9 数学广角——集合
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9数学广角——集合
【单元目标】
1.使学生借助直观图,利用集体的思想方法解决简单的实际问题。
2.使学生在解决实际问题的过程中体会集合的思想。
3.培养学生善于观察、善于思考,养成良好的学习习惯。
【重点难点】
运用集合知识进行计算。
【教学指导】
“数学广角”是义务教育课程实验教科书人教版数学三年级上册开始新增设的一个内容,涉及的重叠问题是日常生活中应用比较广泛的数学知识。教材例1编排的意图是借助学生熟悉的题材,通过统计表的方式列出参加跳绳比赛和踢毽比赛的学生名单,和实际参加这两个比赛总人数不相符合引起学生的认知冲突,渗透并初步体会集合的有关思想,并利用直观图的方式求出两个小组的总人数。集合是比较系统、抽象的数学思想方法,针对三年级学生的认知水平,在这里只是让学生通过生活中容易理解的题材去初步体会集合思想,为后继学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了。教学时老师不要使用集合、集合的元素、基数、交集、并集等数学化的语言进行描述。
【课时安排】
建议分为1课时:
数学广角——集合………………………………………………1课时
数学广角——集合
【教学内容】
集合的应用。
教材104页的内容。
【教学目标】
1.在具体情境中使学生感受集合的思想,感知集合图的产生过程。
2.能借助直观图,利用集合的思想方法解决简单的实际问题,同时使学生在解决问题的过程中进一步体会集合的思想,进而形成策略。
3.渗透多种方法解决重叠问题的意识,培养学生善于观察、勤于思考的学习习惯。
【教学难点】
1.让学生感知集合的思想,并能初步用集合的思想解决简单的实际问题。
2.对重叠部分的理解。
【教学准备】
课件。
【情境导入】
复习上节课学习的内容。
什么是集合?集合在生活中的哪些地方常见?本节课我们就来学习集合。
【进行新课】
(一)活动:报名参加学校组织的体育运动:跳绳和踢毽。
1.师:“学校准备从每个班中选几名热爱运动的学生参加体育训练,为下学期的校运动会作准备,我们班有感兴趣的同学吗?”
由学生自愿举手报名,每人至少报一项,如果两项都想参加的,可以两项都报。
2.课件展示。
下面要三(1)班参加跳绳、踢毽比赛的学生名单
数一数,参加跳绳的有几位同学?(9人)
参加踢毽的有几位同学?(8人)
(二)游戏:为了能使同学们更方便地看清楚,我们来做一项活动:请报名参加跳绳的同学站到讲台的左边,报名参加踢毽的同学站到讲台的右边。(参与报名的学生活动,站到相应的位置)
(学生不知道站哪边)
师:“哦?为什么?”
生:“因为我们两项运动都参加了,站左边不行,站右边也不行”。师:“请同学们来说说,他们应该怎么站比较好?”
教室里炸开了锅:“站中间、站中间”
三位同学都站到了讲台的中间。
问:那左边、右边、中间分别表示什么?
“左边表示参加跳绳的同学,右边表示参加踢毽的同学,中间是两种训练都参加的同学”
对,这就是我们今天要讲的问题集合。老师用图表示让同学们更加直接地感受集合。
(三)画一画。
1.谁能用画图的方法来表示一下刚才看到的情形?
学生组内讨论,画出自己设计的图来。
师一边观察并及时指导创作。
2.分组展示自己设计的图画,并介绍自己的创意或想法。
3.学生评价,进行整理和改进。
4.向学生介绍韦恩图:像这样的图早在很多年前就有人发明了,他就是英国的数学家韦恩,所以就以“韦恩”来命名,叫韦恩图。也可以叫集合图。
“同学们,想想如果我们比韦恩更早出生的话,我们也能发明这样的图,那这图就该怎么命名了呀?”
5.明确“韦恩图”各部分表示的意思。
看图,说说每一部分分别表示什么?
注意语言的表述:
左边:只参加跳绳的
右边:只参加踢毽的
中间:既参加跳绳的,又参加踢毽的
6.你能列式计算这两个小组的总人数吗?
①6+5+3=14(人)
②9+8-3=14(人)
【课堂作业】
1.同学们排队做操,小明排在从前数第9个,从后数第7个,小明这一排一共有多少个同学?
2.投影出示信息:三年级有20个同学参加竞赛,其中参加数学竞赛的有15人,参加作文竞赛的有11人。
(1)既参加数学竞赛又参加作文竞赛的有几人?
(2)只参加数学竞赛的有几人?
(3)只参加作文竞赛的有几人?
3.同学们去春游,带面包的有78人,带水果的有77人,既带面包又带水果的有48人。参加春游的同学一共有多少人?
【课堂小结】
师:同学们今天表现都很突出,谁愿意来说说自己今天有什么收获?和同学们一起分享。
小结:今天我学会了借助直观图,利用集合的思想,解决简单的重叠问题。
【课后作业】
课本练习二十三1~6题。
数学广角——集合
集合在运动会中的运用
认识韦恩图
1.本节课的设计从学生的认知经验出发,恰当的确定教学目标。学生在解决问题的过程中既让学生感受到用集合图来解决问题的价值,又能让学生掌握使用集合图解决重叠问题的方法。学生在解决问题的过程中既让学生感受到用集合图来解决问题的价值,又能让学生掌握使用集合图解决重叠问题的方法。尤其是最后的巩固、拓展题的呈现,结合了学生的实际,顺其自然,把学生思维的触角引向深入。
2.在问题的解决过程中,注重图形、算式和文本的有效结合。本节课的设计意在充分发挥集合图的作用,同时也加强学生对文字信息的理解。通过站一站、画一画、说一说、想一想等方式让学生在头脑中建立韦恩图的表象,从而真正达到图形、文本和算式的有效结合,既沟通了学生已有的知识经验间的联系,又让学生体会到图形、算式之间的联系,为建立数学模型搭建了很好的平台。
3.本节课是在找准了学生的认知起点和困惑点的基础上,寻找了一条符合学生学习的有效教学途径。首先从学生喜爱的生活情境出发导入新课,唤醒学生已有的知识经验;在探究的过程中,让学生已有的知识经验为学习新知识服务。教师只有课前知学,然后才能知教。然而怎样去知学?又怎样去知教?是件需要课前花足时间去思考的事。