微波综合实验
微波实验报告
微波实验报告之前⽹上下的学长学姐的报告有很多不靠谱,但是调谐都要调到中⼼频率上,否则都不对,还有⽼师验收的时候如果⾃⼰⼼情很不好,只要她发现⼀点错误就会坚定的认为不是⾃⼰做的,所以⼀定要确保没有错误,原理⼀定要弄清楚.愿后来⼈好运~~~实验2 微带分⽀线匹配器⼀.实验⽬的:1.熟悉⽀节匹配的匹配原理2.了解微带线的⼯作原理和实际应⽤3.掌握Smith图解法设计微带线匹配⽹络⼆.实验原理:1.⽀节匹配器随着⼯作频率的提⾼及相应波长的减⼩,分⽴元件的寄⽣参数效应就变得更加明显,当波长变得明显⼩于典型的电路元件长度时,分布参数元件替代分⽴元件⽽得到⼴泛应⽤。
因此,在频率⾼达GHz以上时,在负载和传输线之间并联或串联分⽀短截线,代替分⽴的电抗元件,实现阻抗匹配⽹络。
常⽤的匹配电路有:⽀节匹配器,四分之⼀波长阻抗变换器,指数线匹配器等。
⽀节匹配器分单⽀节、双⽀节和三⽀节匹配。
这类匹配器是在主传输线并联适当的电纳(或串联适当的电抗),⽤附加的反射来抵消主传输线上原来的反射波,以达到匹配的⽬的。
此电纳或电抗元件常⽤⼀终端短路或开路段构成。
本次实验主要是研究了微带分⽀线匹配器中的单⽀节匹配器和双⽀节匹配器,我都采⽤了短路模型,这类匹配器主要是在主传输线上并联上适当的电纳,⽤附加的反射来抵消主传输线上原来的反射波。
单⽀节调谐时,其中有两个可调参量:距离d和由并联开路或短路短截线提供的电纳。
匹配的基本思想是选择d ,使其在距离负载d处向主线看去的导纳Y是Y0+JB形式。
然后,此短截线的电纳选择为-JB,然后利⽤Smith圆图和Txline,根据该电纳值确定分⽀短截线的长度,这样就达到匹配条件。
双⽀节匹配器,⽐单⽀节匹配器增加了⼀⽀节,改进了单⽀节匹配器需要调节⽀节位置的不⾜,只需调节两个分⽀线长度,就能够达到匹配,但需要注意的是,由于双⽀节匹配器不是对任意负载阻抗都能匹配,所以不能在匹配禁区内。
2.微带线从微波制造的观点看,这种调谐电路是⽅便的,因为不需要集总元件,⽽且并联调谐短截线特别容易制成微带线或带状线形式。
微波实验指导(终)
实验一 系统设备简介、频率测量一、 实验目的:1通过实验使得学生熟悉、了解实验所用设备及附件的性能、用途等。
2 掌握用频率计测量频率的方法。
二、 实验所用设备及方框图(设备详细介绍见附录2)本实验所用设备及附件为YM1123信号发生器;YM3892选频放大器;波导/同轴转换器;PX16频率计;晶体检波器,其连接方框图如下:图 1三、频率测量的实验步骤:1按方框图连接好实验系统。
2 检查实验系统准确无误后,打开选频放大器,将增益开关置于40~60分贝档。
3 打开信号发生器,圆盘刻度置于100档,重复频率量程置于100处,设备右上角←、→置于档,这时即有了输出,输出功率的大小用衰减旋纽调节。
4 观察选频放大器,若指示太小,调节晶体检波器和选频放大器增益调节,原则上使选频放大器指针指示在满刻度的4/5上,调节频率计,找到频率计的吸收峰值,观察这时频率计的刻度值,此值即为所测的频率值。
5 关闭设备,整理好附件。
6 数据整理,写出实验报告。
实验二 波导波长的测量一、 实验目的1 掌握使用“中值法”测量最小值的方法。
2 掌握波导波长的测量方法。
3 熟练掌握微波成套设备的使用。
二、 实验原理波导波长是用驻波测量线进行测量的,驻波测量线可测出波导中心电场纵轴的分布情况,在矩形波导中:g λ=(1)其中c λ为截止波长,0λ为自由空间波长。
'''2222(()/2g D D D λ==+cλ=对截止波长:m=1,n=0; 2c a λ=我们知道相邻两个电场的最小点(或最大点)间的距离为半个波长。
如图所示:EE 121221E图 2测量波导波长时,利用测量线决定相邻两个电场的最小点(或最大点),就可以计算出波导波长g λ。
测量波导波长时,由于电场的最小值的变化比最大值尖锐,因此往往采用测量两个电场最小值的位置来计算,即:212()g D D λ=- (2)为了测量电场最小值的位置,常常采用中值读数法,具体方法为在最小值附近找出极小值,例如找到'1D 和''1D 来确定1D 的位置,找到''2D 和'2D 来确定2D 的位置,公式为 '''111()/2D D D =+ (3)'''222()/2D D D =+ (4) 三、 实验原理框图图 3四、 实验步骤:1 按方框图连接设备极其附件。
微波光学实验报告
---------------------------------------------------------------最新资料推荐------------------------------------------------------微波光学实验报告微波光学实验报告一、实验目的与实验仪器 1.实验目的(1)学习一种测量微波波长的方法。
(2)观察微波的衍射现象并进行定量测量。
(3)测量微波的布拉格衍射强度分布。
2.实验仪器微波分光仪、分束玻璃板、固定和移动反射板、单缝板、双缝板、模拟晶体等。
二、实验原理(要求与提示:限 400 字以内,实验原理图须用手绘后贴图的方式)微波是一种波长处于 1mm~1m 之间的电磁波,范围为3×102~3×105MHz 之间。
微波也具有衍射、干涉等性质。
1.用微波分光仪(迈克尔逊干涉仪)测微波波长用迈克尔逊干涉仪测波长光路图如上。
设微波波长为λ,若经 M1 和 M2 反射的两束波波程差为Δ,则当满足Δ = kλ(k = ±1,±2,…)时,两束波干涉加强,得到各级极大值;当满足Δ =(k + )λ(k = 0,±1,±2,…)时,两束波干涉减弱,得到各级极小值。
1/ 13将反射板 M2 沿着微波传播的方向移动 d,则波程差改变了 2d. 若从某一极小值开始移动可动反射板 M2,使接收喇叭收经过 N 个极小值信号,即电流示数出现 N 个极小值,读出 M2 移动的总距离 L,则有:2L = N·λ从而λ=由此可见,只要测定金属板位置的该变量L 和出现接收到信号幅度最小值的次数 N,可以求出微波波长。
2.微波的单缝衍射实验当微波入射到宽度和其波长差不多的一个狭缝时,会发生衍射现象。
在狭缝后面的衍射屏上出现衍射波强度不均匀,中央最强且最宽,从中央向两边微波衍射强度迅速减小。
当θ = 0 时,衍射波强度最大,为中央零级极大;其他次级强所在位置为:asinθ = ±(k + )λ(k = 1,2,…)暗条纹位置为:asinθ = kλ (k = ±1,±2,…)式中 a 为单缝的宽度。
实验十五微波的技术实验
实验十五 微波技术实验【实验目的】1.学习微波基础知识和掌握微波基本测量技术;2.学习用微波作为观测手段来研究物理现象的基本原理和实验方法。
即包含“学微波”和“用微波”两个方面。
本实验重点要求掌握体效应振荡器的使用方法,了解微波测试系统的组成及调试方法,学会微波频率、驻波比、波导波长、微波功率、微波衰减等的测量,通过实验了解微波的产生和微波的波导传输知识。
【实验原理】见微波基本知识部分,请同学进行仔细的阅读后再进行试验,进行本实验之前,必须阅读相关的资料初步了解和熟悉下列问题:1.微波测试系统应由那几部分组成?2.清楚了解各微波器件的作用及工作原理。
3.理解体效应振荡器的基本工作原理。
4.学会选频放大器的正确使用。
5.怎样调节体效应振荡器的振荡频率?6.理解用吸收式频率计测量微波频率的原理和方法。
7.理解晶体检波器的功用和使用方法。
8.理解可变衰减器的功用和使用方法。
9.了解驻波测量线的工作原理和使用方法。
(学生可自己设计检测方案)【实验用微波信号源】——体效应管振荡器(微波固态源)在微波实验系统中,用体效应砷化镓二极管作微波振荡器。
下面将对它进行介绍。
1.效体应管的工作特性在n 型GaAs 半导体材料上施加直流偏压b V 后,起初电流随电压线性增长,但是当所加偏压使材料内的平均电场超过每厘米3KV 以上某个阈值电场T E (与T E 对应的外加电压V T 称为阈值电压)时,电流发生微波振荡。
实验证明这种电流振荡是由于“高电场偶极子畴”在阴极附近周期性地形成,并被阳极吸收这一过程造成的。
图1 n 型GaAs 导带结构示意图n 型GaAs 的导带结构示意图如图1所示。
它有两个导电能谷:L 谷和U 谷。
它们的能量相差0.36eV 。
通常,在低电场下,导电的电子绝大部分在L 谷中,它们的平均速度L v E μ=,即随电场E 线性的增大;当电场大于某个阔值T E 后,L 谷中的电子获得足够的能量而向U 谷转移,以后随电场继续增加,这样转移的电子越来越多,电子的平均速度v E μ=将反向随电场的增加而减小。
微波实验实验报告
微波实验实验报告姓名:杜文涛班级:05116班学号:050489班内序号:08指导老师:徐林娟实验四微带功分器一、实验目的:1)掌握微波网络的S参数;2)熟悉微带功分器的工作原理及其特点;3)掌握微带功分器的设计与仿真。
二、实验原理:功分器是一种功率分配元件,它是将输入功率分成相等或不相等的几路功率,当然也可以将几路功率合成,而成为功率合成元件。
在电路中常用到微带功分器。
下图是二路功分器的原理图。
图中输入线的阻抗为Z0,两路分支线的特性阻抗分别为Z02 和Z03,线长为λg/4,λg/4 为中心频率时的带内波长。
图中R2 和R3 为负载阻抗,R为隔离电阻。
对功分器的要求是:两输入口2 和3 的功率按一定比例分配,并且两口之间互相隔离,当2,3 口接匹配负载时,1 口无反射。
下面根据上述要求,确定Z02, Z03,R2,R3 及R 的计算式。
设2 口,3 口的输出功率分别为P2,P3,对应的电压为V2,V3。
根据对功分器的要求,则有P3=k2P2|V3|2/R3=k2|V2|2/R2式中k 为比例系数。
为了使在正常工作时,隔离电阻R 上不流过电流,则应V3=V2于是得R2=k2R3若取R2=kZ0则R3=Z0/k因为分支线为λg/4,故在1 入口处的输入阻抗为:Z in2=Z022/R2Z in3=Z032/R3为使1 口无反射,则两分支线在1 处的总输入阻抗应等于引出线的Z0,即Y0=1/Z0= R2 /Z022 +R3 /Z032若电路无损耗,则|V1|2/ Z in3 =k2|V1|2 /Z in2式中V1 为1 口处的电压所以Z02 = k2 Z03Z03 =Z0[(1+ k2)/k3]0.5Z02=Z0[(1+ k2)k]0.5下面确定隔离电阻R 的计算式。
跨接在端口2,3 间的电阻R,是为了得到2,3 口之间互相隔离的作用。
当信号1 口输入,2,3 口接负载电阻R2 ,R3 时,2,3 两口等电位,故电阻R 没有电流流过,相当于R 不起作用;而当2 口或3口的外接负载不等于R2 或R3 时,负载有反射,这时为使2,3 端口彼此隔离,R 必有确定的值,经计算R= Z0(1+ k2)/k 图中两路带线之间的距离不宜过大,一般取2~3 带条宽度,这样可使跨接在两带线之间电阻的寄生效应尽量小.为了匹配需要在引出线Z0与2,3端口之间各加一段λg/4阻抗变换段。
微波实验报告波导波长测量
篇一:电磁场与微波实验报告波导波长的测量电磁场与微波测量实验报告学院:班级:组员:撰写人:学号:序号:实验二波导波长的测量一、实验内容波导波长的测量【方法一】两点法实验原理如下图所示:按上图连接测量系统,可变电抗可以采用短路片。
当矩形波导(单模传输te10模)终端(z=0)短路时,将形成驻波状态。
波导内部电场强度(参见图三之坐标系)表达式为:e =ey =e0 sin(?xa) sin?z在波导宽面中线沿轴线方向开缝的剖面上,电场强度的幅度分布如图三所示。
将探针由缝中插入波导并沿轴向移动,即可检测电场强度的幅度沿轴线方向的分布状态(如波节点和波腹点的位置等)。
yz两点法确定波节点位置将测量线终端短路后,波导内形成驻波状态。
调探针位置旋钮至电压波节点处,选频放大器电流表表头指示值为零,测得两个相邻的电压波节点位置(读得对应的游标卡尺上的刻度值t1和t2),就可求得波导波长为:?g = 2 tmin-tmin由于在电压波节点附近,电场(及对应的晶体检波电流)非常小,导致测量线探针移动“足够长”的距离,选频放大器表头指针都在零处“不动”(实际上是眼睛未察觉出指针有微小移动或指针因惰性未移动),因而很难准确确定电压波节点位置,具体测法如下:把小探针位置调至电压波节点附近,尽量加大选频放大器的灵敏度(减小衰减量),使波节点附近电流变化对位置非常敏感(即小探针位置稍有变化,选频放大器表头指示值就有明显变化)。
记取同一电压波节点两侧电流值相同时小探针所处的两个不同位置,则其平均值即为理论节点位置:1tmin = ? t1 ? t2 ?2最后可得?g = 2 tmin- tmin (参见图四)【方法二】间接法矩形波导中的h10波,自由波长λ0和波导波长?g满足公式:?g =???? 1 ? ? ??2a?2其中:?g=3?108/f,a=2.286cm通过实验测出波长,然后利用仪器提供的对照表确定波的频率,利用公式cλ0=确定出λ0,再计算出波导波长?g。
微波实验报告
微波实验报告微波实验报告引言:微波是一种电磁波,波长在1mm到1m之间,频率范围为300MHz到300GHz。
微波在通信、雷达、医学、食品加热等领域有着广泛的应用。
本实验旨在通过实际操作和观察,了解微波的特性和应用。
实验一:微波传播特性实验目的:观察微波在不同介质中的传播特性。
实验器材:微波发生器、微波接收器、不同介质样品(如玻璃、木头、金属等)。
实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。
2. 将不同介质样品放置在微波传播路径上,观察微波的传播情况。
实验结果:观察到微波在不同介质中的传播情况不同。
在玻璃中,微波能够较好地传播,而在金属中,微波会被完全反射或吸收。
实验二:微波反射和折射实验目的:观察微波在不同介质间的反射和折射现象。
实验器材:微波发生器、微波接收器、反射板、折射板。
实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。
2. 将反射板放置在微波传播路径上,观察微波的反射情况。
3. 将折射板放置在微波传播路径上,观察微波的折射情况。
实验结果:观察到微波在反射板上会发生反射,反射角等于入射角。
在折射板上,微波会发生折射,根据折射定律,入射角和折射角之间存在一定的关系。
实验三:微波干涉实验目的:观察微波的干涉现象。
实验器材:微波发生器、微波接收器、干涉板。
实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。
2. 将干涉板放置在微波传播路径上,观察微波的干涉情况。
实验结果:观察到微波在干涉板上会出现明暗相间的干涉条纹。
根据干涉现象的特点,可以推测微波是一种具有波动性质的电磁波。
实验四:微波加热实验目的:观察微波对物体的加热效果。
实验器材:微波发生器、微波接收器、食物样品。
实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。
2. 将食物样品放置在微波传播路径上,观察微波对食物的加热效果。
实验结果:观察到微波对食物样品有较好的加热效果,食物在微波的作用下能够迅速加热。
微波技术基础实验报告
微波技术基础实验报告一、实验目的1.掌握微波信号的基本特性和参数的测量方法;2.了解微波器件的性能指标和测试方法;3.加深对微波传输线和网络理论的理解和实践。
二、实验设备和原理实验设备:微波信号源、功率计、波导固有模发生器、波间仪、反射器等。
实验原理:微波技术是指在高频范围内进行电磁波的传输、控制和处理的一套技术体系,其频率范围通常为0.3GHz至300GHz。
微波技术具有频率高、信息容量大和传输距离远等优点,广泛应用于通信、雷达、航空航天等领域。
三、实验步骤和内容1.根据实验要求,搭建实验电路;2.测量微波信号源输出功率,通过功率计测量微波信号源输出功率;3.测量波导波导的传输特性,通过波间仪测量微波信号通过波导时的传输特性;4.测量波导器件的特性,通过波间仪测量波导器件的特性;5.测量波导管中的固有模,通过固有模发生器和反射器测量波导管中的固有模。
四、实验结果和数据分析1.根据实验条件,测量到微波信号源输出功率为10dBm;2.根据测量结果,绘制出波导波导的传输特性曲线,分析其传输性能;3.根据实验条件,测量到波导器件的插入损耗为3dB;4.根据实验条件和测量数据,计算出波导管中的固有模的频率范围和衰减值,并进行数据分析。
五、实验结论1.微波信号源输出功率为10dBm;2.波导波导的传输特性曲线显示了其良好的传输性能;3.波导器件的插入损耗为3dB,插入损耗越小,器件性能越好;4.波导管中的固有模的频率范围为0.3GHz至3GHz,衰减值为-10dB。
六、实验总结通过本次实验,我深入理解了微波技术的基本特性和参数的测量方法,掌握了微波器件的性能指标和测试方法,并加深了对微波传输线和网络理论的理解和实践。
通过实验数据的测量和分析,我对微波技术的应用和性能有了更深入的认识,实验收获颇丰。
微波综合特性研究实验报告
微波综合特性研究实验报告摘要:本实验以微波分块器为研究对象,结合实验数据对其综合特性进行研究和分析。
通过对微波分块器的不同参数和频率的测试以及数据处理,得到了一组完整的综合特性曲线,展现了微波分块器的抗干扰性、运行稳定性和适应性。
该实验结果表明,微波分块器具有较好的综合性能和实用价值。
关键词:微波分块器,综合特性,抗干扰性,运行稳定性,适应性引言:微波信号的传输和处理是高频电路技术的重要研究领域。
微波分块器作为微波器件中的一种重要组成部分,被广泛应用于微波系统、雷达、通信等领域。
为了评估微波分块器的工作效果,需要对其综合特性进行研究和分析。
本实验通过对微波分块器的性能测试和数据处理,探究了微波分块器的综合特性,为其在实际应用中提供了参考依据。
实验部分:1. 实验装置和测试原理实验采用的微波分块器测试装置主要包括信号发生器、功率计、频谱分析仪和示波器等仪器。
所使用的信噪比高的微波分块器品牌采用的是T型结构,能够将微波信号按照一定的比例分配到其不同的输出端口上,具有较好的性能。
2. 实验步骤和数据处理(1)测量微波分块器不同端口的输入输出功率,并计算分块器的转换损耗;(2)测量不同频率下微波分块器的透过系数、反射系数和隔离系数;(3)测试微波分块器在不同输入功率下的输出稳定性,并记录数据;(4)根据实验数据绘制微波分块器各个参数的综合特性曲线,并进行分析和讨论。
结果和讨论:通过实验数据处理和分析,得到了微波分块器的透过系数、反射系数和隔离系数随频率、输入功率等不同参数的变化曲线。
同时,根据实验观测结果,可以看出微波分块器具有较好的抗干扰性和适应性,可以在一些噪声较大的环境中正常运行。
此外,通过计算和对比微波分块器的转换损耗和输出功率稳定性,可以得出该微波分块器的运行稳定性较好,基本能够满足大多数应用场合的需要,同时具有较高的实用价值。
结论:微波分块器综合特性的研究对于评估其功能和适应性具有重要意义。
微波基本测量实验报告
微波基本测量实验报告微波基本测量实验报告引言:微波技术是现代通信、雷达、天文学等领域的重要组成部分。
为了更好地了解微波的特性和应用,本实验旨在通过基本的测量实验,探索微波的传输、反射和干涉等现象,并对实验结果进行分析和讨论。
一、实验装置和原理本实验使用的实验装置包括微波发生器、微波导波管、微波检波器、微波衰减器等。
微波发生器产生微波信号,经由微波导波管传输到被测物体,再通过微波检波器接收并测量微波信号的强度。
微波衰减器用于调节微波信号的强度,以便进行不同强度的测量。
二、实验过程和结果1. 传输实验将微波发生器与微波检波器分别连接到微波导波管的两端,调节发生器的频率和功率,记录检波器的读数。
随着发生器功率的增加,检波器读数也相应增加,说明微波信号能够稳定传输。
2. 反射实验将微波发生器与微波检波器连接到微波导波管的同一端,将导波管的另一端暴露在空气中,调节发生器的功率,记录检波器的读数。
随着功率的增加,检波器读数也增加,表明微波信号在导波管与空气之间发生了反射。
3. 干涉实验将两根微波导波管分别连接到微波发生器和微波检波器上,将两根导波管的另一端合并在一起,调节发生器的功率,记录检波器的读数。
随着功率的增加,检波器读数呈现周期性的变化,表明微波信号在导波管之间发生了干涉。
三、实验结果分析1. 传输实验结果表明,微波信号能够稳定传输,说明微波导波管具有良好的传输特性。
传输实验中,微波信号的强度与发生器功率呈正相关关系,这与微波信号的传输损耗有关。
2. 反射实验结果表明,微波信号在导波管与空气之间发生了反射。
反射实验中,微波信号的强度与发生器功率呈正相关关系,说明反射信号的强度与输入信号的强度相关。
3. 干涉实验结果表明,微波信号在导波管之间发生了干涉。
干涉实验中,微波信号的强度呈现周期性的变化,这与导波管的长度和微波信号的频率有关。
当导波管的长度等于微波信号的波长的整数倍时,干涉现象最为明显。
四、实验总结通过本次微波基本测量实验,我们对微波的传输、反射和干涉等现象有了更深入的了解。
(整理)微波技术实验指导书
微波技术实验指导书实验一微波测量系统的了解与使用实验性质:验证性实验级别:选做开课单位:信息与通信工程学院学时:2学时一、实验目的:1.了解微波测量线系统的组成,认识各种微波器件。
2.学会测量设备的使用。
二、实验器材:1.3厘米固态信号源2.隔离器3.可变衰减器4.测量线5.选频放大器6.各种微波器件三、实验内容:1.了解微波测试系统2. 学习使用测量线四、基本原理:图1.1 微波测试系统组成1.信号源信号源是为电子测量提供符合一定技术要求的电信号的设备,微波信号源是对各种相应测量设备或其它电子设备提供微波信号。
常用微波信号源可分为:简易信号发生器、功率信号发生器、标准信号发生器和扫频信号发生器。
本实验采用DH1121A型3cm固态信号源。
2.选频放大器当信号源加有1000Hz左右的方波调幅时,用得最多的检波放大指示方案是“选频放大器”法。
它是将检波输出的方波经选频放大器选出1000Hz基波进行高倍数放大,然后再整为直流,用直流电表指示。
它具有极高的灵敏度和极低的噪声电平。
表头一般具有等刻度及分贝刻度。
要求有良好的接地和屏蔽。
选频放大器也叫测量放大器。
3.测量线3厘米波导测量线由开槽波导、不调谐探头和滑架组成。
开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场的变化信息。
4.可变衰减器为了固定传输系统内传输功率的功率电平,传输系统内必须接入衰减器,对微波产生一定的衰减,衰减量固定不变的称为固定衰减器,可在一定范围内调节的称为可变衰减器。
衰减器有吸收衰减器、截止衰减器和极化衰减器三种型式。
实验中采用的吸收式衰减器,是利用置入其中的吸收片所引起的通过波的损耗而得到衰减的。
一般可调吸收式衰减器的衰减量可在0到30-50分贝之间连续调节,其相应的衰减量可在调节机构的度盘上读出(直读式),或者从所附的校正曲线上查得。
五、实验步骤:1.了解微波测试系统1.1观看如图装置的的微波测试系统。
微波综合实验
四、正文:(一)实验设备1、耿氏二极管微波发射器如图所示:将体效应管通过一个同轴支线内导体延长的芯杆,安放在一段矩形波导宽壁的中央;同轴支线中设有高频扼流装置,以便由它引入直流偏压时不引起高频外泄;从支持管子的芯杆到波导的后腔充当谐振腔。
当在体效应管的两端加上10V左右的直流电压时,就可以在谐振腔内产生波长为3cm左右的微波振荡,用发射喇叭传送出去。
2、接收系统如图所示:接收系统从喇叭接收到的微波信号,先经一个可变衰减器,利用该衰减器调节输出功率的大小,使指示器有适当的指示。
再将微波信号经晶体管检波器检波后,送微安表指示。
(二)实验原理及其内容1、反射实验微波遵从反射定律,如图所示。
一束微波从发射喇叭A发出以入射角i射向金属板MN,则在反射方向的位置上,置一接收喇叭B,只有当B处在反射角时,接受到的功率最大,即反射角等于入射角。
步骤:(1)装上反射板,使其法线与刻度盘上的00线一致,固定在刻度盘上。
(2)转动圆盘,使固定臂指针指向某一角度,即入射角。
然后转动活动臂,找到一个最大接收位置,这个位置所对应的角度为反射角。
(3)每隔05做一次,记录所对应的位置。
(4)从左、右方向入射,各做一次,取平均值,验证反射定律。
数据处理:入射角30 35 40 45 50 55 60 65(°)左测反射30.6 36.1 41.1 45.8 50.7 55.9 61.0 66.2角(°)右测反射29.6 34.7 39.5 45.0 49.3 55.2 59.0 64.4角(°)实验结论:把误差考虑在内,可以认为:反射角等于入射角。
2、单缝衍射微波的衍射原理与光波的完全相同,当一束微波如入射到一宽度与波长可比拟的狭缝时,它就要发生衍射现象,如图而示。
设波长为λ,狭缝宽度为a,当衍射角θ满足asinθ=kλ k=……-1,0,1,2,3,4…时,在狭缝背面出现衍射波的强度极小,当asinθ=+(2k+1)λ/2 k= …-1,-2,0,1,2,3…时,在缝后出现的衍射波的强度最大。
微波实验实验报告
微波实验实验报告微波实验实验报告引言:微波是一种电磁波,具有较高的频率和较短的波长。
在现代科技中,微波被广泛应用于通信、雷达、烹饪等领域。
本次实验旨在通过实际操作,探究微波的特性和应用。
一、实验目的本实验旨在通过实际操作,了解微波的特性和应用。
具体目标如下:1. 掌握微波的产生和传播原理;2. 研究微波在不同介质中的传播特性;3. 实践微波在烹饪中的应用。
二、实验器材和材料1. 微波发生器;2. 微波传输系统;3. 不同介质样品;4. 高频检波器;5. 微波炉。
三、实验步骤与结果1. 实验一:微波的产生和传播原理将微波发生器与微波传输系统连接,调节微波的频率和功率,观察微波在传输系统中的传播情况。
结果显示,微波在传输系统中呈直线传播,并且能够穿透一些非金属材料。
2. 实验二:微波在不同介质中的传播特性将不同介质样品分别放置在微波传输系统中,观察微波在不同介质中的传播情况。
实验结果显示,微波在不同介质中的传播速度和路径发生了变化。
在介质的界面处,微波会发生反射、折射等现象。
这些现象可以用光学中的折射定律和反射定律来解释。
3. 实验三:微波在烹饪中的应用将食物样品放置在微波炉中,设置适当的时间和功率,观察微波在烹饪中的应用效果。
实验结果显示,微波能够快速加热食物,并且能够均匀加热。
这是因为微波能够与食物中的水分子发生共振,使其产生热量。
四、实验讨论与分析1. 微波的产生和传播原理微波的产生和传播是基于电磁波的原理。
微波发生器通过电磁振荡产生微波,微波传输系统将微波传输到目标位置。
微波在传输系统中呈直线传播,这是因为微波具有较高的频率和较短的波长,能够穿透一些非金属材料。
2. 微波在不同介质中的传播特性微波在不同介质中的传播速度和路径会发生变化,这是因为介质的折射率不同。
当微波从一种介质传播到另一种介质时,会发生反射、折射等现象。
这些现象可以用光学中的折射定律和反射定律来解释。
3. 微波在烹饪中的应用微波在烹饪中的应用是基于微波与食物中的水分子发生共振的原理。
大学物理实验微波综合特性研究实验报告
篇一:大学物理实验微波光学特性及布拉格衍射微波光学特性及布拉格衍射摘要:微波是一种特定波段的电磁波,其波长范围为1mm~1m。
它存在反射、折射、干涉、衍射和偏振等现象。
但因为它的波长、频率和能量具有特殊的量值,所以它所表现出的这些性质也具有特殊性。
用微波来仿真晶格衍射,发生明显衍射效应的晶格可以放大到宏观尺度(厘米量级)。
所以,本实验用一束3cm的微波代替x射线,观察微波照射到人工制作的晶体模型时的衍射现象,用来模拟发生在真实晶体上的布拉格衍射,并验证著名的布拉格公式。
该实验还利用了微波分光仪完成了微波的单缝衍射和微波迈克尔逊干涉实验。
该报告主要介绍了上述实验的原理,并进行了数据处理和误差分析,在最后还提出了一种实验仪器的改进方案。
关键字:微波光学特性布拉格衍射实验目的:1. 了解微波原理及微波分光的使用方法;2. 认识微波的光学性质,及基本测量方法。
实验仪器:体效应管微波发生器、微波分光计及其附件、微波发射天线、微波接收天线、检波器、微安表等。
实验原理微波波长从1m到0.1mm,其频率范围从300mhz~3000ghz,是无线电波中波长最短的电磁波。
微波波长介于一般无线电波与光波之间,因此微波有似光性,它不仅具有无线电波的性质,还具有光波的性质,即具有光的直射传播、反射、折射、衍射、干涉等现象。
由于微波的波长比光波的波长在量级上大10000倍左右,因此用微波进行波动实验将比光学方法更简便和直观。
微波是一种电磁波,它和其他电磁波如光波、x射线一样,在均匀介质中沿直线传播,都具有反射、折射、衍射、干涉和偏振等现象。
1、微波的反射实验微波的波长较一般电磁波短,相对于电磁波更具方向性,因此在传播过程中遇到障碍物,就会发生反射。
如当微波在传播过程中,碰到一金属板,则会发生反射,且同样遵循和光线一样的反射定律:即反射线在入射线与法线所决定的平面内,反射角等于入射角。
2、微波的单缝衍射实验当一平面微波入射到一宽度和微波波长可比拟的一狭缝时,在缝后就要发生如光波一般的衍射现象。
微波实验报告心得
一、实验背景微波技术是一门涉及电磁场、微波电路、微波系统等方面的综合性学科。
在当今信息时代,微波技术已经广泛应用于通信、雷达、遥感、医学等领域。
为了更好地掌握微波技术的基本原理和应用,我们进行了微波实验,通过实际操作加深对微波技术的理解和认识。
二、实验目的1. 理解微波的基本原理,掌握微波传播、传输和辐射的特性。
2. 掌握微波测量技术,包括S参数测量、阻抗测量、衰减测量等。
3. 学习微波元件和微波系统的设计方法,提高动手能力。
4. 培养团队协作精神,提高沟通与交流能力。
三、实验内容1. 微波基本原理实验通过实验,我们学习了微波传播、传输和辐射的基本原理。
实验中,我们观察了微波在介质中的传播特性,掌握了微波在传输线中的传输特性,了解了微波在空间中的辐射特性。
2. 微波测量技术实验在微波测量技术实验中,我们学习了S参数测量、阻抗测量、衰减测量等基本方法。
通过实验,我们掌握了使用矢量网络分析仪进行S参数测量的操作步骤,了解了S参数在不同频率下的变化规律;同时,我们还学会了使用阻抗测量仪和衰减测量仪进行阻抗和衰减测量,为后续的微波元件和微波系统设计奠定了基础。
3. 微波元件和微波系统设计实验在微波元件和微波系统设计实验中,我们学习了微波元件的设计方法,包括阻抗匹配、滤波器设计、耦合器设计等。
通过实验,我们掌握了使用阻抗匹配器实现负载匹配的方法,了解了滤波器、耦合器等微波元件的基本原理和设计方法。
四、实验心得1. 理论与实践相结合通过本次微波实验,我深刻体会到理论与实践相结合的重要性。
在实验过程中,我们将理论知识应用于实际操作,不仅加深了对微波技术的理解,还提高了动手能力。
2. 团队协作与沟通实验过程中,我们分成小组进行操作,相互协作,共同完成实验任务。
在这个过程中,我们学会了如何与他人沟通、协调,提高了团队协作能力。
3. 严谨的实验态度实验过程中,我们严格按照实验步骤进行操作,认真记录实验数据,对实验结果进行分析和总结。
微波实验报告3
内蒙古工业大学信息工程学院实验报告课程名称:微波技术实验名称:阻抗匹配网络的设计实验类型:验证性■综合性□设计性□实验室名称:通信与控制基础实验室成绩:实验日期:2014年月日实验三、阻抗匹配网络的设计一、实验目的1.理解阻抗匹配原理,重点掌握单支节阻抗匹配器的应用;2.熟悉阻抗圆图在阻抗测量中的应用;3.学会用阻抗匹配器对失配元件进行调配。
二、设计要求1.在给定负载情况下,利用单支节匹配器法设计阻抗匹配网络,实现无反射匹配;2.结合阻抗圆图,验证设计结果,并得出结论。
三、实验原理1.阻抗测量在微波测量技术中,阻抗测量占有很重要的地位。
微波元件的阻抗是微波系统匹配设计的依据, 也是研究复杂微波结构的微波网络中确定等效电路参数的依据。
阻抗测量不仅应用于微波器件特性阻抗的研究及微波系统的阻抗匹配,同时也是一些复杂测量(如微波网路参量的测量)的基础。
因而微波阻抗测量是一项非常重要的测量。
由波导理论可知波导中的电磁场不是均匀分布的,因而不可能像双线传输线那样用行波电压(或电场强度)对行波电流(或磁场强度)之比,来规定出一个只决定于传输线本身尺寸的特性阻抗。
波导的等效阻抗值因定义方法不同而不同,因而一般并不进行阻抗绝对值的测量。
经常遇到的实际问题是电磁波在负载与传输线不匹配的传输系统上传播而产生的问题,在这一类问题中仅需知道被测元件的归一化阻抗。
阻抗测量的方法很多,但应用较为广泛的方法是测量线法。
根据传输线理论,传输线上任一点的归一化阻抗为:在电压最小点,即L=L min 时,有ρ1Z =,代入上式可解得归一化负载阻抗为:即阻抗测量就归结为对上述三个参量的测量。
2. 确定驻波最小点位置L min 的测量原理由于测量线标尺的两端点不是延伸到线体的两端口,直接测量输入端口到第一个电压最小点的距离L min 是不可能的,但根据阻抗分布的2/g λ重复性原理,在传输线上每隔2/g λn处的阻抗相等,所以只要找到与待测阻抗相等的面作为等效参考面即可,这就是在测量中常采用的方法“等效截面法”。
微波光学实验
2. 微波的单缝衍射实验
当微波入射到宽度和其波长可 比拟的一个狭缝时, 会发生如光波 一般的衍射现象。 在狭缝后面的衍 射屏上出现衍射波强度并不均匀, 中央最强且最宽, 从中央向两边微 波衍射强度迅速减小。 由于与光的 单缝衍射一样,这里给出实验光路 图 2.1
图如图 2.1 所示,与狭缝 E 垂直的衍射光速汇聚于屏上 P0 处,是中央明纹的中 心,光强最大,设为 I 0 ,与光轴方向成 角的衍射光束汇聚于 Pk 处,Pk 的光强 由计算可得
(1) 射到反射板上的波都反射了吗?不同的入射角是反射信号是不是一样的?
(2)读数达到最大时的角度我们认为是反射角。但是你能解释为什么有些波反 射到不同的角度吗?
2.微波的单缝衍射 (1)调整单缝衍射板的缝宽,安装该板到支座上,使单缝衍射板和发射喇叭保
持垂直。 (2) 在衍射角 0 度的两侧, 每改变 2 度读取一次液晶显示器读数, 并记录下来。 (3)根据记录数据,画出单缝衍射强度与衍射角度的关系曲线。 思考题
度的最小值,此时衍射角 满足
sin k k 1,2,3
(2.3)
③次极大的位置。除了主极大之外,两相邻暗纹之间都有一个次极大(中央条纹 以外的明纹) ,通过计算 tan ,可得各级次极大对应的衍射角 为
arcsin
2k 1 k =1, 2, 3
Ik I0
sin 2
2
=
sin
sin 2
(2.1)
2 式中 为单缝的宽度, 是微波的波长。式中
叫做单缝衍射因子,表征衍
射场内任一点微波相对强度的大小。 衍射图样中光强的极大值和极小值的位置,一定满足对式子(2.1)求一阶倒 数为零的那些点,即
微波光学综合实验
微波光学综合实验【实验目的】1、了解与学习微波产生的基本原理以及传播和接收等基本特性。
2、观测微波干涉、衍射、偏振等实验现象。
4、通过迈克耳逊实验测量微波波长。
【实验仪器】DHMS-1型微波光学综合实验仪一套,包括:X波段微波信号源、微波发生器、发射喇叭、接收喇叭、微波检波器、检波信号数字显示器、可旋转载物平台和支架,以及实验用附件(反射板、分束板、单缝板、双缝板、读数机构等)。
微波光学实验系统装置如图1所示。
1.电池后盖 2.开关 3.接受部件 4.转动臂 5.筋骨装置 6.移动装置 7.圆形底盘8.机脚 9.x波段信号源 10.长支柱 11.紧固蝶形螺丝 12.信号源传输电缆 13.频率调节旋钮 14.功率调节旋钮 15.发射部件 16.发射喇叭 17.固定臂 18.载物圆台19.圆形支架 20.指针 21.短支柱 22接收喇叭 23.接收旋转部件 24.液晶显示器图1 微波光学实验系统装置【实验原理】微波波长从1m到0.1mm,其频率范围从300MHz~3000GHz,是无线电波中波长最短的电磁波。
微波波长介于一般无线电波与光波之间,因此微波有似光性,它不仅具有无线电波的性质,还具有光波的性质,即具有光的直射传播、反射、折射、衍射、干涉等现象。
由于微波的波长比光波的波长在量级上大10000倍左右,因此用微波进行波动实验将比光学方法更简便和直观。
微波是一种电磁波,它和其他电磁波如光波、X射线一样,在均匀介质中沿直线传播,都具有反射、折射、衍射、干涉和偏振等现象。
1、微波的反射实验微波的波长较一般电磁波短,相对于电磁波更具方向性,因此在传播过程中遇到障碍物,就会发生反射。
如当微波在传播过程中,碰到一金属板,则会发生反射,且同样遵循和光线一样的反射定律:即反射线在入射线与法线所决定的平面内,反射角等于入射角。
2、微波的单缝衍射实验当一平面微波入射到一宽度和微波波长可比拟的一狭缝时,在缝后就要发生如光波一般的衍射现象。
微波综合特性实验报告
微波综合特性实验报告微波综合特性实验报告引言:微波综合特性是指微波信号在传输过程中的各种特性表现,包括传输损耗、反射损耗、相位稳定性等。
本实验旨在通过实际操作和测量,探究微波综合特性的相关知识。
一、实验目的:1. 了解微波综合特性的概念和相关知识;2. 掌握微波信号的传输损耗测量方法;3. 掌握微波信号的反射损耗测量方法;4. 掌握微波信号的相位稳定性测量方法。
二、实验仪器和材料:1. 微波信号发生器;2. 微波频率计;3. 微波功率计;4. 微波衰减器;5. 微波反射器;6. 微波传输线;7. 微波衰减器;8. 电缆连接器。
三、实验步骤:1. 传输损耗测量:将微波信号发生器与微波频率计、微波功率计以及微波传输线依次连接,设置合适的频率和功率,测量传输线的输入功率和输出功率,计算传输损耗。
2. 反射损耗测量:将微波信号发生器与微波频率计、微波功率计以及微波反射器依次连接,设置合适的频率和功率,测量反射器的输入功率和反射功率,计算反射损耗。
3. 相位稳定性测量:将微波信号发生器与微波频率计、微波功率计以及微波传输线依次连接,设置合适的频率和功率,测量传输线的输入功率和输出功率,并记录相位差值,计算相位稳定性。
四、实验结果与分析:1. 传输损耗测量结果:根据实验数据计算得到传输损耗为X dB。
分析可能的原因包括传输线本身的损耗、连接器的损耗以及信号发生器和频率计的精度等。
2. 反射损耗测量结果:根据实验数据计算得到反射损耗为X dB。
分析可能的原因包括反射器的质量、连接器的损耗以及信号发生器和频率计的精度等。
3. 相位稳定性测量结果:根据实验数据计算得到相位稳定性为X度。
分析可能的原因包括传输线的长度、信号发生器和频率计的精度以及环境温度等。
五、实验总结:通过本次实验,我们深入了解了微波综合特性的相关知识,并通过实际操作和测量掌握了微波信号的传输损耗、反射损耗和相位稳定性的测量方法。
实验结果表明,微波综合特性受到多种因素的影响,包括传输线的损耗、连接器的质量以及信号发生器和频率计的精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.双缝干涉实验
平面微波垂直投射到双缝的铝板上时,由惠更斯原
理可知会发生干涉现象。当
d
sin
k
1 2
,k
0,1,
2...
时为干涉相消(强度为极小),当
d sin k, k 0, 1, 2...
时为干涉相长(强度为极大)。
以上两式中,d=a+b,a,b分别为缝宽和缝间间距, 见下图:
双缝干涉示意图
3.布喇格衍射实验
晶体是由离子、原子、分子在三维空间周期性排 列而成。当波束射到晶面上时,相应地每一个晶面都 将发生反射。当
2d sin k, k 0,1, 2...
时,两波同相位,相互加强。上式称为布拉格公式, 式中d为晶面间距,与双缝干涉中的d不同。
由该式可知发生布拉格衍射的条件是 k 1 。 k=1 时, d 就是此条件。在实验过程中2,d 只要满足
0
1
2
2
1
0
6
4
1
3 10
110面
电流 (μA)
0
2
4
1
0
0
1
5 16 32 36
改变入射角,每隔2o测一次数据。
画出衍射角曲线,并求出相应的衍射角。
(晶格常数a=40mm,波长为32mm)
实验数据表格
单缝衍射实验数据
角度 -70 -68 -66 -64 -62 -60 -58 -56 -54 -52 -50 -48 -46 -44 -42
电流 (μA)
0
0
0
0
0
1
1
1
2
2
实验原理
1.单缝衍射实验
将平面微波垂直地投射到一块开有缝的铝板上,
根据波动光学的结果,其强度分布为:
I
( )
I0
sin 2 u2
u
,
u
a
sin
当 =0时,u=0,此时衍射波强度最大为I0 ,是
中央主极大。
其他次级大的位置由下式给出:
a
sin
k
1 2
,
k
1,
2,
3...
暗条纹的位置为:
asin k, k 1, 2...
微波综合实验
实验摘要
微波是种特定波段的电磁波,其波长范围 大约为1mm~1m。与普通电磁波一样, 微波也存在反射、折射、干涉、衍射和偏 振等现象。但因为其波长、频率和能量具 有特殊的量值,微波表现出一系列即不同 于普通无线电波,又不同于光波的特点。 微波的波长比普通的电磁波要短得多,因 此,其发生、辐射、传播与接收器件都有 自己的特殊性。它的波长又比X射线和光 波长得多,如果用微波来仿真“晶格”衍 射,发生明显衍射效应的“晶格”可以放 大到宏观的尺度。
双缝干涉实验
按单缝衍射步骤进行(使缝宽a=40mm,间 隔b=49mm)。
应用公式计算比较出相长干涉角和相消干涉 角,与实验求出的相应角度进行比较。
布喇格衍射实验
将模拟晶体排成方形点阵,放在圆盘上,使 待侧面法线与圆盘上0o垂直,并固定。
转动圆盘,使固定臂指针指在某一角度即入 射角,将活动臂转至反射角方向,使反射角 等于入射角,读出微安表读数。
86
90
92
98
82
60
38
24
24
12
角度 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
电流 (μA)
2
0
0
1
0
0
2
4
2
0
2
8 12 3
0
角度 50 52 54 56 58 60 62 64 66 68 70
电流 (μA)
2
2
1
1
1
0
0
0
0
0
0
双缝干涉实验数据
2
布拉格公式,可以有不止一群平面入射微波产生反射, 因此对某群平面作相对强度θ 的关系曲线时,较弱的
反射峰可以作为背景存在。
d=2 a (110平面群)
Q
P
R
N
M
d=a (100平面群)
T S
图5 布拉格衍射示意图
接收
发射
图1 微波分光计
实验内容与步骤
准备工作
将微波分光仪的工作电流选择在预热档,接通电源, 预热20min。然后拨向等幅档,调整工作电流及衰 减器,使微安表读数适中。调节接收喇叭,使两喇 叭对正,使之接受信号最大。本实验的微波波长为 32mm。
单缝衍射实验
将固定臂和活动臂的指针分别指向180o和0o 线处。
装上单缝板,使其表面与圆盘上的90o线重 合,缝宽控制在70mm。
衍射角从0o开始,转动活动臂,每隔2o记录 一次表头读数,做到70o为止,左右各一次。
画出单缝衍射强度与衍射角的关系曲线,求 出一级极大和一级极小,并且与理论计算出 来的相应角度进行比较。
电流 (μA)
96
86
78
39
3
3 18 48 66 70 25 0 19 48
角度 50 52 54 56 58 60 62 64 66 68 70
电流 (μA)
15
2
1
2
1
0
0
1
1
1
3
布喇格衍射实验数据
角度 30 32 34 36 38 40 42 44 46 48 50
100面
电流 (μA)
角度 -70 -68 -66 -64 -62 -60 -58 -56 -54 -52 -50 -48 -46 -44
电流 (μA)
0
0
0
0
0
0
0
1
3
8 21 30 20 6
角度 -40 -38 -36 -34 -32 -30 -28 -26 -24 -22 -20 -18 -16 -14
电流 (μA)
实验目的
◦ 了解微波分光仪的结构,学会调整它并能 用它进行实验
◦ 进一步认识电磁波的波动性,测量并验证 单缝衍射,双缝干涉,及布喇格衍射的实 验规律。
◦ 学会如何利用实验理论,通过比较理论结 果与实验结果得出实验结论的方法。
仪器介绍
5 4
7 6
10
9
12
3 2
1
8
11
1 固态源电源 2 发射喇叭 3 固态源 4 接收喇叭 5 衰减器 6 检波器 7 微安表 8 活动臂 9 指示角度指针 10 试样台 11 仪器调平螺丝 12 固定臂
0
0
3
9
5
角度 -40 -38 -36 -34 -32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12
电流 (μA)
0
0
2
2
0
0
0
1
1
2
7 20 36 36 40
角度 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18
电流 (μA)
60
82 100 100 91
38
34
18
4
2
6 20 44 74 89 93 90 64 32
角度 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16
电流 (μA)
60
82 100 100 91
86
90
92
98
82
60
38
24
24
角度 20 22 24 26 28 30 32 34 36 38 40 42 44 46