基于T-S模糊模型的炼铁烧结过程建模毕业论文

基于T-S模糊模型的炼铁烧结过程建模毕业论文
基于T-S模糊模型的炼铁烧结过程建模毕业论文

基于T-S模糊模型的炼铁烧结过程建模毕业论文

目录

第一章课题描述 (1)

1.1炼铁烧结介绍 (1)

1.2 T-S模糊模型介绍: (2)

1.3 T-S模糊模型的特点: (4)

1.4 本论文的大致工作: (5)

第二章基础知识 (6)

2.1模糊集合的基本概念 (6)

2.2模糊集合的基本运算: (8)

2.3模糊C均值聚类(FCM)算法 (9)

2.4最小二乘法 (10)

2.5 逐步回归方法: (11)

第三章炼铁烧结的工艺流程 (15)

3.1原料的准备: (16)

3.2配料与混合: (16)

3.3烧结生产: (17)

3.4烧结过程中用到的化学反应: (19)

第四章运用T-S模糊模型对炼铁烧结过程进行建模 (21)

4.1 从各类公式中总结整个构建模型的过程 (21)

4.2 利用T-S模糊模型对炼铁烧结数据进行仿真 (22)

4.2.1 确定T-S模糊模型的后件结构 (24)

4.2.2确定T-S模糊模型的前件参数与结构 (24)

4.2.3 确定模糊模型的后件参数 (24)

4.3 利用MATLAB对模型进行仿真 (24)

第五章结论 (27)

致谢 (29)

第一章课题描述

1.1炼铁烧结介绍

炼铁烧结的过程其实就是使用粉末状和细砂状的含铁材料经过化学反应和人工冶制,生产出具有十分不错的冶铁性能的精铁矿,是高炉炼铁前不可缺少的步骤之一。在炼铁烧结中,减少高炉的燃料热损耗是所有炼铁厂的首要任务,但是想要全面提高人造烧结矿的质量还要加强常温的强度,所以要达到这个目的,就要提高烧炉原材料的还原性,还要加强焦炭以及煤粉的利用率,并降低燃耗。炼铁厂一般先要将加工的铁矿粉和自然界的精矿石进行打磨和筛选,按照规定来使用颗粒半径小于8mm的铁矿粉,同时颗粒半径小于8mm的返矿粉可冶铁厂生产出来的废料,例如硫酸渣,高炉炉尘,轧钢皮等按照规定比例延迟后,再调整高炉的热量多少和酸碱度的大小和熔剂,例如:石灰石、生石灰、消石灰,将所有的准备工作做好之后再将高炉点火。因为燃料进行化学时放出的大量热量,燃

料层生产出许多的液相,可以有助于把没有融化的精铁粉变成块状铁矿石,综上所述就是烧结矿。可以看出,炼铁烧结的工艺是将铁粉造块的过程,主要依赖的是热量的多少和盐碱度的大小和原料的比例。

从前钢铁厂只是直接用自然中的铁矿石拿来冶铁,由于工业革命使得钢铁产业迅猛发展,同时市场对钢铁的需求也日益增长,多以人们开始逐渐开发贫矿石和含有许多金属的复合矿,通过许多方法处理过后得到精铁矿,然后将半径小于8mm的精矿粉烧结造块再开始炼铁。

从第一步的炼铁烧结来讲,它属于一种人工生产精矿石的生产手段,人们依赖于这种方法使得地球上许多的贫矿石可以通过烧结手段变成精铁矿来满足高需求的高炉冶铁和人们对优质精矿石的需求,同时也是大自然中的资源得到充分利用,也是的高炉炼铁工艺得到了充分的发展。

从材料的利用来讲,在高炉炼铁的过程中生产出来的富矿粉、高炉炉尘、转炉炉尘、轧钢皮、铁屑、硫酸渣等其他钢铁及化工工业的若干废料也得到了充分的利用,变成了冶铁工程中能够满足人们需求的优质人造精矿石,也做到了变废为宝。

再从工厂的可持续发展角度来讲,高炉使用烧结过的精铁矿可以帮助钢铁高产,能量损耗最低,设备使用更持久。因为与自然中的天然矿石来比,烧结过后的矿石的化学成分稳定、颗粒度均匀、还原性较高、冶铁性能好,所有的条件都可以保证高炉炼铁的稳定运行,其中烧结矿通过加入一定比例的熔剂,获得了自熔性和熔剂性,从而减少了石灰石等燃料,使得高炉温度降低,生产指标得到改善。

最后从环保的角度来讲,炼铁烧结可以帮助减少高炉炼铁过程中生产的硫

元素和氟元素等有害物质,同时省略了高炉炼铁的脱硫过程也提高了生铁的质量。

1.2 T-S模糊模型介绍:

为控制对象建立模型是控制的前提和基础,同样也是对系统进行分析、设计、预测、控制和决策的基本前提,但是在实际运用中有许多的情况无法了解被控制的对象的数学模型,尤其是在系统正常工作的过程中数学模型的参数无时无刻不在发生变化,所以传统的控制技术很难解决问题,其中许多都是无法做到的数学模型,还有就是一个含有许多高阶的非线性方程组,所以要做到精确控制并且要做到动态控制,找到一个精确的数学模型就变得尤为重要。在这样困难的背景下,数字计算机起到了很大的作用,作为离线科学计算,同样也作为在线检测控制在系统控制工作中都被广泛开发和使用,数字计算机可以给系统辨识提供离线的计算与实时计算并且有准确和高效的特点。实际问题的需要和科学技术的成熟,使得人们从基本上开发系统辨识的方法,在现实工作中为系统控制开发应用条件。系统控制被开发和研究了几十年后,系统辨识的确定过程已经变成了系统研究中不可缺少的学科之一。系统辨识的整个过程包括了传统控制理论的深度和广泛性,在实际当中的指导意义也是十分重要,正因如此,使得系统辨识的理论发展十分迅速。

对于整个系统来说,模型其实就是参数和信息相互作用的抽象描述形式,但是模型与系统不是完全相同的,模型仅仅是系统的部分特性的逼近描述,这是模型具有的近似性,它只是表现特定系统的工作规律,是一种以偏概全的近似描述方法。不同形式的模型差距很大,例如物理模型和数学模型,在数学模型中有含

有参数模型和非参数模型。其中非参数模型就是表现实际系统在运行过程中直接表达的响应曲线的模型;而参数模型是用微分方程组表达的参数方程。无论是哪一种方式都是为了实现系统仿真和系统预测还有设计、控制等方面的需要。在建立数学模型中有两大基本方法,一种是测试法,它是直接利用系统输入和输出的新号来推测整个被控对象的数学模型。其实系统辨识就是根据系统的部分特征来测出输入和输出的相互作用关系描述的问题。另一种是机理分析法,这种方式首先要确定系统本身属于哪种机理(例如经济机理,社会机理,物理机理,化学规律),再根据已有的规律确立系统模型,这种方式要求对系统工艺和规律研究特别熟悉,其中包括数据、定理、规律的准确研究。

从系统辨识的角度来说,机理分析法更加具有实用性,由于人们对非线性多变的系统的结构和调整其运作的机理没有一定的了解,所以从理论分析的角复杂系统度构造出数学模型是十分困难的,所以系统辨识可以帮助解决上不明确机理的系统建模。

系统辨识与机理建模它们之间的不同点取决于在建模过程中的知识源,其中,机理建模运用的是对物理公式的分析与改善,但是系统辨识大部分是分析数据。

T-S模糊模型的组成:

Ri:If x1 is Ai1 and x2 is Ai2 and…and xr is Air

Then yi=pi0+pi1x1+pi2x2+…+ pirxr

结构中的R的含义是模型中的第i条模糊规则,x表示系统的i个输入变量,

其实就是我们所说的前件变量,A表示的是i个前件变量中每一个变量相对应的隶属函数,有被称之为前提参数;其中P表示后件参数。

前件中If-then的形式虽然是模糊表述,但后件中采用的逻辑规则却是严密的精确量,换句话来讲,后件表述的是系统精确输入量的线性函数,综上所述就是T-S模糊模型的基本组成,次种模型的语言规则是辨识方法的基础,通过专有的辨识方式来确定模糊系统的输入量和输出量,对系统进行辨识后得到了输入输出的控制规则基,将控制规则基组合后便是建立的模糊模型。

在建立模糊系统的过程中,先要将输入量和输出量按照对应的模糊规则配对,但是输入和输出的数目很大的时候,这个系统就不是有实际性的系统。所以面对样本的数量十分庞大的问题时,需要一个特殊的方法来解决。其中用到的方式就是聚类技术,它是可以把输入量和输出量的数据分组,让每一个组的数据对应一个模糊规则,通过T-S模糊模型的系统辨识,得出数目不多的输入量和输出量的非线性关系的规则,用这样的方式已经取得较高的成果。

在T-S模糊模型的建模过程中,规则的确定和生成是建模的困难过程,一般情况模糊规则很难定出,其实T-S模糊模型的建模十分依赖聚类的算法优化参数,

从中得出模糊规则,通过不断改善的学习方法提高模糊规则的精确度,从而提高模糊控制的性能,可以看出模糊辨识在模糊模型建模中起到了决定性的因素。

若要对非线性复杂系统进行辨识通常用到两种方法:第一种方法是根据需要控制系统的已知信息,通过近似的方式来选择非线性模型,其局限性是明显的缺陷;第二种方法是直接用线性模型近似表达非线性模型,当然这种方式有严重

的系统误差。

模糊模型的本质其实是一种非线性模型,通过模糊集的特点善于表达具有动态特性的系统,并且运用模糊模型这样的万能逼近器,可以到达任何非线性时变系统的任何精度,所以模糊模型淘汰了传统对非线性系统的建模方式。虽然模糊模型看似粗糙,但能对复杂的非线性系统个日出定量的围描述。

模糊辨识其实就是寻找模糊规则的过程,其目的是获取和展开模糊控制规则的。大致可以分为四种方式:

(1)自主学习

(2)为被控对象建模

(3)参考专家的经验和知识

(4)为操作者的控制行为建模

1.3 T-S模糊模型的特点:

T-S模糊模型的优点其实有很多,规则前件其实就是模糊变量的输入值,而我们所说的规则后件其实就是表示输入量和输出量之间关系的线性函数,它首先将整个系统的控制过程分段,这是模糊聚类的过程,再将每一段的模糊规则用线性关系表示,最后再使用隶属函数把每一段线性函数连接起来,变成了全局非线性函数。在此过程中局部线性化函数得到了充分的利用,因为此类模式能够解决模糊模型中遇到的高阶问题,同时又有结构简单,近似性好的优点,这是在解决系统中的非线性关系中被广泛应用的方法。由于最终建立的模糊模型结果是用线性函数所描述的,所以系统方便于使用古典的控制理论对整个系统进行分析。虽然这种T-S模糊模型建模被人们广泛的开发和利用,但是建模过程依然是一个

相关主题
相关文档
最新文档