 y x 38y x 58 y x 52.一批宿舍,若每间住 1 人,有 10 人无处住,若每间住 3 人,则有 10 间无人住,则这批宿舍的房间数为()A . 20B . 15C . 12D . 103.现用 190 张铁皮做盒子, 每张铁皮做 8 个盒身或做 22 个盒底, 而一个盒身与两个盒底配成一个盒子.设用x 张铁皮做盒身, y 张铁皮做盒底,则可列方程组为()x y 190x y 190A .8 x 22y B .22 y 8x2 2 2y x 190 2 y x 190C .22yD .8x 22 y8x24.依据右图供给的信息,可知一个杯子的价钱是()A .51 元B .35 元C .8 元D . 7.5 元共 43元共 94元二、解答题(每题 15 分, 60 分)1、甲、乙两件服饰的成本共500 元,商铺老板为获得收益,决定将甲服饰按50﹪的收益定价,乙服饰按40﹪的收益订价。
在实质销售时,应顾客要求,两件服饰均按9 折销售,这样商铺共赢利157 元,求甲、乙两件服饰的成本各是多少元?2、初三( 2)班的一个综合实践活动小组去A,B 两个商场检查昨年和今年“五一节”时期的销售状况,下列图是检查后小敏与其余两位同学沟通的状况. 依据他们的对话,请你分别求出 A, B 两个商场今年“五一节”时期的销售额.3、某同学在A、B 两家商场发现他看中的随身听的单价同样,书包单价也同样,随身听和书包单价之和是452 元,且随身听的单价比书包单价的 4 倍少 8 元。
北师大版-数学-八年级上册-应用二元一次方程组--鸡兔同笼 同步作业
应用二元一次方程组--鸡兔同笼1.21枚1角与5角的硬币,共是5元3角,其中1角与5角的硬币各是多少?
设1角硬币x枚,5角硬币y枚,填写下表,并求出x、y的值.
1角5角总和
硬币
数
钱数
2.小兰在玩具厂劳动,做4个小狗、7个小汽车用去3小时42分,做5个小狗、6个小汽车用去3小时37分.平均做一个小狗与1个小汽车各用多少时间?
设做1个小狗用x分,做1个小汽车用y分,填写下表,并求出x、y的值.
小
狗
小汽
车
总
数
用
时
用
时
3.某中学某班买了35张电影票,共用250元,其中甲种票每张8元,乙种票每张6元,甲、乙两种票各买了多少张?
设甲、乙两种票分别买了x张、y张,填写下表,并求出x、y的值.
甲乙总
4.有大小两种盛米的桶,已经知道5个大桶加上1个小桶可以盛3斛米,1个大桶加上5个小桶可以盛2斛米,问1个大桶、1个小桶分别可以盛多少斛米?
设大桶盛米量为x 斛,小桶盛米量为y 斛,填写下表,并求出x 、y 的值.
测验评价结果:________;对自己想说的一句话是:__________________。
参考答案
1.⎩⎨⎧=+=+53521y x y x ,解得⎩⎨⎧==813y x 填表略
2.⎩⎨⎧+⨯=++⨯=+37603654260374y x y x ,解得⎩⎨⎧==2217y x 表略
3.⎩⎨⎧=+=+2506835y x y x ,解得⎩
⎨⎧==1520y x 表略
4.⎩⎨⎧=+=+2535y x y x ,解得⎪⎪⎩
⎪⎪⎨
⎧
==247
2413y x 表略。
北师大版 八年级数学上册 应用二元一次方程组--鸡兔同笼 一课一练(含答案)
5.3 应用二元一次方程组--鸡兔同笼一、选择题(共10小题).1.某车间需加工某种零件500个,若用2台自动化车床和6台普通车床加工一天,则还剩10个零件没加工;若用3台自动化车床和5台普通车床加工一天,则可以超额完成15个零件.如果一台自动化车床和一台普通车床一天加工的零件数分别为x个和y个,则下列所列方程组正确的是( )A.{3x+6y=500−102x+5y=600+15B.{2x+5y=500−103x+6y=500+15C.{2x+6y=500−103x+5y=500+15D.{3x+5y=500−102x+6y=500+152.小亮的妈妈用30元钱买了甲、乙两种水果,甲种水果每千克3元,乙种水果每千克5元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为( )A.{3x+5y=30x=y−2B.{3x+5y=30x=y+2C.{5x+3y=30x=y−2D.{5x+3y=30x=y+23.《九章算术》中,一次方程组是由算筹布置而成的.如图1所示的算筹图,表示的方程组就是{3x+2y=19x+4y=23,类似地,图2所示的算筹图表示的方程组为( )A.{2x+y=114x+3y=22B.{2x+y=114x+3y=27C.{3x+2y=19x+4y=23D.{2x+y=64x+3y=274.《九章算术》中有一道题的条件是:“今有大器五小器一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,若设1个大桶可以盛米x斛,1个小桶可以盛米y斛,则可列方程组为( )A.{5x+y=3x+5y=2B.{x+5y=35x+y=2C.{3x+y=5x+5y=2D.{3x+y=5x+5y=35.某学校20位同学在植树节这天共种了48棵树苗,其中男生每人种2棵,女生每人种3棵,设男生有x人,女生有y人,根据题意.列方程组正确的是( )A.{x+y=482x+3y=20B.{x+y=483x+2y=20C.{x+y=202x+3y=48D.{x+y=203x+2y=486.《一千零一夜》记载了这样一段文字:一群鸽子,一部分在树上唱歌,一部分在树下觅食,树上的一只鸽子对树下的一只鸽子说:“若你们中的一个飞上来一只,则树上的鸽子就是树下的2倍”,树下的鸽子回应说:“树上的鸽子飞下来一只,树上、树下的鸽子就相同了”.设树上的鸽子x只,树下的鸽子y只,根据题意可列方程组为( )A.{x=2yx−1=y+1B.{x+1=2(y−1)x−1=y+1C.{x−1=2(y+1)x+1=y−1D.{x+1=2yx−1=y+17.现用160张铁皮做盒子,每张铁皮做6个盒身或做20个盒底,而一个盒身与两个盒底配成一个盒子,设用x张铁皮做盒身,y张铁皮做盒底,使盒底与盒身正好配套.则可列方程组为( )A.{x+y=1602×6x=20y B.{x+y=1606x=2×20yC.{2y+x=1602×6x=20y D.{2y+x=1606x=20y8.阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”大意是:“一群乌鸦在树上栖息,若每棵树上有3只,则5只没地方去,若每棵树上有5只,则多了一棵树.”设乌鸦x只,数y棵.依题意可列方程组( )A.{3y+5=x5(y−1)=x B.{3x+5=y5(x−1)=yC.{3y+5=x5y=x−5D.{3y=x+55y=x−59.某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元.设甲种票购买了x张,乙种票购买了y张,下面所列方程组正确的是( )A.{x+y=75024x+18y=35B.{x+y=75018x+24y=35C.{x+y=3518x+24y=750D.{x+y=3524x+18y=75010.《孙子算经》是中国古代数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( )A.{y−x=4.5x−0.5y=1B.{y−x=4.52x−y=1C.{y−x=4.50.5y−x=1D.{y−x=4.5y−2x=1二、填空题11.《九章算术》是中国传统数学名著,其中记载:“今有牛六、羊三,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有6头牛,3只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x两、y两,则可列方程组为.12.《孙子算经》中有鸡兔同笼问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”,如果设鸡有x只,兔有y只,以题意可得二元一次方程组.13.我国古代很早就开始对一次方程组进行研究,很多题目保留至今,如《九章算术》中有这样的一道古代问题,“有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?”在这个问题中,如果设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为.14.某车间有60名工人,每人平均每天可加工螺栓14个或螺母20个,要使每天加工的螺栓和螺母配套(1个螺栓配2个螺母),设应分配x人生产螺母,y人生产螺栓,依题意列方程组得.15.《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系.其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x两,1只羊值金y两,则可列方程组为.16.某汽车专卖店销售A,B两种型号的新能源汽车,上周售出1辆A型车和3辆B型车,销售额为96万元.本周售出2辆A型车和1辆B型车,销售额为62万元.若设每辆A型车的售价为x万元,每辆B型车的售价为y万元,根据题意可列出方程组.17.《孙子算经》中记载:“今有三人共车,二车空;二人共车,九人步.问人和车各几何?”其大意是:今有若干人乘车,每3人乘一车,最终剩余2辆空车;若每2人同乘一车,最终剩下9人因无车可乘而步行,问有多少人,多少辆车?设有x 辆车,y 个人,根据题意,可列方程组为 .18.《九章算术》是我国古代数学的经典著作,书中记载了这样一个问题“假令黄金九,白银一十一,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”译文:A 袋中装有黄金9枚(每枚黄金重量相同),B 袋中装有白银11枚(每枚白银重量相同),称重两袋相等;两袋互相交换1枚后,A 袋比B 袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,请根据题意列方程组: .三、解答题19.我国古代数学名著《孙子算经》中记载了一道题,大意如下:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问大马和小马各有多少匹?请解答上述问题.20.某文具店,甲种笔记本标价每本8元,乙种笔记本标价每本5元(1)两种笔记本各销售了多少?(2)所得销售款可能是660元吗?为什么?21.《九章算术》中有记载:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十,问甲、乙持钱各几何?大意是:今有甲、乙两人持钱不知有多少.若甲得到乙所有钱的12,则有50钱;若乙得到甲所有钱的23,则也有50钱,问甲、乙各持钱多少?请解答此问题.22.为传承中华文化,学习六艺技能,某中学组织初二年级学生到孔学堂研学旅行.已知大型客车每辆能坐60人,中型客车每辆能坐45人,现该校有初二年级学生375人.根据题目提供的信息解决下列问题:(1)这次研学旅行需要大、中型客车各几辆才能使每个学生上车都有座位,且每辆车正好坐满?(2)若大型客车租金为1500元/辆,中型客车租金为1200元/辆,请帮该校设计一种最划算的租车方案.23.3辆小卡车和5辆大卡车一次可运货物31吨,4辆小卡车和3辆大卡车一次可运货物23吨,则小卡车和大卡车每辆每次可以各运货物多少吨?24.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十二两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了12两(袋子重量忽略不计),问黄金、白银每枚各重多少两?(请用方程组解答)答案一、选择题1.C .2.B .3.B .4.A .5.C .6.B .7.A .8.A .9.D .10.A .二、填空题11.{6x +3y =102x +5y =8. 12.{x +y =352x +4y =94. 13.{5x +y =3x +5y =2. 14.{x +y =6020x =2×14y. 15.{5x +2y =102x +5y =8. 16.{x +3y =962x +y =62. 17.{3(x −2)=y 2x +9=y. 18.{9x =11y 8x +y =x +10y −13. 三、解答题19.设大马x 匹,小马y 匹,依题意得:{x +y =1003x +y 3=100, 解得:{x =25y =75,答:大马有25匹,小马有75匹.20.(1)设甲种笔记本销售x 本,乙种笔记本销售y 本,依题意得{x +y =1008x +5y =695, 解得{x =65y =35, 答:甲种笔记本销售65本,乙种笔记本销售35本;(2)所得销售款不可能是660元设甲种笔记本销售x 本,乙种笔记本销售(100﹣x )本,则8x +(100﹣x )×5=660.解得该方程的解不是整数,故销售款不可能是660元.21.设甲、乙的持钱数分别为x ,y ,根据题意可得:{x +12y =50y +23x =50, 解得:{x =37.5y =25, 答:甲、乙的持钱数分别为37.5,25.22.(1)设需要大型客车x 辆,中型客车y 辆,根据题意,得:60x +45y =375,当x =1时,y =7;当x =2时,y =173;当x =3时,y =133;当x =4时,y =3;当x =5时,y =53;当x =6时,y =13;∵要使每个学生上车都有座位,且每辆车正好坐满,∴有两种选择,方案一:需要大型客车1辆,中型客车7辆;方案二:需要大型客车4辆,中型客车3辆.(2)方案一:1500×1+1200×7=9900(元),方案二:1500×4+1200×3=9600(元),∵9900>9600,∴方案二更划算.23.设每辆小卡车每次可以运货物x 吨,每辆大卡车每次可以运货物y 吨,依题意,得:{3x +5y =314x +3y =23,解得:{x =2y =5. 答:每辆小卡车每次可以运货物2吨,每辆大卡车每次可以运货物5吨.24.设每枚黄金重x 两,每枚白银重y 两,由题意得:{9x =11y (10y +x)−(8x +y)=12, 解得{x =33y =27. 答:每枚黄金重33两,每枚白银重27两.。
北师大版八年级数学上册《5.3应用二元一次方程组—鸡兔同笼》同步练习题-含答案
北师大版八年级数学上册《5.3应用二元一次方程组—鸡兔同笼》同步练习题-含答案一、单选题1.一个两位数,把其十位数字与个位数字交换位置后,所得的数比原数多9,则这样的两位数的个位数字与十位数字的差是()A.0B.1C.2D.92.小明去买2元一支和3元一支的两种圆珠笔(一种圆珠笔至少买一支),恰好花掉30元,则购买方案有()A.4种B.5种C.6种D.7种3.甲是乙现在的年龄时,乙10岁,乙是甲现在的年龄时,甲25岁,那么()A.甲比乙大5岁B.甲比乙大10岁C.乙比甲大10岁D.乙比甲大5岁4.某中学现有学生500人,计划一年后女生在校人数增加3%,男生在校人数增加4%,这样,在校学生总数将增加3.4%.问该校现有女生和男生的人数分别是()A.女生180和男生320B.女生320和男生180C.女生200和男生300D.女生300和男生2005.我国古代数学著作《算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子来量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.5152x yx y=+⎧⎪⎨=-⎪⎩B.5152x yx y=+⎧⎪⎨-=⎪⎩C.525x yx y+=⎧⎨=-⎩D.5152x yx y=-⎧⎪⎨=+⎪⎩6.(中国古代数学问题)5头牛和2只羊,共值银10两;2头牛和5只羊,共值银8两.问一头牛和一只羊各值银几两?设一头牛值银x两,一只羊值银y两,则可列方程组为()A.2510,528x yx y+=⎧⎨+=⎩B.528,2510x yx y+=⎧⎨+=⎩C.5210,258x yx y+=⎧⎨+=⎩D.5510,228x yx y+=⎧⎨+=⎩7.玩具车间每天能生产甲种玩具零件24个或乙种玩具零件12个,若甲种玩具零件一个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在60天内组装出最多的玩具设生产甲种玩具零件x天,乙种玩具零件y天,则有()A.602412x yx y+=⎧⎨=⎩B.601224x yx y+=⎧⎨=⎩C.6022412x yx y+=⎧⎨⨯=⎩D.6024212x yx y+=⎧⎨=⨯⎩8.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是32=19423x yx y+⎧⎨+=⎩,在图2所示的算筹图所表示的方程组是()A.2114327x yx y+=⎧⎨+=⎩B.21437x yx y+=⎧⎨+=⎩C.2274311x yx y+=⎧⎨+=⎩D.2114327y xy x+=⎧⎨+=⎩二、填空题9.某班共有学生45人,其中男生的2倍比女生的3倍少10人.则男生、女生的人生分别是;10.如图所示的两台天平均能保持平衡,已知每块巧克力的质量相等,每个果冻的质量也相等,则每块巧克力和每个果冻的质量分别为.11.小强问他的数学老师今年多少岁了,数学老师说:“我像你这么大时,你才1岁.你到我这么大时,我就40岁了.”那么数学老师今年的岁数是岁.12.《九章算术》第八卷《方程》记载:“今有六雀七燕,集称之衡,雀俱重,燕俱轻,一雀一燕交而处,衡视平.”意为:六只雀比七只燕重,若将这群雀和这群燕互相交换一只以后,两群鸟一样重;当然,每只雀一样重,每只燕也一样重.假设一只雀重a克,则用含a的式子表示一只燕的重量为克.13.第十四届三国文化旅游周吸引了大量的游客,游客们品读三国文化,赏鉴花都美景,感受许昌盛情,共赴了一场“许”久“魏”见的美好时光,旅游周期间,一家酒店接待了一个35人的旅游团,酒店的客房只剩下4间一人间和若干间三人间,住宿价格是一人间每晚100元,三人间每晚140元(说明:三人间客房可以不住满,但每间每晚仍需支付140元).已知该旅游团一晚的住宿房费为1740元,则他们租住了 间一人间.14.某酒店客房部有三人间普通客房,双人间普通客房,收费标准为:三人间150元间,双人间140元/间.为吸引游客,酒店实行团体入住5折优惠措施,一个48人的旅游团,优惠期间到该酒店入住,住了一些三人间普通客房和双人间普通客房,若每间客房正好住满,且一天共花去住宿费1380元,则该旅游团住了三人间普通客房和双人间普通客房共 间.三、解答题15.糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?16.某家具厂生产一种方桌,1立方米的木材可做20个桌面或400条桌腿,现有12立方米的木材,怎样分配生产桌面和桌腿使用的木材,才能使桌面、桌腿刚好配套,一共可生产多少张方桌?(一张方桌有1个桌面,4条桌腿)17.某蔬菜种植户有甲、乙两块菜地,甲菜地去年收获kg x 西蓝花,乙菜地去年收获kg y 西蓝花,今年在县技术专家的帮助下,甲菜地增收10%,乙菜地增收15%.(1)今年两块菜地共收获__________kg 西蓝花;(用含x ,y 的代数式表示)(2)若去年两块菜地共收获10000kg 西蓝花,今年共收获11200kg 西蓝花,求甲、乙两块菜地今年分别收获多少千克西蓝花.18.某服装厂生产一批运动服,6米长的布料可做上衣4件或裤子6条,计划用300米长的布料生产该批次运动服(1)分别用多少米布料生产上衣和裤子才能恰好配套?(2)在(1)的条件下,若该布料的价格是25元/米,运动服售价80元/套,则生产该批次运动服能盈利多少元?19.某纸品加工厂利用边角料裁出正方形和长方形两种硬纸片,长方形的宽与正方形的边长相等(如图2),再将它们制作成甲乙两种无盖的长方体小盒(如图1).(注:图1中向上的一面无盖)(1)如果制作甲、乙两种无盖的长方体小盒各一个,则共需长方形纸片张,正方形纸片张;(2)现将400张长方形硬纸片和200张正方形硬纸片全部用于制作这两种小盒,可以做成甲乙两种小盒各多少个?参考答案1.B2.A3.A4.D5.A6.C7.C8.A9.男25,女2010.20 g ,30g11.2712.45a 13.214.1915.竹签有20根,山楂有104个16.桌面10立方米 桌腿2立方米 桌子200张 17.(1)()1.1 1.15x y +(2)甲菜地今年收获6600kg 西蓝花,乙菜地今年收获4600kg 西蓝花. 18.(1)用180米布料生产上衣,120米布料生产裤子(2)2100元 19.(1)7;3(2)可以做成甲乙两种小盒各40个,80个。
应用二元一次方程组——鸡兔同笼 同步练习 北师大版八年级数学上册(含答案)
5.3 应用二元一次方程组——鸡兔同笼一、填空题1. 《算法统宗》是中国古代数学名著,作者是明代著名数学家程大位.在其中有这样的记载“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”译文:有100名和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设有大和尚x人,小和尚y人,可列方程组为.2某学校有两种类型的学生宿舍30间,大宿舍每间可以住8人,小宿舍每间可以住5人,该学校共有198个住宿生,恰好可以住满这30间宿舍,若设大宿舍x间,小宿舍y间,则可以列出的方程组为:.3现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则牛一羊一值金两.”4商店里把塑料凳整齐地叠放在一起,据图的信息,当有10张塑料凳整齐地叠放在一起时的高度是cm.二、选择题5学校的篮球数比排球数的2倍少3个,篮球数与排球数的比是3:2,求两种球各有多少个?若设篮球有x个,排球有y个,根据题意得方程组()A.B.C.D.6“十•一”国庆期间,学校组织466名八年级学生参加社会实践活动,现已准备了49座和37座两种客车共10辆,刚好坐满,设49座客车x辆,37座客车y辆.根据题意,得()A.B.C.D.7如图,将正方形ABCD的一角折叠,折痕为AE,∠BAD比∠BAE大48°.设∠BAE和∠BAD的度数分别为x,y,那么x,y所适合的一个方程组是()A.B.C.D.8我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.三、解答题9疫情无情人有情,八方相助暖人心.一爱心人士向某社区捐赠了A品牌一次性医用口罩5000个和B品牌免洗消毒液100瓶,总价值18000元.已知10个A品牌一次性医用口罩与1瓶B品牌免洗消毒液共需84元.求A品牌一次性医用口罩和B品牌免洗消毒液的单价分别是多少?10“两果问价”问题出自我国古代算书《四元玉鉴》,原题如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个?又问各该几个钱?将题目译成白话文,内容如下:九百九十九文钱买了甜果和苦果共一千个,已知十一文钱可买九个甜果,四文钱可买七个苦果,那么甜果、苦果各买了多少个?买甜果和苦果各需要多少文钱?11某化妆晚会上,男生脸上涂蓝色油彩,女生脸上涂红色油彩,游戏时,每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人,而每个女生都看见涂蓝色油彩的人数是涂红色油彩的人数的,问晚会上男、女生各多少人?12如图是由截面为同一种长方形的墙砖粘贴的部分墙面,其中三块横放的墙砖比一块竖放的墙砖高10cm,两块横放的墙砖比两块竖放的墙砖低40cm,求每块墙砖的截面面积.13小林、小芳和小亮三人玩飞镖游戏,各投5支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图,则小亮的得分是.14我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?则该问题的井深是尺.15如图,在大长方形ABCD中,放入6个相同的小长方形,则图中阴影的面积为.16某文具店最近有A,B两款毕业纪念册比较畅销,近两周的销售情况是:第一周A款销售数量是15本,B款销售数量是10本,销售总价是230元;第二周A款销售数量是20本,B款销售数量是10本,销售总价是280元.(1)求A,B两款毕业纪念册的销售单价;(2)若某班准备用不超过529元购买这两种款式的毕业纪念册共60本,求最多能够买多少本A款毕业纪念册.17阅读理解(Ⅰ)我国古代很早就开始对一次方程组进行研究,其中不少成果被收录在中国古代数学著作《九章算术》中,它的方程章中就有许多关于一次方程组的内容.下面的两幅算筹图就表示了两个二元一次方程组:把它们写成我们现在的方程组是与.(Ⅱ)对于二元一次方程组,我们可以将x,y的系数和相应的常数项排成一个数表,通过运算使数表变为,即可求得的方程组的解为,用数表简化解二元一次方程组的过程如下:∴方程组的解为.解答下列问题:(1)直接写出下面算筹图(图2)表示的关于x,y的二元一次方程组.(2)依照阅读材料(Ⅱ)中数表的解法格式解(1)中你写出的二元一次方程组.5.3 应用二元一次方程组——鸡兔同笼一、填空题1. 《算法统宗》是中国古代数学名著,作者是明代著名数学家程大位.在其中有这样的记载“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”译文:有100名和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设有大和尚x人,小和尚y人,可列方程组为.【考点】由实际问题抽象出二元一次方程组.【答案】见试题解答内容【分析】设大和尚有x人,则小和尚有y人,根据“有100个和尚”和大和尚一人分3只,小和尚3人分一只刚好分完100个馒头”列出方程组即可.解:设大和尚有x人,则小和尚有y人,根据题意得,故答案为:.2某学校有两种类型的学生宿舍30间,大宿舍每间可以住8人,小宿舍每间可以住5人,该学校共有198个住宿生,恰好可以住满这30间宿舍,若设大宿舍x间,小宿舍y间,则可以列出的方程组为:.【分析】要求大小宿舍各有多少间,就要设出未知数,根据:宿舍30间;大的宿舍每间可住8人,小的每间可住5人,该校198个住宿生恰好住满这30间宿舍.这两个等量关系列方程.解:由题意可得,,故答案是:.3现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则牛一羊一值金两.”【分析】设一牛值金x两,一羊值金y两,根据“牛五羊二值金八两;牛二羊五值金六两”,即可得出关于x、y的二元一次方程组,两方程相加除以7,即可求出一牛一羊的价值.解:设一牛值金x两,一羊值金y两,根据题意得:,(①+②)÷7,得:x+y=2.故答案为:二.4商店里把塑料凳整齐地叠放在一起,据图的信息,当有10张塑料凳整齐地叠放在一起时的高度是cm.【分析】设塑料凳桌面的厚度为xcm,腿高hcm,根据题意得,求出塑料凳桌面的厚度和腿高,然后即可计算出当有10张塑料凳整齐地叠放在一起时的高度.解:设塑料凳桌面的厚度为xcm,腿高hcm,根据题意得,,解之得,x=3,h=20,则10张塑料凳整齐地叠放在一起时的高度是20+3×10=50cm.二、选择题5学校的篮球数比排球数的2倍少3个,篮球数与排球数的比是3:2,求两种球各有多少个?若设篮球有x个,排球有y个,根据题意得方程组()A.B.C.D.【分析】此题中的等量关系有:①学校的篮球数比排球数的2倍少3个;②篮球数与排球数的比是3:2.解:根据学校的篮球数比排球数的2倍少3个,得方程x=2y﹣3;根据篮球数与排球数的比是3:2,得方程x:y=3:2,即2x=3y.可列方程组.故选:D.6“十•一”国庆期间,学校组织466名八年级学生参加社会实践活动,现已准备了49座和37座两种客车共10辆,刚好坐满,设49座客车x辆,37座客车y辆.根据题意,得()A.B.C.D.【答案】A【分析】根据“准备了49座和37座两种客车共10辆,且466人刚好坐满”,即可得出关于x,y的二元一次方程组,此题得解.解:依题意,得:.故选:A.7如图,将正方形ABCD的一角折叠,折痕为AE,∠BAD比∠BAE大48°.设∠BAE和∠BAD的度数分别为x,y,那么x,y所适合的一个方程组是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;翻折变换(折叠问题).【答案】A【分析】设∠BAE和∠BAD的度数分别为x,y,根据将正方形ABCD的一角折叠,折痕为AE,∠BAD比∠BAE大48°可列出方程组.解:设∠BAE和∠BAD的度数分别为x,y,.故选:A.8我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】一次方程(组)及应用.【答案】A【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.三、解答题9疫情无情人有情,八方相助暖人心.一爱心人士向某社区捐赠了A品牌一次性医用口罩5000个和B品牌免洗消毒液100瓶,总价值18000元.已知10个A品牌一次性医用口罩与1瓶B品牌免洗消毒液共需84元.求A品牌一次性医用口罩和B品牌免洗消毒液的单价分别是多少?【考点】二元一次方程组的应用.【专题】一次方程(组)及应用;应用意识.【答案】A品牌一次性医用口罩单价是2.4元/个,B品牌免洗消毒液的单价是60元/瓶.【分析】设A品牌一次性医用口罩单价是x元/个,B品牌免洗消毒液的单价是y元/瓶,由“A品牌一次性医用口罩5000个和B品牌免洗消毒液100瓶,总价值18000元.已知10个A品牌一次性医用口罩与1瓶B品牌免洗消毒液共需84元”列出方程组可求解.解:设A品牌一次性医用口罩单价是x元/个,B品牌免洗消毒液的单价是y元/瓶,由,解得:,答:A品牌一次性医用口罩单价是2.4元/个,B品牌免洗消毒液的单价是60元/瓶.10“两果问价”问题出自我国古代算书《四元玉鉴》,原题如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个?又问各该几个钱?将题目译成白话文,内容如下:九百九十九文钱买了甜果和苦果共一千个,已知十一文钱可买九个甜果,四文钱可买七个苦果,那么甜果、苦果各买了多少个?买甜果和苦果各需要多少文钱?【考点】一元一次方程的应用;二元一次方程组的应用.【专题】一次方程(组)及应用;应用意识.【答案】见试题解答内容【分析】设甜果买了x个,苦果买了y个,根据九百九十九文钱买了甜果和苦果共一千个,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入x,y中即可求出结论.解:设甜果买了x个,苦果买了y个,依题意,得:,解得:,∴x=803,y=196.答:甜果买了657个,需要803文钱;苦果买了343个,需要196文钱.11某化妆晚会上,男生脸上涂蓝色油彩,女生脸上涂红色油彩,游戏时,每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人,而每个女生都看见涂蓝色油彩的人数是涂红色油彩的人数的,问晚会上男、女生各多少人?【考点】二元一次方程组的应用.【答案】见试题解答内容【分析】等量关系:①每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人;②每个女生都看见涂蓝色油彩的人数是涂红色油彩的人数的.解:设晚会上女、男生各x,y人,根据题意,得,解得.答:晚会上男、女生人数各12人、21人.12如图是由截面为同一种长方形的墙砖粘贴的部分墙面,其中三块横放的墙砖比一块竖放的墙砖高10cm,两块横放的墙砖比两块竖放的墙砖低40cm,求每块墙砖的截面面积.【考点】一元一次方程的应用;二元一次方程组的应用.【专题】一次方程(组)及应用;应用意识.【答案】525cm2.【分析】设每块墙砖的长为xcm,宽为ycm,根据“三块横放的墙砖比一块竖放的墙砖高10cm,两块横放的墙砖比两块竖放的墙砖低40cm”列方程组求解可得.解:设每块墙砖截面的长为x cm,宽为y cm.根据题意,得,解得,∴每块墙砖的截面面积是35×15=525(cm2).答:每块墙砖的截面积是525cm2.13小林、小芳和小亮三人玩飞镖游戏,各投5支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图,则小亮的得分是.【考点】二元一次方程组的应用.【答案】见试题解答内容【分析】设掷中外环区、内区一次的得分分别为x,y分,根据等量关系列出方程组,再解方程组即可.解:设掷中外环区、内区一次的得分分别为x,y分,依题意得:,解这个方程组得:,则小亮的得分是2x+3y=6+15=21分.故答案为21;14我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?则该问题的井深是尺.【考点】一元一次方程的应用;二元一次方程组的应用.【专题】一次方程(组)及应用;应用意识.【答案】见试题解答内容【分析】可设绳长为x尺,井深为y尺,根据等量关系:①绳长的﹣井深=4尺;②绳长的﹣井深=1尺;列出方程组求解即可.解:设绳长是x尺,井深是y尺,依题意有,解得,.故井深是8尺.故答案为:8.15如图,在大长方形ABCD中,放入6个相同的小长方形,则图中阴影的面积为.【考点】二元一次方程组的应用.【专题】方程思想;一次方程(组)及应用.【答案】见试题解答内容【分析】设小长方形的长为x厘米,宽为y厘米,观察图中给定的数据,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再利用阴影部分的面积=大长方形的面积﹣6×小长方形的面积,即可求出结论.解:设小长方形的长为x厘米,宽为y厘米,依题意,得:,解得:,∴14×(6+2y)﹣6xy=44.故答案为:44cm2.16某文具店最近有A,B两款毕业纪念册比较畅销,近两周的销售情况是:第一周A款销售数量是15本,B款销售数量是10本,销售总价是230元;第二周A款销售数量是20本,B款销售数量是10本,销售总价是280元.(1)求A,B两款毕业纪念册的销售单价;(2)若某班准备用不超过529元购买这两种款式的毕业纪念册共60本,求最多能够买多少本A款毕业纪念册.【考点】二元一次方程组的应用;一元一次不等式的应用.【专题】一元一次不等式(组)及应用.【答案】见试题解答内容【分析】(1)直接利用第一周A款销售数量是15本,B款销售数量是10本,销售总价是230元;第二周A款销售数量是20本,B款销售数量是10本,销售总价是280元,分别得出方程求出答案;(2)利用不超过529元购买这两种款式的毕业纪念册共60本,得出不等式求出答案.解:(1)设A款毕业纪念册的销售价为x元,B款毕业纪念册的销售价为y元,根据题意可得:,解得:,答:A款毕业纪念册的销售价为10元,B款毕业纪念册的销售价为8元;(2)设能够买a本A款毕业纪念册,则购买B款毕业纪念册(60﹣a)本,根据题意可得:10a+8(60﹣a)≤529,解得:a≤24.5,则最多能够买24本A款毕业纪念册.17阅读理解(Ⅰ)我国古代很早就开始对一次方程组进行研究,其中不少成果被收录在中国古代数学著作《九章算术》中,它的方程章中就有许多关于一次方程组的内容.下面的两幅算筹图就表示了两个二元一次方程组:把它们写成我们现在的方程组是与.(Ⅱ)对于二元一次方程组,我们可以将x,y的系数和相应的常数项排成一个数表,通过运算使数表变为,即可求得的方程组的解为,用数表简化解二元一次方程组的过程如下:∴方程组的解为.解答下列问题:(1)直接写出下面算筹图(图2)表示的关于x,y的二元一次方程组.(2)依照阅读材料(Ⅱ)中数表的解法格式解(1)中你写出的二元一次方程组.【考点】数学常识;规律型:数字的变化类;二元一次方程组的解;解二元一次方程组;由实际问题抽象出二元一次方程组.【专题】构造法;一次方程(组)及应用;模型思想.【答案】(1);(2).【分析】(1)模仿(Ⅰ)利用图1写出方程组的方式可写出图2对应的二元一次方程组是;(2)按照(Ⅱ)中图解消元法可求得此方程组的解为.解:(1)图2对应的二元一次方程组是;(2)按照(Ⅱ)中图解此方程组如下∴此方程组的解为.。
应用二元一次方程组——鸡兔同笼 北师大版数学八年级上册提升练习(含答案)
5.3应用二元一次方程组——鸡兔同笼提升练习-北师大版数学八年级上册学校:___________姓名:___________班级:___________考号:___________一、单选题1.我国古代数学著作《算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子来量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索2.某单位采购小李去商店买笔记本和笔,他先选定了笔记本和笔的种类,若买25本笔记本和30支笔,则他身上的钱缺30元;若买15本笔记本和40支笔,则他身上的钱多出30元.()A.若他买55本笔记本,则会缺少120元B.若他买55支笔,则会缺少120元C.若他买55本笔记本,则会多出120元D.若他买55支笔,则会多出120元3.我国古代数学名著《直指算法统宗》中有问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚每人分3个,小和尚3人分一个,正好分完.则小和尚人数为()A.30B.45C.60D.754.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”,通过计算,鸡和兔的数量分别为()A.23和12B.12和23C.24和12D.12和24 5.《九章算术》是中国古代数学著作之一,书中有这样一个问题:五只雀、六只燕共重一斤;雀重燕轻,互换其中一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x斤,一只燕的重量为y斤,则正确的是()6.大课间,12人跳绳队为尊重每个队员的意愿,准备把队员分成跳大绳组或跳小绳组,大绳组3人一组,小绳组2人一组,在全队同学能同时参加活动且符合小组规定人数的前提下,则不同的分组方法有()A.1种B.2种C.3种D.4种7.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x个工人做螺杆,y个工人做螺母,则列出正确的二元一次方程组为()A.958220x yx y+=⎧⎨-=⎩B.954220x yx y+=⎧⎨-=⎩C.9516220x yx y+=⎧⎨-=⎩D.9516110x yx y+=⎧⎨-=⎩8.(我国古代问题)有大小两种盛酒的桶,已知5大桶加上1小桶可以盛酒3斛(斛,音hú,是古代的一种容量单位),已知1大桶加上5小桶可以盛酒2斛,1大桶加上1小桶可以各盛酒多少斛?如果设1大桶x斛、1小桶长y斛,则列出正确的方程组是()A.5253x yx y=+⎧⎨+=⎩B.5253x yx y+=⎧⎨=+⎩C.5253x yx y+=⎧⎨+=⎩D.5253x yx y+=⎧⎨+=⎩9.《孙子算经》中有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步,10.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?设用x张制盒身,y张制盒底.根据题意可列出的方程组是()A.362540x yx y+=⎧⎨=⎩B.3622540x yy x+=⎧⎨⨯=⎩C.3625240x yx y+=⎧⎨=⨯⎩D.3622540x yx y+=⎧⎨⨯=⎩二、填空题11.中国古代的数学专著《九章算术》有方程问题:“五只雀、六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重.”设每只雀、燕的重量各为x两,y 两,可得方程组是.12.我国古代《孙子算经》中有记载“多人共车”问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”意思是“每3人共乘一辆车,最终剩余2辆车;每2人共乘一辆车,最终有9人无车可乘,问人和车的数量各是多少?”则乘车人数为人.13.现用190张铁皮做盒,一张可以做8个盒身或22个盒底,1个盒身与2个盒底配一个盒子,问用多少张铁皮制盒身、多少张铁皮制盒底,可制成一批完整的盒子?若设用x张铁皮制盒身,y张铁皮制盒底,列方程组为14.把一张面值50元的人民币换成10元、5元的人民币,共有种方法15.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是2327214x yx y+=⎧⎨+=⎩.类似地,图2所示的算筹图我们可以表述为.16.已知甲库存粮x吨,乙库存粮y吨.若从甲库调出10吨给乙库,乙库的存粮数是甲库存粮数的2倍,则以上用等式表示为 .17.我国古代数学著作《张丘建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问:鸡翁、母、雏各几何.”意思为:一只公鸡值5钱,一只母鸡值3钱,三只小鸡值1钱,现有100钱,要买100只鸡,问:公鸡、母鸡、小鸡各多少只.若已知小鸡81只,设公鸡、母鸡的只数分别为x、y,请列出关于x、y的二元一次方程组:.18.古典数学文献《增删算法统宗·六均输》中有这样一道题:甲、乙两人一同放牧,两人暗地里在数羊的数量.如果乙给甲9只羊,则甲的羊数量为乙的两倍;如果甲给乙9只羊,则两人的羊数量相同.则乙的羊数量为只.19.明代数学家程大位的《算法统宗》中有这样一个问题,其大意为:有一群人分若干两银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两.请问:如果每人分半斤,则出现的结果是:(1斤16=两).20.有甲、乙两数,甲数的3倍与乙数的2倍之和等于47,甲数的5倍比乙数的6倍小1,这两个数分别为.三、解答题21.某公司安排大、小货车共20辆,分别从A、B两地运送320吨物资到某市,每辆大要安排上述装好物资的20辆货车中的12辆从A地出发,其余从B地出发.设从A地出发的大货车有n辆(大货车不少于5辆),这20辆货车的总运费为w元,求总运费w 的最小值.22.某班组织观看电影,有甲、乙两种电影票,甲种票每张24元,乙种票每张18元.如果全班35名同学购票用去750元,那么甲、乙两种电影票各多少张?23.一种蜂王精有大小盒两种包装,小王作了如下统计,1大盒1小盒共有9小瓶,1大盒2小盒共有11小瓶,2大盒3小盒共有19小瓶.小张通过计算后认为统计有误,你认同小张的看法吗?请用二元一次方程组的相关知识解决问题.24.今有鸡兔同笼,上有二十八头,下有七十八足.问鸡兔各几何?试用列方程(组)解应用题的方法求出问题的解.25.在某校“第二十届校园文化艺术节”活动中,七年级组织各班级进行足球比赛,最为常用的足球比赛的积分规则为:胜一场得3分,平一场得1分,输一场得0分.如果七(1)班足球队共需比赛15场,现已比赛了8场(其中平了3场),共得15分,请问:(1)前8场比赛中,七(1)班足球队共胜了多少场?(2)七(1)班足球队打满15场比赛,最高得分得多少分?(3)通过对比赛情况分析,这支球队打满15场比赛后,得分不低于28分,就可以进入下一轮比赛,请你分析一下,在后面的7场比赛中,这支球队至少要胜几场,才能进入下一轮比赛?参考答案:25.(1)前8场比赛中,七(1)班足球队共胜了4场;(2)最高得分得36分;(3)在以后的比赛中这个球队至少要胜3场.。
应用二元一次方程组—鸡兔同笼练习题
应用二元一次方程组——鸡兔同笼
1.从小华家到姥姥家,有一段上坡路和一段下坡路.星期天,小华骑自行车去姥姥家,如果保持上坡每小时行3 km,下坡每小时行5 km,他到姥姥家需要行66分钟,从姥姥家回来时需要行78分钟才能到家.那么,从小华家到姥姥家上坡路和下坡路各有多少千米,姥姥家离小华家有多远?
2. 21枚1角与5角的硬币,共是5元3角,其中1角与5角的硬币各是多少?
设1角硬币x枚,5角硬币y枚,填写下表,并求出x、y的值.
1角5角总和
硬币数x y21
钱数5元3角
3 小兰在玩具厂劳动,做4个小狗、7个小汽车用去3小时42分,做5个小狗、6个小汽车用去3小时37分.平均做一个小狗与1个小汽车各用多少时间?
设做1个小狗用x x、y的值.
小狗小汽车总数
用时
用时
4. 某中学某班买了35张电影票,共用250元,其中甲种票每张8元,乙种票每张6元,甲、乙两种票各买多少张?
设甲、乙两种票分别买了x张、y张,填写下表,并求出x、y的值.
甲乙总和
票数x y
钱数
5. 有大小两种盛米的桶,已经知道5个大桶加上一个小桶可以盛3斛米,1个大桶加上5个小桶可以盛2斛米,问1个大桶、1个小桶分别可以盛多少斛米?
设大桶盛米量为x斛,小桶盛米量为y斛,填写下表,并求出x、y的值.
大桶小桶总量
盛米
盛米。
北师大版八年级数学上册--第五单元 《应用二元一次方程组-鸡兔同笼》应用题精选练习题(含答案)
《应用二元一次方程组---鸡兔同笼》应用题精选一.列方程组:1、一个笼里装有鸡和兔子,它们共有8个头、22只脚。
设笼中有x只鸡,y只兔子,根据题意,可列方程组为2、我市某企业向玉树地震灾区捐助价值26万元的甲、乙两种帐篷共300顶.已知甲种帐篷每顶800元,乙种帐篷每顶1000元。
设甲帐篷有x顶,乙种帐篷有y 顶,根据题意,可列方程组为3、受气候等因素的影响,今年某些农产品的价格有所上涨. 张大叔在承包的10亩地里所种植的甲、乙两种蔬菜共获利13800元.其中甲种蔬菜每亩获利1200元,乙种蔬菜每亩获利1500元。
设甲种蔬菜种植了x亩,乙种蔬菜种植了y亩,根据题意可列方程组为4、花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.设甲种花木每株成本为x元,乙种花木每株成本为y元,可列方程组为5、在实施“中小学校舍安全工程”之际,某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.如果改造一所A类学校的校舍需要x万元,改造一所B类学校的校舍需要y万元,根据题意,可列方程组为6、去冬今春,我市部分地区遭受了罕见的旱灾.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.设饮用水有x件,蔬菜有y 件,则可列方程组为7、2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米。
设生产运营用水x亿立方米,生产居民家庭用水y亿立方米,根据题意可列方程组为二.列方程并解答:1、某住宅小区计划购买并种植甲、乙两种树苗共300株.已知甲种树苗每株60元,乙种树苗每株90元.若购买树苗共用21000元,问甲、乙两种树苗应各买多少株?2、2010年1月1日,全球第三大自贸区——中国——东盟自由贸易区正式成立,标志着该贸易区开始步入“零关税”时代.广西某民营边贸公司要把240吨白砂糖运往东盟某国的A、B两地,现用大、小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种货车的载重量分别为15吨/辆和10吨/辆,求这两种货车各用多少辆;3、为了抓住世博会商机,某商店决定购进A、B两种世博会纪念品.若购进A 种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.求购进A、B两种纪念品每件各需多少元?4、郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典。
完整版)鸡兔同笼应用题100道
完整版)鸡兔同笼应用题100道1.鸡兔同笼,共有30个头,88只脚。
求笼中鸡兔各有多少只?这道题是个典型的鸡兔同笼问题,我们可以用代数方法解决。
设鸡的数量为x,兔的数量为y,则有以下两个方程:x + y = 30 (头的数量)2x + 4y = 88 (脚的数量)通过解这个方程组,我们可以得到x=22,y=8,因此笼中有22只鸡和8只兔。
2.鸡兔同笼,共有头48个,脚132只,求鸡和兔各有多少只?这也是一个鸡兔同笼问题,同样可以用代数方法解决。
设鸡的数量为x,兔的数量为y,则有以下两个方程:x + y = 48 (头的数量)2x + 4y = 132 (脚的数量)通过解这个方程组,我们可以得到x=24,y=24,因此笼中有24只鸡和24只兔。
3.一个饲养组一共养鸡、兔78只,共有200只脚,求饲养组养鸡和兔各多少只?同样是鸡兔同笼问题,设鸡的数量为x,兔的数量为y,则有以下两个方程:x + y = 78 (总数量)2x + 4y = 200 (脚的数量)通过解这个方程组,我们可以得到x=46,y=32,因此饲养组中有46只鸡和32只兔。
5.XXX用10元钱正好买了20分和50分的邮票共35张,求这两种邮票名买了多少张?这是一个简单的买卖问题,我们可以设20分邮票的数量为x,50分邮票的数量为y,则有以下两个方程:x + y = 35 (总数量)20x + 50y = 1000 (总金额)通过解这个方程组,我们可以得到x=15,y=20,因此XXX买了15张20分邮票和20张50分邮票。
6.XXX用13元6角正好买了50分和80分邮票共计20张,求两种邮票各买了多少张?同样是一个买卖问题,设50分邮票的数量为x,80分邮票的数量为y,则有以下两个方程:x + y = 20 (总数量)50x + 80y = 1360 (总金额)通过解这个方程组,我们可以得到x=8,y=12,因此XXX买了8张50分邮票和12张80分邮票。
初中数学解题模型之二元一次方程组的应用(鸡兔同笼问题)
初中数学解题模型之二元一次方程组的应用(鸡兔同笼问题)一.选择题(共10小题)1.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”小明将这个实际问题转化为二元一次方程组问题,假设鸡有x只,兔有y只,已经列出一个方程x+y=35,则另一个方程正确的是()A.x+y=94B.2x+4y=94C.4x+2y=94D.2x+y=942.鸡兔同笼,头共有20个,脚有56只,笼中鸡、兔的数目分别为()A.8、12B.10、10C.11、9D.12、83.《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料,下卷收集了一些算术难题,“鸡兔同笼”便是其中一题.下卷中还有一题,记载为:“今有甲乙二人,持钱各不知数.甲得乙中半,可满四十八;乙得甲太半,亦满四十八.问甲、乙二人持钱各几何?”意思是:“甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的,那么乙也共有钱48文.问甲、乙二人原来各有多少钱?”设甲原有钱x文,乙原有钱y文,可得方程组()A.B.C.D.4.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有雉、兔同笼,上有三十五头,下有九十四足.问雉、兔各几何?”意思是:一个笼中装有鸡和兔子,上面数共有35个头,下面数共有94只脚,问鸡和兔各有几只?设有x只兔子,y只鸡,则可列方程组为()C.D.5.一只笼子装有鸡和兔共有10个头,34只脚,每只鸡有两只脚,每只兔有四只脚.设鸡有x只,兔有y只,则可列二元一次方程组()A.B.C.D.6.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.设鸡有x只,兔有y只,则根据题意,下列方程组中正确的是()A.B.C.D.7.“鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有35个头;从下面数,有94条腿,问笼中各有鸡和兔()只.A.笼中各有12只鸡,23只兔B.笼中各有23只鸡,12只兔C.笼中各有13只鸡,22只兔D.笼中各有22只鸡,13只兔8.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.设兔有x只,鸡有y只,则根据题意,下列方程组中正确的是()A.B.C.D.9.我国古代数学著作《孙子算经》有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”其大意如下:鸡兔同笼,共有35个头,94条腿,问鸡与兔各多少只?设鸡有x只,兔有y只,则可列方程组为()C.D.10.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.通过计算,鸡和兔的数量分别为()A.23和12B.12和23C.24和12D.12和24二.填空题(共10小题)11.鸡兔同笼,共有12个头,36只腿,则笼中有只鸡,只兔.12.“鸡兔同笼”是我国古代数学名著《孙子算经》上的一道题:今有鸡兔同笼,上有四十三头,下有一百零二足,问鸡兔各几何?若设笼中有鸡x只,兔y只,则可列出的二元一次方程组为.13.我国古代数学名著《孙子算经》上有这样一道题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?”则题中兔有只.14.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿,问鸡兔各有多少只?”设鸡有x只,兔有y只,则可列方程组为.15.鸡兔同笼问题是我国古代著名的数学趣题,出自《孙子算经》.原文为:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?小雪自己解决完此题后,又饶有兴趣地为同学编制了四道题目:①今有雉兔同笼,上有三十头,下有五十二足,问雉兔各几何?②今有雉兔同笼,上有三十头,下有八十一足,问雉兔各几何?③今有雉兔同笼,上有三十四头,下有九十足,问雉兔各几何?④今有雉兔同笼,上有三十四头,下有九十二足,问雉兔各几何?根据小雪编制的四道题目的数据,可以求得鸡兔只数的题目是(填题目前的序号).16.中国的古代数学著作《孙子算经》中记载了有趣的“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”这句话的意思是:“有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚,求笼中各有几只鸡和兔?”设有鸡x只,兔y只,可列方程组为.17.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有20头,下有64足,问鸡兔各几何?”若设鸡兔分别有x只,y只.你列出的关于x,y的二元一次方程组为.18.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有八十足.问鸡兔各几何?”若设鸡有x只,兔有y只,请将题中数量关系用二元一次方程组列出得.19.《孙子算经》中有鸡兔同笼问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”,如果设鸡有x只,兔有y只,以题意可得二元一次方程组.20.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题,”今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”若设鸡有x只,兔有y只,则列出的方程组为(列出方程组即可,不求解).初中数学解题模型之二元一次方程组的应用(鸡兔同笼问题)参考答案与试题解析一.选择题(共10小题)1.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”小明将这个实际问题转化为二元一次方程组问题,假设鸡有x只,兔有y只,已经列出一个方程x+y=35,则另一个方程正确的是()A.x+y=94B.2x+4y=94C.4x+2y=94D.2x+y=94【考点】数学常识;由实际问题抽象出二元一次方程.【专题】一次方程(组)及应用;应用意识.【分析】设鸡有x只,兔有y只,由下有九十四足,即可得出2x+4y=94,此题得解.【解答】解:设鸡有x只,兔有y只.∵下有九十四足,∴2x+4y=94,∴另一个方程为2x+4y=94.故选:B.【点评】本题考查了由实际问题抽象出二元一次方程以及数学常识,找准等量关系,正确列出二元一次方程是解题的关键.2.鸡兔同笼,头共有20个,脚有56只,笼中鸡、兔的数目分别为()A.8、12B.10、10C.11、9D.12、8【考点】一元一次方程的应用;二元一次方程组的应用.【专题】一次方程(组)及应用;应用意识.【分析】设笼中有x只鸡,y只兔,根据“鸡兔同笼,头共有20个,脚有56只”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设笼中有x只鸡,y只兔,依题意,得:,解得:.故选:D.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3.《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料,下卷收集了一些算术难题,“鸡兔同笼”便是其中一题.下卷中还有一题,记载为:“今有甲乙二人,持钱各不知数.甲得乙中半,可满四十八;乙得甲太半,亦满四十八.问甲、乙二人持钱各几何?”意思是:“甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的,那么乙也共有钱48文.问甲、乙二人原来各有多少钱?”设甲原有钱x文,乙原有钱y文,可得方程组()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】一次方程(组)及应用;应用意识.【分析】设甲原有x文钱,乙原有y文钱,根据题意可得,甲的钱+乙的钱的一半=48文钱,乙的钱+甲所有钱的=48文钱,据此列方程组可得.【解答】解:设甲原有x文钱,乙原有y文钱,根据题意,得:,故选:D.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.4.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有雉、兔同笼,上有三十五头,下有九十四足.问雉、兔各几何?”意思是:一个笼中装有鸡和兔子,上面数共有35个头,下面数共有94只脚,问鸡和兔各有几只?设有x只兔子,y只鸡,则可列方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;数学常识.【专题】一次方程(组)及应用;应用意识.【分析】根据一个笼中装有鸡和兔子,上面数共有35个头,下面数共有94只脚,可以列出相应的方程组.【解答】解:设有x只兔子,y只鸡,由一个笼中装有鸡和兔子,上面数共有35个头,可得方程x+y=35,由下面数共有94只脚,可得方程4x+2y=94,故可列方程组,故选:A.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,找出等量关系,列出相应的方程组.5.一只笼子装有鸡和兔共有10个头,34只脚,每只鸡有两只脚,每只兔有四只脚.设鸡有x只,兔有y只,则可列二元一次方程组()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设鸡有x只,兔有y只,等量关系:鸡+兔=10,鸡脚+兔脚=34.【解答】解:设鸡有x只,兔有y只,依题意得.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程.解题的关键是弄清题意,找准等量关系,列出方程组.6.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.设鸡有x只,兔有y只,则根据题意,下列方程组中正确的是()A.B.C.D.【考点】数学常识;由实际问题抽象出二元一次方程组.【专题】一次方程(组)及应用;应用意识.【分析】根据“鸡的数量+兔的数量=35,鸡的脚的数量+兔子的脚的数量=94”可列方程组.【解答】解:设鸡有x只,兔有y只,根据题意,可列方程组为,故选:A.【点评】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.7.“鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有35个头;从下面数,有94条腿,问笼中各有鸡和兔()只.A.笼中各有12只鸡,23只兔B.笼中各有23只鸡,12只兔C.笼中各有13只鸡,22只兔D.笼中各有22只鸡,13只兔【考点】一元一次方程的应用;二元一次方程组的应用.【专题】一次方程(组)及应用;应用意识.【分析】设笼中有x只鸡,y只兔,根据上有35个头、下有94只脚,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设笼中有x只鸡,y只兔,根据题意得:,解得:.答:笼中有23只鸡,12只兔故选:B.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.8.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.设兔有x只,鸡有y只,则根据题意,下列方程组中正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;数学常识.【专题】一次方程(组)及应用;应用意识.【分析】根据“鸡的数量+兔的数量=35,鸡的脚的数量+兔子的脚的数量=94”可列方程组.【解答】解:设兔有x只,鸡有y只,根据题意,可列方程组为,故选:A.【点评】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.9.我国古代数学著作《孙子算经》有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”其大意如下:鸡兔同笼,共有35个头,94条腿,问鸡与兔各多少只?设鸡有x只,兔有y只,则可列方程组为()A.B.C.D.【考点】数学常识;由实际问题抽象出二元一次方程组.【专题】一次方程(组)及应用;应用意识.【分析】根据实际可知,鸡有两条腿,兔子有四条腿,再根据有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿,即可列出相应的方程组.【解答】解:由题意可得,,故选:C.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,找出等量关系,列出相应的方程组.10.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.通过计算,鸡和兔的数量分别为()A.23和12B.12和23C.24和12D.12和24【考点】二元一次方程组的应用;数学常识;一元一次方程的应用.【专题】一次方程(组)及应用;应用意识.【分析】设鸡有x只,兔有y只,根据“上有三十五头,下有九十四足”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设鸡有x只,兔有y只,依题意得:,解得:.故选:A.【点评】本题考查了二元一次方程组的应用以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.二.填空题(共10小题)11.鸡兔同笼,共有12个头,36只腿,则笼中有6只鸡,6只兔.【考点】二元一次方程组的应用.【专题】方程思想.【分析】设笼中有x只鸡,y只兔,根据共有12个头36只腿,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设笼中有x只鸡,y只兔,根据题意得:,解得:.答:笼中有6只鸡,6只兔.故答案为:6;6.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.12.“鸡兔同笼”是我国古代数学名著《孙子算经》上的一道题:今有鸡兔同笼,上有四十三头,下有一百零二足,问鸡兔各几何?若设笼中有鸡x只,兔y只,则可列出的二元一次方程组为.【考点】由实际问题抽象出二元一次方程组;数学常识.【专题】一次方程(组)及应用;应用意识.【分析】根据“笼中上有43个头,下有102个脚”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设笼中有鸡x只,兔y只,∵上有四十三头,∴鸡和兔共有43只,即x+y=43;∵每只鸡有2足,每只兔有4足,笼中共有一百零二足,∴2x+4y=102.联立两方程组成方程组.故答案为:.【点评】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.13.我国古代数学名著《孙子算经》上有这样一道题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?”则题中兔有12只.【考点】二元一次方程组的应用;数学常识;一元一次方程的应用.【专题】一次方程(组)及应用;应用意识.【分析】设兔有x只,鸡有y只,根据“上有三十五头,下有九十四足”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设兔有x只,鸡有y只,依题意,得:,解得:.故答案为:12.【点评】本题考查了二元一次方程组的应用以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.14.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿,问鸡兔各有多少只?”设鸡有x只,兔有y只,则可列方程组为.【考点】数学常识;由实际问题抽象出二元一次方程组.【专题】一次方程(组)及应用;应用意识.【分析】根据实际可知,鸡有两条腿,兔子有四条腿,再根据有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿,即可列出相应的方程组.【解答】解:由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,找出等量关系,列出相应的方程组.15.鸡兔同笼问题是我国古代著名的数学趣题,出自《孙子算经》.原文为:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?小雪自己解决完此题后,又饶有兴趣地为同学编制了四道题目:①今有雉兔同笼,上有三十头,下有五十二足,问雉兔各几何?②今有雉兔同笼,上有三十头,下有八十一足,问雉兔各几何?③今有雉兔同笼,上有三十四头,下有九十足,问雉兔各几何?④今有雉兔同笼,上有三十四头,下有九十二足,问雉兔各几何?根据小雪编制的四道题目的数据,可以求得鸡兔只数的题目是③④(填题目前的序号).【考点】二元一次方程组的应用.【专题】一次方程(组)及应用.【分析】设笼中有x只雉,y只兔,根据各小题中头与足的数量,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设笼中有x只雉,y只兔,根据题意得,①,解得,不符合题意;②,此方程组无整数解,不符合题意;③,解得,符合题意;④,解得,符合题意;故答案为:③④.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.一般步骤:(1)审题:找出问题中的已知条件和未知量及它们之间的关系.(2)设元:找出题中的两个关键的未知量,并用字母表示出来.(3)列方程组:挖掘题目中的关系,找出两个等量关系,列出方程组.(4)求解.(5)检验作答:检验所求解是否符合实际意义,并作答.16.中国的古代数学著作《孙子算经》中记载了有趣的“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”这句话的意思是:“有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚,求笼中各有几只鸡和兔?”设有鸡x只,兔y只,可列方程组为.【考点】由实际问题抽象出二元一次方程组;数学常识.【专题】方程思想;一次方程(组)及应用.【分析】设有鸡x只,兔y只,根据鸡和兔共35只且鸡和兔共有94只脚,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设有鸡x只,兔y只,依题意,得:.故答案为:.【点评】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.17.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有20头,下有64足,问鸡兔各几何?”若设鸡兔分别有x只,y只.你列出的关于x,y的二元一次方程组为.【考点】由实际问题抽象出二元一次方程组.【专题】常规题型.【分析】设鸡兔分别有x只,y只,根据等量关系:今有鸡兔同笼,上有20头,下有64足,即可列出方程组.【解答】解:设鸡兔分别有x只,y只,由题意得:.故答案为.【点评】此题考查了由实际问题抽象出二元一次方程组,解答本题的关键是仔细审题,根据等量关系得出方程组,难度一般.18.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有八十足.问鸡兔各几何?”若设鸡有x只,兔有y只,请将题中数量关系用二元一次方程组列出得..【考点】由实际问题抽象出二元一次方程组.【专题】一次方程(组)及应用.【分析】若设鸡有x只,兔有y只,根据“今有鸡兔同笼,上有三十五头,下有八十足”,即可列出关于x和y的二元一次方程组.【解答】解:根据题意得:,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,根据实际问题找出等量关系列出方程组是解决本题的关键.19.《孙子算经》中有鸡兔同笼问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”,如果设鸡有x只,兔有y只,以题意可得二元一次方程组.【考点】由实际问题抽象出二元一次方程组.【专题】一次方程(组)及应用;应用意识.【分析】根据“鸡的数量+兔的数量=35,鸡的脚的数量+兔子的脚的数量=94”可列方程组.【解答】解:设鸡有x只,兔有y只,根据题意,可列方程组为,故答案是:.【点评】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.20.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题,”今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”若设鸡有x只,兔有y只,则列出的方程组为(列出方程组即可,不求解).【考点】由实际问题抽象出二元一次方程组.【分析】根据等量关系:上有三十五头,下有九十四足,即可列出方程组.【解答】解:设鸡有x只,兔有y只,由题意得:.故答案为.【点评】此题考查了由实际问题抽象出二元一次方程组,解答本题的关键是仔细审题,根据等量关系得出方程组,难度一般.考点卡片1.数学常识数学常识此类问题要结合实际问题来解决,生活中的一些数学常识要了解.比如给出一个物体的高度要会选择它合适的单位长度等等.平时要注意多观察,留意身边的小知识.2.一元一次方程的应用(一)一元一次方程解应用题的类型有:(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).(二)利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.列一元一次方程解应用题的五个步骤1.审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.2.设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.3.列:根据等量关系列出方程.4.解:解方程,求得未知数的值.5.答:检验未知数的值是否正确,是否符合题意,完整地写出答句.3.由实际问题抽象出二元一次方程(1)由实际问题列方程是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.(2)一般来说,有2个未知量就必须列出2个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数值要相符.(3)找等量关系是列方程的关键和难点.常见的一些公式要牢记,如利润问题,路程问题,比例问题等中的有关公式.4.由实际问题抽象出二元一次方程组(1)由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.(2)一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数值要相符.(3)找等量关系是列方程组的关键和难点,有如下规律和方法:①确定应用题的类型,按其一般规律方法找等量关系.②将问题中给出的条件按意思分割成两个方面,有“;”时一般“;”前后各一层,分别找出两个等量关系.③借助表格提供信息的,按横向或纵向去分别找等量关系.④图形问题,分析图形的长、宽,从中找等量关系.5.二元一次方程组的应用(一)列二元一次方程组解决实际问题的一般步骤:(1)审题:找出问题中的已知条件和未知量及它们之间的关系.(2)设元:找出题中的两个关键的未知量,并用字母表示出来.(3)列方程组:挖掘题目中的关系,找出两个等量关系,列出方程组.(4)求解.(5)检验作答:检验所求解是否符合实际意义,并作答.(二)设元的方法:直接设元与间接设元.当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.。
八年级数学应用二元一次方程组-鸡兔同笼
共花6元8角,已知8分的邮票比
4分的邮票多40张,那么两种邮 票各买了多少张?
6、小颖家离学校1880米,其中有一段为上 坡路 ,另一段为下坡路 她跑步去学校共用 了16分钟 。已知小颖在上坡时的平均速度是 4.8千米/时 ,下坡时的平均速度是12千米/ 时。问小颖上下坡各用了多少时间?
7、学校买铅笔、圆珠笔和钢笔共
4:甲、乙两人参加植树活动,两 人共植树20棵,已知甲植树数是乙的1.5 倍。如果设甲植树x棵,乙植树y棵,那 么可列方程组为( )
(A) x+y=20 (B) x=20+y
x=2.5y (C) x+y=20
x=1.5y (D)
x=1.5y
x+y=20 x=y+1.5
5、买一些4分和8分的邮票,
红铅笔每支红铅笔每支019019元蓝铅笔每支笔每支011011元两种铅笔元两种铅笔共买了共买了1616支花了支花了280280元元问红蓝铅笔各买几支问红蓝铅笔各买几支倍的和为15列出方程为蛐蛐和蜘蛛共10只共有68条腿若设蛐蛐有x只蜘蛛有y只则列出方程组为4
应用二元一次方程组 ---鸡兔同笼
课前小练
232支,共花了300元。其中铅笔数
量是圆珠笔的4倍。已知铅笔每支
0.60元,圆珠笔每支2.7元,钢笔每
支6.3元。问三种笔各有多少支?
1:经过本节课的学习,你有那些收获?
2:列二元一次方程组解实际问题的一般步骤: (1)审题;(2)设两个未知数,找两个等 量关系;(3)根据等量关系列方程,联立方 程组;(4)解方程组;(5)检验并作答。
1、解方程:
y 1 x 2 3 4 2 x 3 y 1
3( x 1) y 5 5( y 1) 3( x 5)
用二元一次方程解鸡兔同笼
用二元一次方程解鸡兔同笼问题1.有一笼鸡兔,共有35只头,94只脚,问鸡兔各有多少只?2.一笼鸡兔总共有50只,其中脚的总数是130只,问鸡和兔各有多少只?3.有一笼鸡兔,共有72只头,196只脚,问鸡兔各有多少只?4.一笼鸡兔共有50只,脚的总数为142只,问鸡和兔各有多少只?5.有一笼鸡兔,共有40只头,108只脚,问鸡兔各有多少只?6.一笼鸡兔共有60只,脚的总数为170只,问鸡和兔各有多少只?7.有一笼鸡兔,共有72只头,196只脚,问鸡兔各有多少只?8.一笼鸡兔共有50只,脚的总数为130只,问鸡和兔各有多少只?9.有一笼鸡兔,共有48只头,126只脚,问鸡兔各有多少只?10.一笼鸡兔共有70只,脚的总数为196只,问鸡和兔各有多少只?11.有一笼鸡兔,共有30只头,82只脚,问鸡兔各有多少只?12.一笼鸡兔共有80只,脚的总数为220只,问鸡和兔各有多少只?13.有一笼鸡兔,共有38只头,100只脚,问鸡兔各有多少只?14.一笼鸡兔共有60只,脚的总数为168只,问鸡和兔各有多少只?15.有一笼鸡兔,共有28只头,76只脚,问鸡兔各有多少只?答案及解析1.有一笼鸡兔,共有35只头,94只脚,问鸡兔各有多少只?答案:20只鸡,15只兔。
解析:设鸡的数量为x,兔的数量为y,则有以下方程组:x + y = 352x + 4y = 94通过解方程组,可以得到x = 20,y = 15,因此有20只鸡和15只兔。
2.一笼鸡兔总共有50只,其中脚的总数是130只,问鸡和兔各有多少只?答案:30只鸡,20只兔。
解析:设鸡的数量为x,兔的数量为y,则有以下方程组:x + y = 502x + 4y = 130通过解方程组,可以得到x = 30,y = 20,因此有30只鸡和20只兔。
3.有一笼鸡兔,共有72只头,196只脚,问鸡兔各有多少只?答案:44只鸡,28只兔。
解析:设鸡的数量为x,兔的数量为y,则有以下方程组:x + y = 722x + 4y = 196通过解方程组,可以得到x = 44,y = 28,因此有44只鸡和28只兔。
七年级《应用二元一次方程组-鸡兔同笼》同步测试
3 应用二元一次方程组---鸡兔同笼一、目标导航知识目标:通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,初步掌握列二元一次方程组解应用题.能力目标:通过将实际问题转化成纯数学问题的应用训练,培养学生分析问题、解决问题的能力,体会二元一次方程组的应用价值,感受数学文化.二、基础过关1.某校课外小组的学生准备分组外出活动,若每组7人,则余下3人;若每组8人,则少5人,求课外小组的人数x 和应分成的组数y .依题意得( )A .7385y x y x =+⎧⎨+=⎩B .7385x y x y +=⎧⎨-=⎩C .7385y x y x =-⎧⎨=+⎩D .7385y x y x =+⎧⎨=+⎩2.一批宿舍,若每间住1人,有10人无处住,若每间住3人,则有10间无人住,则这批宿舍的房间数为( )A .20B .15C .12D .103.现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,而一个盒身与两个盒底配成一个盒子.设用x 张铁皮做盒身,y 张铁皮做盒底,则可列方程组为( )A .1902822x y x y +=⎧⎨⨯=⎩B .1902228x y y x +=⎧⎨⨯=⎩C .2190822y x x y +=⎧⎨=⎩D .21902822y x x y +=⎧⎨⨯=⎩4.根据下图提供的信息,可知一个杯子的价格是( )A .51元B .35元C .8元D .7.5元4题图 6题图共计145元共计280元5.学生问老师:“您今年多大?”老师风趣地说:“我像你这么大时,你才出生;你到我这么大时,我已经37岁了.”老师今年岁.6.某商场正在热销2008年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,根据上图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元?7.购买一批布料给校文艺队每人做一套演出服,大号每套需要布料4.9米,中号每套需要布料4.2米.若全部做大号,则差布3.9米,若全部做中号,则余布3.8米,请你算一算,校文艺队有几名队员,共购买了多少米布?8.《一千零一夜》中:有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食.树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞来一;若从树上飞下去一只,则树上、树下的鸽子只,则树下的鸽子就是整个鸽群的13就一样多了.”你知道树上、树下各有多少只鸽子吗?三、能力提升9.用如图1中的长方形和正方形纸板作侧面和底面,做成如图2中竖式和横式的两种无盖纸盒。
第五章二元一次方程组应用-鸡兔同笼习题汇总
是题库不是教案第五章二元一次方程组应用-鸡兔同笼一、和差倍分问题1.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A.783230x yx y+=⎧⎨+=⎩B.782330x yx y+=⎧⎨+=⎩C.302378x yx y+=⎧⎨+=⎩D.303278x yx y+=⎧⎨+=⎩2.为响应“科教兴国”的战略号召,某学校计划成立创客实验室,现需购买航拍无人机和编程机器人,已知购买2架航拍无人机和3个编程机器人所需费用相同,购买4个航拍无人机和7个编程机器人共需3480元,设购买1架航拍无人机需x元,购买1个编程机器人需y元,则可列方程组为()A.23473480x yx y=⎧⎨+=⎩B.3=24+7=3480x yx y⎧⎨⎩C.2=37+4=3480x yx y⎧⎨⎩D.3=27+4=3480x yx y⎧⎨⎩3.甲、乙两个车间工人人数不相等,若甲车间调10人到乙车间,则两车间人数相等;若乙车间调10人到甲车间,则甲车间的人数就是乙车间人数的2倍,求原来甲、乙两车间各有多少名工人?设原来甲车间有x名工人,乙车间有y名工人,列以下方程组正确的是()A.B.C.D.4.列方程组解应用题:口罩是疫情防控的重要物资,某药店销售A、B两种品牌口罩,购买2盒A品牌和3盒B品牌的口罩共需480元;购买3盒A品牌和1盒B品牌的口罩共需370元.求这两种品牌口罩的单价.5.七(10)班准备购买A B,两种型号签字笔共128支作为班级同学奖品,已知A型签字笔5盒与B型签字笔2盒共41支,A型签字笔4盒与B型签字笔1盒共28支.(1)求,A B两种型号签字笔每盒各多少支;,都是整盒出(2)若要购买128支签字笔,问可能购买A型的签字笔是多少盒.(A B售)6.某体育器材店有A、B两种型号的篮球,已知购买3个A型号篮球和2个B型号篮球共需310元,购买2个A型号篮球和5个B型号篮球共需500元.(1)A、B型号篮球的价格各是多少元?(2)某学校在该店一次性购买A、B型号篮球共96个,总费用为5700元,这所学校购买了多少个B型号篮球?7.为了节能减排,我区某校准备购买某种品牌的节能灯,已知4只A型节能灯和5只B型节能灯共需55元,2只A型节能灯和1只B型节能灯共需17元.(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共300只,要求A型节能灯的数量不超过B型节能灯的数量的2倍,请设计出最省钱的购买方案,并说明理由.8.2020年新型冠状病毒肺炎在全球蔓延,口罩成了人们生活中的必备物资.某口罩厂现安排A、B两组工人共150人加工口罩,A组工人每人每小时可加工口罩70个,B 组工人每人每小时可加工口罩50个,A、B两组工人每小时一共可加工口罩9300个.试问:A、B两组工人各多少人?9.有大小两种货车,2辆大货车与3辆小货车一次可运货15.5吨,5辆大货车与6辆小货车一次可运货35吨,6辆大货车和10辆小货车一次可运货()吨.A.55 B.50.5 C.50 D.4910.印江某中学为了提高学生的体育素质,加强排球和篮球练习.某班购买了排球和篮球,其中排球的单价为45元/个,篮球的单价为80元/个,一共购买了40个,共用去了2430元,求该班购买的排球和篮球各多少个?11.已知向本埠邮寄一封平信需0.60元,向外埠寄一封平信需0.80元,北方大学某班辅导员在假期里向本班同学发一个通知,共发平信52封,用去邮资38元,问该班在本埠和外埠居住的各多少人.12.一种商品有大小盒两种包装,若4大盒、3小盒共装ll6瓶,2大盒、3小盒共装76瓶,求大盒与小盒每盒各装多少瓶.13.体育器材室有A,B两种型号的实心球,1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克.(1)每只A型球、B型球的质量分别是多少千克?(2)现有A型球、B型球的质量共17千克,则A型、B型球各有多少只?请写出所有是题库不是教案结果.14.为了奖励优秀班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元.(1)每副乒乓球拍和羽毛球拍的单价各是多少元?(2)若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?15.某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍,如何购买甲、乙两种奖品,使得总花费最少?16.学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.求甲、乙两种办公桌每张各多少元?17.为了美化校园,学校计划在操场旁边内种植A,B两种花木,共660棵,若A花木数量是B花木数量的2倍少60棵.(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?18.哈尔滨实验学校为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买1副围棋和1副中国象棋需用26元;若购买8副围棋和3副中国象棋需用158元;(1)求每副围棋和每副中国象棋各多少元;(2)实验中学决定购买围棋和中国象棋共40副,总费用550元,那么实验中学可以购买多少副围棋.19.目前,新型冠状病毒在我国虽可控可防,但不可松懈.天府新区某校欲购置规格分别为300ml和500ml的甲、乙两种免洗手消毒液共300瓶,其中甲消毒液15元/瓶,乙消毒液20元/瓶.(1)如果购买这两种消毒液共5550元,求甲、乙两种消毒液各购买多少瓶?(2)在(1)的条件下,若该校在校师生共1320人,平均每人每天都需使用10ml的免洗手消毒液,则这批消毒液可使用多少天?20.广州中学在“读书日”期间购进一批图书,需要用大小两种规格的纸箱来装运.1个大纸箱和1个小纸箱一次可以装50,本书2个大纸箱和3个小纸箱--次可以装120本书.(1)一个大纸箱和一个小纸箱分别可以装多少本书?(2)如果一共购入100本书,每个纸箱恰好装满,分别需要用多少个大、小纸箱? 21.某单位采购小李去商店买笔记本和笔,他先选定了笔记本和笔的种类,若买25本笔记本和30支笔,则他身上的钱缺30元;若买15本笔记本和40支笔,则他身上的钱多出30元.( )A .若他买55本笔记本,则会缺少120元B .若他买55支笔,则会缺少120元C .若他买55本笔记本,则会多出120元D .若他买55支笔,则会多出120元 22.某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件,已知捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件,求该企业捐给甲、乙两所学校的矿泉水各多少件?23.某超市购进甲、乙两种型号的空气加湿器进行销售,已知购进4台甲型号空气加湿器和6台乙型号空气加湿器共用1820元,购进6台甲型号空气加湿器比购进4台乙型号空气加湿器多用520元.(1)求甲、乙两种型号的空气加湿器每台的进价.(2)超市根据市场需求,决定购进这两种型号的空气加湿器共60台进行销售,甲种型号每台售价260元,乙种型号每台售价190元,若超市购进的这两种空气加湿器全部售出后,共获利2800元,则该超市本次购进甲、乙两种型号的空气加湿器各多少台? 24.某市准备安装完成7600辆共享单车投入市场.由于抽调不出足够熟练工人,公司准备招聘一批新工人.生产开始后发现:1名熟练工人和4名新工人每天共安装28辆共享单车:5名熟练工人每天装的共享单车数与8名新工人每天安装的共享单车数一样多.(1)求每名熟练工人和新工人每天分别可以安装多少辆共享单车;(2)若公司原有熟练工m 人,现招聘n 名新工人()m n ,使得刚好20天完成安装任务.已知工人们安装的共享单车中不能正常投入运营的占5%,①用含m 的代数式表示n ;②直接写出符合题意的n 值.25.2020年2月,“新冠”疫情日趋严重,“雷神山”医院急需新型救护车,某企业为了向医院捐献救护车,派人到汽车销售公司了解到,新型救护车共有A 、B 两种型号,2辆A 救护车、3辆B 型救护车的进价共计80万元;3辆A 型救护车、2辆B 型救护车的进价共计95万元.(1)求A 、B 两种型号的救护车每辆进价分别为多少万元?(2)若该企业计划正好用200万元购进以上两种型号的新型救护车(两种型号的救护是题库不是教案车均购买),该企业共有哪几种购买方案.(3)若该救护车销售公司销售1辆A型汽车可获利8000元,销售1辆B型救护车可获利5000元,在(2)中的购买方案中,该汽车销售公司全部售出这些新型救护车,哪种方案获利最大?26.(1)育德中学800名学生参加第二十届运动会开幕式大型表演,道具选用红黄两色锦绣手幅.已知红色手幅每个4元;黄色手幅每个2.5元;购买800个道具共花费2420元,那么两种手幅各多少个?(2)学校计划制作1000个吉祥物作为运动会纪念.现有甲、乙两个工厂可以生产这种吉祥物.甲工厂报价:不超过400个时每个吉祥物20元,400个以上超过部分打七折;但因生产条件限制,截止到学校交货日期只能完成800个;乙工厂报价每个吉祥物18元,但需运费400元.问:学校怎样安排生产可以使总花费最少,最少多少钱?27.某煤气公司要给用户安装管道煤气,现有600户申请了但还未安装的用户,此外每天还有新的申请.已知煤气公司每个小组每天安装的数量相同,且估计到每天申请安装的户数也相同,煤气公司若安排2个安装小组同时做,则60天可以装完所有新、旧申请;若安排4个安装小组同时做,则10天可以装完所有新旧申请.(1)求每天新申请安装的用户数及每个安装小组每天安装的数量;(2)如果要求在10天内安装完所有新、旧申请,但前6天只能派出2个安装小组安装,那么最后几天至少需要增加多少个安装小组同时安装,才能完成任务?28.2020年以来,新冠肺炎疫情肆虐全球,我市某厂接到订单任务,7天时间生产A、B两种型号的口罩不少于5.8万只,该厂的生产能力是:每天只能生产一种口罩,如果2天生产A型口罩,3天生产B型口罩,一共可以生产4.6万只;如果3天生产A型口罩,2天生产B型口罩,一共可以生产4.4万只.(1)试求出该厂每天能生产A型口罩或B型口罩多少万只?(2)生产一只A型口罩可获利0.5元,生产一只B型口罩可获利0.3元,且A型口罩只数不少于B型口罩.在完成订单任务的前提下,应怎样安排生产A型口罩和B型口罩的天数,才能使获得的总利润最大,最大利润是多少万元?29.甲、乙两人各买了相同数量的信封和信笺,甲每发出一封信只用1张信笺,乙每发出一封信用3张信笺,结果甲用掉了所有的信封,但余下50张信笺,而乙用掉了所有的信笺,但余下50个信封,则甲、乙两人买的信笺张数、信封个数分别为() A.150,100 B.125,75 C.120,70 D.100,150 30.金堂赵镇某旅馆的客房有三人间和两人间两种,三人间每人每天40元,两人间每人每天50元.国庆节期间,一个48人的外地旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费2160元.求两种客房各租住了多少间?31.甲、乙两个学校盆景园各有若千盆景,为了春节布展要进行交流.如果甲校把自己的盆景送给乙校150 盆,那么乙校的盆景是甲校的12,如果乙校送给甲校10盆,则甲校的盆景数是乙校的3倍,问甲、乙两校原来各有多少盆景?二、配套问题32.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为()A.50人,40人B.30人,60人C.40人,50人D.60人,30人33.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x个工人做螺杆,y个工人做螺母,则列出正确的二元一次方程组为()A.958220x yx y+=⎧⎨-=⎩B.954220x yx y+=⎧⎨-=⎩C.9516220x yx y+=⎧⎨-=⎩D.9516110x yx y+=⎧⎨-=⎩34.某车间有660名工人,生产某种由一个螺栓和两个螺母构成的配套产品,每人每天平均生产螺栓14个或螺母20个,应安排______________人生产螺母,才能使生产出的螺栓和螺母刚好配套.35.某车间有90人,一人每天加工10个螺栓或25个螺母,组装一部机器需4个螺栓和5个螺母,问应安排多少人生产螺栓,多少人生产螺母,才能尽可能多的组装成这种机器?36.某工厂有工人60人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?37.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排______名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.38.某车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应是题库不是教案如何分配工人生产镜片和镜架,才能使产品配套?设安排x名工人生产镜片,y名工人生产镜架,则可列方程组()A.60200250x yx y+=⎧⎨=⨯⎩B.6020050x yx y+=⎧⎨=⎩C.6050200x yx y+=⎧⎨=⎩D.60220050x yx y+=⎧⎨⨯=⎩39.用白铁皮做罐头盒,每张铁片可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒,则下列方程组中符合题意的是()A.362x yy x+=⎧⎨=⎩B.362x yx y+=⎧⎨=⎩C.3622540x yx y+=⎧⎨⨯=⎩D.3625240x yx y+=⎧⎨=⨯⎩40.用白铁皮做罐头盒,每张铁皮可制作24个盒身,或制作32个盒底,一个盒身与两个盒底配成一套罐头盒,现有40张白铁皮请用二元一次方程组的知识解答下列问题.(1)问用多少张制作盒身,多少张制作盒底可以使盒身与盒底正好配套?(2)已知一张白铁皮的成本为120元,每张制作盒底的加工费为30元/张,而制作盒身的加工方式有横切和纵切两种,横切的加工费为20元/张,纵切的加工费为25元/张,问在(1)的结论下,若想要总费用控制在5900元,应安排多少张横切,多少张纵切?41.在手工制作课上,老师组织班级同学用硬纸制作圆柱形茶叶筒.全班共有学生50人,其中男生x人,女生y人,男生人数比女生人数少2人.已知每名同学每小时剪筒身40个或剪筒底120个.(1)求这个班男生、女生各有多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,若要求一个筒身配两个筒底,请说明每小时剪出的筒身与筒底能否配套?如果不配套,请说明如何调配人员,才能使每小时剪出的筒身与筒底刚好配套?42.油漆厂用白铁皮做圆柱形油漆小桶,一张铁皮可做侧面32个,或底面160个,现有铁皮140张,用多少张做侧面,多少张做底面,可以正好制成配套的油漆小桶?43.要用20张白卡纸做包装盒,每张白卡纸可以做盒身2个,或者做盒底盖3个,如果1个盒身和2个盒底盖可以做成一个包装盒,那么能否把这些白卡纸分成两部分,一部分做盒身,一部分做盒底盖,使做成的盒身和盒底盖正好配套?44.用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲、两种种产品和2件乙种产品;要生产甲种产品45件,乙种产品25件,则恰好需用A B型号的钢板共__________块.45.机械厂加工车间有22名工人.每名工人每天可加工3张桌子或10把椅子,1张桌子与4把椅子配成一套,现要求工人每天做的桌子和椅子完整配套而没有剩余,求安排多少名工人加工桌子,多少名工人加工椅子?46.某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?47.列二元一次方程组解决问题:某校八年级师生共466人准备参加社会实践活动,现已预备了,A B两种型号的客车共10辆,每辆A种型号客车坐师生49人,每辆B种型号客车坐师生37人,10辆客车刚好坐满,求,A B两种型号客车各多少辆?48.某旅馆的客房有三人间和两人间两种.三人间每人每天80元,两人间每人每天100元,一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个房间正好住满,一天共花去住宿费4520元,两种客房各租住了多少间?49.某旅馆的客房有三人间和双人间两种,三人间每人每天50元,双人间每人每天70元. 一个40人的旅游团到该旅馆住宿,租住了若干间客房,且每个客房正好住满,一天共花去住宿费2440元;求两种客房各租住了多少间?50.某酒店的客房有三人间和双人间两种,三人间每间225元,双人间每间210元,一个50人的旅游团到了该酒店住宿,住了若干间客房,且每间客房恰好住满,一天共花去4530元,求两种客房各住了多少间?51.某学校共有5个一样规模的大餐厅和3个一样规模的小餐厅,经过测试,若同时开放3个大餐厅2个小餐厅,可供3300名学生就餐.若同时开放2个大餐厅、1个小餐厅,可供2100名学生就餐.求1个大餐厅和1个小餐厅分别可供多少名学生就餐?52.某制衣厂现有22名制作服装的工人,每天都制作某种品牌的村衫和裤子.每人每天可制作这种衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子配套,一件衬衫配两条裤子,则应各安排多少人分别制作衬衫和裤子?(此问题用列方程组方法求解).(2)已知制作件衬衫可获得利润35元,制作一条裤子可获得利润15元,在(1)的条件下,求该厂每天制作衬衫和裤子所获得的利润共是多少元?53.某制衣厂现有21名制作服装的工人,每天都制作某种品牌的衬衫和裤子.每人每天可制作这种衬衫2件或裤子3条.是题库不是教案(1)若该厂要求每天制作的衬衫和裤子配套,一件衬衫配两条裤子,则应各安排多少人分别制作衬衫和裤子?(此问题用列方程组方法求解).(2)已知制作一件衬衫可获得利润35元,制作一条裤子可获得利润15元,在(1)的条件下,求该厂每天制作衬衫和裤子所获得的利润共是多少元?54.福德制衣厂现有24名服装工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子的数量相等,则应安排制作衬衫和裤子各多少人?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元.若该厂要求每天获得的利润不少于2100元,则至少需要安排多少名工人制作衬衫?55.购买一批布料给校文艺队每人做一套演出服,大号每套需要布料4.9米,中号每套需要布料4.2米.若全部做大号,则差布3.9米,若全部做中号,则余布3.8米,请你算一算,校文艺队有几名队员,共购买了多少米布?56.某汽车厂一个车间有39名工人.车间接到加工两种汽车零件的生产任务,每个工人每天能加工甲种零件8个,或加工乙种零件15个.每一辆汽车只需甲零件6个和乙零件5个,为了能配套生产,每天应如何安排工人生产?三、年龄问题57.甲是乙现在的年龄时,乙8岁,乙是甲现在的年龄时,甲26岁,那么()A.甲20岁,乙14岁B.甲22岁,乙16岁C.乙比甲大18岁D.乙比甲大34岁58.甲是乙现在的年龄时,乙10岁,乙是甲现在的年龄时,甲25岁,那么()A.甲比乙大5岁B.甲比乙大10岁C.乙比甲大10岁D.乙比甲大5岁59.六年前,A的年龄是B的年龄的3倍,现在A的年龄是B的年龄的2倍,A现在的年龄是().A.12岁B.18岁C.24岁D.30岁60.8年前父亲的年龄是儿子的年龄的4倍,从现在起8年后父亲的年龄是儿子的年龄的2倍,则父亲和儿子现在的年龄分别为_____岁、_____岁.61.一天,小民去问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,125岁了,哈哈!”请你写出小民爷爷到底是___岁.62.10年前,小明妈妈的年龄是小明的6倍,10年后,小明妈妈的年龄是小明的2倍,小明和他妈妈现在的年龄分别是多少岁?若设小明和他妈妈现在分别是x岁和y岁,根据题意可列方程组为()A.106(10)102(10) y xy x+=+⎧⎨-=-⎩B.106(10)102(10) y xy x-=-⎧⎨+=+⎩C.106(10)102(10) y xy x-=+⎧⎨+=-⎩D.102(10)106(10) y xy x-=-⎧⎨+=+⎩63.7月4日,2020长白山地下森林徒步活动鸣枪开始,一名34岁的男子带着他的两个孩子一同参加了比赛.下面是两个孩子与记者的部分对话:妹妹:我和哥哥的年龄和是16岁.哥哥:两年后,妹妹年龄的3倍与我的年龄相加恰好等于爸爸的年龄.根据对话内容,请你用方程的知识帮记者求出现在..哥哥和妹妹的年龄各是多少岁?四、古代问题64.我国古代数学名著《孙子算经》中记载了一道题,大意是:有100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.10033100x yx y+=⎧⎨+=⎩B.1003100x yx y+=⎧⎨+=⎩C.1003100x yx y+=⎧⎨+=⎩D.100131003x yx y+=⎧⎪⎨+=⎪⎩65.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改成横排,如图1、图2,图中各行从左到右列出的算筹数分别表示未知数,x y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219423x yx y+=⎧⎨+=⎩.类似地,图2所示的算筹图,可以表述为______.是题库不是教案66.《九章算术》中,一次方程组是由算筹布置而成的.如图1所示的算筹图,表示的方程组就是3219423x yx y+=⎧⎨+=⎩,类似地,图2所示的算筹图表示的方程组为()A.2114322x yx y+=⎧⎨+=⎩B.2114327x yx y+=⎧⎨+=⎩C.3219423x yx y+=⎧⎨+=⎩D.264327x yx y+=⎧⎨+=⎩67.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是32=19423x yx y+⎧⎨+=⎩,在图2所示的算筹图所表示的方程组是()A.2114327x yx y+=⎧⎨+=⎩B.21437x yx y+=⎧⎨+=⎩C.2274311x yx y+=⎧⎨+=⎩D.2114327y xy x+=⎧⎨+=⎩68.我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x斛,1个小桶盛酒y斛,下列方程组正确的是().A.5352x yx y+=⎧⎨+=⎩B.5253x yx y+=⎧⎨+=⎩C.53125x yx y+=⎧⎨+=⎩D.35251x yx y+=⎧⎨+=⎩69.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为( )A .160钱B .155钱C .150钱D .145钱70.《九章算术》是中国传统数学最重要的著作.其中,方程术是《九章算术》最高的数学成就.第八卷记载:“今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问:牛羊各值金几何?”设每头牛值金x 两,每头羊值金y 两,可列方程组为_____.71.阅读下面的诗句:“栖树一群鸭,鸦树不知数,三只栖一树,五只没去处;五只栖一树,闲了一棵树,请你数一数,鸦树各几何?”诗句中谈到的鸦、树数量分别为( ) A .鸦20只,树5棵B .鸦15只,树4棵C .鸦25只,树6棵D .鸦30只,树7棵72.程大位是我国明朝商人,珠算发明家,他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?设大和尚x 人.小和尚y 人.下列方程组正确的是( )A .10031003x y y x +=⎧⎪⎨+=⎪⎩B .1001003x y x y +=⎧⎪⎨+=⎪⎩C .1003100x y x y +=⎧⎨+=⎩D .1003100x y x y +=⎧⎨+=⎩73.《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为_________.74.《九章算术》是中国传统数学最重要的著作之一,奠定了中国传统数学的基本框架.书中记载:今有五雀、六燕,集称之衡,雀惧重,燕惧轻.一雀一燕交而处,衡适平.并燕、雀一斤.问燕、雀一枚各重几何?译文:今有5只雀和6只燕,分别聚集而用衡器称之,聚在一起的雀重,燕轻.将1只雀、1只燕交换位置而放,重量相等.5只雀6只燕总。
应用二元一次方程组-鸡兔同笼(基础练)(解析版)
一、选择题.1.(2020 •淮安区期末)某班学生有x 人,准备分成y 个组开展活动,若每小组7人,则余3人;若每小组8人,则差5人,根据题意,列出方程组( )A .{7y =x +38y =x +5B .{7x =y +38x =y −5C .{7y =x −38y =x +5D .{7y =x +58y =x −3【答案】C【解析】设该班学生人数为x 人,组数为y 组,由题意得{7y =x −38y =x +5. 故选:C .2.(2020 •西山区期末)2020年2月某敬老院为了更好的保护好老人,预防老人们感染新冠病毒,用4800元购进A ,B 口罩共160件,其中A 型口罩每件24元,B 型口罩每件36元.设购买A 型口罩x 件,B 型口罩y 件,依题意列方程组正确的是( )A .{x +y =16036x +24y =4800B .{x +y =16024x +36y =4800C .{36x +24y =160x +y =4800D .{24x +36y =160x +y =4800【答案】B【解析】设购买A 型口罩x 件,B 型口罩y 件,依题意列方程组得:{x +y =16024x +36y =4800. 故选:B .3.(2020 •东西湖区期末)一种饮料有两种包装,5大盒、3小盒共装150瓶,2大盒、6小盒共装100瓶,大盒与小盒每盒各装多少瓶?设大盒装x 瓶,小盒装y 瓶,则可列方程组( )A .{5x +2y =1503x +6y =100B .{5x +2y =1503y +6x =100C .{5x +3y =1502y +6x =100D .{5x +3y =1502x +6y =100 【答案】D【解析】依题意,得:{5x +3y =1502x +6y =100. 故选:D .4.(2020•罗湖区期末)有若干只鸡和兔在同一笼子里,从上面数,有35个头,从下面数,有94只脚,问:笼子中各有多少只鸡和兔?若设有x 只鸡、y 只兔,则可列方程组为( ) 3 应用二元一次方程组-鸡兔同笼(基础练) 第五章 二元一次方程组A .{x +y =942x +4y =35B .{x +y =352x +4y =94C .{x +y =354x +2y =94D .{x +y =944x +2y =35【答案】B【解析】设有x 只鸡、y 只兔,依题意,得:{x +y =352x +4y =94.故选:B . 5.(2020•硚口区模拟)我国古代数学名著《孙子算经》中记载了一道题,大意是:有100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A .{x +y =1003x +3y =100B .{x +y =100x +3y =100C .{x +y =1003x +y =100D .{x +y =1003x +13y =100 【答案】D【解析】设大马有x 匹,小马有y 匹,由题意得: {x +y =1003x +13y =100,故选:D . 6.(2019•本溪模拟)体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x 人,进3个球的有y 人,由题意列出关于x 与y 的方程组为( )进球数 01 2 3 4 5 人数 1 5 x y3 2 A .{x +y =92x +3y =22 B .{x +y =203x +2y =49C .{y −x =1x +y =29D .{x +y =222x +3y =9【答案】A【解析】设进2个球的有x 人,进3个球的有y 人,根据题意得:{x +y =20−1−5−3−22x +3y =49−1×5−4×3−5×2, 即{x +y =92x +3y =22. 故选:A .二、填空题.7.(2019•惠来县期末)惠来县某单位组织34人分别到广州和深圳进行继续教育学习,到广州的人数是到深圳的人数的2倍多1人,求到两地的人数各是多少?设到广州的人数为x 人,到深圳的人数为y 人,请列出满足题意的方程组 .【答案】{x +y =34x =2y +1【解析】设到广州的人数为x 人,到深圳的人数为y 人,根据题意得:{x +y =34x =2y +1.故答案为:{x +y =34x =2y +1. 8.(2018•福田区期末)某工程队承担了道路绿化工程,施工时有两张绿化方案: 甲方案是绿化1米的道路需要A 型花2枝和B 型花3枝,成本是22元;乙方案是绿化1米的道路需要A 型花1枝和B 型花5枝,成本是25元.设A 型花和B 型花每枝的成本分别是x 、y 元,可得方程组 .【答案】 {2x +3y =22x +5y =25【解析】由题意可得,{2x +3y =22x +5y =25, 故答案为:{2x +3y =22x +5y =25. 9.如图,由四个形状相同,大小相等的小矩形,拼成一个大矩形,大矩形的周长为12cm .设小矩形的长为xcm ,宽为ycm ,依题意,可列方程组得 .【答案】{x =2y 2y +2x =6【解析】设小矩形的长为xcm ,宽为ycm ,由题意得:{x =2y 2y +2x =6, 故答案为{x =2y 2y +2x =6. 三、解答题.10.某项球类比赛,每场比赛须分出胜负,其中胜1场得2分,负1场得1分.某队在全部15场比赛中得到26分,求这个队胜、负场数分别是多少?解:设这个队胜了x 场,负了y 场,依题意,得:{x +y =152x +y =26. 解得:{x =11y =4, 答:胜了11场,负了4场.11.(2019•泗县一模)我国古代数学名著《孙子算经》中记载了一道题,大意如下:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问大马和小马各有多少匹?请解答上述问题.解:设大马x 匹,小马y 匹,依题意得:{x +y =1003x +y 3=100, 解得:{x =25y =75, 答:大马有25匹,小马有75匹.12.某超市的水果价格:梨子是5元/千克,苹果是6元/千克,香蕉是4元/千克.试选用上述数据,编一道应用题,使方程组为{5x+6y=53,x−2y=1.解:应用题是:某超市的水果价格:梨子是5元/千克,苹果是6元/千克,香蕉是4元/千克,王阿姨购买了梨子和苹果共花了53元,其中苹果的质量比梨子的质量2倍还多1千克,求王阿姨购买的梨子和苹果的质量分别是多少千克?(答案不唯一)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用二元一次方程组-- 鸡兔同笼
1.从小华家到姥姥家,有一段上坡路和一段下坡路.星期天,小华骑自行车去姥姥家,如果
保持上坡每小时行3km,下坡每小时行5km,他到姥姥家需要行66分钟,从姥姥家回来时需要行78分钟才能到家.那么,从小华家到姥姥家上坡路和下坡路各有多少千米,姥姥家离小华家有多远?
21枚1角与5角的硬币,共是5兀3角,其中1角与5角的硬币各
2.
是多少?
设1角硬币x枚,5角硬币y枚,填写下表,并求出x、y的值.
3小兰在玩具厂劳动,做4个小狗、7个小汽车用去3小时42分,做5个小狗、6个小汽
车用去3小时37分.平均做一个小狗与1个小汽车各用多少时间?
设做1个小狗用x分,做1个小汽车用
x、y的值.
y分,填写下表,并求出
4.某中学某班买了35张电影票,共用250元,其中甲种票每张8元,乙种票每张6元,甲、乙两种票各买多少张?
设甲、乙两种票分别买了x张、y张,填写下表,并求出x、y的值.
5.有大小两种盛米的桶,已经知道5个大桶加上一个小桶可以盛3斛米,1个大桶加上5
个小桶可以盛2斛米,问1个大桶、1个小桶分别可以盛多少斛米?
设大桶盛米量为x斛,小桶盛米量为y斛,填写下表,并求出x、y的值.。