可编程控制器基本原理及应用

合集下载

简述plc的基本工作原理及应用

简述plc的基本工作原理及应用

简述PLC的基本工作原理及应用1. PLC的基本工作原理PLC(可编程逻辑控制器,Programmable Logic Controller)是一种用于自动化控制的电子设备,常用于工业控制系统中。

PLC的基本工作原理如下:1.输入信号采集:PLC通过输入模块采集外部信号,例如开关量输入、模拟量输入等。

2.信号处理:PLC将采集到的输入信号进行逻辑判断和处理,包括计数、计时、比较等操作。

3.控制逻辑:根据事先设定的控制程序和逻辑关系,PLC根据输入信号的状态执行相应的控制操作。

例如,根据传感器信号控制电机的开关状态。

4.输出控制:PLC通过输出模块控制外部执行机构的动作,例如电机、继电器等。

输出信号可以是开关量输出、模拟量输出等。

5.可编程:PLC的控制程序可以根据需要进行编写和修改,方便适应不同的自动化控制需求。

2. PLC的应用领域PLC广泛应用于各个领域的自动化控制系统中,下面列举几个主要的应用领域:2.1 工业生产自动化PLC在工业生产自动化中的应用非常广泛。

它可以控制和监测生产线上的各个设备,实现自动化生产过程。

例如,在汽车制造工厂中,PLC可以控制机器人的动作,完成车身焊接、喷涂等工序。

2.2 智能建筑控制PLC可以实现智能建筑的自动化控制,包括照明、空调、安防等系统的集成控制。

通过PLC的编程,可以实现对建筑设备的自动调节和监测,提高能源利用效率和舒适度。

2.3 交通信号控制PLC在交通信号控制系统中起着至关重要的作用。

它可以根据道路流量和信号灯状态实时调整信号灯的切换,提高交通效率和安全性。

2.4 污水处理PLC在污水处理中的应用也非常常见。

它可以监测和控制处理设备的运行状态,调节污水处理的参数,确保污水处理过程的稳定运行和高效处理。

2.5 自动化仓储与物流PLC在仓储和物流系统中用于自动化控制和管理。

它可以控制货物输送设备的运行,管理货物的存储和出库,提高仓储和物流的效率。

3. 总结PLC作为一种可编程的逻辑控制器,基于输入信号的采集、处理和输出控制实现自动化控制操作。

可编程控制器原理及应用

可编程控制器原理及应用

可编程控制器原理及应用可编程控制器(Programmable Logic Controller,简称PLC)是一种数字式的、微型的、带有专用数字计算机特性的电子装置。

它具有自动化控制系统所需的输入输出接口、控制逻辑、计算处理和数据存储等功能。

可编程控制器可以广泛应用于工业自动化、机械设备、交通运输、建筑物控制、家庭自动化等领域。

本文将从可编程控制器的原理以及应用两个方面进行详细介绍。

一、可编程控制器的原理1.输入接口:可编程控制器通过输入接口将外部信号(例如传感器信号)转换成数字信号,以供中央处理器进行处理。

输入接口通常包括数字输入模块和模拟输入模块,数字输入模块接收开关信号、传感器信号等,模拟输入模块接收模拟传感器信号,例如温度、压力等。

2.中央处理器(CPU):中央处理器是可编程控制器的核心部分,主要负责控制逻辑的运算和数据的处理。

中央处理器通常由微处理器、存储器和定时器等组成,它能够执行各种控制逻辑以及数学运算、函数计算等任务。

3.输出接口:可编程控制器通过输出接口控制执行器(例如电磁阀、电机等)的开关状态。

输出接口通常包括数字输出模块和模拟输出模块,数字输出模块能够控制开关状态,模拟输出模块能够输出模拟信号,例如控制电机的转速。

4.通信接口:可编程控制器可以通过通信接口与其他设备进行数据交换和通信。

通信接口通常包括串行接口、以太网接口等,用于与其他设备(如上位机、HMI人机界面)进行数据交换和实时监控。

二、可编程控制器的应用1.工业自动化:可编程控制器可以实现工厂的自动化生产线控制,对物体进行自动化的分拣、组装、检测等操作。

通过编写控制程序,设置不同的逻辑控制条件,能够实现生产线的高效率、高精度运行。

2.机械设备:可编程控制器可以应用于各种机械设备的控制和监控。

例如,印刷机、包装机、激光切割机等机械设备都可以使用可编程控制器进行自动化控制,提高生产效率和质量。

3.交通运输:可编程控制器可以应用于交通信号灯、地铁、机场行李输送系统等交通运输设备的控制和监控。

可编程逻辑控制器(PLC)的应用与电路设计

可编程逻辑控制器(PLC)的应用与电路设计

可编程逻辑控制器(PLC)的应用与电路设计可编程逻辑控制器(Programmable Logic Controller,简称PLC)是一种专门用于工业自动化控制的电子设备。

它的出现极大地提高了工业生产效率和自动化程度。

本文将介绍PLC的基本原理、应用领域以及电路设计方面的知识。

一、PLC的基本原理可编程逻辑控制器是由微处理器、存储器和各种输入输出接口构成的。

它具备以下三个基本特点:1. 程序化控制:PLC通过内部的程序控制来实现自动化控制功能,它可以根据预先编写好的程序,控制设备的运行状态。

2. 变动性:PLC具有灵活性和可变性,它可以根据需求修改、更新控制程序,无需改变硬件配置。

3. 实时控制:PLC通过对输入信号的实时采集和处理,可以在极短的时间内做出反应,并输出相应的控制信号。

二、PLC的应用领域PLC广泛应用于各个行业的自动化控制系统中,常见的应用领域如下:1. 工业制造:PLC在工业制造中被广泛应用,用于控制传送带、机床、机械手等设备的运行状态,实现生产线的自动化控制。

2. 建筑工程:PLC可以用于控制大楼的照明、消防系统、电梯等设备,实现对建筑物的智能化管理。

3. 能源管理:PLC可用于控制电力系统、水处理系统、制冷系统等,实现对能源的高效管理和优化利用。

4. 交通运输:PLC可应用于交通信号灯、火车信号系统、地铁运行控制等方面,提高交通流畅度和安全性。

5. 医疗设备:PLC可以用于管理医疗设备、监控患者的生命体征,实现医疗过程的自动化和数字化。

三、PLC电路设计在PLC电路设计方面,需要考虑以下几个关键要素:1. 输入输出接口电路设计:PLC的输入输出接口电路是连接外部设备和PLC的关键部分。

在设计过程中,需要根据外部设备信号类型和电压范围,选择合适的电路保护和电平转换方案。

2. 电源电路设计:PLC需要稳定可靠的电源供电。

电源电路设计需要考虑电源的稳定性、过载保护和短路保护等因素,在设计过程中,可以采用电源滤波器、稳压模块等组件。

可编程控制器(PLC)原理及应用讲解

可编程控制器(PLC)原理及应用讲解

用户程序存储区:存放用户程序
变量(数据)存储区:存放内 部变量或数据
通常采用低功耗的 CMOS-RAM存储器加 备用电池,可读写
3.输入/输出接口: 是CPU连接工业现场设备的桥梁。
CPU:
外部设备:
标准电平
开关量、模拟量
弱电 数字量
输入/输出接口 不同电压等级的交流、直流量 高速、低速信号
远程、本地信号
继电器输出 输出
晶体管输出 方式
晶闸管输出
请问PLC输出24V是否直接驱动接触器,接触器是不是 直流接触器?补充:PLC控制的接触器控制220V的电 路。要不要中间还要有什么转换电路。
PLC有多种输出控制,常见的是晶闸管,小型继电器, 理论上是可以直接控制接触器的,但是万一你的接触
器质量不好,是要烧坏PLC的,所以中间还是加套中间
三、主要功能
3.计数控制 可编程序控制器具有计数控制功能。它为用户提供若干个计数 器并设置了记数指令。计数值可由用户在编程时设定,并能在运行 中被读出与修改,有些可编程序控制器还设置了加计数、减计数两 种不同的记数方式。
4. A/D、D/A转换 大多数可编程序控制器还具有摸/数(A/D)和数/摸(D/A)转 换功能,能完成对模拟量的检测与控制。
“、“非”等逻辑运算指令,能够描述继电器触点的串联、并联、 串并联、并串联等各种连接。因此它可以代替继电器进行组合逻辑 和顺序逻辑控制。
2. 定时控制 可编程序控制器具有定时控制功能。它为用户提供若干个定时 器并设置了定时指令。定时时间可由用户在编程时设定,并能在运 行中被读出与修改,定时时间的最小单位也可在一定的范围内进行 选择,因此,使用灵活,操作方便。
称BCD码,即BCD代码。Binary-Coded Decimal‎,简称BCD,称 BCD码或二-十进制代码,亦称二进码十进数。是一种二进制的数字

可编程控制器工作原理

可编程控制器工作原理

可编程控制器工作原理
可编程控制器(Programmable Logic Controller,PLC)是一种
采用微处理器作为核心控制元件、具有可编程记忆功能、控制离散工业过程的工控设备。

其工作原理主要包括输入信号的采集、逻辑控制的执行以及输出信号的输出三个过程。

首先,PLC通过输入接口采集外部输入信号。

输入接口可以
接收来自传感器、按钮以及其他外部设备的信号,并将其转换为数字信号。

这些输入信号可以表示各种状态,如开关的开关状态、传感器的检测结果等。

其次,PLC通过内部的逻辑控制程序对输入信号进行逻辑运
算和处理。

逻辑控制程序由程序员编写,其中包括了各种逻辑运算、条件判断以及运算结果的存储等。

当输入信号满足特定的逻辑条件时,PLC会执行相应的控制操作。

最后,PLC通过输出接口将逻辑控制的结果输出到外部设备。

输出接口可以控制继电器、电磁阀等各种执行机构,实现对工业过程的控制。

根据控制需要,PLC可以将逻辑结果通过输
出信号转换为电压、电流、频率等形式,以满足不同设备的工作需求。

总的来说,PLC的工作原理是通过采集输入信号,经过逻辑
控制程序的运算处理,最后将控制结果输出到外部设备,实现对工业过程的自动控制。

其可编程特性使得PLC能够根据具
体的工控需求进行灵活的功能扩展和逻辑代码编写,能够广泛应用于工业自动化控制领域。

可编程控制器原理及其应用

可编程控制器原理及其应用

可编程控制器原理及其应用在现代工业自动化系统中,可编程控制器(PLC)扮演着至关重要的角色。

它作为一种专门用于工业控制的计算机,广泛应用于各种自动化设备和生产线中。

本文将介绍可编程控制器的原理和应用,并探讨其在工业领域中的重要性。

一、可编程控制器的原理可编程控制器的原理基于它的硬件和软件系统。

硬件系统由中央处理器(CPU)、内存、输入/输出(I/O)模块、通信接口和电源组成。

软件系统则包括操作系统、编程软件和用户自定义程序。

可编程控制器的工作原理是通过接收来自传感器的输入信号,经过逻辑判断和运算,控制执行器输出相应的控制信号,实现对设备和生产线的自动控制。

它的核心是中央处理器,负责解释和执行用户编写的程序指令。

内存用于存储程序和数据,输入/输出模块用于与外部设备进行数据交互,通信接口用于与其他设备进行通信。

二、可编程控制器的应用1. 工业自动化控制可编程控制器在工业自动化控制中发挥着关键作用。

它可以对多个设备和生产线进行集中控制和管理,提高生产效率和质量。

例如,在汽车制造中,可编程控制器可以实现自动化装配线的运行控制,确保汽车零部件的准确安装和高效生产。

2. 机械设备控制可编程控制器广泛应用于各种机械设备的控制中。

它可以实现对机械设备的自动启停、速度调节和位置控制等功能。

例如,在包装机械中,可编程控制器可以根据产品尺寸和数量自动调整包装速度和包装形式,提高包装效率和可靠性。

3. 过程控制可编程控制器还可以用于各种过程控制领域,如化工、电力和环境控制等。

它可以实现对生产过程中的温度、压力、流量等参数进行监测和控制,确保过程的稳定和安全。

例如,在化工生产中,可编程控制器可以根据反馈信号自动调整化学反应的温度和物料投入量,实现精确控制和优化生产。

4. 智能建筑控制随着智能建筑的发展,可编程控制器在建筑控制领域中的应用也越来越广泛。

它可以实现对建筑物的照明、空调、安防等系统进行集中控制和管理,提高能源利用效率和舒适性。

PLC的基本原理及工作方式

PLC的基本原理及工作方式

PLC的基本原理及工作方式PLC(可编程逻辑控制器)是一种用于控制机器和自动化系统的计算机设备。

它以电子方式模拟和控制物理过程,广泛应用于工业生产、自动化系统和机械设备的控制。

本文将介绍PLC的基本原理和工作方式。

一、PLC的基本原理PLC的核心原理是基于逻辑控制。

它使用硬件电路和软件编程相结合的方式,实现对设备和过程的控制。

PLC的基本原理包括输入、输出和处理。

1. 输入(Input):PLC接收来自传感器、按钮和其他设备的输入信号。

这些输入信号可以是开关状态、传感器检测到的物理量或其他控制信号。

2. 输出(Output):PLC根据输入信号的分析和处理,通过输出接口控制执行器、马达、阀门等设备的工作状态。

输出信号可以包括开关信号、驱动电压等。

3. 处理(Processing):PLC中有一个中央处理器(CPU),负责执行编程逻辑。

它将输入信号和存储在其内部存储器中的程序进行比较、计算和逻辑运算,从而确定正确的输出信号。

其中,PLC的内部存储器由程序和数据两部分组成。

程序存储器存储PLC的控制程序,用于处理输入信号并输出相应信号。

数据存储器用于存储各类变量、计数器和定时器等数据。

二、PLC的工作方式PLC的工作方式可以分为扫描周期和周期内的逻辑运算。

1. 扫描周期(Scan Cycle):PLC以固定的扫描周期工作,通常为几毫秒至几十毫秒不等。

扫描周期是指PLC运行一次完整的输入-处理-输出过程所需要的时间。

在一个扫描周期内,PLC对输入信号进行采集,对采集到的信号进行处理,然后确定相应的输出信号。

2. 周期内的逻辑运算:在一个扫描周期内,PLC执行编程逻辑,对输入信号进行处理和判断,并根据程序设定的条件和逻辑进行计算。

根据计算结果,PLC确定输出信号的状态。

如果程序中有循环、计数器或定时器,PLC会根据这些设定进行相应的操作。

PLC的工作方式可分为三个步骤:输入采样、逻辑处理和输出响应。

在输入采样阶段,PLC读取输入信号的状态,并将其存储在内部存储器中。

可编程控制器原理及应用教程ppt课件

可编程控制器原理及应用教程ppt课件
第三代:70年代末期到80年代中期。其特点是:CPU采用8位 和16位微处理器,有些还采用多微处理器结构,存储器采用 EPROM、EAROM、CMOSRAM等 ;
第四代:80年代中期到90年代中期。PC全面使用8位、16位微 处理芯片的位片式芯片,处理速度也达到1us/步 ;
第五代:90年代中期至今。PC使用16位和32位的微处理器芯 片,有的已使用RISC芯片。
思考:可编程控制器的基本特点是什么?
可编程控制器的基本特点
1. 灵活、通用
2“34... 专可平-无控编接-实变量----触制均为-靠--现的的程线---点系无P-适-性控话接C-简简的统故P用采C应制,线半中高障单单是用微导 的恶时功只即、的、通机体接间劣能 需 可是抗实使过电线一的微的 要 。路老干般现存用电工, 修来化可控扰储子方完、如 改业达制技在能便成脱1果 程环术,0存的焊力控 序万境,使,、储强小大制 以而用因触器时量功 及此点设的中左的不电能 改是计右开的会弧需动汇的关程出等要极动编计现现序作改少语继象算是言电。机由器,” 5. 1难 机 功-)-硬硬于-能-件-件掌P强措C和握还施,软采:要件取了求知以使识下用。主者而要具P措C有施采来一用提定面高水向其平控可的靠制计性过。算程、 6. 均面 体采向积用问小对严题格电,重的措源“量施变进压自轻行器然,屏、易语蔽C于言P,U”实以、编防编现外程程机界器,电干等容扰主一易;要体掌部化握件,。
ቤተ መጻሕፍቲ ባይዱ
原理图
主电路原理图
传统的继电接触控制原理图 PLC控制原理图原理图
问题提出:
传统的继电接触控制系统,只能改变 某些硬件接线,才能完成上述的两种控制 方式,而可编程控制器控制系统可在不改 变硬件接线的情况下,通过修改程序而实 现控制顺序的变化。控制两个电动机的顺 序运行,控制复杂程度不高,如用继电接 触控制系统已够费时的了,何况汽车生产 流水线的控制系统?

可编程控制器原理及应用实例

可编程控制器原理及应用实例

可编程控制器原理及应用实例可编程控制器(Programmable Logic Controller,简称PLC)是一种用于工业自动化控制系统的数字化电子设备。

它可以根据预先编制的控制程序,对输入信号进行处理后产生输出信号,用于控制各种生产设备和过程。

PLC的工作原理主要有三个方面:1.输入模块:用于接收各种输入信号,如开关信号、传感器信号等。

输入模块将这些信号转换为数字信号,输入给PLC的中央处理器。

2.中央处理器:PLC的核心部分,负责接收输入信号,并根据预设的控制程序进行处理。

中央处理器通常由微处理器和存储器组成,可以执行各种逻辑运算和控制任务。

3.输出模块:用于产生控制信号,将处理后的结果输出给执行器或其他设备。

输出模块将数字信号转换为相应的电压、电流或其他形式的信号,用于控制执行器的运动或其他动作。

PLC的应用范围非常广泛,以下是其中的一些实例:1.工业生产线控制:PLC可以用于控制各种生产设备的运行,如机器人、输送带、气缸等。

根据输入信号和预设的控制程序,PLC可以实现自动化控制,提高生产效率和质量。

2.建筑自动化控制:PLC可以用于控制建筑物的照明、空调、门禁等系统。

通过输入信号和控制程序,PLC可以自动调节各种设备的运行状态,提高能源利用效率。

3.交通信号控制:PLC可以用于控制交通信号灯的变换,根据交通流量和需求调整红绿灯的时间间隔,优化交通流动性。

4.环境监测与控制:PLC可以用于监测和控制环境参数,如温度、湿度、气压等。

通过输入信号和控制程序,PLC可以实现环境参数的自动调节,保持良好的工作环境。

5.电力系统控制:PLC可以用于电力系统的监测和控制,如对发电机、变压器、断路器等设备的状态进行实时监测和控制,保证电力系统的正常运行。

总之,可编程控制器通过输入、处理和输出信号的方式,实现了对各种设备和过程的自动控制。

它在工业自动化、建筑自动化、交通控制、环境监测等领域有着广泛的应用。

第九章 可编程控制器的原理及应用

第九章 可编程控制器的原理及应用
例如C56即表示该种型号的可编程控制器 有56个I/O点。其中32个输入点,24个输出点。 由于FP1系列可编程控制器的输入/输出点数 较少,所以FP1系列属小型机。
返回
二、FP1系列PLC的编程元件
输入继电器(X) 输入继电器是PLC接收外部开关量信号的 窗口。它的动合触点、动断触点取用次数不限。 输入继电器的状态唯一取决于外部输入信号的 状态。
动0 合触S点T X0X从0 左母X线0闭开合始 驱1 动输O出T继Y电0器线Y圈0接Y0通 动2 断触S点T/X1X从1 左母X线1断开开始 驱3 动输O出T继Y电1器线Y圈1接Y1通 驱4 动输O出T继R电1器线R圈1接R1通 动5 合触S点T 从R左1母线R开1触始点闭合 驱6 动输O出T继Y电2器线Y圈2接Y2通
计数器(C)
计数器(C)的触点是计数器指令(CT) 的输出。如果计数器指令计数完毕,则其动合 触点闭合,动断触点断开。
返回
三、FP1系列PLC的主要性能 以FP1系列的C56为例 1. I/O点数32/24 程序容量 5000步 扫描速度 1.6msK 指令数 基本指令81 高级指令111
返回
2. I/O地址分配 X为I/O区的输入继电器,Y为I/O区的输出继
解:
X0 X1 Y0
Y1
返回
3.或(OR)、或非(OR/)指令
ORO:R、并O联R动/ 合用触于点单的个连触接点指与令前。面电路的并联, 并O联R/点:的并左联端动从断母触线点(时或的S连T接、指ST令/点。)开始,右 端与前面一条指令对应触点的右端相连。
指令
梯形图
语句表
0 ST X3
OR
1 OR Y4
有很好的柔性。 4. 体积小、重量轻、功耗低。

可编程控制器原理及应用

可编程控制器原理及应用

一、可编程控制器概述
1.1 1.2 1.3 1.4 可编程控制器的产生 可编程控制器的特点 可编程控制器的分类 PLC的应用和发展 的应用和发展
1.2 可编程控制器的特点 可编程控制器是面向用户的专用工业控制计 算机,具有许多明显的特点: ①可靠性高、抗干扰能力强; ②编程直观、简单; ③适应性好; ④功能完善、接口功能强,目前的可编程控 制器具有数字量和模拟量的输入输出、逻辑和算 术运算、定时、计算、顺序控制、通信、人机对 话、自检、记录和显示等功能,使设备控制水平 大大提高。
PLC的更新很快:
PLC技术发展特点为高速度、大容量、系列化、模块化、 多品种。 PLC的编程语言、编程工具多样化,通信联网功能越来 越强。 PLC的联网和通信可分为两类:一类是PLC之间的联网 通信,多制造厂商都有自己的专有联网手段;另一类是PLC 与计算机之间的联网通信,一般PLC都有通信模块用于计算 机通信。 在网络中要有通用的通信标准,否则在一个网络中不能 连接许多厂商的产品。美国通用汽车公司在1983年提出的制 造自动化协议(MAP——Manufacture Automation Protocol) 是众多通信标准中发展最快的一个。MAP的主要特点是提供 以开放性为基础的局部网络,使来自许多厂商的设备可以通 过相同的通信协议而相互连接。由于MAP的出现,推动了通 信标准化的进程。
二、PLC组成与工作原理 PLC组成与工作原理
2.1 PLC的组成及其各部份的功能 的组成及其各部份的功能 2.2 PLC的编程语言 的编程语言 2.3 PLC的工作原理 的工作原理
2.3 PLC的工作原理 的工作原理 PLC采用循环扫描的工作方式,其扫描过程如 下图:
内部处理
停止
通信操作 输入处理 程序执行 输出处理

可编程逻辑控制器的工作原理与应用

可编程逻辑控制器的工作原理与应用

可编程逻辑控制器的工作原理与应用可编程逻辑控制器(PLC)是一种广泛应用于自动化控制领域的电子设备。

它可实现对生产线上各种设备的自动控制和监测,提高生产效率和质量。

本文将详细介绍PLC的工作原理和应用,并分点列出相关内容。

一、可编程逻辑控制器的工作原理PLC的工作原理可以分为以下几个步骤:1. 输入信号采集:PLC通过输入模块采集各种传感器的信号,如按钮开关、温度传感器、压力传感器等。

2. 信号处理:PLC将采集到的信号进行处理,包括滤波、去抖动等,以确保信号的准确性和稳定性。

3. 逻辑运算:PLC根据预设的逻辑规则对输入信号进行运算和判断,以确定输出信号的状态。

逻辑规则通常由用户通过编程来设定。

4. 输出控制:PLC通过输出模块控制各种执行器的动作,如电动阀门、电机、传送带等。

PLC根据逻辑运算的结果发送控制信号,实现对输出设备的控制。

5. 监测和反馈:PLC可通过输出模块接收执行器的反馈信号,如电机的转速、阀门的开闭状态等。

通过监测和比较反馈信号与预设值,PLC可以检测设备故障并采取相应措施。

6. 编程和参数设置:PLC的工作原理基于用户编写的程序,用户可通过特定的编程语言进行程序设计和参数设置。

编程语言通常采用类似于图形化的函数块图、梯形图等。

二、可编程逻辑控制器的应用PLC广泛应用于各个行业的自动化控制系统中,以下是几个常见的应用领域:1. 工业自动化:PLC在工业自动化中的应用非常广泛,包括生产线控制、装配线控制、流水线控制等。

PLC可根据生产需求和工艺参数,实现设备的自动运行、调节和监测。

2. 汽车制造:在汽车制造中,PLC可用于控制生产线上的各个工艺环节,如焊接、喷涂、装配等。

通过PLC的精确控制,可以大幅提升汽车制造的效率和质量。

3. 建筑自动化:PLC可以用于建筑物内部的通风、空调、照明等系统的控制。

通过PLC的智能控制,可以实现能源的节约和优化。

4. 环境监测:PLC可以用于环境监测系统中,实现对温度、湿度、气体浓度等参数的采集和控制。

PLC的基本工作原理和功能解析

PLC的基本工作原理和功能解析

PLC的基本工作原理和功能解析PLC(可编程逻辑控制器)是一种数字化电子设备,广泛应用于自动化控制系统中。

它具备高度的灵活性和可编程性,能够以不同的方式执行各种控制任务。

本文将对PLC的基本工作原理和功能进行解析,帮助读者更好地理解和应用PLC技术。

一、PLC的基本工作原理PLC的运行原理可以分为三个基本步骤:输入、处理和输出。

输入:PLC通过输入模块接收来自不同传感器、按钮、开关等设备的信号。

这些信号作为系统的输入,用于感知外部环境的变化。

常见的输入信号包括开关状态(开/关)、电压信号、光传感器信号等。

处理:接收到输入信号后,PLC将根据程序中预设的逻辑和条件对输入信号进行处理。

PLC的中央处理器(CPU)会根据输入信号的状态和编写好的程序,进行数据处理、逻辑运算、定时计数等操作。

处理过程中,PLC可以实时监测、判断和控制各个输入信号。

输出:经过处理后,PLC将根据程序的逻辑结果,通过输出模块向执行器、电机、继电器等输出装置发送控制信号。

输出信号的作用是实现用户对系统的控制,比如控制电机的转动、开启或关闭继电器等操作。

PLC通过输入、处理和输出三个步骤实现对自动化系统的完整控制,其可编程性和逻辑处理能力保证了系统的高度灵活性和可靠性。

二、PLC的基本功能PLC作为一种专门用于控制过程的电子设备,具备多种功能,如下所述:1. 逻辑控制功能:PLC能够实现开关、定时、计数等逻辑控制功能。

通过编写程序来定义不同输入信号的处理方式,实现对控制系统的逻辑控制。

2. 运算处理功能:PLC内部的中央处理器具备数学运算和逻辑运算的能力,可实现各种算术运算、逻辑运算和数据处理操作。

这样,PLC 可以根据特定条件进行判断,并执行相应的控制策略。

3. 通信功能:现代PLC设备具备丰富的通信接口,可以与其他设备进行数据交换和通信。

通过串口、以太网等通信方式,PLC可实现与上位机、其他PLC、传感器等设备的联网通信,从而实现远程监控、集中控制等功能。

第九章 可编程控制器的原理及应用

第九章 可编程控制器的原理及应用
扫描速度是指扫描1K字用户程序所需的时 间,通常以ms/K字为单位。
返回
第二节 松下FP1可编程控制器 介绍
FP1产品简介 FP1系列PLC的编程元件 FP1系列PLC的主要性能
返回
一、FP1产品简介
FP1是一种功能非常强的小型机,该产品 系列有紧凑小巧的C14型与C16型,还有具有 高级处理功能的C24、C40、C56、C72型等 多种规格。在大写字母C后面的阿拉伯数字是 表示该种型号可编程控制器的输入、输出点 数之和。
例如C56即表示该种型号的可编程控制器 有56个I/O点。其中32个输入点,24个输出点。 由于FP1系列可编程控制器的输入/输出点数 较少,所以FP1系列属小型机。
返回
二、FP1系列PLC的编程元件
输入继电器(X) 输入继电器是PLC接收外部开关量信号的
窗口。它的动合触点、动断触点取用次数不限。 输入继电器的状态唯一取决于外部输入信号的 状态。
解:
X0 X1 Y0
Y1
返回
3.或(OR)、或非(OR/)指令
ORO:R、并O联R动/ 合用触于点单的个连触接点指与令前。面电路的并联, 并O联R/点:的并左联端动从断母触线点(时或的S连T接、指ST令/点。)开始,右 端与前面一条指令对应触点的右端相连。
指令
梯形图
语句表
0 ST X3
OR
1 OR Y4
返回
2.非(/)、与(AN)、与非(AN/)指令 /:将该指令处的运算结果求反。 AN:串联动合触点时的连接指令。 AN/ 串联动断触点时的连接指令。
指令
梯形图
AN AN/
语句 表
0 ST X0 1 AN X2 2 OT Y3 3 ST Y3 4 AN/ X1 5 OT R1

可编程控制器原理与应用电子教案

可编程控制器原理与应用电子教案
三菱FX2-32MR型PLC输出继电器(Y)以8进制编码, 编号为Y000~Y007、Y010~Y017共16点,每4点共用一个 公共端口(COM),以适应不同负载。
输 出 回 路 的 连 接
3.通讯接口 :
三菱FX系列PLC的通讯接口主要有RS-232C、RS-422和RS485等。 FX2系列PLC与计算机的通讯采用RS-232C接口,用一根SC09电缆连接。SC-09电缆如图所示。
栈操作示意图
这3条指令可将当前接点的运算结果保存起来, 当需要该接点处的运算结果时再读出,以保证多 重输出电路的正确连接。
指令的应用举例
说明:
(1)MPS、MRD、MPP指令不带操作元件。
(2)多重输出指令为组合指令,不能单独使用,MPS、 MPP指令必须成对使用,但使用次数应少于11次。
(3)MRD指令可以多次出现,但应保证多重输出电路不 超过24行。
逻辑运算、定时、计数

编 程
算术运算、数据处理和传输


器 通信联网


能 故障自诊断
PLC、CAD/CAM、机器人
将会成为工业自动化的三大支柱
1.2 可编程控制器构成及工作原理
一、可编程控制器构成 1.PLC基本组成
(1)CPU:中央处理器,PLC的核心
控制器 组 成
运算器
作用: 运行用户程序,监控I/O接口状态, 作出逻辑判断和进行数据处理
(3)并联电路块串联时,并联支路多的电路块尽量靠近 左母线。
(4)桥式电路应转换为连接关系更明确的电路。 (5)在梯形图中一般不宜出现双线圈。
本章结束
第2章 可编程控制器基本指令的应用
2.1 三相交流异步电动机的正反转控制 2.2 流水灯控制 2.3电动机的单按钮开关控制 2.4 小车自动往返控制

可编程控制器原理及应用

可编程控制器原理及应用

五、S7-200PLC基本逻辑指令
(1)、逻辑取及线圈驱动指令 1)逻辑取及线圈驱动指令为LD、LDN和= LD(Load):取指令。用于网络块逻辑运算开始的常开
触点与母线的连接。 LDN(Load Not):取反指令。用于网络块逻辑运算开 始的常闭触点与母线的连接 =(OUT):线圈驱动指令。 2)取反指令NOT 将复杂逻辑结果取反。
一、概述
1、继电器接触器控制系统的特点 20世纪70年代前 继电器接触器控制系统 优点:结构简单、容易掌握、价格低廉,能满足大部分场合电气顺序

逻辑控制的要求。 缺点:设备体积大、可靠性差、动作速度慢、功能弱,难于实现较复 杂的控制;特别是由于它是靠硬连线逻辑构成的系统,极限复杂繁琐, 生产工艺或对象需要改变时,原有的接线和控制柜就要更换,所以通 用性和灵活性较差。 2、可编程序逻辑控制器的定义 可编程序逻辑控制器(Programmable Logic Cntroller)。简称为PLC 可编程序控制器是一种数字运算操作的电子系统,专为在工业环境下 应用而设计。它采用可编程序的存储器,用来在其内部存储执行逻辑 运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字 式、模拟式的输入和输出,控制各种类型的机械或生产过程。可编程 序控制器及其有关设备,都应按易于使工业控制系统形成一个整体, 易于扩充其功能的原则设计。
3、可编程控制器的工作特点 1)使用于工业环境,抗干扰能力强 2)可靠性高。无故障工作时间(平均)系统。 3)控制能力极强。算术、逻辑运算、定时、计数、 PID运算、过程控制、通讯等。 4)使用、编程方便。梯形图、语句表、功能图、控制 系统流程图等编程语言通俗易懂,使用方便。 5)组成灵活。小型PLC为整体结构,并可外接I/O扩 展模块构成PLC控制系统。中大型PLC采用模块式结构, 有各种专用功能模块供选用和组合,可组成大小和要 求不同的控制系统。 所以,可编程控制器可以成为全功能工业控制计算机。

可编程控制器的原理及应用

可编程控制器的原理及应用

可编程控制器的原理及应用
可编程控制器(Programmable Logic Controller,PLC)是一种用于工业自动化的控制设备,类似于计算机,具有处理能力和存储能力。

PLC的原理是通过输入和输出模块与现场设备进行通信,接收传感器信号并对执行器输出控制信号来实现对设备的控制。

PLC的工作原理可以简化为以下几个步骤:
1. 输入模块接收外部信号,如各种传感器信号、按钮信号等。

2. PLC的中央处理器(CPU)接收输入模块的信号,并根据程序内存中存储的逻辑规则进行逻辑运算和决策。

3. CPU根据逻辑规则的运算结果,生成相应的输出信号。

4. 输出模块接收CPU生成的输出信号,将其转换为电信号或其他形式的信号,再通过执行器控制现场设备。

PLC广泛应用于工业控制领域,其主要应用有以下几个方面:
1. 自动化生产线控制:PLC可控制各种设备,如机械臂、输送带、自动流水线等,实现自动化生产和加工。

2. 过程控制:PLC可以对复杂的工业过程进行控制,如温度、压力、流量等参数的调节和监控。

3. 机器人控制:PLC可以与机器人系统集成,通过PLC对机器人的运动轨迹和操作进行精确控制。

4. 交通灯控制:PLC可应用于交通信号灯控制系统,通过传感器感知路况和交
通流量,并根据设定的规则控制交通灯的颜色和时序,实现交通流畅和安全。

5. 楼宇自动化:PLC可用于大型建筑物的自动化控制,如照明、空调、电梯、门禁等设备的控制和监控。

总之,PLC作为一种可编程的控制器,通过输入和输出模块与现场设备通信,实现自动化设备的控制和监控。

它在工业自动化领域有广泛的应用和重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(一)矩阵输出
Y000
Y001
采 用 8 个 输 出 组 成 4×4 矩阵,可接16个输出设 备。要使某个负载接通 工作,只要控制它所在 的行与列对应的输出继 电器接通即可。这样用 8 个 输 出 点 就 可 控 制 16 个不同控制要求的负载。
Y002
Y003
PLC
COM0 Y004 Y005 Y006 Y007
17
(二) PLC的安全保护
1.短路保护 当PLC输出控制的负载短路时,为了避免PLC内部的 输出元件损坏,应该在PLC输出的负载回路中加装熔 断器,进行短路保护。
2.感性输入/输出的处理 PLC的输入端和输出端常常接有感性元件。如果是直 流感性元件,应在其两端并联续流二极管;如果是交 流元件,应在其两端并联阻容电路,从而抑制电路断 开时产生的电弧对PLC内部输入、输出元件的影响。
系统中的某些输入 信号功能简单、涉 及面很窄,如手动 操作按钮、电动机 过载保护的热继电 器触点等,有时就 没 有 必 要 作 为 PLC 输入 。
Y000
Y001 PLC
Y002
COM
FR1 KM1
SB1
FR2
KM2
SB2
FR3
KM3
SB3 手动
~ 自动
图 输入信号设在PLC外部
13
二、减少输出点数的方法
KM6
图 分组输出
15
(三)并联输出
当两个通断状态完全相同的负载,可并联后共用 PLC的一个输出点。
(四)负载多功能化
一个负载实现多种用途。
(五)某些输出设备可不进PLC
系统中某些相对独立、比较简单的部分可考虑直 接用继电器电路控制。
16
三、PLC应用中的若干问题
(一) 对PLC的某些输入信号的处理
有关
四、电源模块及其它外设的选择
1.电源模块的选择 2.编程器的选择 3.写入器的选择
10
第三节 节省PLC输入输出点数的方法
一、减少输入点数的方法
1.分时分组输入
SA
+24V
“自动”输入信号S1~S8”、
S1
“手动”输入信号
X010
X000 Q1
Q1~Q8 共 用 PLC 输 入 点 X000~X007. 用 “ 工 作 方 式”选择开关SA来切换 “自动”和“手动”信 号输入电路。
COM1
KM1
电源
图 矩阵输出
14
(二)分组输出
当两组负载不会同时工 作,可通过外部转换开 关 或 通 过 受 PLC 控 制 的 电器触点进行切换,这 样 PLC 的 每 个 输 出 点 可 以控制两个不同时工作 的负载。
COM0 Y000
Y001
Y002
电源
SA
1
2

KM1
KM2
KM3
KM4 KM5
6
三、I/O模块的选择
(一)开关量输入模块的选择
1.输入信号的类型及电 压等级的选择
2.输入接线方式选择
按输入电路接线方 式的不同,开关量 输入模块可分为汇 点式输入和分组式 输入两种
COM IN0 IN1 IN2 ┊
INn
COM1 IN0 IN1 IN2 COM2 IN3 IN4
(a)
(b)
图 输入的接线方式 (a)汇点式输入 (b)分组式输入
2)在满足控制要求的前提下,力求使控制系统简单、经 济、使用及维修方便;
3)保证控制系统安全可靠; 4)应考虑生产的发展和工艺的改进,在选择PLC的型号、
I/O点数和存储器容量等内容时,应留有适当的余量, 以利于系统的调整和扩充。
3
二、PLC控制系统设计的一般步骤
1.熟悉被控对象,制定控制方案; 2.确定I/O设备; 3.选择PLC : 选择时主要包括PLC机型、容量、I/O模
8
COM0 OUT0 OUT1 OUT2 COM1 OUT3 OUT4 OUT5
COM0 OUT0 COM1 OUT1 COM2 OUT2 COM3 OUT3
(a)
(b)
图 输出的接线方式 (a)分组式输出 (b)分隔式输出
9
3.输出电流的选择 4.注意同时接通的输出点数量
选择输出模块时,还应考虑能同时接通的输出点 数量。一般来说,同时接通的点数不要超出同一公共 端输出点数的60%。 5.输出的最大负载电流与负载类型、环境温度等因素
块、电源的选择; 4.分配PLC的I/O地址:列出输入/输出设备与PLC 输入
输出端子的对照表;
5.设计软件及硬件; 6.联机调试; 7.整理技术文件:包括设计说明书、电气安装图、电气
元件明细表及使用说明书等。
4
第二节 PLC的选择
一、PLC的机型选择
(一)合理 的结构型式
(二)安装 方式的选择
(三)相当 的功能要求
S2 Q2
┋ S8
Q8
X001 ┋ X007
图 分时分组输入
11
2.输入触点的合并
例如某负载可在多处 起动和停止,可以将 三个起动信号并联, 将三个停止信号串联, 分别送给PLC的两个 输入点
SB4 SB5 SB6
SB1 SB2 SB3
X001 X002
PLC
+24V
图 输入触点合并
12
3.将信号设置在PLC之外
可编程控制器基本原理及 应用
可编程序控制器选择与应用
第一节 PLC应用系统设计的内容和步骤 第二节 PLC的选择 第三节 节省PLC输入输出点数的方法 第四节 PLC在逻辑控制系统中的应用实例
2
第一节 PLC应用系统设计的内容和步骤
一、PLC控制系统设计的基本原则
1)充分发挥PLC功能,最大限度地满足被控对象的控制 要求;
7
3.注意同时接通的输入点数量 对于选用高密度的输入模块(如32点、48点等),应考 虑该模块同时接通的点数一般不要超过输入点数的60%。
(二)开关量输出模块的选择
1.输出方式的选择 开关量输出模块有三种输出方式:继电器输出、晶闸 管输出和晶体管输出。
2.输出接线方式的选择 按PLC的输出接线方式的不同,一般有分组式输出和 分隔式输出两种 。
1) 如果PLC输入设备采用两线
式传感器(如接近开关等)时, 两线式
PLC
它们的漏电流较大,可能会出 传感器
输入
现错误的输入信号。为了避免
这种现象,可在输入端并联旁
路电阻R,
图 两线式传感器输入的处理
2)如果PLC输入信号由晶体管提供,则要求晶体管的截 止电阻应大于10KΩ,导通电阻应小于800Ω。
(四)响应 速度的要求
(五)系统 可靠性要求
(六)机型 统一
5
二、PLC的容量选择
(一)I/O点数
通常I/O点数是根据被控对象的输入、输出信号的实际 需要,再加上10%~15%的备用量来确定。
(二)用户存储容量
一般可按下式估算,再按实际需要留适当的余量(20 %~30%)来选择。 存储容量=开关量I/O点总数×10+模拟量通道数×100
相关文档
最新文档