发动机DUAL S-VT技术

合集下载

马自达创驰蓝天发动机Mazda_sky_2.0L

马自达创驰蓝天发动机Mazda_sky_2.0L

MAZDA SKYACTIV-G 2.0L Gasoline EngineIchiro Hirose, Hidetoshi Kudo, Tatuhiro Kihara, Masanao Yamakawa,Mitsuo HitomiMazda Motor Corporation, Hiroshima, JapanSummaryThe SKYACTIV-G is the first gasoline engine which was developed based on Mazda's long-term vision for technology and the search of internal combustion engineers who are pursuing technologies to develop the ultimate internal combustion engine. This is done with Mazda's aim in mind to achieve a balance between enjoyable driving and environmental performance at the supreme level.The challenging target of 15% torque improvement compared with that of conventional engine was set. This was achieved by solving technological issues towards introduction of extremely high combustion ratio and a 4-2-1 exhaust system.1 IntroductionMazda is aiming at developing the ideal internal combustion engine before we see the complete EV age. We are sure we can contribute to environmental protection primarily by improving the internal combustion engine which will remain mainstream for the automotive powertrain in the mean time. We also believe that the system cost can be reduced by combining the internal combustion engine with the electric devices, which leads to marketability improvement, such as purchasing cost reduction and maintenance cost reduction. Therefore, as you can see from Figure 1, our plan is to upgrade the efficiency of base technologies for the internal combustion engine and others first, combine such technologies with the electric devices as a next step, and then introduce the combined technologies into markets one after another. We call this plan the "Building-Block Strategy".Figure 2 shows our approach toward the ideal internal combustion engine development. We consider that the approach is the same for both gasoline and diesel engines. To be more specific, bringing control factors, such as compression ratio, combustion duration, etc. to the ideal conditions means that the gasoline engine adopts advantages of the diesel engine and vice versa. The SKYACTIV-G, which has been developed based on the above-mentioned long-term technological development strategy, is the new 2.0 liter gasoline engine which will offer driving pleasure to our customers more than ever and also achieves superb environmentally-friendly performance. It is planned that the SKYACTIV-G will be gradually introduced into various markets in 2011 and thereafter.Fig. 1: MAZDA Building-Block StrategyFig. 2: Roadmap for the Ultimate Internal Combustion Engine2 Technological targetAs the first step to bring the gasoline engine closer to the ideal internal combustion engine, the technological targets were set: 15% improvement in the NEDC mode fuel economy and the full load performance respectively, compared with Mazda's existinggasoline engine (Figure 3). The idea behind these was to develop the world-best engine.Fig. 3: Functional TargetIn order to achieve the technological targets, all the controlling factors except for specific heat ratio were upgraded functionally. Considering the cost performance and assuming the natural-aspirated direct-injection engine, it was aimed to improve the compression ratio and pumping loss which were inferior to those of the diesel engine and reduce the mechanical loss further which was superior to that of the diesel engine.In particular, the functional targets were compression ratio increase to world highest 14:1 (@95RON) while keeping the same combustion period, 20% pumping loss reduction, 30% mechanical loss reduction and 10% charging efficiency improvement. Table 1 shows the main specification comparison of the current PFI engine (hereinafter referred to as "base engine") and the SKYACTIV-G.Table 1: Main Specifications3 Fuel Economy3.1 Compression ratioThe world-highest compression ratio of 14:1 was targeted. It is generally known that with only raising the compression ratio strongly, a high fuel consumption improvement cannot be gained. It was identified at the beginning of the development that primary sources for this were long combustion duration and high cooling loss due to quenching of initial flame kernel core, damping of tumble air motion at the top of the piston (Figure 4 & 5).Fig. 4: Effect of compression ratio on Constant Volume=11Fig. 5: Effect of Compression Ratio on In-cylinder FlowIn order to solve this issue, it was a must to balance two conflicting requirements: to form a large cavity while maintaining a high compression ratio. Therefore, basic designs and dimensions such as the bore diameter and the valve angle for intake and exhaust were carefully reviewed.Fig. 6: Requirements for Bore/Stroke SelectionFirst of all, as shown in Figure 6 it was decided to secure the compression ratio of 15 or more for the future. Then the bore diameter was determined to satisfy the peak power requirement with careful consideration of the small bore requirement to reduce surface-volume ratio and the valve diameter requirement. Consequently, the bore diameter was reduced from 87.5mm to 83.5mm. The valve angle was expanded from intake 19 deg./exhaust 20 deg. to intake 22 deg./exhaust 23 deg. The cavity was designed so that the flame should not touch the piston until the flame level reaches 5% MFB from the perspective of cooling loss reduction.Fig. 7: Effect of Cavity Piston on Tumble Ration and Cooling LossAs you can see from Figure 7, this cavity is effective in reducing the cooling loss and increasing tumbling flow. The cooling loss was reduced by 9% while the combustionspeed was increased as shown in Figure 8. As a result (see Figure 9), the new piston improved specific fuel consumption by 2-3% from the original piston. Further the thermal efficiency improvement effect of compression ratio came closer to thetheoretical expectation.Fig. 8: Effect of Piston Shape on Heat Release0%1%2%3%1500rpm/100kPa 1500rpm/262kPa2500rpm/100kPachanging the port angle to be gentler. With this, the combustion speed was increasedas described in Figure 11.Fig. 10:Intake Port Configuration Fig. 11:Effect of Tumble ration on Heat Release Fig. 12:Effect of Tumble ration on Combustion Duration36384042444648501 1.2 1.4 1.6 1.8Tum ble ratio [-]Target 87.5mmbore 83.5mmboreAs a result, a wider overlapping than ever before and a significantly late intake valve close timing were achieved. To be more precise, a dual S-VT (sequential valve timing system) was incorporated. The intake valve timing was set at IVC=110degATDC/EVC=50ATDC (@2000rpm/200kPa). Figure 13-15 show the pumping loss comparison between the base engine and the SKYACTIV-G. The base engine has TSCV (Tumble Swirl Control Valve) and an external EGR. In contrast, the SKYACTIV-G does not have such devices. However, the SKYACTIV-G increased the internal EGR ratio (11% to 18%), achieved intake valve close timing retarded up to 110ATDC and reduced the pumping loss by 20% without any combustion instability.2018161412105060708090100110Intake Valve Close(IVC) Timing [deg CA]40506070809010005101520Exhaust Gas Recirculation ratio [%]3.3.1 Crank/Piston/ConnrodThe diameter of the crank main journal was reduced from =47mm,while the required rigidity was maintained. In addition, the LOC (lubricant oil consumption) performance was enhanced. These improvements made it possible to use the piston ring with the tension lower than that of the current piston ring by 38%.3.3.2 Valve systemThe valve spring weight was reduced by introducing a roller follower and optimizing the cam profiles. For the chain system, the mechanical resistance was reduced due to chain behavior stabilization by reducing the wearing resistance between the high-rigid straight guide and the chain, and dividing and equalizing the load on the levers.3.3.3 Lubrication systemFirst the oil pump capacity was reduced by decreasing the pressure loss in the hydraulic pressure channel and by minimizing the hydraulic pressure requirements for hydraulic pressure-related devices. Then the hydraulic pressure during the partial load operation was reduced by adopting the electrically-controlled variable hydraulic pressure oil pump. The more effects of the variable hydraulic pressure on the fuel economy are seen under the cold condition when the viscosity and resistance are higher.3.3.4 Cooling systemThe water pump unit efficiency was upgraded by a highly effective plastic impeller and reducing the resistance in the cooling channels.Figure 19 indicates the positioning of the SKYACTIV-G in terms of friction loss by comparing with the base engine friction loss measured by a third party (under the condition of 2000rpm and all accessories included) and using the improvement rate which Mazda confirmed. It demonstrates that the SKYACTIV-G is the world's best in terms of the control factor of the friction loss as well.Fig. 17:Examples of Friction Loss ReductionFig. 18:Typical Components for Friction Loss Reduction050100150200100020003000400050006000Engine speed (rpm)F3.4 Fuel economy in vehicle levelThe vehicle fuel economy was measured by using the C/D-class vehicles equipped with the SKYACTIV-G. Figure 20 shows its breakdown. It was verified that the SKYACTIV-G improved the fuel economy in the NEDC by 15%, compared with the current Mazda engine. This is resulted from the fuel economy improvement effects under the hot and steady conditions, such as the above-mentioned high compression ratio with pumping loss reduction (8%) and friction loss reduction (4%). There are other contributors including effects of variable hydraulic pressure under the warm-up condition where hydraulic pressure difference becomes larger, idle engine speed reduction and so on.0%2%4%6%8%10%12%14%16%Compression Ratio and Pumping Loss EffectIdle-Speed Reduction140150160170180190200210TargetBaseInitial statusFull Load Performance improvement0%15%0%15%Current EngineTargetBreakthrough by combustionFig. 22: Toque Recovery Target by Combustion Improvement4.1 Functional target for full load performance improvementRoot cause of the torque decrease are exactly deterioration in knocking resistance and efficiency drop, which resulted from an increase in the pressure and temperature in the cylinder due to the high compression ratio. Therefore, it was focused to reduce the unburned gas temperature in the cylinder at TDC and to improve the combustion duration, referring to characteristics of the DI engine with low compression ratio of 11:1. As shown in Figure 23, the functional target is equivalent to 50 degree C reduction in the gas temperature in the cylinder and reduction in combustion duration by 5 deg.CA (equivalence of approx. 20%) from the initial status of the SKYACTIV-G. In order to meet this functional target, it was focused to improve the combustion system and the exhaust system.302826242220670680690700710720730740750 Unburned gas temperature at TDC (K)Flat piston20BTDC10BTDCTDC 10ATDCCavity pistonFig. 24:Effect of Piston Shape on Flame PropagationFig. 25:Effect of Piston Shape on Heat ReleaseFig. 26:Effect of Piston Shape on Torque4.2.2 Air motion enhancementProgresses were made in the following elements, a) the bore diameter reduction to diminish the cooling loss, and b) the tumble motion enhancement to raise the combustion speed, with a view to knocking resistance enhancement. The long stroke resulting from the bore diameter reduction effectively enhanced the tumble motion. As shown in Figure 27-28, the combined technologies, the tumble motion enhancement and the bore diameter reduction, reduced the combustion duration by 2 deg.CA and improved the torque by 4%.-20020406080100120140-10103050Crank Angle (deg)87.5mm Bore Original int.port83.5mmBore Enhanced int.port4%Fig. 28: Effect of Tumble Ratio on Torque4.2.3 Air-Fuel mixture formation improvementIt was challenged to maximize the charging effect as the combustion system approach toward the gas temperature reduction in the cylinder.In order to efficiently cool down the gas temperature in the cylinder, the latent heat of fuel and multi-hole injector with 6 holes and an excellent mixing characteristic was introduced. Some elements including the fuel spray angle of each cylinder, the spray penetration and the injection ratio for split injection were optimized by utilizing CAE in order to meet various requirements, such as the mixture homogenization for getting charging effect, and the high stratification for catalyst heating up at warming up, which will be touched on later, the oil dilution and the smoke so on.In general, the spray pattern is designed to inject the fuel homogeneously into the cylinder targeting a homogeneous mixture. However,penetration of #1 spray was controlled more to reduce the oil dilution. The spray angle in the horizontal direction for the #1, #2 and #3 sprays in the first and second rows, which play an important role in stratified mixture formation, is designed so that sprayed fuel is captured by the cavity. The spray angle and penetration for the #6 spray in the bottom row is designed to enhance tumble air motion (Figure 29-30).Fig. 29: Basic Spray ConfigurationFig. 30: Visualization Results of In-Cylinder FlowFigure 31-32 indicate differentials in homogenization among three spray patterns. The Layout-A spray pattern, which the SKYACTIV-G adopted, achieved a better homogenization than the other spray patterns and much better than the traditional swirl-type spray patterns.X sprayY spray 060mm20mm 40mm 0 60mm20mm 40mm (i) Layout A (ii) Layout B (iii) Layout CX sprayY spraysFig. 33: Comparison of Mixture HomogeneityLayout B Layout AFig. 36: Comparison of gas temperature distributionThe combustion duration reduction at 4 deg. CA and 10% torque improvement from the initial status were achieved by incorporating these combustion-related technologies. The SKYACTIV-G with high compression ratio of 14 realized the same torque at low engine speed as the current DI with the compression ratio of 11.4.3 Exhaust system upgradeAlthough the torque was improved by 10% by upgrading the combustion system, as indicated in Figure 37, further 8% improvements were required to meet the torque target at low engine speed. To achieve this, it was aimed at improving the exhaustsystem. Full Load Performance improvement 0%15%0%15%Current EngineTargetBreakthroughby exh. systemFig. 37:Target for Exhaust System DevelopmentFigure 38 indicates the relation between the charging efficiency for the residual gas ratio and the gas temperature in the cylinder at TDC based on the CAE analysis. The residual gas ratio for the 4-1 exhaust system, which is the base exhaust system, isapprox. 7%. The charging efficiency is 84%. The temperature in the cylinder is 720K.6080100120140]39[K]4-1CCstatusScavengingFig. 38: Functional Target for Exhaust System DevelopmentIt is required to secure approximately 160kPa boosting pressure @ IVC in order to gain the charging efficiency sufficiently enough to meet the low-end torque target while keeping the same residual gas ratio. However, this was not an option for the SKYACTIV-G because its design concept was naturally aspiration. Therefore, an approach taken was to reduce the residual gas and the temperature in the cylinder by optimizing the use of scavenging effects. As shown in Figure 38, with scavenging effects, the residual gas was reduced by approx. 45% and the temperature in thecylinder was reduced by 39K. As a result, the charging efficiency increased by approx. 9%, which gave a positive outlook toward the low-end torque target achievement.Fig. 39: Basic Concept of Exhaust System DesignIn order to maximize scavenging effects, it was started to develop the 4-2-1 long exhaust system which is almost disappearing from the industry because of emission reasons.First the exhaust manifold basic specification was decided from the aspect of the pressure wave timing control. In order to prevent the exhaust gas from getting into another cylinder during valve overlap, in other words, in order to prevent the residual gas increase in all the engine speed ranges due to the reversal exhaust gas flow, the runner length to the exhaust manifold collector position was set to approx. 600 mm. This contributed to shifting the resonance point of the reverse negative pressure wave at the exhaust manifold collector during valve overlap to the relatively wide ranges of the engine speed (2000/3000/5000 rpm).Then the pipe diameter and shape of exhaust manifold were optimized to maximize the reverse negative pressure. The exhaust manifold pipe inner diameter was set to) of the exhaust pipe.Fig. 40: Basic Concept of Exhaust System DesignSince it was difficult to predict the above-mentioned 3-dimensionnal effect of exhaust manifold on pressure wave characteristics by using CAE, as you can see from Figure 40, the characteristics were optimized through the rig test with which reflection/damping of the impulse acoustic wave was acoustically analyzed. There are high correlation between the rig test result and the actual engine test result.In addition, the blow down timing and the timing of reversed negative wave coming are carefully adjusted in the engine speed range where scavenging effects are expectable by controlling the EVO timing and the IVO timing optimally.The exhaust manifold was designed to be compact and loop-shaped as shown in Figure 41 so that it was installable on 4WD vehicles and small-sized vehicles. As mentioned earlier, the exhaust manifold was developed by optimizing the tube bending radius through the acoustic rig test. It was confirmed that by doing so, the performance equal to that of the straight 4-2-1 exhaust manifold was secured without deteriorating the pressure wave transmission function, which was the basic function for this exhaust manifold.Fig. 41: Final Design of 4-2-1 Exhaust ManifoldOn the other hand, it was clarified that if the piston protruded too much, scavenging effects were spoiled even when the optimized exhaust system was used. Therefore, the piston design was changed as shown in Figure 42 as a result of the bore diameter reduction. The bore diameter decrease made it possible to reduce the piston protrusion height, maintaining the compression ratio. With this, the torque was improved as expected through the use of the scavenging effects.Thanks to the above-mentioned efforts, the charging efficiency was improved by 9% and the torque at the low engine speed was improved by 8%.Fig. 42: Final Design of Piston ShapeThe improvements in the combustion duration and the gas temperature in the cylinder, and the torque improvement effects are put together and shown in Figure 43 & 44. The temperature in the cylinder and the combustion duration which are almost equal to those of the current DI engine (compression ratio of 11:1) were finally achieved. In addition, the charging efficiency was improved as planned. With these technologies, the low-end torque of SKYACTIV-G was finally upgraded by approx. 15 % from the current DI engine, although its compression ratio was 14:1.202224262830670680690700710720730740750Unburned gas temperature at TDC (K)140150160170180190200210IntialStatusTarget2%pistonoptimisation4%Small Bore andAlirMotion opt.3%mixtureoptimization8%ScavengingIntial Status TargetFig. 44: Roadmap to the Low-End Torque TargetThe scavenging effects gained by improving the exhaust manifold design are also gained from the reverse negative pressure wave from the other exhaust components. It is designed to get scavenging effects in the wide range of the engine speed by adjusting resonance point of the reverse negative wave from the pre-silencer to 2500 rpm and that from main silencer to 1500 rpm (Figure 39).The charging efficiency was improved by adjusting the resonance point of intake system is utilized for 2250rpm where no scavenging effects are expected because the reverse positive wave resonances to valve overlap. By this effort, the flat torque curve was developed in all over engine speed range.It was also verified that the torque drop sensitivity to noise factors, such as intake air temperature, hydraulic temperature, fuel octane value, etc., was equivalent to that of existing engines.As the vehicle models which the SKYACTIV-G will be installed on will commonize the locations and functions of all the intake/exhaust system components which have impacts on torque, it is expected that all the vehicle models will exhibit almost the same torque characteristics.Through the above-mentioned efforts, the technical targets were met: 15% improvements in the fuel economy and the power performance respectively, compared with those of the current engine.The improvements of the SKYACTIV-G fuel economy and power performance under full load operation are shown in Figure 45. The specific fuel economy achieves the same level as existing Mazda diesel engines. Figure 45also shows the positioning of BSFC of SKYACTIV-G by using the base engine's specific fuel consumption measured by the third party and BSFC improvement ratio in the SKYACTIV-Gmeasured in Mazda (absolute BSFC value is just reference). The SKYACTIV-G demonstrates far better fuel consumption than other stoichiometric combustion engines. It can be said that the SKYACTIV-G stands at the world-best level. Further more, the SKYACTIV-G is foremost level in the low-end torque among the existing engines. The max. torque and max. power also stand at the top level. Full Load Performance improvement 0%15%0%15%Current Engine30032034036038040042044046048050050010001500200025003000Engine diplacement (cc)Base engine (measured by 3rd party)15%Positioning of SKYACTIV-G SKYA CTIV-GenginScatter band measured by 3rd PartyFig. 45:Positioning of SKYACTIV-G 2.0L5 Other technical issues to be overcomeAs mentioned earlier, the higher compression ratio and the 4-2-1 exhaust system were incorporated as enablers to improve the fuel economy and low-end torque. There were various technical issues that to be overcome to achieve the development goals. One was the pre-ignition control technology development for high compression ratio. The other was the emission reduction technology development for the 4-2-1 exhaust system. How they were solved will be described next.5.1 Pre-ignition controlThe pre-ignition referred here is auto-ignition of the mixture caused by high pressure and temperature in the cylinder, not the pre-ignition caused by heat spot such as high-temperature spark plug. The heat-spot pre-ignition tends to occur in the high engine speed range easily. While the auto-ignition tends to occur at the low speed where the mixture is compressed for a longer time.As existing engines with the low compression ratio have enough margins from the pre-ignition limit, so far, it is not needed to worry about the robustness against the pre-ignition so much. However, the high compression ratio introduction surely raises possible risks of pre-ignition because the temperature and the pressure in the cylinder significantly increase.In order to prevent abnormal combustions including pre-ignition even under the conditions with considering the effect of multiple noise factors, such as compression ratio raised by carbon deposit or various environmental and driving conditions on pre-ignition limit, the development was proceeded by taking three approaches below.5.1.1 Sensitivity to pre-ignitionSensitivity of various noise factors to pre-ignition was examined. Figure 46 indicate that pre-ignition tends to occur when the engine speed is lower and the intake air temp./water temp. are higher and that it tends to take place more frequently when relative air-fuel ratio(AFR) is aroundFig. 46: Pre-ignition Sensitivity of Several Noise FactorsFigure 47 illustrates the effects of split injection on pre-ignition under the conditions offull load andFig. 47: Effect of Split Injection on Pre-ignitionFigure 48 demonstrates the pre-ignition robustness of SKYACTIV-G under multiple noise conditions. There are sufficient margins even with cam timing fully optimized for best torque under the nominal specifications and standard environmental conditions. However, considering the compression ratio increase due to carbon deposits and the upper limits of the temperature and the octane values so on, there are no more margins left. This indicates that the pre-ignition could occur under worst case.CompressionRationominal (14.0)nominal (14.0)nominal (14.0)nominal (14.0)worst (15.4)worst (15.4)FuelNominal 95RON 95RON 95RON 95RON 93RON worst 91RON Intake air temp.Normal(255858100100100)Normal(90100110110110Preignition MarginePreignition Limit Calibrated IVC for Best TorqueIVC controllable rangeAFR controllable rangeFig. 48:Robustness for Pre-ignitionOn the other hand, there is the pre-ignition controllable range by late IVC controlling and rich AFR operation. Please look at the right side of Figure 48.As this controllable range makes it possible to achieve the effective compression ratio which is below the pre-ignition limit even under the worst condition, pre-ignition can be prevented under any conditions as long as the pre-ignition limit is predicted in response to environment changes. The pre-ignition prediction model was developed for this reason.5.1.2 Pre-ignition prediction technologyFigure 49 shows the relation between the initial combustion position (corresponding MBF 10%) and the heat release under various engine operational conditions. The stronger the pre-ignition is, the earlier the initial combustion is. As a result, there is tendency that more heat is released. If it is possible to predict the combustion cycle where the MBF 10% is positioned at 25deg.BTDC, early signs of pre-ignition can be grasped without fail.Fig. 49: Correlation Between Predicted and Measured Pre-ignition Limit Therefore, the mean effective compression ratio where MBF10% was positioned at 25deg.BTDC was defined as the pre-ignition limit. As shown in Figure 50, Liven-Wood integral formula was used to clarify the relation between the temperature and the pressure in the cylinder which reaches the condition of pre-ignition limit. Based on this study, pre-ignition limit was described as the mean effective compression ratio under the ambient temperature condition (temperature, ambient temperature, coolant temperature etc. which can be measured by sensors existing in the engine.Fig. 50: Correlation Between Initial Combustion Position and Heat ReleaseFigure 51 indicates the correlation between the pre-ignition limit predicted based on the above formula and the measured pre-ignition limit under various conditions. They are in line with each other within +/- 0.2 of the mean effective compression ratio.Fig. 51: Ionization Current Sensor System for Pre-Ignition DetectionAs shown in Figure 47, the engine normally has enough safety against the pre-ignition limit and operates based on the IVC timing which was determined by the fuel economy/power performance requirements. However, when the intake air or hydraulic oil temperature increases extraordinary, IVC is retarded based on the pre-ignition limit predication calculated according to the above formula. With the help of。

汽修中常见部件英文缩写

汽修中常见部件英文缩写

汽车维修当中,经常碰到汽车英语,我们一直很难搞明白,现在分享一些给大家收藏哦。

玻璃升降器WINDOW GLASS LIFTER横拉杆总成TIE ROD ASSY尾门撑杆BACK DOOR STAY ASSY机油塞OIL PRESSURE SENSOR水温塞WATER TEMPERATURE SENSOR全车锁DOOR LOCK ASSY化油器修理包CARBUTOR REPAIR FITTING直拉杆总成DRAG LINK ASSY机油泵OILD PUMP汽油泵FUEL PUMP节温塞THERMOSTAT SENSOR 大修包COMPLETE GASKET SET 汽缸垫GASKET水泵WATER PUMP活塞环PISTON RING上球头BALL JOINT-UPPER离合器压板CLUTCH COVER ASSY 横拉杆球头TIE ROD JOINT付邦呔IDLER ARM缸套CYLINDER LINER活塞PISTON十字接头,万向接头UNIVERSAL JOINT 下球头BALL JOINT-LOWER分火线DISTRIBUTOR时规链条TIMING CHAIN主邦呔PITMAN ARM汽门导管VALVE GUIDE进汽门(口)INLET VALVE(PORT)分火盖DISTRIBUTOR CAP悬挂臂FORK ARM刹车总泵BRAKE MASTER CYLINDER时规修理包TIMING REPAIR FITTING离合器总泵CLUTCH MASTER CYLINDER 离合器分泵CLUTCH SLAVE CYLINDER 中间横拉杆CENTER LINK ASSY减震器ABSORBER链顶TENSION刹车分泵BRAKE WHEEL CYLINDER石棉ASBESTOS传感器SENSOR避震机顶胶RUBBER BUSHING电子控制装置ECU绝热HEAT ISOLATING时规链挡板CHAIN GUIDE点火分电器机油滤清器OIL FILTER导轨RAIL四冲程发动机循环FOUR-STROKE ENGINE CYCLE 排汽门(口)EXHAUST VALVE(PORT)燃油箱FUEL TANK曲轴CRANKSHAFT压缩COMPRESS进汽歧管INTAKE MANIFOLD火花塞SPARK PLUG摇臂罩ROCKER ARM COVER连杆CONNECTING ROD燃烧室COMBUSTION CHAMBER 齿圈RING GEAR膨胀EXPANSION飞轮FLYING WHEEL凸轮轴室CAMSHAFT HOUSING 销PIN曲轴带轮CRANKSHAFT PULLEY机体ENGINE BLOCK汽缸盖CYLINDER HEAD正时齿轮盖TIMING COVER凸轮链轮CAMSHAFT SPROKET辅助驱动轴ACCESSORY DRIVE SHAFT 油底壳SUMP曲轴箱CRANK CASE汽门弹簧VALVE SPRING螺栓BOLT吸油管OIL PICKUP PIPE滤网STRAINER正时带TIMING BELT衬垫GASKET垫片WASHER后主轴承REAR MAIN BEARING 油底壳衬垫雨刷WIPER BLADE汽门阀座VALVE SEAT碟式DISCS鼓式DRUMS弹簧SRPING弄ALLEY巷LANE凸轮CAM手动变速MT无级变速CVT程序控制燃油喷射PGM-FI可变气门正时及升程电子控制VTEC 可变正时控制VTC顶置单凸轮轴SOHC顶置双凸轮轴DOHC智能安全带辅助装置I-SRS防抱死系统ABS智能式牵引力控制系统TCS 电子制动力分配装置EBD可变气门正时系统S-VT动态稳定控制系统DSC手动MT自动AT前轮驱动FWD全时四轮驱动AWD电控多点燃油喷射发动机MPI 发动机型式ENGINE TYPE排量DISPLACEMENT缸径CYLINDER BORE行程STROKE最大功率MAX. OUTPUT扭距TORQUE变速器TRANSMISSION最高速度MAS. SPEED油耗FUEL CONSUMPTION真空助力器VACUUM BOOSTER动力转向器POWER STEERING GEAR 前悬架FRONT SUSPENSION传动轴DRIVE SHAFT盘式制动器CALIPER DISC BRAKE车身BODY内饰件INTERIOR TRIM PARTS后悬架REAR SUSPENSION鼓式制动器DRUM BRAKE正时齿形带护罩TIMING TOOTHES BELT SHIELD空调压缩机A/C COMPRESSOR空调压缩机带轮MULTI-WEDGE BELT PULLEY, A/C COMPRESSOR 多楔带MULTI-WEDGE BELT曲轴带轮MULTI-WEDGE BELT PULLEY, CRANKSHAFT张紧轮TENSIONER发电机带轮MULTI-WEDGE BELT PULLEY, ALTERNATOR导向轮GUIDE PULLEY动力转向油泵POWER STEERING PUMP动力转向泵带轮MULTI-WEDGE BELT PULLEY, POWER STEERING PUMP 发电机ALTERNATOR进气歧管INTAKE MANIFOLD油尺DIPSTICK燃油分配管FUEL RAIL气缸盖罩CYLINDER HEAD COVER正时齿形带TIMING TOOTHES BELT凸轮轴正时齿形带轮TIMING TOOTHED PULLEY, CAMSHAFT水泵齿形带轮TOOTHED PULLEY, WATER PUMP曲轴正时齿形带动轮TIMING TOOTHED PULLEY, CARANKSHAFT 机油泵链ROLLER CHAIN, OIL PUMP机油泵OIL PUMP曲轴CRANKSHAFT气缸体CYLINDER BLOCK液压挺柱HYDRAULIC TAPPET凸轮轴CAMSHAFT喷油器FUEL INJECTOR限压阀OIL PRESSURE RELIEF VALVE机油盘OIL PAN凸轮轴油封CAMSHAFT SEAL半圆键WOODRUFF KEY挺柱体TAPPET BODY气门锁片VALVE LOCK SPLIT上气门弹簧座UPPER VALVE SPRING RETAINER气门弹簧VALVE SPRING气门油封VALVE SEAL气门导管VALVE STEM GUIDE进气门座INTAKE VALVE SEAT曲轴链轮CRANKSHAFT SROCKET主轴承上轴瓦UPPER BEARING BUSH, MAIN BEARING连杆小头上轴瓦BEARING BUSH, SMALL END OF CONNECTING ROD 卡环SNAP RING正时传动TIMING DRIVE活塞销PISTIN PIN第一道气环TOP COMPRESSION RING第二道气环SECOND COMPRESSION RING油环OIL CONTROL RING连杆螺栓CONNECTING ROD BOLT飞轮FLYWHEEL转速传感器脉冲轮PULSE WHEEL, SPEED SENSOR连杆盖CONNECTING ROD CAP连杆螺母CONNECTING ROD NUT止推片THRUST HALFRING主轴承下轴瓦LOWER BEARING BUSH, MAIN BEARING 简图SKETCH周围空气AMBIENT AIR空气滤清器AIR CLEANER排气歧管EXHAUST MANIFOLD进气软管INTAKE HOSE双排气管TWIN EXHAUST PIPES三元催化净化器THREE-WAY CATALYTIC CONVERTER 中间消声器MID-MUFFLER主消声器MAIN MUFFLER隔热软垫HEAT-INSULATED SWELLING MAT陶瓷催化反应体CERAMIC CATALYTIC CONVERTER 壳体HOUSING纸质滤芯PAPRT CARTRIDGE空滤器上壳体UPPER HOUSING, AIR CLEANER空滤器下壳体LOWER HOUSING, AIR CLEANER带粗滤器进气管组件AIR INLET UNIT WITH SIEVE护罩SHIELD散热器RADIATOR电动风扇E;ECTRIC FANS齿形带带轮TOOTHED BELT PULLEY气缸体水套WATER JACKET, CYLINDER BLOCK气缸盖水套WATER JACKET, CYLINDER HEAD发动机水套排气管BLEEDING HOSE, ENGINE JACKET 节气门热水管HOT WATER PIPE, THROTTLE VALVE 膨胀箱管RESERVIOR CAP冷却液下橡胶软管LOWER HOSE, RADIATOR OUTLET 散热器排气管BLEEDING HOSE, RADIATOR冷却液上橡胶软管UPPER HOSE, RADIATOR INLET电动风扇双速热敏敏开关DUAL-SPEED THERMAL SWITCH, ELECTRIC FAN 水泵总成WATER PUMP ASSEMBLY水泵叶轮IMPELLER, WATER PUMP球轴承BALL BEARINGO形密封圈O-RING水泵壳体HOUSING, WATER PUMP圆柱滚子轴承ROLLER BEARING节温器THERMOSTAT节温器芯THERMOSTATIC CORE阀VALVE阀座VALVE BASE原理PRINCIPLE加机油口盖OILD FILLER CAP凸轮轴轴颈CAMSHAFT JOURNAL主油道MAIN OIL GALLERY连杆油道OIL CIRCUIT, CONNECTING ROD曲轴油道OIL CIRCUIT, CRANKSHAFT油压开关OIL PRESSURE SWITCH单向阀CHECK VALVE旁通安全阀BYPASS RELIEF VALVE当滤芯堵塞时IN CASE OF PLUGGING CARTRIDGE 溢流阀OVERFLOW VALVE机油泵链轮SPROCKET, OIL PUMP曲柄销轴颈JOURNAL, CRANK PIN曲轴主轴颈MAIN JOURNAL, CRANKSHAFT活性炭罐电磁阀CHARCOAL CANISTER-PURGE VALVE带输出驱动级的点火线圈组件IGNITION TRANSFORMER UNIT WITH OUTPUT DRIVER STAGE相位传感器PHASE SENSOR燃油压力调节器FUEL PRESSURE REGULATOR节气门控制部件THROTTLE VALVE CONTROL UNIT空气质量计AIR MASS METER氧传感器LAMBDA SENSOR冷却液温度传感器COOLANT TEMPERATURE SENSOR爆震传感器KNOCK SENSOR发动机转速传感器ENGINE SPEED SENSOR进气温度传感器INTAKE AIR TEMPERATURE SENSOR发动机控制单元ENGINE CONTROL UNIT传感器插头支架SUPPORTER FOR SENSORS CONNECTORS加燃油口FILLER回油管FUEL RETURN PIPE供油管FUEL FEED PIPE燃油箱油气排放管PIPE OF EVAPORATIVE EMISSION FROM FUEL TANK 喷孔板ORIFICE PLATE阀座VALVE SEAT插头ELECTRIC TERMINALS滤网STRAINER进油管与阀体组件INLET TUBE&SEAT CARRIER UNIT电磁线圈SOLENOID COIL阀针(带衔铁) VALVE NEEDLE WITH SOLENOID ARMATURE 回油管嘴NOZZLE OF RETURN FUEL下盖LOWER COVER阀球VALVE BALL上盖UPPER COVER膜片DIAPHRAGM油塞PLUG滤芯CARTRIDGE滤网GAUZE磁铁MAGNET下端盖LOWER COVER电枢ARMATURE出油阀OUTLET CHECK VALVE活性炭罐CHAROAL CANISTER火花塞SPARK PLUGS第3缸点火线接头CONNECTOR OF RESISTIVE CABLE FOR CYLINDER NO.3功率输出驱动级OUTPUT DRIVER STAGE高压端头HIGH-VOLTAGE TERMINAL次级线圈SECONDARY WINDING点火线圈壳体HOUSING初级线圈PRIMARY WINDING铁心LAMINATED IRON CORE混合电路盒HYBRID-CIRCUIT BOX金属热膜元件METALLIC HOT-FILM ELEMENT导流格栅FLOWGUIDE GRILLE节气门定位电位计POSITIONING POTEMTIOMETER, THROTTLE VALVE 应急运行弹簧BACK-UP MODE SPRING节气门定位器(电动机) THROTTLE VALVE POSITIONER(MOTOR) 节气门电位计THROTTLE VALVE POTENTIOMETER怠速进出管口IDLING SPEED SWITCH热水进出管口HOT-WATER INLET & OUTLET节气门拉索滑轮BOWDEN CABLE PULLEY FOR THROTTLE VALVE 发动机ENGINE离合器CLUTCH主传动与差速器FINAL DRIVE &DIFFERENTIAL等速万向节CONSTANT VELOCITY UNIVERSAL JOINTS转动轴DRIVER SHAFT驱动轮(前轮) DRIVING WHEEL(FRONT WHEEL)盘式制动器(前轮) CALIPER DISC BRAKE(FRONT WHEEL) 波形片CUSHIONING PLATE减振弹黄TORSIONAL DAMPING SPRING阻尼片FRICTIONAL DAMPING WASHER花键轴套SPLINED HUB碟形弹簧DISC SPRING曲轴CRANKSHAFT限位铆钉STOP PIN摩擦片FRICTIONAL LINING压盘PRESSURE PLATE传动刚带STEEL STRIP飞轮齿圈FLYWHEEL RING GEAR变速器输入轴INPUT SHAFT OF TRANSMISSION 离合器分离轴承CLUTCH RELEASE BEAEING从动盘盖板RETAINING PLATE OF DISC UNIT 离合器膜片弹簧CLUTCH DIAPHRAGM SPRING 离合器盖CLUTCH COVER支承环WIRE RING边速器壳体TRANSMISSION HOUSING分离板RELEASE LEVER工作缸RELEASE SLAVE CYLINDER储液罐FLUID RESERVOIR低压油管LOW PRESSURE HOSE助力弹簧AUXILIARY SPRING离合器踏板CLUTCH PEDAL推杆PUSH ROD主缸MASTER CYLINDER高压油管HIGH PRESSURE PIPE通气塞AIR BREATHER主动轴(含一/二档齿轮)INPUT SHAFT(WITH 1ST & 2ND SPEED GEARS)滚针轴承NEEDLE BEARING主动轴四档齿轮4TH SPEED GEAR,INPUT SHAFT三/四档同步器3RD/4TH SPEED SYNCHRONIZER实用文案主动轴三档齿轮3RDSPEED GEAR,INPUT SHAFT倒档齿轮组REVERSE GEARS轴承座壳体BEARING CARRIER倒档拨叉定位销POSITIONING DOWEL,REVERSE SHIFT FORK 主动轴五档齿轮5TH SPEED GEAR,INPUT SHAFT五档同步器5TH SPEED SYNCHRONIZER后盖总成REAR COVER ASSEMBLY异形磁铁SPECIAL-SHAPED MAGNET标准文档。

可变气门正时系统(VECT)

可变气门正时系统(VECT)

低、中转速时,凸轮轴上只有小角度的凸轮有顶到摇臂
电子控制系统
在可变气门正时方面HONDA发动机具有一定得领先性他的发动机在低负荷运转情况下,小活塞在 原位置上,三根摇臂分离,主凸轮和次凸轮分别推动主摇臂和次摇臂,控制两个进气门的开闭,气门 升量较少,其情形好像普通的发动机。虽然中间凸轮也推动中间摇臂,但由于摇臂之间已分离,其它 两根摇臂不受它的控制,所以不会影响气门的开闭状态。但当发动机达到某一个设定的高转速(例如 3500转/分时,本田S2000型跑车要达到5500转/分),电脑即会指令电磁阀启动液压系统,推动摇臂 内的小活塞,使三根摇臂锁成一体,一起由中间凸轮驱动,由于中间凸轮比其它凸轮都高,升程大, 所以进气门开启时间延长,升程也增大了。当发动机转速降低到某一个设定的低转速时,摇臂内的液 压也随之降低,活塞在回位弹簧作用下退回原位,三根摇臂分开。这样一来就保证了您在低转速时对 油耗的控制,同时满足你在发动机处于高转速下澎湃动力输出的需要。整个VTEC系统由发动机主电脑 (ECU)控制,ECU接收发动机传感器(包括转速、进气压力、车速、水温等)的参数并进行处理,输 出相应的控制信号,通过电磁阀调节摇臂活塞液压系统,从而使发动机在不同的转速下由不同的凸轮 控制,影响进气门的开度和时间。从而产生出您最希望获取的动力输出。
编辑总结:
推陈出新是每个厂家占领市场的主要手段,但是面对当今的能源危机 新的皆有技术才是主要的砝码,各大厂家也在不遗余力的为节油下足本钱, 发动机的各种节能技术层出不穷,可变气门正时技术只是众多中的一种,除 了上述的这些技术之外,其他许多厂家也都有类似的可变气门正时技术,都 是为了一个目的,只是原理有些大同小异。 我国的各大厂家也就节油技术研究了很多年,也卓有成效比如吉利也推 出了自己的CVVT技术,只是效果如何我们还没有看到足够的数据还不得而知, 但相信这是一个不错的势头。近些年的自主研发的也为我国在汽车技术基础 上有一定得进步,希望我们的企业也有自己技术专利在汽车界引领潮流。

一汽丰田全新威驰

一汽丰田全新威驰

一汽丰田全新威驰作者:暂无来源:《汽车与运动》 2013年第11期摄影赵进 @摄影师赵进威驰是丰田第一款专为中国市场设计的车型,进入中国十余年进行了数次改款。

但这一次不只是升级,而是重生作为第一款进入中国的丰田车型,威驰已经在中国市场上历经了11年的考验。

庞大的销量和良好的用户体验都是一汽丰田威驰成功的印证,所以11年之后一汽丰田推出了第三代威驰车型。

全新威驰并不是在老款基础上进行升级与修改,而是全部推倒重来——新的动力系统、新的内饰和新的外观,为全新威驰赋予了新的生命。

新生命动力总成是任何一款车的核心部件,是首当其冲要进行改变的。

所以这次丰田毫不犹豫地使用NR-EF系列发动机,变速器是全新的i-Super AT。

NR-EF系列发动机采用双VVT-i技术,比老款发动机燃油效率提高了6%,重量还减轻了2kg。

i-Super AT变速器比老款变速器更轻更小,传递效率也更高。

新的动力总成能够带来新的灵魂和新的驾驶感受。

全新威驰起步瞬间要比老款车型灵活许多,不仅是因为全新发动机响应迅速,还因为整车的重量比老款减轻了60kg。

正是这种灵活让我对接下来的路程充满了期望,期望全新威驰能够在路程中给我更多的惊喜。

珠海道路的最高限速要比北京高出不少,在北京只限速70km/h的道路换到珠海却能够开到90km/h,这让我更多了些机会感受全新威驰的变化。

1.5L发动机的排量不大,但双VVT-i技术的采用能够挖掘出它的最大潜力。

137Nm的最大扭矩推动只有1065kg的车身显得绰绰有余,并且足够宽容的最高限速能够让我将油门踏板踩得更深。

i-Super AT变速器的1挡因为要照顾低扭所以齿比很大,并没有持续太长时间的加速便迅速升挡。

换挡动作完成的干净利索,此时的提速感有些减弱但持续时间明显变长。

因为i-Super AT变速器的扭矩传递效率更高,所以新威驰的提速表现比老款更为优秀,提速到90km/h是很轻松的事情。

前方道路施工让我不得不降低车速,值得一提的是刹车比老款改进的不是一星半点,自由行程的缩短和初始力度的加强让刹车变得更加灵敏,俗话说就是“给点儿就有”。

DVVT功能简介

DVVT功能简介

DVVT全称是:Dual Variable Valve Timing.意思是进排气气门连续可变正时技术。

采用DVVT技术的发动机比目前市场上较多采用的进气门正时技术的发动机更高效、节能、环保。

基本含义编辑DVVT技术可降低油耗5%,同时动力提高10%,可达2.0排量的动力指标,废气排放达到国家Ⅳ级标准;通过控制发动机燃烧室之中的汽油与空气混合气体达到最合适的空燃比,还可明显改善怠速稳定性从而获得较好的舒适性。

什么是可变配气相位?是指连续可变气门正时技术,根据发动机的不同工作状态,通过调节气门关闭的时机,从而提高发动机的动力性能,提高燃油经济性。

凡是有质量的东西都有惯性,被吸入发动机气缸的空气也因惯性,进气过程结束后保留进入气缸的趋势。

这时如果延迟气门关闭时间,气缸可吸入更多的空气,可以提高体积效率。

其结果是延迟气门关闭时间越长,高转速下的性能就越高;反之越是提前关闭气门,低转速下的运转越稳定,扭矩越大。

可变配气相位的发动机都有那些特点?降低进排气重叠,确保燃烧稳定;降低进气损失,改善油耗,燃油经济性提高24%;有效改善碳氢化合物和氮氧化合物的排放;发动机动力更强劲,动力提升12%。

纵向历史追踪编辑DVVT技术高效低耗最具竞争力发动机是汽车的“心脏”,在强调节能环保的今天,我们对汽车发动机的要求,简单地说来即是用最少的油,达到输出最大的功率和扭矩的效果,并且稳定、持续、可靠,并带有低排放的附加值。

荣威550 1.8LDVVT上市后之所以会广受关注,正是因其采用了时下最先进的DVVT(DualVariableValveTiming)进排气双连续可变气门正时技术,应时所需提高动力、降低油耗。

谈到DVVT技术,不得不先说说VVT(可变气门正时系统),就是对气门升程进行调节的装置,它能保证低速大扭矩,又能获得高速大功率,对汽车发动机而言是一个极大的突破。

今天,VVT技术因其高成熟度和技术领先性,已为全球汽车大品牌主力车型所运用。

宝马4S店维修培训手册:F20 动力传动系统 技术培训

宝马4S店维修培训手册:F20 动力传动系统 技术培训

技术培训产品信息F20 动力传动系BMW 售后服务一般性说明所用符号为了便于理解或突出非常重要的信息,在本手册中使用了下列符号 / 图标:包含重要安全说明和确保系统正常工作的必要信息,必须严格遵守。

当前状况和国家规格BMW 集团车辆满足最高的安全和质量要求。

环保、客户利益、设计或结构方面的要求变化促使我们继续开发车辆的系统和组件。

因此本手册中的内容与培训所用车辆情况可能会不一致。

本手册主要介绍欧规左侧驾驶型车辆。

右侧驾驶型车辆部分操作元件或组件的布置位置与本手册的图示情况不同。

针对不同市场和出口国家的配置型号可能还有其它不同之处。

其它信息来源有关各主题的其它信息请参见:•用户手册•综合服务技术应用。

联系方式:conceptinfo@bmw.de©2011 BMW AG,慕尼黑未经 BMW AG(慕尼黑)的书面许可不得翻印本手册的任何部分手册中所包含的信息是 BMW 集团技术培训的组成部分,适用于技术培训培训师和学员。

有关技术数据方面的更改 / 补充情况请参见 BMW 集团的最新信息系统。

信息状态:2011 年 6 月F20 动力传动系目录1. 动力传动系统型号 (5)1.1. 车型 (5)1.1.1. 汽油发动机 (5)1.1.2. 柴油发动机 (6)2. 发动机 (7)2.1. N13 发动机 (7)2.1.1. 技术亮点 (7)2.1.2. 技术数据 (7)2.1.3. 满负荷特性曲线图 (8)2.1.4. 机油油位检查功能 (9)2.2. N47TU 发动机 (9)2.2.1. 技术亮点 (10)2.2.2. 技术数据 (10)2.2.3. 满负荷特性曲线图 (11)2.2.4. 机油油位检查功能 (13)2.3. 发动机识别号 (14)2.3.1. 发动机名称 (14)2.3.2. 发动机代码 (14)3. 燃油供给系统 (15)3.1. 汽油发动机 (15)3.1.1. 系统概览 (15)3.1.2. 燃油供给 (17)3.1.3. 燃油箱通风 (18)3.2. 柴油发动机 (19)3.2.1. 系统概览 (19)3.2.2. 燃油供给 (21)3.2.3. 燃油箱通风 (22)4. MSA (23)4.1. 手动变速箱 (23)4.2. 自动变速箱 (23)5. 手动变速箱 (24)5.1. 名称 (24)5.2. 型号 (24)5.3. GS6-17BG 变速箱 (25)5.3.1. 技术亮点 (25)5.3.2. 技术数据 (26)5.3.3. 同步器 (26)F20 动力传动系目录5.4. GS6-45DZ 变速箱 (26)5.4.1. 技术亮点 (27)5.4.2. 技术数据 (27)5.4.3. 中间支撑 (27)5.4.4. 齿轮组方案 (27)5.4.5. 干式油底壳润滑系统 (28)5.4.6. 同步器 (28)5.4.7. 连接尺寸 (28)5.5. 离合器 (28)6. 自动变速箱 (29)6.1. 名称 (29)6.2. 型号 (29)6.3. GA8HP45Z 变速箱 (29)6.3.1. 技术数据 (29)7. 后桥主减速器 (31)7.1. 技术亮点 (31)7.2. 名称. 327.3. 型号 (32)8. 车轴 (33)8.1. 传动轴 (33)8.2. 后桥半轴 (34)8.2.1. 名称 (34)8.2.2. 型号 (35)F20 动力传动系 1. 动力传动系统型号5F20 动力传动系1.1. 车型F20 上市车型包括:• BMW 116i• BMW 118i• BMW 116d• BMW 118d• BMW 120d。

奥迪A4L_2.0T发动机介绍

奥迪A4L_2.0T发动机介绍

奥迪A4L 2.0T发动机介绍2008年11月16日,这个日子距离广州车展只有两天了,一汽奥迪如约正式在中国发布了新奥迪A4L,一时间网友争相讨论,新A4L一下子成为了明星。

关于这款车的基本介绍已不必在这里赘述,对奥迪A4L 已经有足够的文章介绍过了,相信您也已经有了基本了解,如果您想查阅相关资料,请查看如下文章:这些讨论中包含如下最热的几个话题:1 新奥迪A4L的价格问题,特别是2.0TSI标准型。

2 新奥迪A4L的变速箱为什么用了CVT,而没有用DSG。

3 新奥迪A4L为什么没全系用Quattro四驱系统。

4 加长问题。

● 对于常见问题的解答:根据这些问题,作者综合了网上网友的大量评论和技术讲解,对有这些问题的答案进行了整理:1 新奥迪A4L的价格问题。

答:网友普遍认为的确很便宜,比预期的33万的价格低。

但是价格毕竟是奥迪的家务事,谁也管不了。

2 新奥迪A4L的变速箱为什么用了CVT,而没有用DSG。

答:大众集团的DSG现在只能用在前横置平台上,所以AUDI品牌里只有TT和A3用到了DSG,他们是GOLF的横置平台。

具体原因可能是纵置平台的动力输出方向的问题。

好像只有日产GTR是在前纵置车型上用到了双离合。

(感谢汽车之家网友猫主席)。

编者按:纵置+DSG的现在不可能不代表未来不可能,奥迪纵置平台的DSG只在06年底的底特律车展上的一款概念车上出现过,但是到量产车上肯定不是这代A4能做到的。

3 新奥迪A4L为什么没全系用Quattro四驱系统。

答:成本问题,没啥好说的。

4 加长问题。

答:适应国内需求,国内消费者对内部空间的要求比较大,加长轴距能够最直接的获得充裕的车内空间。

●一篇文章激起千层浪在网友热议的问题中,也有不少网友在关心新款奥迪A4L会不会烧机油的问题,这是因为奥迪A6L 2.0TSI就存在普遍的烧机油现象,而新奥迪A4L如果使用和A6L 同样的2.0TSI发动机,就很有可能仍然有这个问题。

CX-5六方位介绍

CX-5六方位介绍

马自达CX-5六方位简介马自达CX-5是马自达首款针对发动机,变速箱,车身和底盘等全面采用创驰蓝天技术的全新跨界SUV车型,在保持卓越驾乘感的同时,实现了出色的燃油经济性。

马自达CX-5设计首次采用了最新设计主题“魂动-soul of motion”,整体造型仿佛矫健的猎豹正在飞身扑向猎物,表现了强大的生命力和跃动感。

为了让客户体验到“慑人心跳的设计美学”、“随心操控的驾乘感受”、“恰到贴心的功能性空间”和“绿色安心的长久陪伴”,马自达研发人员对CX-5的外观设计、动态性能、以及环保安全性领域倾注了不少的努力,CX-5作为马自达新一代产品的先驱,成为开启马自达品牌新时代的象征。

CX-5作为国内少数原装进口的SUV车型,技术先进,配置高是CX-5的最大特点。

一、车前方CX-5整车长4555mm,宽1840mm,高1710mm,车头采用仿生学设计,整体造型仿佛矫健的猎豹正在飞身扑向猎物,表现了强大的生命力和跃动感。

车头修长大气,配合引擎盖上的富有力量感的棱线,给人非常强悍的驾控感受。

超大的遁形进气格栅略微带有向下倾斜,配合车辆下方的导流槽,在充分保证进气效率的同时,有效的降低其风阻系数。

超大的马自达徽标精致镶嵌在遁形进气格栅的正中央,傲视前行。

银色镀鉻装饰条镶嵌在黑色的进气格栅上更是锦上添花,准确的诠释了马自达CX-5的科技感与低调的奢华享受。

马自达CX-5大灯外形采用了独特的豹式设计,在夜间,豹的视力可以达到人类的几十倍。

正是如此,为了保障CX-5的夜间行车安全,马自达的工程师为CX-5设计了双氙气大灯,并且配置了大灯水平高度自动调整功能,在上下坡时可以自动调整大灯照射的水平高度;AFS弯道辅助照明系统,全称为随动转向控制大灯,其作用为随着车辆的转向及倾斜度,车辆自动调节前照灯扩大夜间行驶时的视野,提高安全性;大灯自动开关设计,随光线的变化自动开启和关闭大灯,可以有效保证驾驶员集中注意力在汽车驾驶上;大灯清洗装置,汽车在夜晚或光线较暗的行驶过程中,雨水和尘埃会将前大灯的照明度减少90%,驾驶员的视线受到严重影响,对行驶安全来说,存在较大的隐患。

电力系统专业单词中英文对照

电力系统专业单词中英文对照

常用专业词汇中英文对照屏蔽双绞pair twisted screened常闭接点normally closed contact常开接点normally open contact备自投Automatic Takeover to Stand-by Supply遥信Remote indicationUnit-generator step-up transformers发变组Be subject to 服从于Step-up transformer升压变High-side(high voltage side) of the transformer变压器高压侧Low-side of the transtormer变压器低压侧Magnetizing inrush current励磁涌流Undervoltage Load Shedding 低电压甩负荷Margin 余地边界页面空白利润Yield 产生Dilute 冲淡稀释This includes compliance with IEEE and IEC standards for electrostatic discharge, fast transients, radiated emissions, surge-withstand capability, dielectric strength, pulsed magnetic fields, and disturbances.Specify optional具体指定的选择Open CT-------CT断线open or shorted CT conditions-------CT断线或短路状态including single- and dual-busbar, transfer-bus, tie-breaker分段Buscoupler 母联(母线并联)breaker-and-a-half, ring-bus, and double-bus/double-breakerconfigurations.重瓦斯heavy gasAccessories附件Bypass旁路,分流,绕开Inflexion拐点is converted to转换为over-current blocked by complex voltage复合电压闭锁过流Advances the State of the Art先进的技术发展水平act in concert(音乐会)with与…相呼应in minimum operation mode 最小运行方式in conjunction with与…协力disconnect auxiliary contacts. 隔离刀辅助接点(SEL说明书)Buscoupler母联(SEL说明书)tie-breaker分断断路器(SEL说明书)Coupler Security Logic母联逻辑(SEL说明书)Tag n标签,vt加标签Put tag贴标签Have you put tags on your luggage?Transfer Bus 旁母Main bus 主母Dedicated 专用的优点与缺点advantages and disadvantages极性标记(同名端)Polarity markconservative settings 保守的定值(笨的定值)开口三角Broken-Delta ;Open-Delta减出力decrease power output突然加电inadvertent energization励磁field失磁out-of-field合闸位置 closed position(肯定对)分闸位置 open position(肯定对)/trip position防跳 antibumping原理图Elementary Diagram接线图 Wiring Diagram单线图 One Line Diagram方块图、结构图 Block Diagram展开图 Developing Diagram简图 Schematic Diagram略图 Schema控制转换开关Control and Transfer Switch多层开关 Multiple Switch多功能开关 Multi-Function Switch把手、手柄 Handle端子箱 Terminal Cabinet端子排 Terminal Block监视 Monitoring测量 Metering瓦斯保护继电器 Buchholz Protector动作机理Mechanism of Action操作机构Operation Mechanism转换 Commutate保护动作 Protection Action启动 Starting up升高/降低(动) Raise/Go down升高/降低(动) Raise/Reduce增加/减少 Increase/Decrease高/低(名) Upper/lower接地 Grounding接地 Earthing压板 Clamp辅助结点 Auxiliary Contact电流回路测试盒 Test Block隔离刀闸 Isolator隔离刀闸 Disconnectorshielded twisted pair屏蔽双绞线intelligent electrical device 智能测控装置generator 发电机transformer 变压器/互感器motor 电动机meter 仪表power automation system 电力自动化系统phase mark相别substation automation system 变电站自动化系统oscillation /swing振荡chip 芯片resolution 分辨率relay 继电器parameter 参数frequency 频率power factor 功率因数2×16 character liquid crystal display 2行X16字符液晶显示dual RS485 communication interface 带双路RS-485通信接口three-phase voltage/current input 三相电压/电流输入active power 有功功率reactive power 无功功率configuration 配置maintenance 维护debugging 调试live wire 火线SOE(sequence of event) 事件顺序记录transient process暂态过程Input/output 输入/输出transducer 变送器rated voltage/current/frequency 额定电压/电流/频率impedance 阻抗earthing resistance 接地电阻circuit breakers 断路器vacuum circuit breakers 真空断路器rated main busbar current 主母线额定电流enclosure/internal 外壳/内部supply voltage/current 电源电压/电流petrolic engine 汽油发动机diesel engine 柴油发动机micro ammeter 微安表high voltage testing transformer 高压试验变压器metallic door handle金属门把手DC double bridge 直流双臂电桥transformer ratio bridge 变压比电桥relay protection tester 继电保护测试仪micro ohmmeter 微电阻测量仪earthing resistance meter 接地电阻表digital multimeter数字万用表megohmmeter 兆欧表electronic megohmmeter 电子兆欧表power distribution compartment 配电室alternation switch 转换开关high/low voltage switchgear高/低压开关柜earthing knife switch 接地刀开关interlocking device 连锁装置hexagonal rotation axis 六角转轴back cover board 后盖板fuse 熔断器AI (analog input) 模拟量/遥测量cable incoming, outgoing 电缆进、出线breaking capacity 开断容量arrester 避雷器electrical equipment 电气设备busbar 母线load switch 负荷开关secondary components 二次元件truck 手车earthing line 接地线coil 线圈contactor 接触器sensor 传感器winding 绕组high voltage output 高压输出AC withstand voltage test 交流耐压试验earthing bar 接地棒attracting voltage 吸合电压releasing voltage 释放电压protection device sampling debugging 装置采样调试protection device instantaneous over-current debugging 装置速断保护调试protection device definite-time over-current debugging 装置过流保护调试zero-sequence protection debugging 装置零序保护调试pressure relief flap压力释放板branched busbar 分支母线bottom board 底板removable partition装卸式隔板secondary plug二次插头small busbar terminal box 小母线端子terminal block端子排disconnect contact device 隔离触头装置control wire duct控制线槽feeder 一回输电线路semiconductor 半导体mechanical endurance机械寿命electrical endurance 电寿命operation startup current 操作启动电流rectifier 整流器tripping current of the opening coil 分闸线圈脱扣电流monitor 监视器connection diagrams 接线图polarity极性power supply units and master modules 主控机与电源单元coupling modules 耦合模块accessories 附件analog modules 模拟量模块application modules 应用模块digital input/output modules 数字量输入/输出模块brake contact制动接点overvoltage protection module 过电压保护模块station board 配电屏electromechanical 机电一体thermistor 热敏电阻baud rate 波特率superconductor 超导体power plant 发电厂tap 分接头LED(light-emitting diode)发光二极管controller 控制器hydraulic power plant 水电站instrument board 仪表盘UPS (Uninterruptable Power Supply) 不间断电源indicator 指示器DC (direct current) 直流AC (alternating current) 交流active defect 运行故障active output 有功输出active-power loss 有功功率损耗active standard 现行标准AC voltage stabilizer 交流稳压器pulse 脉冲air switch 空气开关water vapor 水蒸汽terminal board 接线板short-circuit 短路shielding layer 屏蔽层export 导出electricity measurement 电量测量signal acquisition 信号采集LCD (liquid crystal display) 液晶显示remote communication 远程通信dual RS485 communication interface 双路RS485通信接口three-phase voltage/current input 三相电压/电流输入protocol 规约,协议four digital inputs 4路数字量输入rolling record 循环记录V,I,P,Q,F,Cosф,E电压、电流、有功功率、无功功率、频率、功率因数、有功电度voltage/current transformation ratio 电压/电流变比photoelectric isolation 光电隔离PT (potential transformer) 电压互感器default value 默认值CT (current transformer) 电流互感器calibration parameter 校准参数RMS (root mean square) 均方根,有效值filmy button 薄膜按键Wye system 星形系统energy counter input 电度chain controller 回路控制器message format 报文格式DI (digital input) 遥信量real-time data 实时数据power energy 电能front panel 面板bit change 变位electromagnetic fields 电磁场intelligent switching cabinet 智能开关柜form-C dry contact C型干触点Integrated substation automation 变电站综合自动化Harmonic 谐波Wave recorder 录波Workstation 工作站Public electric utility 市电电源Central alarm unit for electric fire leakage 电气火灾漏电集中告警器Computer protection system计算机保护系统Industry and building substation and distribution automation system 工业及楼宇变配电自动化系统Communication control unit 通讯主控单元Three-phase operation box 三相操作箱Voltage switch box 电压切换箱Transformer extension relay box 变压器重动箱Neutral point earthing resistance cubicle 中性点接地电阻柜Hydraulic car crane 液压汽车吊Automotive truck 载重汽车Coach 载人客车Mobile machinery shop with four seats 双排座工程车Hydraulic fork lift truck液压叉车Engine driven capstan 机动缴磨Welding machine 电焊机Press pliers压接钳Chain wheel 链条葫芦Bench drill 台钻Electric portable drill 手电钻Churn drill 冲击钻Jack 千斤顶Welding tool 气焊工具Electromotive refacer 电动磨光机Petrol gas heating 石油气加热项目Bolt clipper 断线钳Tensile strength meter 拉力表Moment spanner 力矩扳手Adjustable auto transformer 自藕调压器Phase sequence meter 相序表Withstand voltage tester 耐压试验装置Water level 水准仪Stop watch 秒表Micro-ohmmeter 微欧计Micro-processor protection panel 微机保护屏Fundamental current 基波电流Power transmission and substation engineering 输变电工程Electric Supply Authority 供电局Schweitzer Engineering Laboratories SEL公司全称储能 charging合闸 closing分闸 opening绝缘 insulation性能 performance过载 overload故障 fault多路传输 multiplex transmission备用 back-up比特、位 bit检修 overhaul冗余的 redundancy消耗 consumption冷却 cooling有功的active放大 amplify人造的 artificial手工的,人工的 manualFARAD 200 SEA4.0软件类(software)parallel interface 并行接口serial interface 串行接口application management 应用程序管理clipboard 剪贴板event system 事件系统browser 浏览器event log 事件日志removable storage 可移动存储routing and remote access 路由与远程访问server 服务器daily qualification rate 日合格率inhibit operation 禁止操作tele-indication blockage 遥信封锁invalid object 对象无效exactitude rate/success rate 正确率/成功率event handling 事件处理designer 设计人员operator 操作人员remote access server 远程访问服务器paste function 粘贴函数database 数据库file 文件edit 编辑view 视图insert (v.) insertion (n.) 插入tools 工具format 格式paste special 选择性粘贴alignment 对齐font 字体favorite 收藏夹peak value 峰值valley value 谷值normal(level) value 平值hyperlink 超级链接development environment 开发环境operation environment 运行环境graphic edit 图形编辑alarm event and handling 报警事件及处理PDR and recurrence 事故追忆与重演history data and real-time data retrieval 历史数据与实时数据检索fault diagnosis 故障诊断dual computers hot standby 双机热备remote maintenance 远程维护front controller 前端控制器thread 线程multimedia graphical user interface 多媒体图形界面transparent network technology 透明网络技术data acquisition technology 数据采集技术micro-kernel control and dispatching technology 微内核控制调度技术virtual reality scenes 虚拟现实场景variable 变量node 节点dynamic/line/fill/text property 动态/线/填充/文本属性time strings 时间串hotkey 热键alarm dead band 报警死区customization 定制reference frequency 基准频率window position fixation 窗口位置固定initialization full-screen display 初始化全屏显示initialization picture adaptation 初始化画面自适应task manager 任务管理器alarm appearance color 报警消失颜色synchronization 同步network congestion 网络堵塞supervisory control picture 监控画面homepage 主页print preview 打印预览standard serial port communication 标准串口通讯slash 斜线backslash 反斜线more/greater than 大于号less than 小于号asterisk 星号period 句号question mark 问号quotation mark 引号vertical bar 竖线transverse line 横线colon 冒号semicolon 分号parity check 奇偶校验data mapping table 数据映射表scroll bar 滚动条refresh 刷新list box 列表框bypass replacement 旁路替代bitmap file 位图文件consolidate 合并gateway 网关grid structure 网状结构subassembly programming 组件编程single-server 单机multi-server 多机browsing station 浏览站ODBC: Open Database Connectivity 开放式数据库互连distributed system architecture 分布式系统结构template database 模版库dual-device/computers/network redundancy 双设备/机/网络冗余history/curve database 历史/曲线数据库alarm voice file 报警语音文件pop-up picture file 弹出画面文件default path 缺省路径high-density curve 高密度曲线analog data overview模拟量一览digital data overview 开关量一览counter input data overview 电度量一览real-time alarm 实时报警communication fault 通讯故障report system 报表系统electrical report function 电力报表函数load 加载invoke 调用communication driver 通讯驱动snapshot 快照expression 表达式operational status 运行状况user manual 用户手册free disk space 硬盘余留空间program group 程序组registration number 注册号system/network configuration 系统/网络配置user right 用户权限auto start 自动启动password 口令shortcut 快捷方式directory for storing executable program 可执行程序存放目录auto logon 自动登录operation ticket 操作票symbol directory 图元库目录menu bar 菜单栏activate 激活project database 工程数据库table control 表格控件enable dual-computers hot standby 双机热备投用standby server query period 备机查询周期timeout time 超时时间history database synchronization days 历史数据库同步天数computer table 计算机表dial-up workstation 拨号工作站standard serial port communication 标准串口通讯upper/lower computer 上/下位机remark 备注object table 对象表logic relationship 逻辑关系interval 间隔deletion (n.) delete (v.) 删除power equipment 电力设备read only 只读prompt 提示subdirectory 子目录current directory 当前目录command/channel timeout 命令/通道超时master station address 主站地址title bar 标题栏toolbar 工具栏previous 上页next 下页picture file 图形文件real-time bar chart 实时棒图subsection electricity bar chart 分段电量棒图logout 退出,退路multi-electricity pie chart 多电量饼图printout 打印输出print setup 打印设置zoom in 缩小zoom out 放大scroll display 滚动显示daily/monthly report 日/月报表unqualified daily minutes 日不合格分钟数average value 平均值monthly trips due to faults月故障跳闸次数monthly repair time 月检修时间reactor电抗器The fuse blew out and the house was in darkness.保险丝烧断使得整个房子漆黑一片。

8代gti参数

8代gti参数

8代GTI参数简介8代GTI是大众汽车推出的一款高性能跑车系列。

作为大众的旗舰车型,8代GTI在外观设计、动力系统和驾驶体验方面都有所突破和改进。

本文将详细介绍8代GTI的参数配置,包括发动机、悬挂系统、刹车系统等。

发动机8代GTI搭载了一台高性能的发动机,为用户提供强劲的动力表现。

具体参数如下:- 发动机型号:EA888 - 排量:2.0升 - 涡轮增压:双涡轮增压 - 最大功率:245马力 - 最大扭矩:370牛·米这台发动机采用了先进的涡轮增压技术,使得8代GTI在低转速时就能够提供充沛的扭矩输出,同时在高转速时也能够保持较好的功率输出。

变速器为了更好地发挥发动机的性能,8代GTI配备了一款先进的变速器系统。

具体参数如下: - 变速器类型:7速双离合变速器(DSG) - 换挡方式:手动/自动模式 - 换挡时间:极速模式下仅需几十毫秒这款变速器系统具有快速换挡的特点,使得驾驶者能够更加顺畅地感受到发动机的动力输出,提升驾驶乐趣和操控性能。

悬挂系统为了提供更好的操控性能和稳定性,8代GTI配备了一套先进的悬挂系统。

具体参数如下: - 前悬挂类型:麦弗逊独立悬挂 - 后悬挂类型:多连杆独立悬挂 - 悬挂调校:运动化调校这套悬挂系统通过运动化调校,提供了更好的路感和稳定性,使得8代GTI在高速行驶和曲线驾驶时表现出色。

刹车系统为了保证8代GTI在高速行驶时的安全性能,大众对刹车系统进行了精心设计。

具体参数如下: - 刹车类型:通风盘式刹车系统 - 前刹车盘直径:340毫米 - 后刹车盘直径:310毫米这套刹车系统具有良好的制动效果和耐用性,能够在高速行驶时提供稳定的制动力。

内饰配置除了性能参数外,8代GTI还配备了豪华舒适的内饰配置,为用户提供更好的驾乘体验。

具体配置如下: - 运动座椅:配备包裹性较好的运动座椅,提供良好的支撑力和舒适性。

- 多功能方向盘:配备多功能方向盘,集成了音响、通话、巡航等功能按键,方便驾驶者进行操作。

cx4(一汽马自达)详细参数

cx4(一汽马自达)详细参数

6扬声器
-
高级沙色打孔真皮
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ -
6扬声器
-
高级棕/黑打孔真皮
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
外饰颜色
注: 1、“○”表示配备,“-” 表示不配备。 2、魂动红和珠光白颜色全系车型需在市场指导价基础上加价2000元/台。 3、本清单中所有配置均以实车为准,为不断推动产品技术进步以满足顾客需求和国家相关法律要求等,一汽马自达汽车销售有限公司有权对上述配置、规格等做修改,并不作另行通知。
○ ○ ○ ○ ○ ○ ○
创驰蓝天-发动机 SKYACTIV-G
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 速度表中置
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 行车电脑
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
转速表中置
17英寸(225/65R17)
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Mazda CX-4 参数配置表
2.0L 6MT 2WD 蓝天活力版 规格参数 长×宽×高(mm) 轴距(mm) 前/后轮距(mm) 尺寸参数 前/后悬(mm) 空载最小离地间隙(mm) 最小转弯半径(m) 油箱容积(L) 行李箱容积(L) 质量参数 整车整备质量(kg) 1390 1450 创驰蓝天汽油直喷全铝合金发动机 水冷直列4缸双顶置凸轮轴(DOHC)16气门 13:1超高压缩比 4-2-1加长型排气系统 Dual S-VT双可变气门正时控制系统+电子节气门 1998 13:1 116/6400 202/4000 200 6.4 192 6.3 国V排放标准 风琴式油门踏板 六速手动 93#(北京92#)及以上无铅汽油 风琴式油门踏板 降挡加速开关(Kickdown Switch) "六速手自一体 全速域锁定技术" 高效能宽速域锁止技术 迅捷换挡响应机电一体化模块 车身胶焊工艺 直线、连续化环闭式车身结构 车身冲击力分散引导系统 前、后、侧方超高强度防撞梁 前悬架:麦弗逊式独立悬架,带横向稳定杆 后悬架:E 型多连杆式独立悬架,带横向稳定杆 电动助力转向系统 四轮盘式制动 前置前驱 i-ACTIV AWD 马自达智能四驱系统 前后轮扭矩动态智能分配 (路况/天气/车轮打滑/驾驶意图实时预判) 7.3 6孔高压缸内直喷技术(二级喷射) 高效燃烧设计凹顶活塞+米勒循环 轻量化、低摩擦阻力技术 2488 13:1 141/6100 252/4000 198 7.2 创驰蓝天技术(SKYACTIV TECHNOLOGY) 发动机型式 197 196 5.6 51 400 1545 1560 4633×1840×1535 4633×1840×1530 2700 1584/1586 950/983 191 194 4633×1840×1535 1584/1587 2.0L 6AT 2WD 蓝天活力版 2.0L 6AT 2WD 蓝天活力真皮版 2.0L 6AT 2WD 蓝天品位版 2.0L 6AT 2WD 蓝天领先版 2.5L 6AT AWD 蓝天激情版 2.5L 6AT AWD 蓝天无畏版

发动机SIDI技术挑战FSI技术

发动机SIDI技术挑战FSI技术

发动机SIDI技术挑战FSI技术注:并非全部原创,也并非全部转贴,网上的发动机技术的学习而已。

SIDI发动机和FSI发动机是世界顶级的两大发动机技术。

凯迪拉克所使用的SIDI发动机,采用了双模的设计理念和D-VVT双可变气门正时的设计。

所谓双模就是指发动机在不同运行情况下,采用分层稀薄燃烧模式和均质燃烧模式,以达到提高发动机动力和降低油耗的目的。

奥迪使用的FSI发动机是Fuel Stratified Injection的缩写,即燃油分层喷射,燃油分层喷射技术是发动机稀燃技术的一种,通过更先进的共轨轨道,使稀薄的雾化汽油通过喷头直接喷向被高度压缩的空气,这样能使汽油和空气更均匀的结合,有效提高发动机动力,并能降低汽车的污染排放。

1、动力PK:奥迪所使用的3.6升FSI发动机能最高提供车辆360牛•米的扭矩和206千瓦的功率。

08款凯迪拉克CTS的3.6升SIDI发动机能输出374牛•米的最大功率和229千瓦的最高功率。

小结:动力表现方面,凯迪拉克全新使用的SIDI发动机具有更强的输出表现。

2、环保PK:强调“绿色动力”的凯迪拉克最新使用的SIDI系列发动机与以往同类发动机相比,综合路况油耗降低3%左右;在冷车启动时,污染排放可降低25%,排放达到苛刻的欧洲四号标准。

在环保方面FSI发动机作为一款以低能耗、高输出为设计的发动机,FSI系列发动机能在不装任何净化器的情况下,轻松使汽车的尾气排放达到苛刻的欧洲四号标准。

小结:最具代表性的凯迪拉克SIDI发动机系列和奥迪FSI系列发动机都在污染排放方面给出了令人满意的答案。

在绿色环保问题面前,没有输家。

因为看到的是一颗责任的心。

凯迪拉克有,奥迪也有。

3、哪个更适合中国市场?无论是奥迪FSI汽油直喷技术,还是凯迪拉克的SIDI双模发动机技术,都代表着当今世界汽车工业的最高技术,这些技术是否都适合中国市场呢?奥迪所开发的FSI发动机技术,由于其所采用的是先进高压稀燃技术,这种技术通过压燃方式使发动机工作,这就必须使发动机的压缩比达到15.5:1左右,这样才能使汽油在高压下被自动点燃烧。

马自达CX-5配置表

马自达CX-5配置表

创驰蓝天-发 动机
SKYACTIVG
发动机技术
Dual S-VT双可变气门正时控制系统+电子控制节气门
燃烧状态发动机电脑实时控制系统
创驰蓝天-发 排量(ml)
1998
2488
动机 压缩比
13:01
SKYACTIV- 最大功率
G
(kW/r/min
114/6000
最大扭矩 (Nm/r/min
200/4000






一键启动系统







智能无钥匙进入系统







间歇可调式前后雨刷







雨量感应式智能前雨刷 —






方向盘高低前后四向可调 〇






方向盘音响控制







方向盘定速巡航







驾驶员侧车窗一触式升降/ 防夹







行李箱遮物帘车门联动与 细网透视设计
最高车速 (km/h)
197
187
180
综合工况油
13:01 144/6100 252/4000
184

7
6.6
6.6
7.4
7.4
7.7
7.5

汽车英语缩写2

汽车英语缩写2

2D 二门(2 door)2V 每缸两气门(2 valve)3D 三门 (3 door)4D 四门(4 door)4WD 四轮驱动系统(4 Wheel drive)4WS 四轮转向系统(4 Wheel Steer)5D 五门(5 door)AA4 四速自动变速器AAR 自动控制室内空气循环系统ABC 车身主动控制系统ABS 防抱死制动系统(Antilock Braking System)ABS+T 防抱死制动系统+循迹系统ACC 附件(accessory)AC 空调(Air Conditioner)AIRBAG 安全袋ALR 自动锁紧式安全带收卷器AMP 电流表A/MT 手自一体 (Automatic/Manual Transmission)Ap 恒时全轮驱动ASC 加速防滑控制器ASF 全铝车身框架结构ASM 动态稳定系统ASR 加速防滑系统(Acceleration Slip Regulation)AS 转向臂ATF 自动变速器油(Automatic Transmission Fluid)A-TRC 车身主动循迹控制系统AT,A/T 自动档(Automatic Transmission)AWD 四驱系统(All-Wheel Drive)AYC 主动偏行系统Az 接通式全轮驱动BBA 机械制动辅助系统BAS 制动辅助系统BAT 蓄电池液量警告灯BBW 汽车电制动系统(Brake By Wire)BCM 车身控制模块BEAM 远光指示灯BELT 安全带警告灯BF 钢板弹簧悬挂B 水平对置式排列多缸发动机CC 活顶跑车(Convertible Coupe)C 两门三厢轿车(Coupe)CC 发动机排量单位:毫升CCS 汽车巡航控制系统(Cruise Control System)Cd 空气阻力系数,简称“风阻”。

CDI 共轨柴油直喷(common-rail diesel injection)CHE 充电指示灯(Charge)CKD 散装零件装配( Completely Knocked Down)coupe 两门三厢轿车CUV 融轿车、MPV和SUV特性为一体的多用途车,也被称为Crossover。

长安马自达2.0L汽油发动机匹配车型:长安马自达3 新昂克赛拉

长安马自达2.0L汽油发动机匹配车型:长安马自达3 新昂克赛拉

056匹配车型:长安马自达3 新昂克赛拉这是“中国心”2017年度十佳发动机评选入围机型中惟一一款自然吸气发动机,剑走偏锋、另辟蹊径倒是很符合马自达不走寻常路的品牌宗旨。

从风光一时的转子发动机,到眼下这款有着13:1高燃油压缩比的创驰蓝天,就是很好的证明。

这款2.0L 发动机+6AT 的动力总成,被马自达称为“创驰蓝天”技术!精髓就是自然吸气、高压缩比、减摩、轻量化。

许敏老师很欣赏马自达没有随大多数主机厂一样采用减小发动机排量,做涡轮增压处理。

独特的4-2-1排气歧管减少了汽缸的排气干扰。

电控进气门正时、低张力活塞环、轻量化活塞/连杆/曲轴、6孔多角度喷嘴、变排量机油泵等技术都是这款发动机的特点。

王建昕老师评价新昂克赛拉加速感很顺专家点评:从创驰蓝天开始的13:1高压缩比,到现在又推出均质压燃(HCCI)的汽油机商品化,都是走了别人不敢走的路。

驾驶中感觉燃烧很稳定。

为了进一步节油还采用了启停技术,而且停机的时机选择很好,保证了燃油经济性和驾驶舒适性。

畅,低速下的扭矩显得很足,油门响应程度更是该级别中的佼佼者,所以在静止起步加速性能上能够满足预期。

中段加速性能比较好,也很平顺。

许敏老师称赞,这款发动机的响应能力已经达到我的驾驶预期,在大多数情况下的驾驶需求还是能够很好地满足,较为运动的调校方式使得新昂克赛拉在赛道上也显得很灵活。

如果按照日常的驾驶节奏,变速器会更多地表现出舒适、平顺的取向,让人挑不出毛病。

王建昕老师和KOL 评委吴佩分别对新昂克赛拉给出了7.4-7.5L/100km 的平均油耗,包含城市工况和部分高速公路,表现相对令人满意,惟一的不足出现在发动机的噪音方面,尤其是冷车启动时,无论是车内还是车外的噪音都有进步的空间。

长安马自达PE-VPR1998昂克赛拉116/6400202/400058.05101.60全铝缸体、自动启停、4-2-1排气歧管、Dual S-VT 、电控进气门正时、低张力活塞环、轻量化活塞/连杆/曲轴、6孔多角度喷嘴、变排量机油泵报名企业型号排量(ml)匹配车型最大功率(kW/rpm)最大扭矩(Nm/rpm)升功率(kW/L)升扭矩(Nm/L)技术亮点数据表长安马自达2.0L汽油发动机昆仑润滑油杯“中国心”2017年度十佳发动机评选实车测试Copyright©博看网 . All Rights Reserved.。

串联式混合动力推土机驱动系参数匹配设计_邹渊

串联式混合动力推土机驱动系参数匹配设计_邹渊
第 50 卷第 1 期 2014 年 1 月




学 报
Vo l . 5 0 Jan.
No.1 2014
JOURNAL OF MECHANICAL ENGINEERING
DOI:10.3901/JME.2014.01.070
串联式混合动力推土机驱动系参数匹配设计*
邹 渊1
,2
陈晓玲 1
,2Байду номын сангаас
李东阁 1
Fmax 0.94~1.06 Gs
(3)
此处选取设计上限为 1.06,作为车辆最大驱动 力约束。推土机及土壤设计主要参数及关键系数如 表 1 所示 。 1.2 电动机机械外特性参数及减速比匹配 电动机驱动系统机械外特性 T(n)视为由最大功 率 Pmax,最大转矩 Tmax 和最高转速 nmax 确定,表
Parameter Matching Design and Control Optimization for Series Hybrid Tracked Bulldozer
ZOU Yuan1, 2 CHEN Xiaoling1, 2 LI Dongge1, 2 YAO Youliang 3 SHI Songshan 3
(1) 式中,v 为车速;Gs 为推土机使用重量; 是坡度 角; 为转向阻力系数,由经验公式获得;L 为履 B 为履带中心距; Kw 为空气阻力系数; 带接地长度; A 推土机迎风面积。Fx1 为水平切削阻力, Fx2 为铲 前积土推移阻力,Fx3 为刀刃与土壤摩擦阻力,Fx4 为土壤沿铲刀上升的摩擦阻力的水平分力组成。 Fx1, Fx2,Fx3 和 Fx4 由式(2)计算
Fx1 K b Bc h 2 Fx 2 Gt 2 Vt 2 2 Bc H h Fx 3 K y Bc x1 2 Fx 4 Gt 1 cos

双擎卡罗拉THS技术解析——控制篇(三)

双擎卡罗拉THS技术解析——控制篇(三)

双擎卡罗拉THS 技术解析◆文/江苏 高惠民表2 发动机运转条件(车辆停止时)(接上期)⑴驾驶员请求扭矩计算根据加速踏板位置和车速计算目标轴驱动扭矩。

⑵驾驶员请求输出功率计算根据驾驶员请求扭矩和车速计算目标功率输出,与⑴的计算方法类似。

⑶所需发动机输出功率计算所需HV蓄电池充电功率与⑵计算所得的驾驶员请求输出功率相加即可确定所需发动机输出功率。

⑷发动机启动判断根据工作状况和所需发动机输出功率⑶,判断是否需要启动发动机。

⑸目标发动机转速计算THS-II发动机以高效发动机工作线工作。

发动机工作线与发动机输出功率(所需发动机输出功率)的交点为目标发动机转速。

⑹发动机控制根据所需发动机输出功率⑶和目标发动机转速⑸的计算结果执行发动机喷油、点火、ETCS-i和VVT-i控制等。

⑺目标MG1转速计算根据MG2转速和目标发动机转速⑸计算目标MG1转速。

⑻MG1扭矩控制根据MG1转速传感器(解析器)信号,控制MG1扭矩以达到MG1目标转速。

⑼直接发动机转矩计算根据⑻计算所得的MG1扭矩计算发动机输出的驱动扭矩(根据列线表,基于MG1扭矩可得知车桥处的直接发动机输出转矩)。

⑽MG2扭矩指令值计算根据驾驶员请求扭矩⑴和直接发动机输出转矩⑼计算MG2扭矩指令值。

如果电动机的转矩大于车辆需要的驱动扭矩,发动机就会停止工作,车辆仅靠HV蓄电池的能量输出完成行驶(EV行驶模式),如果电动机转矩小于车辆需要的驱动扭矩,发动机就会启动运转,独立驱动,或者在车辆需要更大扭矩时,发动机与电动机并行运转驱动。

2.发动机启停控制混合动力系统对发动机进行启动/停止的切换控制,使发动机工作在最佳效率工况范围内,目的是改善燃油消耗,发动机启动运转条件如表2所示。

但曲轴回转时,在特定的发动机转速区域内,发动机扭矩脉冲与传动桥产生共振,导致车辆振动。

通过下列控制措施可以减小发动机启停的振动问题。

(1)通过缩短动力重心与转动弹性轴之间的距离,增加扭振减振阻尼器等方法,改进发动机的悬置问题。

NETTUNO “跨时代” 玛莎拉蒂全新海神发动机技术解析

NETTUNO “跨时代” 玛莎拉蒂全新海神发动机技术解析

NETTUNO玛莎拉蒂“海神”成为了F1下放“预燃室”技术的首款量产机型NETTUNO混室里面喷射,而是在主燃烧室进行充分的缸内直喷油气混合,通过预混腔喷孔送到主火花塞周围。

而F 1多用的设计,则是更为贴切的“Fuel-fed ”设计。

这个细微的改动使得这台发动机的设计走向是比较清晰的,这意味着这台发动机并没有一味的追求大扭矩,而是花了更多的心思在燃油经济性与排放上。

为了更好地理解这个区别,我们可以直观地先看下Fuel-fed Pre-chamber 的设计。

可以看到,预混室(Pre-Chamber )里,是包裹着直喷系统(DI )的喷油器以及火花塞,而主燃烧室(Main Chamber )的油气主要来源于气道喷射(PFI )。

这使得预混室喷油器需要大约喷2%的油量来制造火焰,向主燃烧室中喷出,点燃周围预混油气从而快速燃烧。

一般这里的DI 喷油器更像是将一点点燃油送到火花塞附近。

与此不同的是,玛莎拉蒂所搭载的这套“Passive ”系统,是将喷油器单独剥离开来的,仍旧如同普通的双喷一样,缸内直喷喷油器布置在缸内最适合油气混合,相互作用的位置,与气道喷射形成单独的燃油雾化系统,为油气混合做准备。

这部分双喷组合的首要目的就是保证足够优秀的燃油雾化以及油气混合能力,也因此,高压缸内直喷(350bar )+低压(6bar )气道喷射的组合可以很好地在不同工况下进行决策,解决雾化、湿壁等复合问题。

玛莎拉蒂正式公布全新Nettuno 海神发动机,搭载将要发布(9月)的超跑MC 20车型上。

该款发动机由官方宣布,100%由玛莎拉蒂研发,100%摩德纳制造,是一款纯正血统的三叉戟内核。

发动机的研制工作均在摩德纳完成:玛莎拉蒂创新实验室以及位于德尔勒纳齐奥尼大街的工作室负责发动机的设计,坐落于西罗梅诺蒂大街的引擎中心则负责开发及制造。

如果仅仅说这款发动机是玛莎设计,玛莎制造,那么其里程碑意义或许只是在玛莎拉蒂的公司或者是博物馆中。

发动机DUAL S-VT技术

发动机DUAL S-VT技术

Dual S-VT是双可变气门正时控制系统+电子控制节气门提到创驰蓝天发动机,大家的第一印象就是省油,它的特点仅是省油吗?创驰蓝天发动机的开发理念如何来的?创驰蓝天发动机用了哪些技术来实现它的开发目标?创驰蓝天发动机相关的一系列名词是什么意思?创驰蓝天发动机和涡轮增压发动机对比又如何什么是汽油发动机?一般车用发动机分为两种,以汽油(gasoline)为燃料的汽油机和以柴油(diesel)为燃料的柴油机,所以创驰蓝天汽油机称为Skyactiv-G,创驰蓝天柴油机称为Skyactiv-D。

目前,由于油品和政策原因,国内柴油乘用车尚难以普及,Skyactiv-D目前也未引入国内,因此我们研究的重点是Skyactiv-G。

为了便于了解Skyactiv-G的特点,我们先来了解一下汽油发动机的工作原理。

右边图示是一个缸内直喷汽油机的完整工作流程,包括进气、压缩、排气、做功、排气四个行程,活塞上下往复运动,把汽油燃烧的热量转化为驱动汽车奔跑的动能。

PS.:汽油机与柴油机都属于内燃机,即燃料在发动机内部燃烧。

除活塞式的汽油机,马自达独有的转子发动机也是汽油机马自达的目标—探寻理想的发动机虽然汽油机是乘用车使用最早且应用最广泛的发动机,但是它是理想的发动机吗?当然不是,事实上汽油发动机只能够利用燃料30%的能量,另外70%以各种形式被浪费掉。

因此,各大汽车公司都在寻求提升汽油机燃料利用效率的方法,最终出现了两条技术路线,一个就是用涡轮增压,一个就是混合动力。

这两种技术有两个共同点:都在发动机外部寻求较复杂的解决方法;都认为发动机本身没有太多改进的余地。

但是马自达的工程师不这样认为,他们先明确了理想发动机应该具备的三个特征,即高效清洁排放、可靠性,以这三条来衡量,涡轮增压和混合动力都不能算是理想的发动机。

马自达的工程师决定从零开始,从发动机本身寻找改进的方法,找出了发动机内部最基本的可控因素,并对它们逐一改进,最终成功开发出Skyactiv-G,真正拥有高效率、清洁排放和可靠性的理想发动机。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Dual S-VT是双可变气门正时控制系统+电子控制节气门
提到创驰蓝天发动机,大家的第一印象就是省油,它的特点仅是省油吗?创驰蓝天发动机的开发理念如何来的?创驰蓝天发动机用了哪些技术来实现它的开发目标?创驰蓝天发动机相关的一系列名词是什么意思?创驰蓝天发动机和涡轮增压发动机对比又如何
什么是汽油发动机?
一般车用发动机分为两种,以汽油(gasoline)为燃料的汽油机和以柴油(diesel)为燃料的柴油机,所以创驰蓝天汽油机称为Skyactiv-G,创驰蓝天柴油机称为Skyactiv-D。

目前,由于油品和政策原因,国内柴油乘用车尚难以普及,Skyactiv-D目前也未引入国内,因此我们研究的重点是Skyactiv-G。

为了便于了解Skyactiv-G的特点,我们先来了解一下汽油发动机的工作原理。

右边图示是一个缸内直喷汽油机的完整工作流程,包括进气、压缩、排气、做功、排气四个行程,活塞上下往复运动,把汽油燃烧的热量转化为驱动汽车奔跑的动能。

PS.:汽油机与柴油机都属于内燃机,即燃料在发动机内部燃烧。

除活塞式的汽油机,马自达独有的转子发动机也是汽油机
马自达的目标—探寻理想的发动机
虽然汽油机是乘用车使用最早且应用最广泛的发动机,但是它是理想的发动机吗?
当然不是,事实上汽油发动机只能够利用燃料30%的能量,另外70%以各种形式被浪
费掉。

因此,各大汽车公司都在寻求提升汽油机燃料利用效率的方法,最终出现了两条技术路线,一个就是用涡轮增压,一个就是混合动力。

这两种技术有两个共同点:都在发动机外部寻求较复杂的解决方法;都认为发动机本身没有太多改进的余地。

但是马自达的工程师不这样认为,他们先明确了理想发动机应该具备的三个特征,即高效清洁排放、可靠性,以这三条来衡量,涡轮增压和混合动力都不能算是理想的发动机。

马自达的工程师决定从零开始,从发动机本身寻找改进的方法,找出了发动机内部最基本的可控因
素,并对它们逐一改进,最终成功开发出Skyactiv-G,真正拥有高效率、清洁排放和可靠性的理想发动机。

提升发动机效率—提高压缩比
提升汽油机效率最好的方法就是提高压缩比,这是发动机的基本理论。

压缩比就是活塞在下止点时气缸容积与活塞在上止点时气缸容积的比值,一般发动机压缩比为11:1左右。

为什么压缩比提高会提升效率呢?以弹簧为例,压缩的程度越多产生的反弹力就越强;以射箭为例,弓被拉得越开,射出去的箭就会越远。

对于发动机来说,压缩比越高,燃烧相同量的燃料,得到的动能就越多,因此发动机的效率就会越高,而Skyactiv-G的压缩比提升至13:1。

PS.:柴油机拥有较高的压缩比,因此柴油机拥有较高的燃料利用效率。

为何高压缩比未广泛应用?
既然提高压缩比可以有效提升汽油发动机的效率,但是各汽车厂商并未广泛采用,因为高压缩比会产生爆震,这会严重影响发动机的正常工作,所以目前绝大多数汽油机的压缩比在11:1左右。

PS. 汽油的标号:90#,93#,97#就是抗爆震指数,数字越大抗爆震效果越好,但价格也越贵。

通过对比图可以看到,发动机正常工作时,空燃混合物被火花塞点燃,火焰从中心往边缘均
匀传播,火焰膨胀产生的能量推动活塞往下运动。

如果压缩比提高,空燃混合物被过度压缩后温度升高,易发生自燃,自燃的火焰与火花塞点燃的火焰发生碰撞,发出金属敲击声,这就是爆震,俗称敲缸。

防止爆震的关键在于阻止空燃混合物自燃,降低气缸温度、控制火传播速度和选择高标号汽油是主要的办法。

像左图所示那样,多数发动机压缩比都不高,主要是为了避免爆震。

空气被增压后温度会升高,因此涡轮增压发动机必须把压缩比降至10:1且需使用97#汽油来防止爆震,因此涡轮提升发动机效率的效果大打折扣。

高性能车发动机应用了高级的技术,并且使用高标号汽油,所以可以达到相对较高的12.5:1的压缩比。

Skyactiv-G达到了13:1(海外达到14:1)的超高压缩比,燃料利用效率得到极大提升,并且仅使用93#汽油,因为马自达研发出完善的防止爆震的先进技术。

防止爆震的方法—4-2-1排气
Skyactiv-G使用的是普通93#汽油,因此它防止爆震的主要方法之一就是降低气缸内的温度。

马自达的工程师发现,一般发动机是采用4-1的排气系统,即4个排气管经过较短的
行程就汇聚在一起,这会使某一排气管的高温废气体回流至另一排气管,甚至进入气缸,导致气缸内温度升高。

如果采用4-2-1排气方法,即4个排气管先汇聚成两股,这两股再汇聚成一股,这样4个排气管的高温废气就不会互相影响,气缸内不会因为废气回流而升温。

事实上,高性能车能够实现较高的压缩比,除了使用高标号汽油外,更重要的是它拥有与4-2-1排气类似的排气系统,可以说,Skyactiv-G使得F1的技术出现在民用车上。

防止爆震的技术—缸内直喷
传统发动机在气缸外的进气道里喷油,汽油的雾化效果、和空气的混合均匀程度以及喷油量的精度都不理想。

Skyactiv-G采用了目前汽油机中领先的高压缸内直喷技术,汽油以
20MPa的喷油压力(一般缸内直喷仅16MPa左右)从极为细小的六孔喷嘴中直接喷入气缸,汽油可以得到迅速雾并与空气混合,形成理想的混合气,抑制异常燃烧的产生。

同时,喷油量得到精准控制,这也是Skyactv-G节油的重要原因。

汽油直接喷到气缸里雾化的过程也会吸收热量,好像沐浴冲水的效果一样,可以降低气缸内的温度,达到了抑制爆震的效果。

防止爆震的技术—凹孔活塞
传统汽油机的活塞顶部是平面的,而Skyactiv-G的活塞顶部是凸起的,并在活塞中间做成一个凹孔。

被压缩的空燃混合物集中于凹孔内,点火更加迅速并且集中,便于火焰从中间往边缘均匀传播,最大程度阻止爆震产生。

提升发动机效率—降低进排气损耗
双可变气门正时技术(Dual S-VT)
气门是用来控制发动机进气和排气的机构,如同人的呼吸器官。

发动机转速和负荷变化时,进气量也随之变化,但与转速一致的进排气节奏跟不上发动机的需求,就好像人在高速奔跑时呼吸节奏跟不上一样。

因此,可变气门正时可以实现随着发动机转速与负荷变化调节气门打开或者关闭的时间。

Skyactiv-G进排气门均采用可变正时技术,实现发动机更加畅快的呼吸,因而能够大大降低进排气的损耗。

Skyactive-G的可变气门正时有一项特别的技术,就是进气门正采用电子控制,而传统的正时都是油压控制。

油压控制易受温度影响而反应滞后,而电子控制可在任何情况下实现迅速精准的响应,因此,即便发动机冷机启动时,进气门启闭时间也可做到精确控制。

得益于这项技术,发动机的进气损耗降低了13%。

提升发动机效率—发动机整体减重
减轻发动机的重量,意味着发动机自身的负担更低,因而发动机的效率更高。

Skyactiv-G 把发动机的主要部件进行全面革新,达到了发动机整体减重约10%。

通过结构创新,在强度不变甚至更提高的前提下,活塞和活塞销减重20%,连杆减重15%,曲轴减重8%…
提升发动机效率-降低机械损耗
发动机内部有大量的运动机构,像气门、活塞、水泵等。

只要发动机启动,它们就一直在运动,各部件之间就会有摩擦产生。

以气门为例,发动机1分钟转2000转时,气门每分钟上下往复1000次,因此摩擦产生的机械损耗是相当可观的,特别是发动机高速运转时损耗更加严重,而损耗的能量都来源于发动机的动力。

因此要提升发动机的效率,必须降低机械摩擦损耗。

经过一系列改进,Skyactiv-G 成功实现机械损耗整体降低30%。

上图是其中一部分降低机械损耗的部件。

传统发动机要提升动力必须增加油耗,而要降低油耗就必须牺牲动力,动力和油耗互相制约,
不可兼得,这也是其他汽车厂商对发动机做了无数改进也无法解决的矛盾。

马自达的工程师们以理想的发动机为目标,从发动机的最基本原理入手,寻求革新发动机的因素,采用提高压缩比、降低进排气损耗、发动机减重和降低机械损耗等方式,实现理想发动机的目标,Skyactiv-G最终可以实现中低速扭矩提升15%,油耗降低15%两者同时实现的惊人成就。

对比涡轮增压发动机
目前,越来越多的厂商推出小排量涡轮增压发动机,并宣传其发动机动力强劲、更省油。

的确,通过涡轮增压能够提升进气效率,使得小排量发动机可以输出大排量发动机的动力,但动力输出并不够线性,并且需要一个复杂的系统来支持。

相对于自然吸气发动机,涡轮增压发动机增加了涡轮和涡轮冷却系统,特别强化的发动机主要零件,用来冷却被压缩空气的中冷器。

增加的这些部件都会增加发动机的重量和成本,反而降低了发动机的效率和可靠性,而用户的购买成本和使用成本都会增加。

另外,为了防止爆震,涡轮增压发动机的压缩比反而更低,这又使得它的效率打了折扣。

从上述这些角度来看,涡轮增压发动机不能算是理想的发动机。

而Skyactiv-G相对于传统的发动机,主要对发动机内部结构进行革新,不增加任何附件,仅替换几个部件,因而重量进一步降低,所以它可以实现与传统发动机相同的可靠性。

另外,Skyactiv-G还具高效率、清洁排放的特点,因而用户购买和使用成本不会有任何增加。

所以,对比涡轮增压发动机,Skyactiv-G才是真正的高效省油的发动机。

相关文档
最新文档