2020-2021学年广西省中考数学模拟试题及答案解析

合集下载

广西2021年中考数学模拟试题含答案(一)

广西2021年中考数学模拟试题含答案(一)

2021年广西初中学业水平考试数学模拟卷(一)(考试时间:120分钟满分:120分)一、选择题(本大题共12小题,每小题只有一个正确选项,每小题3分,共36分)1.2 020的倒数是(C)A.2 020 B.-2 020 C.12 020D.-12 0202.下列图案,不是轴对称图形的是(B)A B C D3.南宁2020年7月28日讯:广西2020年“央企入桂”新闻发布会在南宁举行,会上介绍了今年以来,“央企入桂”活动签约项目(协议)177个,项目总投资8 953亿元.则8 953亿用科学记数法表示为(A)A.8.953×1011 B. 8.953×1012C. 8.953×1010D. 8.953×1094.下列计算正确的是(B)A.a4+a3=a7 B.a4·a3=a7C.(a4)3=a7 D.a6÷a2=a35.下列调查中,最适合采用全面调查(普查)方式的是(D)A.对重庆市初中学生每天阅读时间的调查B .对端午节期间市场上粽子质量情况的调查C .对某批次手机的防水功能的调查D .对某校九年级三班学生肺活量情况的调查6.关于x 的一元二次方程x 2+ax -1=0的根的情况是 ( D )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根7.如图,在△ABC 中,AB =AC ,∠A =50°,根据作图痕迹,可知∠CBD = ( D )A .80°B .60°C .45°D .50°第7题图 第8题图8.如图,小球从A 入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等,则小球从E 出口落出的概率是 ( C ) A .12 B .13 C .14 D .169.如图,已知AB ,CD ,EF 都与BD 垂直,垂足分别是B ,D ,F ,且AB =1,CD =3,那么EF 的长是 ( C ) A .13 B .23 C .34 D .4510.某次列车平均提速20 km/h.用相同的时间,列车提速前行驶400 km ,提速后比提速前多行驶100 km.设提速前列车的平均速度为x km/h ,下列方程正确的是 ( A ) A .400x =400+100x +20 B .400x =400-100x -20C.400x =400+100x -20 D .400x =400-100x +2011.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺) ( C )A .3B .4C .4.2D .5第11题图 第12题图12.如图,直线y =x +32分别与x 轴,y 轴交于A ,B 两点,点P 为反比例函数y =-3x(x <0)图象上一点,过点P 作y 轴的垂线交直线AB 于点C ,作PD ⊥PC 交直线AB 于点D ,那么AC ·BD 的值为( D )A .3 2B .3 2C .6 2D .6二、填空题(本大题共6小题,每小题3分,共18分)13.如图,在数轴上表示了关于x 的不等式组的解集,则解集为-3≤x <1.14.327 - 4 =1.15.下表记录了某种幼树在一定条件下移植成活的情况: 移植总数n400 1500 3500 7000 9000 14000 成活数m325 1336 3203 6335 8073 12628成活的频率(精确到0.001) 0.813 0.891 0.915 0.905 0.897 0.902 由此估计这种幼树在此条件下移植成活的概率约是0.9(精确到0.1).16.电影院放映厅有10排座位,第一排有20个座位,往后每排增加2个座位,电影院一共有290个座位.17.如图,将线段AB 绕点O 顺时针旋转90°得到线段A ′B ′,那么A(-2,5)的对应点A ′的坐标是(5,2).第17题图 第18题图18.★如图,在菱形ABCD 中,∠ABC =60°,AB =4,点E 是AB 边上的动点,过点B 作直线CE 的垂线,垂足为点F ,当点E 从点A 运动到点B 时,点F 的运动路径长为4π3. 三、解答题(本大题共8小题,共66分)19.(本小题满分6分)计算:(-2)2-|-3|+ 2 ×8 +(-6)0. 解:原式=4-3+4+1=6.20.(本小题满分6分)先化简,再求值:1x -1 +x 21-x,其中x =-2 021.解:原式=1x -1 -x 2x -1=-x 2-1x -1=-(x +1)(x -1)x -1=-x -1,当x =-2 021时,原式=2 021-1=2 020.21.(本小题满分8分)如图,▱ABCD 的对角线AC ,BD 相交于点O ,OE =OF.(1)求证:△BOE ≌△DOF ;(2)若BD =EF ,连接DE ,BF ,判断四边形EBFD 的形状,并说明理由.(1)证明:∵四边形ABCD 是平行四边形,∴OB =OD.在△BOE 和△DOF 中,⎩⎪⎨⎪⎧OE =OF ,∠BOE =∠DOF ,BO =DO , ∴△BOE ≌△DOF(SAS).(2)四边形EBFD 是矩形.理由:由(1)知OB =OD ,OE =OF.∴四边形EBFD是平行四边形.又∵BD=EF,∴平行四边形EBFD是矩形.22.(本小题满分8分)2020年2月12日,教育部按照党中央关于防控新冠肺炎疫情的决策部署,对中小学延期开学期间“停课不停学”工作做出要求.某中学决定优化网络教学团队,整合初三年级为两个平行班(前进班和奋斗班)的学生提供线上授课,帮助毕业年级学生居家学习.经过一周时间的线上教学,学校通过线上测试了解网络教学的效果,从两个平行班中各随机抽取10名学生的成绩进行如下整理、分析(单位:分,满分100分):收集数据:前进班:94,85,73,85,52,97,94,66,95,85.奋斗班:92,84,87,82,82,51,84,83,97,84.整理数据:分析数据:根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)已知小林同学的成绩为85分,在他们班处于中上水平,请问他是哪个班的学生?(3)请你根据数据分析评价一下两个班的学习效果,说明理由.(1)a=1,b=4,c=85,d=84;(2)小林同学是奋斗班的学生.理由:∵前进班和奋斗班成绩的中位数分别为85分和84分,小林同学的成绩在班级处于中上水平,必大于中位数,∴他是奋斗班的学生;(3)从平均数看,两班学习效果相同;从众数和中位数看,前进班都比奋斗班高,可见前进班高分段人数多;但从方差看,前进班方差远超奋斗班,说明前进班虽然高分段学生多,但成绩差异大,两极分化明显,而奋斗班学生成绩分布较为集中.(答案不唯一,合理即可)23.(本小题满分8分)(2019·随州)如图,在一次海上救援中,两艘专业救助船A,B同时收到某事故渔船的求救讯息,已知此时救助船B在A的正北方向,事故渔船P在救助船A的北偏西30°方向上,在救助船B的西南方向上,且事故渔船P与救助船A相距120海里.(1)求收到求救讯息时事故渔船P与救助船B之间的距离;(2)若救助船A,B分别以40海里/小时、30海里/小时的速度同时出发,匀速直线前往事故渔船P处搜救,试通过计算判断哪艘船先到达.解:(1)如图,过点P 作PH ⊥AB 于H ,依题意可得∠A =30°,∠B =45°,在Rt △PAH 中,由AP =120(海里),∠A =30°,可得PH =60(海里), 在Rt △PBH 中,由∠B =45°,得PB = 2 PH =60 2 (海里).故收到求救讯息时事故渔船P 与救助船B 的距离为60 2 海里.(2)依题意,可得A 船所需时间为t A =12040=3(小时), B 船所需时间为t B =60230=2 2 (小时), 由t A >t B 可知,B 船先到达.24.(本小题满分10分)2020年6月份,灵山县某果农收获火龙果30吨,青芒果13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往港口,已知一辆甲种货车可装火龙果和青芒果共5吨,且一辆甲种货车可装的火龙果重量(单位:吨)是其可装的青芒果重量的4倍,一辆乙种货车可装火龙果和青芒果各2吨.(1)一辆甲种货车可装载火龙果、青芒果各多少吨?(2)该果农安排甲、乙两种货车时有几种方案?请你帮助设计出来.(3)若甲种货车每辆要付运输费2 000元,乙种货车每辆要付运输费1 300元,则该果农应选择哪种方案,使运费最少?最少运费是多少元?解:(1)设一辆甲种货车可装载火龙果x 吨,青芒果y 吨,依题意,得⎩⎪⎨⎪⎧x +y =5,x =4y ,解得⎩⎪⎨⎪⎧x =4,y =1.答:一辆甲种货车可装载火龙果4吨,青芒果1吨.(2)设安排m 辆甲种货车,则安排(10-m)辆乙种货车,依题意,得⎩⎪⎨⎪⎧4m +2(10-m )≥30,m +2(10-m )≥13,解得5≤m ≤7.∵m 为整数,∴m =5,6,7,∴共有三种方案,方案①:安排5辆甲种货车,5辆乙种货车; 方案②:安排6辆甲种货车,4辆乙种货车;方案③:安排7辆甲种货车,3辆乙种货车.(3) 方案①所需费用2 000×5+1 300×5=16 500(元); 方案②所需费用2 000×6+1 300×4=17 200(元);方案③所需费用2 000×7+1 300×3=17 900(元).∵16 500<17 200<17 900,∴该果农应选方案1,使运费最少, 最少运费是16 500元.题图25.(本小题满分10分)如图,Rt △ABC 中,∠ABC =90°,以AB 为直径的⊙O 交AC 于点D ,E 是BC 的中点,连接DE ,OE.(1)求证:DE 与⊙O 相切;(2)求证:BC 2=2CD ·OE ;(3)若cos C =23,DE =4,求AD 的长.解图(1) 证明:如解图,连接BD ,OD ,∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠BDC =90°.在Rt △BDC 中,E 是BC 的中点,∴DE =CE =BE =12BC ,∴∠3=∠4.∵OD =OB ,∴∠1=∠2,∴∠ODE =∠1+∠3=∠2+∠4=90°. ∵OD 为⊙O 的半径,∴DE 与⊙O 相切;(2) 证明:在Rt △ABC 中,∠C +∠A =90°,在Rt △BDC 中,∠C +∠4=90°,∴∠A =∠4.又∵∠C =∠C ,∴△BCD ∽△ACB.∴BC AC =CD CB.∴BC 2=AC ·CD. ∵O 是AB 的中点,E 是BC 的中点,∴AC =2OE.∴BC 2=2CD ·OE ;(3) 解:由(1)知,DE =12 BC ,又∵DE =4,∴BC =8, 在Rt △BDC 中,cos C =CD BC =23 ,∴CD =163. 在Rt △ABC 中,cos C =BC AC =23 ,∴AC =12,∴AD =AC -CD =203. 26.(本小题满分10分)如图,直线y =43x +4与x 轴、y 轴分别交于点A ,B ,过点C(4,0)的直线恰好与y 轴交于点B ,点P 为线段AC 上的一动点(点P 与点A ,C 不重合),过点P 作PQ ∥BC 交AB 于点Q ,点A 关于PQ 的对称点为点D ,连接PD ,QD ,BD.(1)当点D 恰好落在BC 上时,求点P 的坐标;(2)设点P 的坐标为(m ,0),若△PDQ 和△ABC 重叠部分的面积S 与点P 的横坐标m 之间的函数解析式为S =⎩⎪⎨⎪⎧a (m +3)2⎝ ⎛⎭⎪⎫-3<m ≤12,-67m 2+bm +167 ⎝ ⎛⎭⎪⎫12<m <4,其图象如图②所示,请结合图①、②,求出a ,b 的值;(3)★当△BDQ 为直角三角形时,求出点P 的坐标.(1) ∵直线AB 与y 轴交于点B ,∴B(0,4),∵点C(4,0),易得直线BC 的解析式为y =-x +4,设点P 的坐标为(x ,0),∵OB =OC =4,PQ ∥BC ,∴∠QPA =∠BCO =45°,∴∠APD =2∠QPA=90°,∴点D 的坐标为(x ,-x +4),∵AP =PD ,∴x +3=-x +4,解得x =12 ,∴点P 的坐标为⎝ ⎛⎭⎪⎫12,0 ; (2) 设直线PQ 的解析式为y =-x +n ,将点P(m ,0)代入得直线PQ 的解析式为y =-x +m ,联立⎩⎪⎨⎪⎧y =43x +4,y =-x +m , 解得⎩⎪⎨⎪⎧x =3m -127,y =4m +127, ∴Q ⎝ ⎛⎭⎪⎫3m -127,4m +127 .当-3<m ≤12 时,点D 在△ABC 内, ∴重叠部分的面积即为△PQD 的面积,∴S =S △PQD =S △APQ =12 AP ·y Q =12 (m +3)·4m +127 =27(m +3)2=a(m +3)2,∴a =27 , ∵由函数图象可得,当m =2时,S =327 ,将⎝⎛⎭⎪⎫2,327 代入S =-67 m 2+bm +167 ,得327 =-67 ×4+2b +167 ,解得b =207; (3) 由(2)得,B(0,4),D(m ,m +3),Q ⎝ ⎛⎭⎪⎫3m -127,4m +127 .分析题目可知∠BQD 不可能为90°,故分两种情况讨论:①当∠BDQ 为直角时,过点Q ,B 作PD 的垂线,分别交PD 及其延长线于点M ,N ,∵∠NDB +∠NBD =90°,∠NDB +∠MDQ =90°,∴∠MDQ =∠NBD ,∴tan ∠MDQ =tan ∠NBD ,即MQ MD =ND BN,∵MQ =m -3m -127 =4m +127 ,MD =m +3-4m +127 =3m +97,BN =m ,ND =4-(m +3)=1-m ,∴1-m m =4m +1273m +97,解得m =37或m =-3(舍去),∴点P 的坐标为⎝ ⎛⎭⎪⎫37,0 ; ②当∠QBD 为直角时,可得直线BD 与x 轴的交点为⎝ ⎛⎭⎪⎫163,0 ,与y 轴的交点为(0,4),∴直线BD 的解析式为y =-34x +4,将D(m ,m +3)代入,得m =47 ,∴P ⎝ ⎛⎭⎪⎫47,0 . 综上,当△BDQ 为直角三角形时,点P 的坐标为⎝ ⎛⎭⎪⎫37,0 或⎝ ⎛⎭⎪⎫47,0 .。

广西省自治区2021年中考数学模拟试卷(含答案解析)

广西省自治区2021年中考数学模拟试卷(含答案解析)

广曲堵中考批辱旗拙枪削钱息金答案一.选择题(共12小凹题,满分36分)1 . a 的倒数是3,则a 的值是()A- HB .一司C. 32 .下列计算,结果等于a ,的是()3 . 2017年人口普查显示,河南某市户籍人口约为2536000人,则该市户籍人口数据用科学记数法可表示为( )A. 29536X104 人B. 2.536X1()5 人 c 2.536X1()6 人 D 2.536X107A 4 .下回列图形中是轴对称图形但不是中心对称图形的是()7 .如果边长相等的正五边形和正方形的一边重合,那么N1的度数是多少()A. a+3aB. a 5- aC. (a 2) 2D. a 84-a 2D. - 3成绩(米) 4.504.60O 4.65 4.70 4.75人数232344.80 1A. 4.65. 4.70B. 4.65、4.75C. 4.70. 4.75D. 4.70. 4.706.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示则这些运动员成绩的中位数、众数分别是()8 .随着〃三农〃问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去的年收入分别是60000元和80000元,下面是依据①©③三种农作物每 种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出 的以下四个结论正确的是()A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入为2.8万D.前年年收入不止①②③三种农作物的收入 (—2**^ 3x-69 .若不等式组, 无解,则m 的取值范围是() [xSm A. m>2B. m<2C. m 》2D. m<210 .如图,两根竹竿AB 和AD 斜靠唯墙CE 上,量得NABC=a, ZADC=p,则竹 的长度之比为()B .耐 C.蠡,寰11 .如图,平面直角坐标中,点A (1, 2),将AO 绕点A 逆时针旋转90。

2020-2021学年广西桂林市中考数学模拟试卷及答案解析

2020-2021学年广西桂林市中考数学模拟试卷及答案解析

广西桂林市中考数学模拟试卷一、选择题(共12小题,每小题3分,满分36分)1.2015的相反数是()A.2015 B.﹣2015 C.D.﹣2.在平面直角坐标系中,点(8,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.在实数0,﹣π,﹣4,﹣中,最小的数是()A.0 B.﹣πC.﹣4 D.﹣4.下列几何体中,主视图是三角形的是()A.B. C.D.5.某多边形的内角和是其外角和的4倍,则此多边形的边数是()A.10 B.9 C.8 D.76.如图,▱ABCD中,BC=BD,∠C=74°,则∠ADB的度数是()A.16°B.22°C.32°D.68°7.下列计算正确的是()A.3x+3y=3xy B.(2x3)2=4x5C.﹣3x+2x=﹣x D.y2•2y3=2y68.用四舍五入法得到的近似数2.18×104,下列说法正确的是()A.它精确到百分位B.它精确到百位C.它精确到万位D.它精确到0.019.在学校乒乓球比赛中,从陈亮、李明、刘松、周杰、王刚这五人中,随机抽签一组对手,正好抽到王刚与刘松的概率是()A.B.C.D.10.抛物线y=2x2+4x+3的图象与x轴有()A.一个交点B.两个交点C.没有交点D.无法确定11.已知点A在双曲线y=﹣上,点B在直线y=x﹣4上,且A,B两点关于y轴对称.设点A 的坐标为(m,n),则+的值是()A.﹣10 B.﹣8 C.6 D.412.如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F 是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于()A.3:4 B.:2C.:2D.2:二、填空题(共6小题,每小题3分,满分18分)13.分解因式:x2﹣9= .14.命题“若a=b,则a3=b3,.”是真命题.它的逆命题“若a3=b3,则a=b”是(填真或假)命题.15.已知一组数据:13,1,0,﹣5,7,﹣4,5,这组数据的极差是.16.有理数m,n在数轴上的位置如图所示,那么化简|2m﹣2n|﹣的结果是.17.如图,OB是⊙O的半径,弦AB=OB,直径CD⊥AB.若点P是线段OD上的动点,点P不与O,D重合,连接PA.设∠PAB=β,则β的取值范围是.18.将正整数按如图所示的规律排列下去,若用有序数对(m,n)表示第m排,从左到右第n 个数,如(3,2)表示正整数5,(4,3)表示正整数9,则(100,16)表示的正整数是.三、解答题(共8小题,满分66分)19.计算:(﹣1)2015﹣+2sin30°+|﹣|20.先化简,再求值:(),其中a=+1,b=.21.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;(3)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.22.某校组织了主题为“让勤俭节约成为时尚”的电子小组作品征集活动,现从中随机抽取部分作品,按A,B,C,D四个等级进行评价,并根据结果绘制了如下两幅不完整的统计图.(1)求抽取了多少份作品;(2)此次抽取的作品中等级为B的作品有,并补全条形统计图;(3)若该校共征集到800份作品,请估计等级为A的作品约有多少份.23.某校初三(1)班有48名学生,其中男生人数比女生人数的2倍少15人.(1)求该班男生和女生的人数;(2)学校要从该班抽22名学生参加校学雷锋小组,要求男生人数比女生人数至少多4人,且女生人数不少于6人,请列举出所有可供选择方案.24.桂林市某旅游专卖店出售某商品,进价每个60元,按每个90元出售,平均每天可以卖出100个,经市场调查发现,若每个售价每降1元,则每天可以多卖出10个,若每个售价每涨价1元,则每天少卖出2个,若不计其它因素,该商品如何定价才能使专卖店每天可获利润最大?25.如图,D为⊙O上一点,点C在直线BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)若BC=8cm,tan∠CDA=,求⊙O的半径;(3)在(2)条件下,过点B作⊙O的切线交CD的延长线于点E,连接OE,求四边形OEDA的面积.26.如图,在矩形ABCD中,AD=6cm,AD=8cm,点E是AD的中点.连接BD,BE.(1)如图1,点P在DC上,若DP=3cm,连接AP与BD、BE分别交于点M、N①求MP:MA;②求MN的长度;(2)如图2,动点P从点D出发,在射线DC上运动,运动速度均为1cm/s,连接AP与BD、BE 分别交于点M、N,设点P的运动时间为x秒,当x为多少时,△DMN是直角三角形?广西桂林市中考数学模拟试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.2015的相反数是()A.2015 B.﹣2015 C.D.﹣【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:2015的相反数是﹣2015.故选:B.【点评】本题考查了相反数,熟记一个数的前面加上负号就是这个数的相反数是解题的关键.2.在平面直角坐标系中,点(8,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据第四象限内横坐标大于零,纵坐标小于零,可得答案.【解答】解:点(8,﹣2)所在的象限是第四象限,故选:D.【点评】本题考查了点的坐标,熟记各象限内点的坐标特征是解题关键.3.在实数0,﹣π,﹣4,﹣中,最小的数是()A.0 B.﹣πC.﹣4 D.﹣【考点】实数大小比较.【专题】推理填空题;实数.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣4<﹣<﹣π<0,故在实数0,﹣π,﹣4,﹣中,最小的数是﹣4.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.4.下列几何体中,主视图是三角形的是()A.B. C.D.【考点】简单几何体的三视图.【分析】分别找出四个几何体从正面看所得到的视图即可.【解答】解:A、此几何体的主视图是矩形,故此选项错误;B、此几何体的主视图是等腰梯形,故此选项错误;C、此几何体的主视图是等腰梯形,故此选项错误;D、此几何体的主视图是等腰三角形,故此选项正确;故选:D.【点评】此题主要考查了简单几何体的三视图,关键是注意所有的看到的棱都应表现在三视图中.5.某多边形的内角和是其外角和的4倍,则此多边形的边数是()A.10 B.9 C.8 D.7【考点】多边形内角与外角.【分析】任何多边形的外角和是360°,即这个多边形的内角和是4×360°.n边形的内角和是(n ﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=4×360,解得n=10.则这个多边形的边数是10.故选A.【点评】本题考查了多边形的内角与外角,解题的关键是利用多边形的内角和公式并熟悉多边形的外角和为360°.6.如图,▱ABCD中,BC=BD,∠C=74°,则∠ADB的度数是()A.16°B.22°C.32°D.68°【考点】平行四边形的性质;等腰三角形的性质.【分析】根据平行四边形的性质可知:AD∥BC,所以∠C+∠ADC=180°,再由BC=BD可得∠C=∠BDC,进而可求出∠ADB的度数.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠C+∠ADC=180°,∵∠C=74°,∴∠ADC=106°,∵BC=BD,∴∠C=∠BDC=74°,∴∠ADB=106°﹣74°=32°,故选:C.【点评】本题考查了平行四边形的性质:对边平行以及等腰三角形的性质,属于基础性题目,比较简单.7.下列计算正确的是()A.3x+3y=3xy B.(2x3)2=4x5C.﹣3x+2x=﹣x D.y2•2y3=2y6【考点】幂的乘方与积的乘方;合并同类项;单项式乘单项式.【专题】计算题;实数;整式.【分析】原式利用合并同类项法则,幂的乘方与积的乘方,以及单项式乘以多项式法则计算得到结果,即可作出判断.【解答】解:A、原式不能合并,错误;B、原式=4x6,错误;C、原式=﹣x,正确;D、原式=2y5,错误.故选C.【点评】此题考查了同底数幂的乘除法,合并同类项,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.8.用四舍五入法得到的近似数2.18×104,下列说法正确的是()A.它精确到百分位B.它精确到百位C.它精确到万位D.它精确到0.01【考点】近似数和有效数字.【分析】由于2.18×104=21800,数字8在百位上,则近似数2.18×104精确到百位.【解答】解:∵2.18×104=21800,∴近似数2.18×104精确到百位.故选B.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起,到这个数完为止,所有这些数字叫这个数的有效数字.9.在学校乒乓球比赛中,从陈亮、李明、刘松、周杰、王刚这五人中,随机抽签一组对手,正好抽到王刚与刘松的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与正好抽到王刚与刘松的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,正好抽到王刚与刘松的有2种情况,∴正好抽到王刚与刘松的概率是:=.故选C.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.10.抛物线y=2x2+4x+3的图象与x轴有()A.一个交点B.两个交点C.没有交点D.无法确定【考点】抛物线与x轴的交点.【专题】计算题.【分析】先计算判别式的值,然后根据判别式的意义判断抛物线y=2x2+4x+3的图象与x轴的交点个数.【解答】解:∵△=42﹣4×2×3=﹣8,∴抛物线与x轴没有交点.故选C.【点评】本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2﹣4ac决定抛物线与x轴的交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.11.已知点A在双曲线y=﹣上,点B在直线y=x﹣4上,且A,B两点关于y轴对称.设点A 的坐标为(m,n),则+的值是()A.﹣10 B.﹣8 C.6 D.4【考点】反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.【专题】压轴题.【分析】先根据A、B两点关于y轴对称用m、n表示出点B的坐标,再根据点A在双曲线y=﹣上,点B在直线y=x﹣4上得出mn与m+n的值,代入代数式进行计算即可.【解答】解:∵点A的坐标为(m,n),A、B两点关于y轴对称,∴B(﹣m,n),∵点A在双曲线y=﹣上,点B在直线y=x﹣4上,∴n=﹣,﹣m﹣4=n,即mn=﹣2,m+n=﹣4,∴原式===﹣10.故选:A.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12.如图,平行四边形ABCD 中,AB :BC=3:2,∠DAB=60°,E 在AB 上,且AE :EB=1:2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则DP :DQ 等于( )A .3:4B .:2C .:2D .2:【考点】平行四边形的性质;三角形的面积;勾股定理.【分析】连接DE 、DF ,过F 作FN ⊥AB 于N ,过C 作CM ⊥AB 于M ,根据三角形的面积和平行四边形的面积得出S △DEC =S △DFA =S 平行四边形ABCD ,求出AF ×DP=CE ×DQ ,设AB=3a ,BC=2a ,则BF=a ,BE=2a ,BN=a ,BM=a ,FN=a ,CM=a ,求出AF=a ,CE=2a ,代入求出即可.【解答】解:连接DE 、DF ,过F 作FN ⊥AB 于N ,过C 作CM ⊥AB 于M ,∵根据三角形的面积和平行四边形的面积得:S △DEC =S △DFA =S 平行四边形ABCD ,即AF ×DP=CE ×DQ ,∴AF ×DP=CE ×DQ ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∵∠DAB=60°,∴∠CBN=∠DAB=60°,∴∠BFN=∠MCB=30°,∵AB:BC=3:2,∴设AB=3a,BC=2a,∵AE:EB=1:2,F是BC的中点,∴BF=a,BE=2a,BN=a,BM=a,由勾股定理得:FN=a,CM=a,AF==a,CE==2a,∴a•DP=2a•DQ∴DP:DQ=2:.故选:D.【点评】本题考查了平行四边形面积,勾股定理,三角形的面积,含30度角的直角三角形等知识点的应用,关键是求出AF×DP=CE×DQ和求出AF、CE的值.二、填空题(共6小题,每小题3分,满分18分)13.分解因式:x2﹣9= (x+3)(x﹣3).【考点】因式分解-运用公式法.【分析】本题中两个平方项的符号相反,直接运用平方差公式分解因式.【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).【点评】主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.14.命题“若a=b,则a3=b3,.”是真命题.它的逆命题“若a3=b3,则a=b”是真(填真或假)命题.【考点】命题与定理.【分析】把一个命题的题设和结论互换即可得到其逆命题,再判断逆命题的真假即可.【解答】解:“若a=b,则a3=b3”的条件是:a=b,结论是:a3=b3,则逆命题是:若a3=b3,则a=b,为真命题.故答案为:真.【点评】本题考查了互逆命题的知识以及真假命题的判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,难度适中.15.已知一组数据:13,1,0,﹣5,7,﹣4,5,这组数据的极差是18 .【考点】极差.【分析】根据极差的定义用一组数据中的最大值减去最小值即可求得.【解答】解:这组数据的极差是:13﹣(﹣5)=18;故答案为:18.【点评】本题考查了极差的定义,求极差的方法是用一组数据中的最大值减去最小值.16.有理数m,n在数轴上的位置如图所示,那么化简|2m﹣2n|﹣的结果是m﹣n .【考点】实数与数轴.【专题】推理填空题.【分析】根据数轴可以判断m、n的大小,从而可以化简|2m﹣2n|﹣,本题得以解决.【解答】解:由数轴可得,n<0<m,∴m﹣n>0,n﹣m<0,∴|2m﹣2n|﹣=2m﹣2n﹣(m﹣n)=2m﹣2n﹣m+n=m﹣n,故答案为:m﹣n.【点评】本题考查实数与数轴,解题的关键是明确数轴的特点,由数轴可以得到m、n的大小.17.如图,OB是⊙O的半径,弦AB=OB,直径CD⊥AB.若点P是线段OD上的动点,点P不与O,D重合,连接PA.设∠PAB=β,则β的取值范围是60°≤β≤75°.【考点】圆周角定理;垂径定理.【分析】当P点与D点重合是∠DAB=75°,与O重合则OAB=60°,∠OAB≤∠PAB≤∠DAB,即可得出结果.【解答】解:连接DA,OA,则△OAB是等边三角形,∴∠OAB=∠AOB=60°,∵DC是直径,DC⊥AB,∴∠AOC=∠AOB=30°,∴∠ADC=15°,∴∠DAB=75°,∵∠OAB≤∠PAB≤∠DAB,∴60°≤β≤75°;故答案为:60°≤β≤75°.【点评】本题考查了垂径定理,等边三角形的判定及性质,圆周角定理;熟练掌握垂径定理和圆周角定理是解决问题的关键.18.将正整数按如图所示的规律排列下去,若用有序数对(m,n)表示第m排,从左到右第n 个数,如(3,2)表示正整数5,(4,3)表示正整数9,则(100,16)表示的正整数是4966 .【考点】规律型:图形的变化类;规律型:数字的变化类.【分析】根据(3,2)表示整数5,对图中给出的有序数对进行分析,可以发现:对所有数对(m,n)[n≤m]有:(m,n)=(1+2+3+…+m﹣1)+n=+n;由此方法解决问题即可.【解答】解:若用有序数对(m,n)表示从上到下第m排,从左到右第n个数,对如图中给出的有序数对和(3,2)表示正整数5、(4,3)表示整数9可得,(3,2)=+2=5(4,3)=+3=9;…,由此可以发现,对所有数对(m,n)【n≤m】有:(m,n)=(1+2+3+…+m﹣1)+n=+n,∴(100,16)=+16=4966.故答案为:4966.【点评】此题考查对数字变化类知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形、数值、数列等已知条件,认真分析,找出规律,解决问题.三、解答题(共8小题,满分66分)19.计算:(﹣1)2015﹣+2sin30°+|﹣|【考点】实数的运算.【专题】计算题;实数.【分析】原式第一项利用乘方的意义计算,第二项化为最简二次根式,第三项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=﹣1﹣2+1+2=2﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:(),其中a=+1,b=.【考点】分式的化简求值.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=•=a+b,当a=+1,b=﹣1时,原式=2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;(3)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.【考点】作图-旋转变换;轴对称-最短路线问题;作图-平移变换.【专题】作图题.【分析】(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C关于原点的对称点A2、B2、C2的位置,然后顺次连接即可;(3)找出点A关于x轴的对称点A′,连接A′B与x轴相交于一点,根据轴对称确定最短路线问题,交点即为所求的点P的位置,然后连接AP、BP并根据图象写出点P的坐标即可.【解答】解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;(3)△PAB如图所示,P(2,0).【点评】本题考查了利用旋转变换作图,利用平移变换作图,轴对称确定最短路线问题,熟练掌握网格结构准确找出对应点的位置是解题的关键.22.某校组织了主题为“让勤俭节约成为时尚”的电子小组作品征集活动,现从中随机抽取部分作品,按A,B,C,D四个等级进行评价,并根据结果绘制了如下两幅不完整的统计图.(1)求抽取了多少份作品;(2)此次抽取的作品中等级为B的作品有48 ,并补全条形统计图;(3)若该校共征集到800份作品,请估计等级为A的作品约有多少份.【考点】条形统计图;用样本估计总体;扇形统计图.【专题】计算题.【分析】(1)根据C的人数除以占的百分比,得到抽取作品的总份数;(2)由总份数减去其他份数,求出B的份数,补全条形统计图即可;(3)求出A占的百分比,乘以800即可得到结果.【解答】解:(1)根据题意得:30÷25%=120(份),则抽取了120份作品;(2)等级B的人数为120﹣(36+30+6)=48(份),补全统计图,如图所示:故答案为:48;(3)根据题意得:800×=240(份),则估计等级为A的作品约有240份.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.23.某校初三(1)班有48名学生,其中男生人数比女生人数的2倍少15人.(1)求该班男生和女生的人数;(2)学校要从该班抽22名学生参加校学雷锋小组,要求男生人数比女生人数至少多4人,且女生人数不少于6人,请列举出所有可供选择方案.【考点】分式方程的应用;一元一次不等式组的应用.【分析】(1)设该班女生有x人,男生有2x﹣15人,根据男女生人数的关系以及全班共有48人,可得出方程,即可得出结论;(2)设招的女生为m名,则招的男生为22﹣m名,根据“男生人数比女生人数至少多4人,且女生人数不少于6人”,即可得出关于m的一元一次不等式组,解不等式即可得出结论.【解答】解:(1)设该班女生有x人,男生有2x﹣15人,可得:x+2x﹣15=48解得:x=21,48﹣21=27,答:该班男生是27人,女生是21人.(2)设招的女生为m名,则招的男生为22﹣m名,可得:,解得:6≤m≤9,因为m取整数,所以女生6人,男生16人;女生7人,男生15人;女生8人,男生14人;女生9人,男生13人.【点评】本题考查了一元一次不等式的应用以及一元一次方程的应用,解题的关键是:(1)根据数量关系列出一元一次方程;(2)根据数量关系列出关于m的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出不等式(方程或方程组)是关键.24.桂林市某旅游专卖店出售某商品,进价每个60元,按每个90元出售,平均每天可以卖出100个,经市场调查发现,若每个售价每降1元,则每天可以多卖出10个,若每个售价每涨价1元,则每天少卖出2个,若不计其它因素,该商品如何定价才能使专卖店每天可获利润最大?【考点】二次函数的应用.【分析】根据价格上涨或下降时销售量的不同,分60≤x≤90、x>90两种情况,根据:每天获得的利润=每个商品的利润×每天的销售量列出函数表达式,配方分别求出其最大值,比较大小后可得.【解答】解:设该商品的售价定为x元/个时,每天获得的利润为W元,根据题意,当60≤x≤90时,W=(x﹣60)[100+10(90﹣x)]=﹣10x2+1600x﹣60000=﹣10(x﹣80)2+4000,∴当x=80时,W取得最大值,最大值为4000;当x>90时,W=(x﹣60)[100﹣2(x﹣90)]=﹣2x2+400x﹣16800=﹣2(x﹣100)2+3200,当x=100时,W取得最大值,最大值为3200;综上,当x=80时,W取得最大值4000元,答:该商品的定价为80元/个时专卖店每天可获得最大利润4000元.【点评】本题考查了二次函数的应用,根据价格上涨或下降时销售量的不同分类讨论是前提,解题的关键是根据题目中的等量关系列出函数关系式.25.如图,D为⊙O上一点,点C在直线BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)若BC=8cm,tan∠CDA=,求⊙O的半径;(3)在(2)条件下,过点B作⊙O的切线交CD的延长线于点E,连接OE,求四边形OEDA的面积.【考点】圆的综合题.【专题】综合题.【分析】(1)要证明CD是⊙O的切线,只需要连接OD,证明∠ODC=90°即可,由∠CDA=∠CBD,∠BDA=90°,OA=OD得到∠ODA=∠OAD,然后进行转化即可得到∠ODC=90°,本题得以解决;(2)根据题意可以得到△CDA和△CBD相似,然后根据BC=8cm,tan∠CDA=,∠CDA=∠CBD,可以求得CD、CA的长,从而可以求得BA的长,进而可以得到⊙O的半径;(3)由题意可得,∠EBC=90°,可以证明△EBC和△ODC相似,从而可以求得EB的长,然后根据四边形OEDA的面积等于△EBC的面积减去△EBO的面积再减去△DAC的面积,从而可以得到四边形OEDA的面积,本题得以解决.【解答】(1)证明:连接OD,如右图所示,∵AB为⊙O的直径,∴∠BDA=90°,又∵OD=OA,∠CDA=∠CBD,∴∠ODA=∠OAD,∴∠CBD+∠OAD=180°﹣∠BDA=90°,∴∠ODA+∠CDA=∠OAD+∠CDA=90°,∴∠ODC=90°,即CD是⊙O的切线;(2)解:∵∠DCA=∠BCD,∠CDA=∠CBD,∴△CDA∽△CBD,∴,又∵BC=8cm,tan∠CDA=,∠CDA=∠CBD,∠BDA=90°,∴tan∠CBD=,∴=,∴,解得,CD=4,CA=2,∴BA=CB﹣CA=8﹣2=6,∴OB=3,即⊙O的半径是3cm;(3)作DF⊥BC于点F,如右上图所示由已知可得,∠ODC=∠EBC=90°,∠DCO=∠BCE,∴△DCO∽△BCE,∴,∵OD=3,CD=4,CB=8,∴EB=6,又∵CO=CB﹣OB=8﹣3=5,OD=3,CD=4,∠ODC=90°,DF⊥OC,∴,解得DF=2.4, ∴S 四边形OEDA =S △EBC ﹣S △EBO ﹣S △DAC ==,即四边形OEDA 的面积是12.6cm 2.【点评】本题考查切线的判定、锐角三角函数、相似三角形的性质、切线的性质、面积法中割补法的应用,解题的关键是明确题意,作出合适的辅助线,画出相应的图形,找出所求问题需要的条件,运用数形结合的思想解答问题.26.如图,在矩形ABCD 中,AD=6cm ,AD=8cm ,点E 是AD 的中点.连接BD ,BE .(1)如图1,点P 在DC 上,若DP=3cm ,连接AP 与BD 、BE 分别交于点M 、N①求MP :MA ;②求MN 的长度;(2)如图2,动点P 从点D 出发,在射线DC 上运动,运动速度均为1cm/s ,连接AP 与BD 、BE 分别交于点M 、N ,设点P 的运动时间为x 秒,当x 为多少时,△DMN 是直角三角形?【考点】四边形综合题.【分析】(1)①由四边形是矩形,得到AB∥DC,从而得到比例式即可;②由相似三角形的性质得到比例式,再用勾股定理求出AP即可;(2)由△ABM∽△ABD和△ABM∽△DPM,得出的比例式,用比例的基本性质即可.【解答】解:①∵四边形ABCD为矩形,∴AB∥DC,∵DP=3,AB=8,∴=.②如图,由①有,=.∴AM=AP,BM=BD,过点M作MH∥AD,∴=,∵△AEN∽△MHN,∴,∴MN=AM,AM=AP,在Rt△ADP中,DP=3,AD=6,∴AP==3,∴MN=××3=,(2)∵AD=6,AB=8,∴BD=10,∵DP=x,当△DMN为直角三角形,即:DB⊥AP,∵△ABM∽△ABD,∴,∴,∴BM=,∴DM=BD﹣BM=10﹣=,∵△ABM∽△DPM,∴,∴,∴x=.【点评】此题是四边形综合题,主要考查了平行线分线段成比例定理,勾股定理,比例的基本性质,解本题的关键是熟练掌握比例的基本性质的前提下,灵活运用.。

2020-2021学年广西中考数学二模试卷1及答案解析

2020-2021学年广西中考数学二模试卷1及答案解析

广西中考数学二模试卷一、选择题(本题共12小题,每小题3分,共36分)1.2的相反数是()A.﹣2 B.2 C.D.2.把0.0000052用科学记数法表示为()A.0.52×10﹣5B.5.2×10﹣5C.5.2×10﹣6D.52×10﹣53.如图,是轴对称图形但不是中心对称图形的是()A.线段B.等边三角形C.正方形D.圆4.下列运算正确的是()A.2a2+3a3=5a5B.a6÷a3=a2C.(﹣a3)2=a6D.(x+y)2=x2+y25.如图是由八个相同小正方体组合而成的几何体,则其俯视图是()A. B. C. D.6.2015年1月份,无锡市某周的日最低气温统计如下表,则这七天中日最低气温的众数和中位数分别是()日期19 20 21 22 23 24 25最低气温/℃ 2 4 5 3 4 6 7A.4,4 B.5,4 C.4,3 D.4,4.57.分式方程﹣=2的解是()A.x=﹣1B.x=1 C.x=﹣2D.x=28.某班学校毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了2550份留言,如果全班有x名学生,根据题意,列出方程()A.=2550 B.=2550 C.x(x﹣1)=2550 D.x(x+1)=25509.下列命题是真命题的有()①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧.A..1个B.2个C.3个D.4个10.如图,沿AE折叠矩形纸片ABCD,使点D落在BC边的点F处已知AB=8,BC=10,则tan∠EFC的值为()A.B.C.D.11.在湖边高出水面50m的山顶A处看见一艘飞艇停留在湖面上空某处,观察到飞艇底部标志P处的仰角为45°,又观其在湖中之像的俯角为60°,则飞艇底部P距离湖面的高度为(参考等式:=)()A.25+75 B.50+50 C.75+75 D.50+10012.如图,两个边长分别为a,b(a>b)的正方形连在一起,三点C,B,F在同一直线上,反比例函数y=在第一象限的图象经过小正方形右下顶点E.若OB2﹣BE2=10,则k的值是()A.3 B.4 C.5 D.4二、填空题(共6小题,每小题3分,共18分)13.﹣7的绝对值是.14.分解因式:ax2﹣4ax+4a= .15.在一个不透明的盒子里装有3个分别标有数字1,2,3的小球,它们除数字外其他均相同,充分摇匀后,先摸出1个球不放回,再摸出1个球,那么这两个球上的数字之和为奇数的概率为.16.如图所示,在四边形ABCD中,AB∥CD,AD⊥CD,点E、F分别是AB,BC的中点,AB=4,EF=2,∠B=60°,则CD的长为.17.如图,若将平面直角坐标系中“鱼”以原点O为位似中心,按照相似比缩小,则点A的对应点的坐标是.18.在一次猜数字游戏中,小红写出如下一组数:1,,,,…,小军猜想出的第六个数字是,也是正确的,根据此规律,第n个数是.三、解答题(本大题共8题,满分66分)19.计算:+2﹣1﹣(﹣)0.20.化简分式÷﹣1,并选取一个你认为合适的整数a代入求值.21.已知关于x的一元二次方程x2﹣6x+2m+1=0有实数根.(1)求实数m的取值范围;(2)若方程的两个实数根为x1,x2,且x1x2+x1+x2=15,求m的值.22.某科学技术协会为倡导青少年主动进行研究性学习,积极研究身边的科学问题,组织了以“体验、创新、成长”为主题的青少年科技创大赛,在层层选拔的基础上,所有推荐参赛学生分别获得了一、二、三等奖和纪念奖,工作人员根据获奖情况绘制成如图所示的两幅不完整的统计图,根据图中所给出的信息解答下列问题:(1)这次大赛获得三等奖的学生有多少人?(2)请将条形统计图补充完整;(3)扇形统计图中,表示三等奖扇形的圆心角是多少度?(4)若给所有推荐参赛学生每人发一张相同的卡片,各自写上自己的名字,然后把卡片放入一个不透明的袋子里,摇匀后任意摸出一张,求摸出写有一等奖学生名字卡片的概率.23.如图,AB是⊙O的直径,C为⊙O上一点,点D在CO的延长线上,连接BD,已知BC=BD,AB=4,BC=2.(1)求证:BD是⊙O的切线;(2)求CD的长.24.2013年1月,由于雾霾天气持续笼罩我国中东部大部分地区,口罩市场出现热卖,某旗舰网店用8000元购进甲、乙两种口罩,销售完后共获利2800元,进价和售价如下表:甲种口罩乙种口罩品名价格进价(元/袋)20 25售价(元/袋)26 35(1)求该网店购进甲、乙两种口罩各多少袋?(2)该网店第二次以原价购进甲、乙、两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍.甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,乙种口罩最低售价为每袋多少元?25.如图,正方形ABCD中,边长为12,DE⊥DC交AB于点E,DF平分∠EDC交BC于点F,连接EF.(1)求证:EF=CF;(2)当=时,求EF的长.26.已知抛物线y=x2+1(如图所示).(1)填空:抛物线的顶点坐标是(,),对称轴是;(2)已知y轴上一点A(0,2),点P在抛物线上,过点P作PB⊥x轴,垂足为B.若△PAB是等边三角形,求点P的坐标;(3)在(2)的条件下,点M在直线AP上.在平面内是否存在点N,使四边形OAMN为菱形?若存在,直接写出所有满足条件的点N的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分)1.2的相反数是()A.﹣2 B.2 C.D.【考点】14:相反数.【分析】根据相反数的表示方法:一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:2的相反数是﹣2.故选:A.2.把0.0000052用科学记数法表示为()A.0.52×10﹣5B.5.2×10﹣5C.5.2×10﹣6D.52×10﹣5【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000052=5.2×10﹣6,故选:C.3.如图,是轴对称图形但不是中心对称图形的是()A.线段B.等边三角形C.正方形D.圆【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形和中心对称图形的定义可直接得到答案.【解答】解:A、线段既是轴对称图形也是中心对称图形,故此选项错误;B、等边三角形是轴对称图形,但不是中心对称图形,故此选项正确;C、正方形既是轴对称图形也是中心对称图形,故此选项错误;D、圆既是轴对称图形也是中心对称图形,故此选项错误;故选B.4.下列运算正确的是()A.2a2+3a3=5a5B.a6÷a3=a2C.(﹣a3)2=a6D.(x+y)2=x2+y2【考点】4C:完全平方公式;35:合并同类项;47:幂的乘方与积的乘方;48:同底数幂的除法.【分析】A、原式不能合并,本选项错误;B、利用同底数幂的除法法则计算得到结果,即可作出判断;C、利用积的乘方及幂的乘方运算法则计算得到结果,即可作出判断;D、利用完全平方公式展开得到结果,即可作出判断.【解答】解:A、原式不能合并,本选项错误;B、a6÷a3=a3,本选项错误;C、(﹣a3)2=a6,本选项正确;D、(x+y)2=x2+2xy+y2,本选项错误,故选C5.如图是由八个相同小正方体组合而成的几何体,则其俯视图是()A. B. C. D.【考点】U2:简单组合体的三视图.【分析】俯视图是从图形的上面看所得到的图形,根据小正方体的摆放方法,画出图形即可.【解答】解:俯视图有3列,从左往右分别有2,1,2个小正方形,其俯视图是.故选:A.6.2015年1月份,无锡市某周的日最低气温统计如下表,则这七天中日最低气温的众数和中位数分别是()日期19 20 21 22 23 24 25最低气温/℃ 2 4 5 3 4 6 7A.4,4 B.5,4 C.4,3 D.4,4.5【考点】W5:众数;W4:中位数.【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解.【解答】解:将一周气温按从小到大的顺序排列为2,3,4,4,5,6,7,中位数为第四个数4;4出现了2次,故众数为4.故选A.7.分式方程﹣=2的解是()A.x=﹣1B.x=1 C.x=﹣2D.x=2【考点】B3:解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2﹣x+1=2x,解得:x=1,经检验x=1是分式方程的解,故选B8.某班学校毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了2550份留言,如果全班有x名学生,根据题意,列出方程()A.=2550 B.=2550 C.x(x﹣1)=2550 D.x(x+1)=2550【考点】AC:由实际问题抽象出一元二次方程.【分析】可设全班有x名学生,则每人写(x﹣1)份留言,共写x(x﹣1)份留言,进而可列出方程即可.【解答】解:设全班有x名学生,则每人写(x﹣1)份留言,根据题意得:x(x﹣1)=2550.故选:C.9.下列命题是真命题的有()①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧.A..1个B.2个C.3个D.4个【考点】O1:命题与定理.【分析】根据有关的定理和定义作出判断即可得到答案.【解答】解:①对顶角相等正确,是真命题;②两直线平行,内错角相等正确,是真命题;③两个锐角对应相等的两个直角三角形应该是相似,而不是全等,原命题错误,是假命题;④有三个角是直角的四边形是矩形,正确,是真命题;⑤平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,原命题错误,是假命题,故选:C.10.如图,沿AE折叠矩形纸片ABCD,使点D落在BC边的点F处已知AB=8,BC=10,则tan∠EFC的值为()A.B.C.D.【考点】PB:翻折变换(折叠问题);LB:矩形的性质;T1:锐角三角函数的定义.【分析】根据折叠的性质和锐角三角函数的概念来解决.【解答】解:根据题意可得:在Rt△ABF中,有AB=8,AF=AD=10,BF=6,而Rt△ABF∽Rt△EFC,故有∠EFC=∠BAF,故tan∠EFC=tan∠BAF==.故选A.11.在湖边高出水面50m的山顶A处看见一艘飞艇停留在湖面上空某处,观察到飞艇底部标志P处的仰角为45°,又观其在湖中之像的俯角为60°,则飞艇底部P距离湖面的高度为(参考等式:=)()A.25+75 B.50+50 C.75+75 D.50+100【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】设AE=x,则PE=AE=x,根据山顶A处高出水面50m,得出OE=50,OP′=x+50,根据∠P′AE=60°,得出P′E=x,从而列出方程,求出x的值即可.【解答】解:设AE=xm,在Rt△AEP中∠PAE=45°,则∠P=45°,∴PE=AE=x,∵山顶A处高出水面50m,∴OE=50m,∴OP′=OP=PE+OE=x+50,∵∠P′AE=60°,∴P′E=tan60°•AE=x,∴OP′=P′E﹣OE=x﹣50,∴x+50=x﹣50,解得:x=50(+1)(m),∴PO=PE+OE=50(+1+50=50+100(m),即飞艇离开湖面的高度是(50+100)m.故选D.12.如图,两个边长分别为a,b(a>b)的正方形连在一起,三点C,B,F在同一直线上,反比例函数y=在第一象限的图象经过小正方形右下顶点E.若OB2﹣BE2=10,则k的值是()A.3 B.4 C.5 D.4【考点】G6:反比例函数图象上点的坐标特征.【分析】设E点坐标为(a,b),则AO+DE=a,AB﹣BD=b,根据△ABO和△BED都是等腰直角三角形,得到EB=BD,OB=AB,再根据OB2﹣EB2=10,运用平方差公式即可得到(AO+DE)(AB ﹣BD)=5,进而得到a•b=5,据此可得k=5.【解答】解:设E点坐标为(a,b),则AO+DE=a,AB﹣BD=b,∵△ABO和△BED都是等腰直角三角形,∴EB=BD,OB=AB,BD=DE,OA=AB,∵OB2﹣EB2=10,∴2AB2﹣2BD2=10,即AB2﹣BD2=5,∴(AB+BD)(AB﹣BD)=5,∴(AO+DE)(AB﹣BD)=5,∴a•b=5,∴k=5.故选:C.二、填空题(共6小题,每小题3分,共18分)13.﹣7的绝对值是7 .【考点】15:绝对值.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣7<0,∴|﹣7|=7.故答案为:7.14.分解因式:ax2﹣4ax+4a= a(x﹣2)2.【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式a,再利用完全平方公式进行二次分解.【解答】解:ax2﹣4ax+4a,=a(x2﹣4x+4),=a(x﹣2)2.15.在一个不透明的盒子里装有3个分别标有数字1,2,3的小球,它们除数字外其他均相同,充分摇匀后,先摸出1个球不放回,再摸出1个球,那么这两个球上的数字之和为奇数的概率为.【考点】X6:列表法与树状图法.【分析】用树状图列举出所有可能,进而求出和为奇数的概率;【解答】解:如图由树状图可知,一共有6种可能,两个球上的数字之和为奇数的有4种可能,∴这两个球上的数字之和为奇数的概率==,故答案为.16.如图所示,在四边形ABCD中,AB∥CD,AD⊥CD,点E、F分别是AB,BC的中点,AB=4,EF=2,∠B=60°,则CD的长为 2 .【考点】KX:三角形中位线定理.【分析】连接AC.首先证明△ABC是等边三角形,推出∠CAB=60°,根据条件推出∠DAC=30°,由此即可解决问题.【解答】解:连接AC.∵AE=EB,FB=CF,∴AC=2EF=4,∵AB=4,∴AB=AC,∵∠B=60°,∴△ABC是等边三角形,∴∠CAB=60°,∵AB∥CD,AD⊥CD,∴∠D=∠DAB=90°,∴∠DAC=30°,∴CD=AC=2,故答案为2.17.如图,若将平面直角坐标系中“鱼”以原点O为位似中心,按照相似比缩小,则点A的对应点的坐标是(3,﹣2)或(﹣3,2).【考点】SC:位似变换;D5:坐标与图形性质.【分析】在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,结合题意即可得出答案.【解答】解:∵A(6,﹣4)以坐标原点O为位似中心,相似比为缩小,∴对应点A′的坐标分别是:A′(3,﹣2)或(﹣3,2).故答案为:(3,﹣2)或(﹣3,2).18.在一次猜数字游戏中,小红写出如下一组数:1,,,,…,小军猜想出的第六个数字是,也是正确的,根据此规律,第n个数是.【考点】37:规律型:数字的变化类.【分析】先把原数据整理得到,,,,…,即每个数据的分子为数据的序号的3倍,分母为序号的2倍加1,则可得到第n个数是.【解答】解:把这组数:1,,,,…,变形得到,,,,,…,即,,,,…,所以第六个数字是=,第n个数是.故答案为.三、解答题(本大题共8题,满分66分)19.计算:+2﹣1﹣(﹣)0.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:+2﹣1﹣(﹣)0=+﹣1=﹣20.化简分式÷﹣1,并选取一个你认为合适的整数a代入求值.【考点】6D:分式的化简求值.【分析】原式第一项利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后计算得到最简结果,将a=1代入计算即可求出值.【解答】解:原式=•﹣1=﹣1=,当a=1时,原式=2.21.已知关于x的一元二次方程x2﹣6x+2m+1=0有实数根.(1)求实数m的取值范围;(2)若方程的两个实数根为x1,x2,且x1x2+x1+x2=15,求m的值.【考点】AB:根与系数的关系;AA:根的判别式.【分析】(1)由根的判别式△≥0来求实数m的取值范围;(2)直接利用根与系数的关系解答.【解答】解:(1)由题意得,△=(﹣6)2﹣4(2m+1)≥0,解得m≥4;(2)∵关于x的一元二次方程x2﹣6x+2m+1=0的两个实数根为x1,x2,∴x1x2=2m+1,x1+x2=6,∴x1x2+x1+x2=2m+1+6=15,解得m=4.22.某科学技术协会为倡导青少年主动进行研究性学习,积极研究身边的科学问题,组织了以“体验、创新、成长”为主题的青少年科技创大赛,在层层选拔的基础上,所有推荐参赛学生分别获得了一、二、三等奖和纪念奖,工作人员根据获奖情况绘制成如图所示的两幅不完整的统计图,根据图中所给出的信息解答下列问题:(1)这次大赛获得三等奖的学生有多少人?(2)请将条形统计图补充完整;(3)扇形统计图中,表示三等奖扇形的圆心角是多少度?(4)若给所有推荐参赛学生每人发一张相同的卡片,各自写上自己的名字,然后把卡片放入一个不透明的袋子里,摇匀后任意摸出一张,求摸出写有一等奖学生名字卡片的概率.【考点】VC:条形统计图;VB:扇形统计图;X6:列表法与树状图法.【分析】(1)用单位1减去其他各组的所占的百分比,求得总人数,然后乘以其所占的百分比即可;(2)根据(1)求出的数据画出图形即可;(3)用360°×三等奖的概率即可得到圆心角的度数;(4)一等奖的人数除以总人数即可得到抽到一等奖的概率.【解答】解:(1)参赛总人数为20÷10%=200(人),由1﹣10%﹣18%﹣42%=30%,所以三等奖所占的比例为30%,200×30%=60(人),答:这次大赛获得三等奖的学生有60人;(2)如图所示:(3)360°×30%=108°,答:扇形统计图中,表示三等奖扇形的圆心角是108°;(4)摸出写有一等奖学生名字卡片的概率:20÷200=.答:摸出写有一等奖学生名字卡片的概率为.23.如图,AB是⊙O的直径,C为⊙O上一点,点D在CO的延长线上,连接BD,已知BC=BD,AB=4,BC=2.(1)求证:BD是⊙O的切线;(2)求CD的长.【考点】ME:切线的判定与性质.【分析】(1)由AB为圆的直径,利用直径所对的圆周角为直角得到∠ACB为直角,进而得到三角形ABC为直角三角形,利用锐角三角函数定义求出sinA的值,利用特殊角的三角函数值求出∠A的度数为60度,再由OA=OC,得到三角形AOC为等边三角形,利用等边三角形的性质得到两个角为60度,进而求出∠BCD为30度,利用三角形内角和定理求出∠OBD为直角,即OB垂直于BD,即可得证;(2)由AB为直径,求出半径为2,由BC=BD,利用等边对等角得到一对角相等,再由OC=OB 得到一对角相等,等量代换得到∠D=∠OBC,再由一对公共角相等,得到三角形OCB与三角形BCD相似,由相似得比例,即可求出CD的长.【解答】解:(1)∵AB为圆O的直径,∴∠ACB=90°,在Rt△ABC中,∵sinA===,∴∠A=60°,∵AO=CO,∴△AOC为等边三角形,∴∠AOC=∠ACO=60°,∴∠BCD=∠ACB﹣∠ACO=90°﹣60°=30°,∵∠BOD=∠AOC=60°,∴∠OBD=180°﹣(∠BOD+∠D)=90°,∴OB⊥BD,则BD为圆O的切线;(2)∵AB为圆O的直径,且AB=4,∴OB=OC=2,∵BC=BD,∴∠BCD=∠D,∵OC=OB,∴∠BCD=∠OBC,∴∠D=∠OBC,在△BCD和△OCB中,∠D=∠OBC,∠BCD=∠OCB,∴△BCD∽△OCB,∴=,即=,则CD=6.24.2013年1月,由于雾霾天气持续笼罩我国中东部大部分地区,口罩市场出现热卖,某旗舰网店用8000元购进甲、乙两种口罩,销售完后共获利2800元,进价和售价如下表:甲种口罩乙种口罩品名价格进价(元/袋)20 25售价(元/袋)26 35(1)求该网店购进甲、乙两种口罩各多少袋?(2)该网店第二次以原价购进甲、乙、两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍.甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,乙种口罩最低售价为每袋多少元?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)分别根据旗舰网店用8000元购进甲、乙两种口罩,销售完后共获利2800元,得出等式组成方程求出即可;(2)根据甲种口罩袋数是第一次的2倍,要使第二次销售活动获利不少于3680元,得出不等式求出即可.【解答】解;(1)设网店购进甲种口罩x袋,乙种口罩y袋,根据题意得出:,解得:,答:甲种口罩200袋,乙种口罩160袋;(2)设乙种口罩每袋售价z元,根据题意得出:160(z﹣25)+2×200×(26﹣20)≥3680,解得:z≥33,答:乙种口罩每袋售价为每袋33元.25.如图,正方形ABCD中,边长为12,DE⊥DC交AB于点E,DF平分∠EDC交BC于点F,连接EF.(1)求证:EF=CF;(2)当=时,求EF的长.【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质.【分析】(1)根据正方形的性质和全等三角形的判定和性质证明即可;(2)设EF=x,根据勾股定理解答即可.【解答】(1)证明:∵正方形ABGD,又∵DE⊥DC,∴∠ADE+∠EDG=90°=∠GDC+∠EDG,∴∠ADE=∠GDC.又∵∠A=∠DGC,且AD=GD,在△ADE与△GDC中,,∴△ADE≌△GDC(ASA).∴DE=DC,且AE=GC.在△EDF和△CDF中,,∴△EDF≌△CDF(SAS).∴EF=CF;(2)解:∵=,∴AE=GC=4.设EF=x,则BF=16﹣CF=16﹣x,BE=12﹣4=8.由勾股定理,得x2=(16﹣x)2+82.解之,得x=10,即EF=10.26.已知抛物线y=x2+1(如图所示).(1)填空:抛物线的顶点坐标是(0 , 1 ),对称轴是x=0(或y轴);(2)已知y轴上一点A(0,2),点P在抛物线上,过点P作PB⊥x轴,垂足为B.若△PAB是等边三角形,求点P的坐标;(3)在(2)的条件下,点M在直线AP上.在平面内是否存在点N,使四边形OAMN为菱形?若存在,直接写出所有满足条件的点N的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)根据函数的解析式直接写出其顶点坐标和对称轴即可;(2)根据等边三角形的性质求得PB=4,将PB=4代入函数的解析式后求得x的值即可作为P点的横坐标,代入解析式即可求得P点的纵坐标;(3)首先求得直线AP的解析式,然后设出点M的坐标,利用勾股定理表示出有关AP的长即可得到有关M点的横坐标的方程,求得M的横坐标后即可求得其纵坐标,【解答】解:(1)顶点坐标是(0,1),对称轴是y轴(或x=O).(2)∵△PAB是等边三角形,∴∠ABO=90°﹣60°=30°.∴AB=20A=4.∴PB=4.解法一:把y=4代入y=x2+1,得x=±2.∴P1(2,4),P2(﹣2,4).解法二:∴OB==2∴P1(2,4).根据抛物线的对称性,得P2(﹣2,4).(3)∵点A的坐标为(0,2),点P的坐标为(2,4)∴设线段AP所在直线的解析式为y=kx+b∴解得:∴解析式为:y=x+2设存在点N使得OAMN是菱形,∵点M在直线AP上,∴设点M的坐标为:(m,m+2)如图,作MQ⊥y轴于点Q,则MQ=m,AQ=OQ﹣OA=m+2﹣2=m ∵四边形OAMN为菱形,∴AM=AO=2,∴在直角三角形AMQ中,AQ2+MQ2=AM2,即:m2+(m)2=22解得:m=±代入直线AP的解析式求得y=3或1,当P点在抛物线的右支上时,分为两种情况:当N在右图1位置时,∵OA=MN,∴MN=2,又∵M点坐标为(,3),∴N点坐标为(,1),即N1坐标为(,1).当N在右图2位置时,∵MN=OA=2,M点坐标为(﹣,1),∴N点坐标为(﹣,﹣1),即N2坐标为(﹣,﹣1).当P点在抛物线的左支上时,分为两种情况:第一种是当点M在线段PA上时(PA内部)我们求出N点坐标为(﹣,1);第二种是当M点在PA的延长线上时(在第一象限)我们求出N点坐标为(,﹣1)∴存在N1(,1),N2(﹣,﹣1)N3(﹣,1),N4(,﹣1)使得四边形OAMN是菱形.。

2020-2021学年广西南宁市中考数学模拟试卷及答案解析

2020-2021学年广西南宁市中考数学模拟试卷及答案解析

广西省九年级数学中考模拟试卷一、选择题:1.某超市出售的三种品牌月饼袋上,分别标有质量为(500±5)g,(500±10)g,(500±20)g的字样,从中任意拿出两袋,它们的质量最多..相差()A,10g B.20g C.30g D.40g2.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是()A.5个B.6个C.7个D.8个3.若a=﹣2×32,b=(﹣2×3)2,c=﹣(2×3)2,则下列大小关系中正确的是()A.a>b>c B.b>c>a C.b>a>c D.c>a>b4.在下列四个图案中既是轴对称图形,又是中心对称图形的是( )5.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115°D.120°6.如图所示是甲、乙两户居民家庭全年支出费用的扇形统计图,根据统计图,下面对全年食品支出费用判断正确的是()A.甲户比乙户多B.乙户比甲户多C.甲、乙两户一样多D.无法确定哪一户多7.下列运算正确的是()A.a3+a3=a6 B.a3•a3=a9C.(a+b)2=a2+b2 D.(a+b)(a﹣b)=a2﹣b28.若函数y=(2m+6)x2+(1-m)x是正比例函数,则m的值是()A.m=-3B.m=1C.m=3D.m>-39.△ABC中,CA=CB,D为BA中点,P为直线CD上的任一点,那么PA与PB的大小关系是( )A.PA>PBB.PA<PBC.PA=PBD.不能确定10.已知m,n是方程x2-2x-1=0的两实数根,则+的值为( )A.-2B.-C. D.211.如图,若将正方形分成k个全等的矩形,期中上、下各横排两个,中间竖排若干个,则k的值为()A.6;B.8;C.10;D.1212.如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()A.﹣3<P<﹣1B.﹣6<P<0C.﹣3<P<0D.﹣6<P<﹣3二、填空题:13.若∣x+y∣+∣y-3∣=0,则x-y的值为。

广西南宁市2020-2021学年中考模拟数学试卷(含答案).docx

广西南宁市2020-2021学年中考模拟数学试卷(含答案).docx

2021年广西南宁市中考数学一模试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中只有 一项是符合要求的,用2B 铅笔把答题卡,上对应题目的答案标号涂黑。

)如图是由6个相同的正方体组合而成的几何体,其左视图是(某桑蚕丝的半径为0.0000168米,则这个数用科学记数法表示为1. -2021的倒数是( )A. 2021C. - 2021D.I 20212. 3. 4. 5. A. 1.68X10-5B. 1.68X10-4C. 1.68 X105D. 0.168X10-4某住宅小区五月份1日至5日每天用水量变化情况如图所示, C. 34A.B. 712C. V14那么这5天平均每天用水D. 36量的中位数是(下列各式中是最简二次根式的是(6.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A. ( - 4, 5)B. ( - 5, 4)C. (4, - 5)D. (5, - 4)7.如图,0。

中,弦与CD交于点£4=45° , ZAM£>=75°,则Z3的度数是()8.已知a<b,下列结论中成立的是()A.。

+1>/?+1B. - 3tz< - 3bC. - L+2> - ljy+2D.如果c<0,那么A<k2 2 c c9.如图,菱形ABCZ)的对角线AC、位)相交于点0,过点。

作DHLAB于点H,连接0H,若0A=4, S菱形ABCD=24,则0H的长为()c. VTo D. ^13A. .2B. 310.为美化城市环境,计划种植树木10万棵,由于志愿者的加入,实际每天种植比原计划多20%,结果提前5天完成任务,设原计划每天种植树木X万棵.可列方程是()A.业_+5 =纠B.纠-淄-=520%x x x 20%xc 10 一10 =5 D 10 一10=5x (1+20%)x (1+20%)x x11.如图,AG: GD=3: 1, BD-. DC=2: 3,则AE: AC 的值是()A. 8: 7B. 8: 5C. 3: 2D. 6: 512.如图,在平面直角坐标系中,一次函数y=2i+8的图象与工轴、y轴分别相交于点8、点A,以线段AB为边作矩形ABCD,且AB=2BC,点C在反比例函数(x<0)的X 图象上,则k的值为()A. - 10B. - 12C. - 14D. - 16二、填空题(本大题共6小题,每小题3分,共18分。

2020-2021学年广西玉林市、防城港市中考数学仿真模拟试题及答案解析

2020-2021学年广西玉林市、防城港市中考数学仿真模拟试题及答案解析

广西玉林市、防城港市中考数学试卷一、单项选择题(共12小题,每小题3分,满分36分)1.(3分)(2014•玉林)下面的数中,与﹣2的和为0的是()A. 2 B.﹣2 C.D.考点:有理数的加法.分析:设这个数为x,根据题意可得方程x+(﹣2)=0,再解方程即可.解答:解:设这个数为x,由题意得:x+(﹣2)=0,x﹣2=0,x=2,故选:A.点评:此题主要考查了有理数的加法,解答本题的关键是理解题意,根据题意列出方程.2.(3分)(2014•玉林)将6.18×10﹣3化为小数的是()A. 0.000618 B. 0.00618 C. 0.0618 D. 0.618考点:科学记数法—原数.分析:科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“6.18×10﹣3中6.18的小数点向左移动3位就可以得到.解答:解:把数据“6.18×10﹣3中6.18的小数点向左移动3位就可以得到为0.00618.故选B.点评:本题考查写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n 位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.3.(3分)(2014•玉林)计算(2a2)3的结果是()A.2a6B.6a6C.8a6D.8a5考点:幂的乘方与积的乘方.分析:利用幂的乘方与积的乘方的性质求解即可求得答案.解答:解:(2a2)3=8a6.故选C.点评:此题考查了幂的乘方与积的乘方的性质.此题比较简单,注意掌握指数的变化是解此题的关键.4.(3分)(2014•玉林)下面的多项式在实数范围内能因式分解的是()A.x2+y2B.x2﹣y C.x2+x+1 D.x2﹣2x+1考点:实数范围内分解因式.分析:利用因式分解的方法,分别判断得出即可.解答:解;A、x2+y2,无法因式分解,故此选项错误;B、x2﹣y,无法因式分解,故此选项错误;C、x2+x+1,无法因式分解,故此选项错误;D、x2﹣2x+1=(x﹣1)2,故此选项正确.故选:D.点评:此题主要考查了公式法分解因式,熟练应用公式是解题关键.5.(3分)(2014•玉林)如图的几何体的三视图是()A.B.C.D.考点:简单组合体的三视图.分析:分别找出图形从正面、左面、和上面看所得到的图形即可.解答:解:从几何体的正面看可得有2列小正方形,左面有2个小正方形,右面下边有1个小正方形;从几何体的正面看可得有2列小正方形,左面有2个小正方形,右面下边有1个小正方形;从几何体的上面看可得有2列小正方形,左面有2个小正方形,右上角有1个小正方形;故选:C.点评:本题考查了三视图的知识,注意所有的看到的棱都应表现在三视图中.6.(3分)(2014•玉林)下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形考点:命题与定理.分析:根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.解答:解:A、四个角相等的四边形是矩形,所以A选项为真命题;B、对角线相等的平行四边形是矩形,所以B选项为真命题;C、对角线垂直的平行四边形是菱形,所以C选项为假命题;D、对角线垂直的平行四边形是菱形,所以D选项为真命题.故选C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.7.(3分)(2014•玉林)△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是()A. 3 B. 6 C. 9 D. 12考点:位似变换.分析:利用位似图形的面积比等于位似比的平方,进而得出答案.解答:解:∵△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,△ABC的面积是3,∴△ABC与△A′B′C′的面积比为:1:4,则△A′B′C′的面积是:12.故选:D.点评:此题主要考查了位似图形的性质,利用位似图形的面积比等于位似比的平方得出是解题关键.8.(3分)(2014•玉林)一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.B.C.D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:=.故答案为:C.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.(3分)(2014•玉林)x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的是结论是()A. m=0时成立B. m=2时成立C. m=0或2时成立D.不存在考点:根与系数的关系.分析:先由一元二次方程根与系数的关系得出,x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,则=0,求出m=0,再用判别式进行检验即可.解答:解:∵x,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,1∴x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,则=0,∴=0,∴m=0.当m=0时,方程x2﹣mx+m﹣2=0即为x2﹣2=0,此时△=8>0,∴m=0符合题意.故选A.点评:本题主要考查了一元二次方程根与系数的关系:如果x,x2是方程x2+px+q=0的两根时,1那么x1+x2=﹣p,x1x2=q.10.(3分)(2014•玉林)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A. 1cm<AB<4cm B. 5cm<AB<10cm C. 4cm<AB<8cm D. 4cm<AB<10cm考点:等腰三角形的性质;解一元一次不等式组;三角形三边关系.分析:设AB=AC=x,则BC=20﹣2x,根据三角形的三边关系即可得出结论.解答:解:∵在等腰△ABC中,AB=AC,其周长为20cm,∴设AB=AC=xcm,则BC=(20﹣2x)cm,∴,解得5cm<x<10cm.故选B.点评:本题考查的是等腰三角形的性质,熟知等腰三角形的两腰相等是解答此题的关键.11.(3分)(2014•玉林)蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB边如图所示,则△ABC是直角三角形的个数有()A. 4个B. 6个C. 8个D. 10个考点:正多边形和圆.分析:根据正六边形的性质,分AB是直角边和斜边两种情况确定出点C的位置即可得解.解答:解:如图,AB是直角边时,点C共有6个位置,即,有6个直角三角形,AB是斜边时,点C共有2个位置,即有2个直角三角形,综上所述,△ABC是直角三角形的个数有6+2=8个.故选C.点评:本题考查了正多边形和圆,难点在于分AB是直角边和斜边两种情况讨论,熟练掌握正六边形的性质是解题的关键,作出图形更形象直观.12.(3分)(2014•玉林)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.考点:动点问题的函数图象.分析:根据题目提供的条件可以求出函数的解析式,根据解析式判断函数的图象的形状.解答:解:①t≤1时,两个三角形重叠面积为小三角形的面积,∴y=×1×=,②当1<x≤2时,重叠三角形的边长为2﹣x,高为,y=(2﹣x)×=x﹣x+,③当x≥2时两个三角形重叠面积为小三角形的面积为0,故选:B.点评:本题主要考查了本题考查了动点问题的函数图象,此类题目的图象往往是几个函数的组合体.二、填空题(共6小题,每小题3分,满分18分)13.(3分)(2014•玉林)3的倒数是.考点:倒数.分析:根据倒数的定义可知.解答:解:3的倒数是.点评:主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.14.(3分)(2014•玉林)在平面直角坐标系中,点(﹣4,4)在第二象限.考点:点的坐标.分析:根据各象限内点的坐标特征解答.解答:解:点(﹣4,4)在第二象限.故答案为:二.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).15.(3分)(2014•玉林)下表是我市某一天在不同时段测得的气温情况0:00 4:00 8:00 12:00 16:00 20:0025℃27℃29℃32℃34℃30℃则这一天气温的极差是9 ℃.考点:极差.分析:根据极差的定义即极差就是这组数中最大值与最小值的差,即可得出答案.解答:解:这组数据的最大值是34℃,最小值是25℃,则极差是34﹣25=9(℃).故答案为:9.点评:此题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.注意:极差的单位与原数据单位一致.16.(3分)(2014•玉林)如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E= .考点:切线的性质;等边三角形的判定与性质;特殊角的三角函数值.专题:计算题.分析:连结OM,OM的反向延长线交EF与C,由直线MN与⊙O相切于点M,根据切线的性质得OM⊥MF,而EF∥MN,根据平行线的性质得到MC⊥EF,于是根据垂径定理有CE=CF,再利用等腰三角形的判定得到ME=MF,易证得△MEF为等边三角形,所以∠E=60°,然后根据特殊角的三角函数值求解.解答:解:连结OM,OM的反向延长线交EF与C,如图,∵直线MN与⊙O相切于点M,∴OM⊥MF,∵EF∥MN,∴MC⊥EF,∴CE=CF,∴ME=MF,而ME=EF,∴ME=EF=MF,∴△MEF为等边三角形,∴∠E=60°,∴cos∠E=cos60°=.故答案为.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了垂径定理、等边三角形的判定与性质和特殊角的三角函数值.17.(3分)(2014•玉林)如图,在直角梯形ABCD中,AD∥BC,∠C=90°,∠A=120°,AD=2,BD 平分∠ABC,则梯形ABCD的周长是7+.考点:直角梯形.分析:根据题意得出AB=AD,进而得出BD的长,再利用在直角三角形中30°所对的边等于斜边的一半,进而求出CD以及利用勾股定理求出BC的长,即可得出梯形ABCD的周长.解答:解:过点A作AE⊥BD于点E,∵AD∥BC,∠A=120°,∴∠ABC=60°,∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠ABE=∠ADE=30°,∴AB=AD,∴AE=AD=1,∴DE=,则BD=2,∵∠C=90°,∠DBC=30°,∴DC=BD=,∴BC===3,∴梯形ABCD的周长是:AB+AD+CD+BC=2+2++3=7+.故答案为:7+.点评:此题主要考查了直角梯形的性质以及勾股定理和直角三角形中30°所对的边等于斜边的一半等知识,得出∠DBC的度数是解题关键.18.(3分)(2014•玉林)如图,OABC是平行四边形,对角线OB在轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:①=;②阴影部分面积是(k1+k2);③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是①④(把所有正确的结论的序号都填上).考点:反比例函数综合题.专题:综合题.分析:作AE⊥y轴于E,CF⊥y轴于F,根据平行四边形的性质得S△AOB=S△COB,利用三角形面积公式得到AE=CF,则有OM=ON,再利用反比例函数k的几何意义和三角形面积公式得到S△=|k1|=OM•AM,S△CON=|k2|=ON•CN,所以有=;由S△AOM=|k1|,AOMS△=|k2|,得到S阴影部分=S△AOM+S△CON=(|k1|+|k2|)=(k1﹣k2);当∠AOC=90°,得到四CON边形OABC是矩形,由于不能确定OA与OC相等,则不能判断△AOM≌△CNO,所以不能判断AM=CN,则不能确定|k1|=|k2|;若OABC是菱形,根据菱形的性质得OA=OC,可判断Rt△AOM≌Rt△CNO,则AM=CN,所以|k1|=|k2|,即k1=﹣k2,根据反比例函数的性质得两双曲线既关于x轴对称,也关于y轴对称.解答:解:作AE⊥y轴于E,CF⊥y轴于F,如图,∵四边形OABC是平行四边形,∴S△AOB=S△COB,∴AE=CF,∴OM=ON,∵S△AOM=|k1|=OM•AM,S△CON=|k2|=ON•CN,∴=,所以①正确;∵S△AOM=|k1|,S△CON=|k2|,∴S阴影部分=S△AOM+S△CON=(|k1|+|k2|),而k1>0,k2<0,∴S阴影部分=(k1﹣k2),所以②错误;当∠AOC=90°,∴四边形OABC是矩形,∴不能确定OA与OC相等,而OM=ON,∴不能判断△AOM≌△CNO,∴不能判断AM=CN,∴不能确定|k1|=|k2|,所以③错误;若OABC是菱形,则OA=OC,而OM=ON,∴Rt△AOM≌Rt△CNO,∴AM=CN,∴|k1|=|k2|,∴k1=﹣k2,∴两双曲线既关于x轴对称,也关于y轴对称,所以④正确.故答案为①④.点评:本题考查了反比例函数的综合题:熟练掌握反比例函数的图象、反比例函数k的几何意义、平行四边形的性质、矩形的性质和菱形的性质.三、解答题(共8小题,满分66分。

2020-2021学年最新广西柳州市中考仿真模拟数学试题及答案

2020-2021学年最新广西柳州市中考仿真模拟数学试题及答案

中考数学试卷一、选择题(每题只有一个正确选项,本题共12小题,每题3分,共36分)1.(3.00分)计算:0+(﹣2)=()A.﹣2 B.2 C.0 D.﹣202.(3.00分)如图,这是一个机械模具,则它的主视图是()A.B.C. D.3.(3.00分)下列图形中,是中心对称图形的是()A.正三角形B.圆C.正五边形D.等腰梯形4.(3.00分)现有四张扑克牌:红桃A、黑桃A、梅花A和方块A,将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A的概率为()A.1 B.C.D.5.(3.00分)世界人口约7000000000人,用科学记数法可表示为()A.9×107B.7×1010C.7×109D.0.7×1096.(3.00分)如图,图中直角三角形共有()A.1个 B.2个 C.3个 D.4个7.(3.00分)如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,则sinB==()A.B.C.D.8.(3.00分)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°9.(3.00分)苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元10.(3.00分)如图是某年参加国际教育评估的15个国家学生的数学平均成绩(x)的扇形统计图,由图可知,学生的数学平均成绩在60≤x<70之间的国家占()A.6.7% B.13.3% C.26.7% D.53.3%11.(3.00分)计算:(2a)•(ab)=()A.2ab B.2a2b C.3ab D.3a2b12.(3.00分)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2B.a≠﹣2 C.a≠±2 D.a=±2二、填空题(每题只有一个正确选项,本题共6小题,每题3分,共1836分)13.(3.00分)如图,a∥b,若∠1=46°,则∠2= °.14.(3.00分)如图,在平面直角坐标系中,点A的坐标是.15.(3.00分)不等式x+1≥0的解集是.16.(3.00分)一元二次方程x2﹣9=0的解是.17.(3.00分)篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜x场,负y场,则可列出方程组为.18.(3.00分)如图,在Rt△ABC中,∠BCA=90°,∠DCA=30°,AC=,AD=,则BC的长为.三、解答题(每题只有一个正确选项,本题共8小题,共66分)19.(6.00分)计算:2+3.20.(6.00分)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.21.(8.00分)一位同学进行五次投实心球的练习,每次投出的成绩如表:投实心球序次12345成绩(m)10.510.210.310.610.4求该同学这五次投实心球的平均成绩.22.(8.00分)解方程=.23.(8.00分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.24.(10.00分)如图,一次函数y=mx+b的图象与反比例函数y=的图象交于A(3,1),B(﹣,n)两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.25.(10.00分)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点D.(1)求证:△DAC∽△DBA;(2)过点C作⊙O的切线CE交AD于点E,求证:CE=AD;(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG的长.26.(10.00分)如图,抛物线y=ax2+bx+c与x轴交于A(,0),B两点(点B在点A的左侧),与y轴交于点C,且OB=3OA=OC,∠OAC的平分线AD交y轴于点D,过点A且垂直于AD 的直线l交y轴于点E,点P是x轴下方抛物线上的一个动点,过点P作PF⊥x轴,垂足为F,交直线AD于点H.(1)求抛物线的解析式;(2)设点P的横坐标为m,当FH=HP时,求m的值;(3)当直线PF为抛物线的对称轴时,以点H为圆心,HC为半径作⊙H,点Q为⊙H上的一个动点,求AQ+EQ的最小值.中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共12小题,每题3分,共36分)1.(3.00分)计算:0+(﹣2)=()A.﹣2 B.2 C.0 D.﹣20【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:0+(﹣2)=﹣2.故选:A.【点评】此题主要考查了有理数的加法,正确掌握运算法则是解题关键.2.(3.00分)如图,这是一个机械模具,则它的主视图是()A.B.C. D.【分析】根据主视图的画法解答即可.【解答】解:主视图是从几何体正边看得到的图形,题中的几何体从正边看,得到的图形是并列的三个正方形和一个圆,其中圆在左边正方形的上面,故选:C.【点评】本题考查几何体的三视图画法.根据主视图是从几何体正边看得到的图形解答是关键.3.(3.00分)下列图形中,是中心对称图形的是()A.正三角形B.圆C.正五边形D.等腰梯形【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.4.(3.00分)现有四张扑克牌:红桃A、黑桃A、梅花A和方块A,将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A的概率为()A.1 B.C.D.【分析】利用概率公式计算即可得.【解答】解:∵从4张纸牌中任意抽取一张牌有4种等可能结果,其中抽到红桃A的只有1种结果,∴抽到红桃A的概率为,故选:B.【点评】本题主要考查概率公式的应用,解题的关键是掌握随机事件A的概率P(A)=事件A 可能出现的结果数÷所有可能出现的结果数.5.(3.00分)世界人口约7000000000人,用科学记数法可表示为()A.9×107B.7×1010C.7×109D.0.7×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:7000000000=7×109.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(3.00分)如图,图中直角三角形共有()A.1个 B.2个 C.3个 D.4个【分析】根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.【点评】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.7.(3.00分)如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,则sinB==()A.B.C.D.【分析】首先利用勾股定理计算出AB长,再计算sinB即可.【解答】解:∵∠C=90°,BC=4,AC=3,∴AB=5,∴sinB==,故选:A.【点评】此题主要考查了锐角三角函数,关键是正确计算出AB的长.8.(3.00分)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°【分析】直接利用圆周角定理即可得出答案.【解答】解:∵∠B与∠C所对的弧都是,∴∠C=∠B=24°,故选:D.【点评】本题主要考查圆周角定理,解题的关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.(3.00分)苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元【分析】根据“实际售价=原售价×”可得答案.【解答】解:根据题意知,买一斤需要付费0.8a元,故选:A.【点评】本题主要考查列代数式,解题的关键是掌握代数式的书写规范及实际问题中数量间的关系.10.(3.00分)如图是某年参加国际教育评估的15个国家学生的数学平均成绩(x)的扇形统计图,由图可知,学生的数学平均成绩在60≤x<70之间的国家占()A.6.7% B.13.3% C.26.7% D.53.3%【分析】根据扇形统计图直接反映部分占总体的百分比大小,可知学生成绩在60≤x<69之间的占53.3%.【解答】解:由图可知,学生的数学平均成绩在60≤x<70之间的国家占53.3%.故选:D.【点评】本题考查了扇形统计图的应用.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.11.(3.00分)计算:(2a)•(ab)=()A.2ab B.2a2b C.3ab D.3a2b【分析】直接利用单项式乘以单项式运算法则计算得出答案.【解答】解:(2a)•(ab)=2a2b.故选:B.【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.12.(3.00分)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2B.a≠﹣2 C.a≠±2 D.a=±2【分析】根据反比例函数解析式中k是常数,不能等于0解答即可.【解答】解:由题意可得:|a|﹣2≠0,解得:a≠±2,故选:C.【点评】此题主要考查了反比例函数,关键是根据反比例函数关系式中k的取值范围解答.二、填空题(每题只有一个正确选项,本题共6小题,每题3分,共1836分)13.(3.00分)如图,a∥b,若∠1=46°,则∠2= 46 °.【分析】根据平行线的性质,得到∠1=∠2即可.【解答】解:∵a∥b,∠1=46°,∴∠2=∠1=46°,故答案为:46.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等.14.(3.00分)如图,在平面直角坐标系中,点A的坐标是(﹣2,3).【分析】直接利用平面直角坐标系得出A 点坐标.【解答】解:由坐标系可得:点A 的坐标是(﹣2,3).故答案为:(﹣2,3).【点评】此题主要考查了点的坐标,正确利用平面坐标系是解题关键.15.(3.00分)不等式x+1≥0的解集是 x ≥﹣1 .【分析】根据一元一次不等式的解法求解不等式.【解答】解:移项得:x ≥﹣1.故答案为:x ≥﹣1.【点评】本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(3.00分)一元二次方程x 2﹣9=0的解是 x 1=3,x 2=﹣3 .【分析】利用直接开平方法解方程得出即可.【解答】解:∵x 2﹣9=0,∴x 2=9,解得:x 1=3,x 2=﹣3.故答案为:x 1=3,x 2=﹣3.【点评】此题主要考查了直接开平方法解方程,正确开平方是解题关键.17.(3.00分)篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜x场,负y场,则可列出方程组为.【分析】根据比赛总场数和总分数可得相应的等量关系:胜的场数+负的场数=8;胜的积分+平的积分=14,把相关数值代入即可.【解答】解:设艾美所在的球队胜x场,负y场,∵共踢了8场,∴x+y=8;∵每队胜一场得2分,负一场得1分.∴2x+y=14,故列的方程组为,故答案为.【点评】本题考查了列二元一次方程组,根据总场数和总分数得到相应的等量关系是解决本题的根据.18.(3.00分)如图,在Rt△ABC中,∠BCA=90°,∠DCA=30°,AC=,AD=,则BC的长为 5 .【分析】作辅助线,构建直角三角形,先根据直角三角形30度角的性质和勾股定理得:AE=,CE=,及ED的长,可得CD的长,证明△BFD∽△BCA,列比例式可得BC的长.【解答】解:过A作AE⊥CD于E,过D作DF⊥BC于F,Rt△AEC中,∠ACD=30°,AC=,∴AE=,CE=,Rt△AED中,ED===,∴CD=CE+DE==,∵DF⊥BC,AC⊥BC,∴DF∥AC,∴∠FDC=∠ACD=30°,∴CF=CD==,∴DF=,∵DF∥AC,∴△BFD∽△BCA,∴,∴=,∴BF=,∴BC=+=5,故答案为:5.【点评】本题考查了相似三角形的性质和判定、直角三角形30度角的性质及勾股定理,熟练运用勾股定理计算线段的长是关键.三、解答题(每题只有一个正确选项,本题共8小题,共66分)19.(6.00分)计算:2+3.【分析】先化简,再计算加法即可求解.【解答】解:2+3=4+3=7.【点评】考查了二次根式的加减法,关键是熟练掌握二次根式的加减法法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.20.(6.00分)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.【分析】依据两角及其夹边分别对应相等的两个三角形全等进行判断.【解答】证明:∵在△ABC和△EDC中,,∴△ABC≌△EDC(ASA).【点评】本题主要考查了全等三角形的判定,两角及其夹边分别对应相等的两个三角形全等.21.(8.00分)一位同学进行五次投实心球的练习,每次投出的成绩如表:12345投实心球序次成绩(m)10.510.210.310.610.4求该同学这五次投实心球的平均成绩.【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】解:该同学这五次投实心球的平均成绩为:=10.4.故该同学这五次投实心球的平均成绩为10.4m.【点评】此题考查了平均数,解题的关键是掌握平均数的计算公式.22.(8.00分)解方程=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣4=x,解得:x=4,经检验x=4是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(8.00分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.【分析】(1)由菱形的四边相等即可求出其周长;(2)利用勾股定理可求出BO的长,进而解答即可.【解答】解:(1)∵四边形ABCD是菱形,AB=2,∴菱形ABCD的周长=2×4=8;(2)∵四边形ABCD是菱形,AC=2,AB=2∴AC⊥BD,AO=1,∴BO=,∴BD=2【点评】本题主要考查菱形的性质,能够利用勾股定理求出BO的长是解题关键.24.(10.00分)如图,一次函数y=mx+b的图象与反比例函数y=的图象交于A(3,1),B(﹣,n)两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.【分析】(1)根据反比例函数y=的图象经过A(3,1),即可得到反比例函数的解析式为y=;(2)把B(﹣,n)代入反比例函数解析式,可得n=﹣6,把A(3,1),B(﹣,﹣6)代入一次函数y=mx+b,可得一次函数的解析式为y=2x﹣5.【解答】解:(1)∵反比例函数y=的图象经过A(3,1),∴k=3×1=3,∴反比例函数的解析式为y=;(2)把B(﹣,n)代入反比例函数解析式,可得﹣n=3,解得n=﹣6,∴B(﹣,﹣6),把A(3,1),B(﹣,﹣6)代入一次函数y=mx+b,可得,解得,∴一次函数的解析式为y=2x﹣5.【点评】本题考查了利用图象解决一次函数和反比例函数的问题.已知点在图象上,那么点一定满足这个函数解析式,反过来如果这点满足函数的解析式,那么这个点也一定在函数图象上.25.(10.00分)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点D.(1)求证:△DAC∽△DBA;(2)过点C作⊙O的切线CE交AD于点E,求证:CE=AD;(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG的长.【分析】(1)利用AB是⊙O的直径和AD是⊙O的切线判断出∠ACD=∠DAB=90°,即可得出结论;(2)利用切线长定理判断出AE=CE,进而得出∠DAC=∠EAC,再用等角的余角相等判断出∠D=∠DCE,得出DE=CE,即可得出结论;(3)先求出tan∠ABD值,进而得出GH=2CH,进而得出BC=3BH,再求出BC建立方程求出BH,进而得出GH,即可得出结论.【解答】解:(1)∵AB是⊙O直径,∴∠ACD=∠ACB=90°,∵AD是⊙O的切线,∴∠BAD=90°,∴∠ACD=∠DAB=90°,∵∠D=∠D,∴△DAC∽△DBA;(2)∵EA,EC是⊙O的切线,∴AE=CE(切线长定理),∴∠DAC=∠ECA,∵∠ACD=90°,∴∠ACE+∠DCE=90°,∠DAC+∠D=90°,∴∠D=∠DCE,∴DE=CE,∴AD=AE+DE=CE+CE=2CE,∴CE=AD;(3)如图,在Rt△ABD中,AD=6,AB=3,∴tan∠ABD==2,过点G作GH⊥BD于H,∴tan∠ABD==2,∴GH=2BH,∵点F是直径AB下方半圆的中点,∴∠BCF=45°,∴∠CGH=∠CHG﹣∠BCF=45°,∴CH=GH=2BH,∴BC=BH+CH=3BH,在Rt△ABC中,tan∠ABC==2,∴AC=2BC,根据勾股定理得,AC2+BC2=AB2,∴4BC2+BC2=9,∴BC=,∴3BH=,∴BH=,∴GH=2BH=,在Rt△CHG中,∠BCF=45°,∴CG=GH=.【点评】此题是圆的综合题,主要考查了切线的性质,切线长定理,锐角三角函数,相似三角形的判定和性质,勾股定理,求出tan∠ABD的值是解本题的关键.26.(10.00分)如图,抛物线y=ax2+bx+c与x轴交于A(,0),B两点(点B在点A的左侧),与y轴交于点C,且OB=3OA=OC,∠OAC的平分线AD交y轴于点D,过点A且垂直于AD 的直线l交y轴于点E,点P是x轴下方抛物线上的一个动点,过点P作PF⊥x轴,垂足为F,交直线AD于点H.(1)求抛物线的解析式;(2)设点P的横坐标为m,当FH=HP时,求m的值;(3)当直线PF为抛物线的对称轴时,以点H为圆心,HC为半径作⊙H,点Q为⊙H上的一个动点,求AQ+EQ的最小值.【分析】(1)求出A、B、C的坐标,利用两根式求出抛物线的解析式即可;(2)求出直线AH的解析式,根据方程即可解决问题;(3)首先求出⊙H的半径,在HA上取一点K,使得HK=,此时K(﹣,﹣),由HQ2=HK•HA,可得△QHK∽△AHQ,推出==,可得KQ=AQ,推出AQ+QE=KQ+EQ,可得当E、Q、K 共线时,AQ+QE的值最小,由此求出点E坐标,点K坐标即可解决问题;【解答】解:(1)由题意A(,0),B(﹣3,0),C(0,﹣3),设抛物线的解析式为y=a(x+3)(x﹣),把C(0,﹣3)代入得到a=,∴抛物线的解析式为y=x2+x﹣3.(2)在Rt△AOC中,tan∠OAC==,∴∠OAC=60°,∵AD平分∠OAC,∴∠OAD=30°,∴OD=OA•tan30°=1,∴D(0,﹣1),∴直线AD的解析式为y=x﹣1,由题意P(m,m2+m﹣3),H(m,m﹣1),F(m,0),∵FH=PH,∴1﹣m=m﹣1﹣(m2+m﹣3)解得m=﹣或(舍弃),∴当FH=HP时,m的值为﹣.(3)如图,∵PF是对称轴,∴F(﹣,0),H(﹣,﹣2),∵AH⊥AE,∴∠EAO=60°,∴EO=OA=3,∴E(0,3),∵C(0,﹣3),∴HC==2,AH=2FH=4,∴QH=CH=1,在HA上取一点K,使得HK=,此时K(﹣,﹣),∵HQ2=1,HK•HA=1,∴HQ2=HK•HA,可得△QHK∽△AHQ,∴==,∴KQ=AQ,∴AQ+QE=KQ+EQ,∴当E、Q、K共线时,AQ+QE的值最小,最小值==.【点评】本题考查二次函数综合题、一次函数的应用、一元二次方程、圆的有关知识、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广西最新下学期九年级数学综合模拟训练(2)(本试卷分第Ⅰ卷和第Ⅱ卷,考试时间120分钟,赋分120分)第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出标号为(A)、(B)、(C)、(D)的四个选项,其中只有一个是正确的.1.2014的倒数是()A.12014B.12014-C.2014D.2014-2.1.四边相等的四边形是( )A. 正方形B.矩形C. 菱形D.梯形3.下列各式中,与2a是同类项的是()A.3a B.2ab C.23a-D.a2b4.在下面的四个几何体中,同一几何体的主视图与俯视图相同的是()A.B.C.D.5.在平面直角坐标系中,已知点A(2,3),则点A关于x轴的对称点坐标为()A.(3,2)B.(2,3-)C.(2-,3)D.(2-,3-)6.一次函数y=kx+b(k≠0)的图像如图1所示,则下列结论正确的是()A.k=2 B.k=3 C.b=2 D.b=37.下列命题中,是真命题的是()A.等腰三角形都相似B.等边三角形都相似C.锐角三角形都相似D.直角三角形都相似8.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定9.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.10.一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球。

则下列事件是必然事件的是()A.摸出的4个球中至少有一个球是白球B.摸出的4个球中至少有一个球是黑球C.摸出的4个球中至少有两个球是黑球D .摸出的4个球中至少有两个球11.如图2,在△ABC 中,∠CAB=70°,将△ABC 绕点A 逆时针旋转到△AB'C'的位置,使得CC'∥AB ,则∠BAB'的度数是( )A .70°B .35°C .40°D .50°12.如图3,在等腰梯形ABCD 中(图(1)),∠B=60°,P 、Q 同时从B 出发,以每秒1单位长度分别沿B-A-D-C 和B-C-D 方向运动至相遇时停止,设运动时间为t (秒),△BPQ 的面积为S (平房单位),S 与t 的函数图象如图(2)所示,则下列结论错误的是( )A .当t=4秒时,S=43B .AD=4C .当4≤t ≤8时,S=23tD .当t=9秒时,BP 平分梯形ABCD 的面积第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式:a 2+2a=.14.震惊世界的马航MH370失联事件发生后第30天,中国“海巡01”轮在南印度洋海域搜索过程中首次侦听到疑似飞机黑匣子的脉冲信号,探测到的信号源所在海域水深4500米左右,把4500米用科学记数法表示为米.15.如图4,在矩形ABCD 中,AB <BC ,AC,BD 相交于点O ,则图中等腰三角形的个数是.16.关于x 的一元二次方程x 2+a=0没有实数根,则实数a 的取值范围是 a >0 ..17.已知关于x 的一元二次方程()22x 2k 1x k 20+++-=的两根x 1和x 2,且()()112x 2x x 0--=,则k 的值是. 18.观察下列运算:81=8,82=64,83=512,84=4096,85=32768,86=262144,…,则:81+82+83+84+…+82014的和的个位数字是.三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)19.(本题满分10分,每小题5分)(1)计算:()20142sin45421--+︒+-(2)解不等式:4x 3>x 6-+,并把解集在数轴上表示出来.20.(本题6分)在ABCD 中,对角线AC 、BD 交于点O ,过点O 作直线EF 分别交线段AD 、BC 于点E 、F.(1)根据题意,画出图形,并标上正确的字母;(2)求证:DE=BF.图421.(本题6分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.22.(本题6分)电动自行车已成为市民日常出行的首选工具。

据某市品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月销售216辆.(1)求该品牌电动车销售量的月平均增长率;(2)若该品牌电动自行车的进价为2300元,售价2800元,则该经销商1月至3月共盈利多少元?23.(本题8分)直线y=364x 和x轴,y轴分别交于点E,F,点A是线段EF上一动点(不与点E重合),过点A作x轴垂线,垂足是点B,以AB为边向右作矩形ABCD,AB:BC=3:4。

(1)当点A与点F重合时,求证:四边形ADBE是平行四边形,并求直线DE的表达式;(2)当点A不与点F重合时,四边形ADBE仍然是平行四边形?说明理由,此时你还能求出直线DE的表达式吗?若能,请你求出来。

24.(本题10分)如图,△ABC 的内接三角形,P 为BC 延长线上一点,∠PAC=∠B ,AD 为⊙O 的直径,过C 作CG ⊥AD 于E ,交AB 于F ,交⊙O 于G 。

(1)判断直线PA 与⊙O 的位置关系,并说明理由;(2)求证:AG 2=AF ·AB ;(3)若⊙O 的直径为10,AC=25,AB=45,求△AFG 的面积.25.(本题11分)如图,抛物线21322y x x c =-++与x 轴交于点A 、B 两点,与y 轴交于点C ,且A 点坐标(-3,0),连接BC 、AC .(1)求该抛物线解析式;(2)求AB 和OC 的长;(3)点E 从点B 出发,沿x 轴向点A 运动(点E 与点A 、B 不重合),过点E 作直线l 平行AC ,交BC 于点D ,设BE 的长为m ,△BDE 的面积为s ,求s 关于m 的函数关系式,并写出自变量m 的取值范围;(4)在(3)的条件下,连接CE ,求△CDE面积的最大值.26. (本题9分)26.(本题满分9分)(1)如图1,已知△ABC ,以AB 、AC 为边向△ABC 外作等边△ABD 和等边△ACE ,连接BE ,CD ,求证:BE=CD ;(2)如图2,已知△ABC ,以AB 、AC 为边向外作正方形ABFD 和正方形ACGE ,连接BE ,CD ,BE 与CD 有怎样的数量关系?(只写出结论,不需证明);(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B ,E 的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE ,求BE 的长.一.选择题(共12小题,每小题3分,满分36分)1.A.2.C .3.A4.D .5.B .6.D .7.B .8.B .9.C .10. B .11.C .12.C.二.填空题(共6小题,每小题3分,满分18分)13.()a a 2+.14. 4.5×103.15. 4.16.a >0.17.2-或94-.18. 2. 三.解答题(共8小题,满分66分)19.(本题满分10分,每小题5分)(1)解:原式=2212221223+-⨯+=+-+=. (2)解:4x 3>x 6-+,移项合并同类项,得3x >9,把x 的系数化为1,得x >3.∴原不等式的解为x >3.它的解集在数轴上表示为:20.(本题满分6分)解:(1)作图如图所示:(2)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,OB=OD. ∴∠EDO=∠OBF. 在△DOE 和△BOF 中,∵EOD BOF OD OB EDO FBO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴DOE ≌△BOF (ASA ). ∴DE=BF .21.(本题满分6分):解:(1)200;40.(2)110.(3)∵90200×360°=162°, ∴扇形统计图中表示“不赞同”的扇形的圆心角度数为162°.22.(本题满分6分)解:(1)设该品牌电动车销售量的月平均增长率为x ,根据题意得 150(1+x )2=216,解得x 1=0.2,x 2=-2.2(舍去).答:该品牌电动车销售量的月平均增长率为20%.(2)由(1)得该品牌电动车销售量的月平均增长率为20%,∴2月份的销售量为150×(1+20%)=180.∴则1-3月份的销售总量为150+180+216=546(辆)∴()28002300546273000-⨯=(元)答:该经销商1月至3月共盈利273000元.23.解:令x=0,得到y=6;令y=0,得到x=﹣8,即E (﹣8,0),F (0,6),(1)当点A 与点F 重合时,A (0,6),即AB=6,∵AB :BC=3:4,∴BC=8,∴AD=BE=8,又∵AD ∥BE ,∴四边形ADBE 是平行四边形;∴D (8,6),设直线DE 解析式为y=kx+b (k 、b 为常数且k ≠0),将D (8,6),E (﹣8,0)代入得:,解得:b=3,k=.则直线DE 解析式为y=x+3;(2)四边形ADBE 仍然是平行四边形,理由为:设点A (m ,m+6)即AB=m+6,OB=﹣m ,即B (m ,0),∴BE=m+8,又∵AB :BC=3:4,∴BC=m+8,∴AD=m+8,∴BE=AD ,又∵BE ∥AD ,∴四边形ADBE 仍然是平行四边形;又∵BC=m+8,∴OC=2m+8,∴D (2m+8,m+6),设直线DE 解析式为y=k 1x+b 1(k 1、b 1为常数且k 1≠0),将D 与E 坐标代入得:,解得:k 1=,b 1=3,则直线DE 解析式为y=x+3.24.(本题满分0分)解:(1)PA 与⊙O 相切.理由如下:如答图1,连接CD ,∵AD 为⊙O 的直径,∴∠ACD=90°.∴∠D+∠CAD=90°.∵∠B=∠D ,∠PAC=∠B ,∴∠PAC=∠D.∴∠PAC+∠CAD=90°,即DA ⊥PA.∵点A 在圆上,∴PA 与⊙O 相切.(2)证明:如答图2,连接BG ,∵AD 为⊙O 的直径,CG ⊥AD ,∴»»ACAD =. ∴∠AGF=∠ABG.∵∠GAF=∠BAG ,∴△AGF ∽△ABG.∴AG :AB=AF :AG. ∴AG 2=AF •AB.(3)如答图3,连接BD ,∵AD 是直径,∴∠ABD=90°.∵AG 2=AF •AB ,AG=AC=25,AB=45,∴AF=5.∵CG⊥AD,∴∠AEF=∠ABD=90°.∵∠EAF=∠BAD,∴△AEF∽△ABD. ∴AE AFAB AD=,即=,解得:AE=2.∴EF1=.∵EG4=,∴FG EG EF413=-=-=.∴AFG11S FG AE32322∆=⋅⋅=⨯⨯=.25.(本题满分11分)解:(1)∵抛物线21322y x x c=-++过A点,∴0=-12×9-32×3+c,解得c=9,∴抛物线解析式为213922y x x=-++;(2)∵抛物线解析式为213922y x x=-++,∴C点坐标为(0,9),∴OC=9,令y=0可得213922x x-++=0,解得x=-3或x=6,∴B点坐标为(6,0),∴AB=6-(-3)=9;(3)设直线AC解析式为y=kx+b,把A、C两点坐标代入可得309k bb-+=⎧⎨=⎩,解得39kb=⎧⎨=⎩,∴直线AC的解析式为y=3x+9,∵直线ED∥AC,∴可设直线ED解析式为y=3x+n,∵OB=6,BE=m,∴OE=6-m,∴E点坐标为(6-m,0),代入直线ED解析式可得0=3(6-m)+n,解得n=3(m-6),∴直线ED的解析式为y=3x+3m-18,设直线BC解析式为y=rx+s,把B、C坐标代入可得609r ss+=⎧⎨=⎩,解得329rs⎧=-⎪⎨⎪=⎩,∴直线BC解析式为y=-32x+9,联立直线ED和直线BC解析式可得3318392y x my x=+-⎧⎪⎨=-+⎪⎩,解得263x my m⎧=-⎪⎨⎪=⎩,∴D点坐标为(6-23m,m),∴D到BE的距离为m,∴s=S△BDE=12m•m=12m2,又E在线段AB上,且不与A、B重合,∴0<BE <AB,∴m的取值范围为0<m<9;(4)∵OC=9,BE=m,∴S△BEC=12BE•OC=12×m×9=92m,∴S△CDE=S△BEC-S△BDE=92m-12m2=-12(m-92)2+818,∴当m=92时,△CDE的面积有最大值,最大值为818.26、(本题满分9分)(1)证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS)∴BE=CD;(2)BE=CD,(3)由(1)(2)的解题经验可知,过A作等腰Rt⊿ABD, ∠BAD=90°,则AD=AB=100米,∠ABD=45°,∴BD=100米,连接CD,则由(2)可得BE=CD,Θ∠ABC=45°,∴∠DBC=90°,在Rt△DBC中,BC=100米,BD=100米,根据勾股定理得:3100)2100(10022=+=CD 米, 则BE=CD=100米.。

相关文档
最新文档